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Abstract—Incorporating information and communication tech-
nology in the operation of the electricity grid is undoubtedly
contributing to a more cost-efficient, controllable, and flexible
power grid. Although this technology is promoting flexibility
and convenience, its integration with the electricity grid is
rendering this critical infrastructure inherently vulnerable to
cyberattacks that have potential to cause large-scale and far-
reaching damage. In light of the growing need for a resilient
smart grid, developing suitable security mechanisms has become
a pressing matter. In this work, we investigate the effectiveness
of a model-free state-of-the-art attack-detection method recently
proposed by the cybersecurity community in detecting common
types of cyberattacks on voltage control in distribution grids.
Experimental results show that, by monitoring raw controller
and smart-meter data in real time, it is possible to detect denial
of service, replay, and integrity attacks, thus contributing to a
resilient and more secure grid.

Index Terms—Low-Voltage Grid, Cyberattack, Model-Free
Detection, Smart Grid, PASAD

I. INTRODUCTION

Due to limitations, costs, and growing concerns over envi-
ronmental impact of the electricity grid, transitioning into the
envisioned cost-effective, more environment-friendly, highly
manageable and controllable smart grid has become increas-
ingly pressing over the past few years. Advances in in-
formation and communication technology—the driving force
behind this transition—are paving the way for a more flex-
ible distribution grid capable of resolving the limitations of
the current electricity grid and optimizing the integration of
renewable energy sources, such as wind and solar power. The
other side of the coin, however, is that the integration of
communication technologies makes the smart grid susceptible
to cyberattacks capable of causing serious damage to the
electricity infrastructure.

The successful operation of smart grid services, such as
monitoring and control of low-voltage distribution grids (LV-
grids), demand management, energy theft detection and load
forecasting [1], relies heavily on fine-grained smart meter
readings. The transmission of such sensitive data over insecure
communication links, however, goes beyond privacy issues
and opens doors to malicious actors to compromise the grid
operation via cyberattacks that could cause, for instance, a
massive operational failure of energy assets [2].

In light of the expanding threat surface in energy net-
works, the ability to detect cyberattacks before they cross

from the cyber realm to the physical world is growingly
needed. In this paper, we investigate the effectiveness of
PASAD, a recently proposed model-free technique for detect-
ing attacks on industrial control systems, in detecting various
common types of cyberattacks on LV-grids. PASAD captures
the dynamics of voltage-control loops during a training phase
through sophisticated analysis of time series of controller and
smart-meter data, then detects deviations from the normal
behavior through real-time data processing. The motivation
behind using a model-free detection approach in current LV
grids is twofold. First, the data required for modelling current
distribution grids is scarce and often inaccurate. This applies to
both household consumption measurements and grid topology
data such as line lengths, cable types and cable parameters.
Hence, model-based techniques are difficult to apply as they
require correlating measurements with a model of the LV grid.
Second, a model-free approach is inherently agnostic to the
controller scenario and can thus be used for different kinds of
control, independently of the underlying LV grid.

Control of photo-voltaic (PV) and small-scale wind turbines
in electricity distribution grids is growingly adopted to address
challenges arising from the recent proliferation of distributed
generation units. The voltage-control scenario under study
in this paper targets reduction of over- and under-voltages
by adjusting reactive power generation of selected LV grid
assets. The proposed approach is validated through a series
of experiments using a low-voltage grid model based on a
single-phase representation of a realistic LV grid in Denmark.
Experimental results using various representative low-voltage
control scenarios demonstrate a promising capability of de-
tecting subtle attack-induced changes in the system behavior.

The remainder of this paper is laid out as follows: In
Section II, we present background material and discuss re-
lated work. Section III describes the system architecture and
Section IV introduces the attack scenarios and illustrates the
attacker model. The attack-detection methodology is presented
in Section V and the proposed approach is evaluated in
Section VI. Finally, we conclude this work in Section VII.

II. BACKGROUND

A. Low-Voltage Distribution Grids

The operation of future LV-grids typically involves the
control and coordination of distributed renewable generation
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Fig. 1: A conceptual control loop for maintaining low-voltage
grids within the operational bounds.

and consumption units, collectively referred to as controllable
assets. In particular, wind turbines and PV systems scattered
throughout distribution networks exchange system states with
the controller [3,4]. Figure 1 outlines a conceptual control loop
as well as a high-level description of the information flow in a
typical voltage-control scenario in an LV-grid. Sensors measur-
ing the grid state communicate their measurements via smart
meters (SMs) to a voltage controller over a communication
network that is necessarily fast and reliable to optimize the
use of controllable assets [5,6]. Based on a predefined control
objective, the controller then utilizes the received grid state
information to make decisions on how actuators in the grid
should operate; for example, calculating new set-points for
PV systems or energy storage.

The voltage control implementation used in this work is
event-driven. In an event-driven control setting, the control
loop is triggered upon violation of certain control criteria.
In the event of such a breach, the controller starts executing
periodically until the grid satisfies the control criteria. In
an attempt to minimize the potential economic implications
of prolonged continuous control, the event-driven controller
remains idle for as long as possible.

B. Related Work

LV grids are witnessing a rapidly increasing integration of
distributed inverter-based generation. Although the distributed
generation units may contribute to voltage problems, such as
over-voltages, harmonics, dips, and swells, they could also be
leveraged to solve the very same problems. In an increasingly
common control situation, inverters participate in intelligent
grid controls to solve the voltage problems [7,8].

Ma et al. [9] discuss measurement falsification scenarios,
wherein an adversary corrupts voltage measurements received
by so-called voltage droop controllers, and assess the impact of
such attacks on system stability and voltage magnitude using
analytical control-theoretic methods. Using a rather simple
grid model, the authors focus solely on the effects of such
attacks on controllers and do not investigate attack detection.

Fig. 2: Layout and architecture of the reference LV-grid used in
this work. The nodes in green boxes are controllable assets [6].

In [10,11], so-called cyber-secure modeling frameworks
for the power grid and the communication networks are
discussed. Kundur et al. [11] consider general smart-grid
scenarios, whereas Giacomoni et al. [10] explicitly propose
an intelligent distributed secure control architecture for distri-
bution systems to provide greater adaptive protection through
proactive reconfiguration and rapid response to disturbances.
In both works, however, the impact and detection of cyberat-
tacks are not addressed.

Isozaki et al. [12] propose a detection algorithm for cen-
tralized voltage regulation, whereby voltage measurements
from sectioning switches equipped with sensors feeding to a
centralized controller are monitored to detect attacks that are
performed at the controller level only.

This paper studies the consequences of cyberattacks on
voltage control in LV distribution grids and proposes a model-
free approach to detecting such attacks on both the controller’s
and actuators’ side.

III. SYSTEM DESCRIPTION

The layout and architecture of the reference LV-grid used
to validate our proposed approach are presented in Fig. 2. In
the setup shown therein, local measurements of voltage and
total power on the LV bus bar are accessed by a low-voltage
grid controller (LVGC) assumed to be located in a secondary
substation. The three nodes highlighted in green represent
the controllable assets used in our evaluation, which consist
of PV systems equipped with energy storage capabilities.
Sensors mounted on the controllable assets measure the local
voltage for the controllable assets, as well as the minimum and
maximum active and reactive power, and communicate with
smart meters to notify the controller in the event of a threshold
violation. To keep the voltages within operational bounds,
the controller communicates set-points to the controllable
assets. The reference grid is simulated using the Matlab-based
tool DiSC, which is an open-source simulation framework



originally developed to verify voltage-control approaches in
European power distribution systems [13]. In order to repro-
duce realistic dynamics in the reference grid, in addition to
simulating household consumption patterns for each node in
the grid, some of the nodes are equipped with PV systems
and storage elements, thereby adding more variability to the
voltage behaviour. This variability is demonstrated in Fig. 3,
which shows a sample voltage behavior of two nodes with and
without PV systems.

For the purpose of this work, we use a generalized event-
driven voltage-control strategy wherein the controller starts
executing whenever voltage measurements at the asset nodes
violate a prespecified threshold. The LVGC controls the
behavior of the reactive power by communicating control
signals (set-points) to the controllable assets. Upon a threshold
violation, the voltage controller runs every 2 minutes and
sends set-points to the controllable assets in the grid until
the voltage recovers the normal level. The control for each
individual asset is a droop control changing solely the reactive
power according to the equation Qref (t) = GD × (1 −
|V OutAssets(t)| /Vbase), where V OutAssets(t) is the mea-
sured asset’s voltage at time t, Vbase is the nominal voltage,
and GD is the droop gain obtained by manual tuning of the
controller. Although it processes local information for control,
the use of a centralized controller is motivated by the possible
coordination of assets in reaching a global objective [8].

IV. ADVERSARY MODEL AND ATTACK SCENARIOS

Previous studies have shown that many existing smart
meters lack the necessary means of ensuring data integrity
and authenticity [14,15]. Although the damage inflicted by
compromising a few smart meters and causing voltage fluc-
tuations may be limited to household equipment, an attacker
taking control of a sufficiently large subset of smart meters
may be able to destabilize the entire infrastructure, potentially
leading to nothing less than a blackout.

The adversary model assumed in this work is presented in
Fig. 4. The voltage-control loop is exploitable by an adversary
whose objective is to destabilize the distribution grid. Due to
the closed-loop structure, small malicious modifications to the
control signals can be iteratively amplified by the control loop,
causing an increased violation of voltage thresholds, drainage
of energy storage, and increased system operating cost.

Fig. 3: Voltage dynamics with and without PV systems.
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Fig. 4: The adversary model.

As shown in Fig. 4, on one hand, the adversary can
manipulate the control signals Qref by either compromis-
ing the communication link between the controller and the
controllable assets or by directly compromising the controller,
in which case the assets would execute malicious signals
sent by the adversary. On the other hand, the adversary may
compromise smart meters and manipulate the VOutAssets
readings so that the controller reacts erroneously.

We consider three common attack types, namely, denial of
service, replay, and integrity attacks. Following is a description
of the attack scenarios considered in this work.

Denial of Service Attack. In an event-based voltage-control
setting, the integration of computing systems, communication
networks, and physical electric power systems gives rise to
a multi-dimensional and heterogeneous complex environment
with real-time sensing, dynamic control, and information
services. A Denial of Service (DoS) attack is a resource-
exhausting attack that effectively suspends the control of the
system in an attempt to bring it to an unsafe state. A DoS
attack is launched by attackers whose aim is to cause lack of
service availability, e.g., a power outage affecting customers
and distribution system operators alike. For a distribution grid
with a networked control system, DoS attacks can take many
forms [16]. For instance, the attacker can flood the communi-
cation network with useless requests to exhaust the network
resources and thus suspend the exchange of messages carrying
control signals. Alternatively, attackers could compromise the
controller entirely and block access to the communication
channel or completely switch off the controller.

Replay Attack. In a replay attack, the adversary replays
previously recorded traffic in an attempt to fool the controller.
As discussed in [17], a successful replay attack initially
involves collecting and passively recording sequences of data
by manipulating the controller, the communication network, or
the smart-meter measurements. The previously recorded data
sequences are subsequently replayed onto the network during
a desired time interval. A successful replay attack does not
require prior knowledge of the system components.



Integrity Attack. We consider integrity attacks on the con-
trol signals sent by the controller to the controllable assets.
In an integrity attack, the Qref control signal is maliciously
manipulated by the adversary so that the set-point in the
current control loop received by the asset differs from the
true set-point sent by the controller. Unlike replay attacks,
integrity attacks require extensive domain-knowledge of the
components and operation of the target system. Specifically,
conducting an integrity attack requires the adversary to be
capable of modifying the controller data at the controller,
during transmission, or at the smart meters. Integrity attacks on
control signals can be performed in different ways by exploit-
ing known vulnerabilities [15]. For instance, by compromising
intermediate nodes in the communication network of the power
grid (e.g., routers), an attacker can intercept and forge network
packets carrying Qref signals so that they contain maliciously
altered set-points.

V. ATTACK DETECTION METHODOLOGY

To detect the simulated attacks on the LV-grid described
in Section III, we apply a Process-Aware Stealthy-Attack De-
tection mechanism (PASAD) that has recently been proposed
by Aoudi et al. [18] to detect attacks on industrial control
systems. The method takes as input a time series of process
measurements and raises an alarm whenever a change in
system dynamics is suspected.

PASAD works in two phases: an offline training phase
and an online detection phase. In the training phase, the
normal behavior of the underlying dynamical system is repre-
sented mathematically in a low-dimensional signal subspace
by means of spectral decomposition of a special matrix derived
from the time-series data. Afterwards, during the detection
phase, the most recent process measurements are compared
to the normal behavior established in the training phase to
determine whether or not a structural attack-indicating change
in behavior is taking place. This is done by computing a
departure score for every new measurement to determine the
extent to which current readings conform to the estimated
dynamics. Finally, an alarm is raised whenever the computed
score crosses a certain threshold determined during a valida-
tion period.

We run two concurrent instances of PASAD to monitor
the two different time series of process data that exist in the
control loop (see Fig. 4): smart meter voltage measurements
VOutAssets and controller set-points Qref. For each of
the two instances, an initial subseries of the measurements
time series is used to construct a so-called trajectory matrix
X. Then, a subset of the eigenvalues of the covariance matrix
XXT, obtained from the singular value decomposition of X,
is selected to form a basis for the low-dimensional signal
subspace. When vectors constructed out of the time series
of measurements are projected onto the signal subspace,
the following phenomenon occurs: under normal operating
conditions, the projected vectors occupy a bounded region and
thereby form a cluster, whereas under attack conditions, the
vectors depart from the cluster. To measure this departure, a

departure score is computed for the most recent test vector to
determine the distance from the cluster.

A succinct depiction of the workings of PASAD is presented
in Fig. 5. The time series shown in the left plot is an artificial
square wave with added white Gaussian noise. During the
training phase, PASAD processes an initial part of the time
series to learn about the underlying signal by identifying a
mapping from the input space to a so-called signal subspace
as shown in the right plot. The mapping is an orthogonal
projection that transforms the time-series measurements into
vectors in a low-dimensional vector space in which consec-
utive training vectors follow a pattern, thereby establishing a
baseline of normal system behavior. During the testing phase,
PASAD continuously checks if the most recent test vectors
conform to the pattern. In the event of a structural change in
the time series, as shown in the figure, the test vectors break
out of the pattern indicating an anomalous behavior.

For a comprehensive treatment of the underlying theory and
parameters setting, the reader may refer to [18].

VI. EVALUATION

In this section, we introduce the experimental setup, fol-
lowed by a description of the experiments corresponding to
the three attack scenarios introduced in Section IV.

For all the experiments, the upper subplot displays the
time series of process measurements monitored by PASAD
comprising five days of operation. The initial subseries high-
lighted in blue was used for training and estimating the
signal subspace. In all cases, the attack takes place on the
fifth day at noon and lasts for two hours. The measurements
during the attack interval are highlighted in red. The lower
subplot shows the departure scores computed iteratively by
PASAD for every new measurement, together with the alarm
threshold. The threshold was determined by running PASAD
for a validation period of 24 hours and then selecting the
maximum value attained plus a relatively small constant. For
each attack scenario, two experiments were conducted: one
where Qref was monitored and another where VOutAssets
was monitored. For the sake of producing difficult attack cases,
the simulation was performed during summer days, where the
attacks occured at lunchtime, which is the time when the
controller is most active due to the unpredictable stochastic
behavior of the PV systems induced by solar irradiance.

A. Experimental Setup

The LV-grid simulation model used in our experiments is an
extrapolation of an actual LV-grid in northern Denmark. The
simulated grid comprises 37 housing units with integrated heat
pumps (see Fig. 2) among which 8 units have uncontrollable
PV systems and 3 units have controllable PV systems com-
bined with energy storage (battery). The simulated household
consumption patterns are based on real consumption models.
The behavior of the PV systems is generated by models incor-
porating solar irradiance, geographical location, cloud cover,
and time of the day [6,13,19]. For the experiments in this work,
the threshold bounds are 1±0.013pu for identifying voltage



Fig. 5: A visual demonstration of how PASAD detects anomalies in time series by transforming the signal data into a geometric
space wherein the anomalous behavior (highlighted in red) is easier to detect.

violations and 1 ± 0.01pu for activating the controller. The
controller activation bounds are narrower to give the controller
time in advance of the voltage violation. Furthermore, these
bounds were chosen to be relatively small in order to activate
the controller more frequently. Regarding the droop control,
the single-phase nominal voltage Vbase is set to 400V , and
the droop gain (GD) is chosen to be 2 × 105VAr/V in the
experiments based on manual tuning of the controller. The
parameters of the LV-grid, asset models, and the generalized
event-driven controller are summarized in Table I.

B. The DoS Attack Experiment

To perform the DoS attack, we assume that the attacker
compromises the control center and switches off the controller
for two hours, which, according to the simulation model used
in this work, causes the control signals (Qref) to go to
zero during the attack. The detection results of this attack
are displayed in Fig. 6a and Fig. 6b. As shown in the

TABLE I: Reference Grid Parameters
Parameter Value
Number of electrical nodes 49
Number of buses 42
LV base voltage 400V
PV max rated power 6kW
PV efficiency 20%
PV area 28m2

Energy storage capacity 65kWh
Energy storage rated power output 10kW
Summer simulation day June 9
Winter simulation day February 2
Geographical latitude 56,889o

figures, the attack was detected by PASAD in both Qref and
VOutAssets.

C. The Replay Attack Experiment

For the replay attack scenario, the attacker is assumed to
have the means to passively record Qref control signals
transmitted by the controller towards the sensor at the asset

(a) DoS attack on set-points (b) DoS attack on sensors

(c) Replay attack on set-points (d) Replay attack on sensors

(e) Integrity attack on set-points (f) Integrity attack on sensors

Fig. 6: Detection of DoS, replay, and integrity attacks on both
Qref set-points and VOutAssets measurements.



side. This can be achieved by compromising the wireless
communication channel between the sensor and the controller
or by gaining full access to the sensor interface. The recording
occurs from 10AM to 11AM. The recorded traffic is subse-
quently replayed by the attacker during lunchtime from 12PM
to 2PM. Both the recording and replaying occured on the fifth
day of operation. The results of this experiment are displayed
in Fig. 6c (for Qref) and Fig. 6d (for VOutAssets). As can
be seen in the figures, PASAD successfully detects the replay
attack at both ends of the control loop.

D. The Integrity Attack Experiment

To simulate an integrity attack on LV-grids, we assume
that the attacker, by compromising the communication link,
forges the set-points sent by the controller to the controllable
assets. Specifically, the attacker alters the control signals in
such a way that they perform the opposite function, i.e.,
injecting instead of consuming reactive power or consuming
instead of injecting reactive power, where the latter is the
case in this experiment. As in the previous scenarios, the
attack was detected in both the control signals and the sensor
measurements as shown in Fig. 6e and Fig. 6f respectively.

E. Discussion

As experimental results show, cyberattacks on LV-grids can
be detected using a lightweight data-driven approach that
obviates the need for building complex models and predicting
future grid states. Due to the closed-loop mechanism, attacks
on the controller manifest structural changes in the smart-
meter readings. In all test cases, PASAD managed to detect
the attacks at both ends of the controller. Note that in some
cases, the controller does not recover the normal behavior
completely, which explains the second spike in the departure
scores after the attack onset. Also, it should be pointed out
that in the integrity attack scenario, although the controller
exhibits an implausible behavior (Fig. 6e), it is possible for a
strategic adversary to spoof the control signals while carrying
out the attack. However, as demonstrated in Fig. 6f, the attack
can still be detected at the other end of the control loop.
Although our analysis and results were based a single grid
scenario in Denmark, the grid model used in our experiments
features a high integration of renewable units and incorporates
real household consumption measurements as well as grid-
topology data such as line lengths, cable types and cable
parameters, thus contributing to richer dynamics. It is therefore
likely that the proposed approach is applicable to most grid
models that involve less integration of renewable units.

VII. CONCLUSION

The current electricity grid appears to be taking steady
steps towards the more efficient, modernized smart grid,
with substantial integration of information and communication
technologies seeming inevitable in the process. Being a critical
infrastructure, securing the grid against cyberattacks proves
necessary. In particular, a likely consequence of cyberattacks
on the LV-grid is the contamination of measurements collected

from compromised nodes, which in turn leads to bad control
decisions by the controller. If a proper attack-detection mech-
anism is in place, compromised assets can be excluded by
the controller when making control decisions. In this paper,
we proposed a systematic approach to detecting cyberattacks
on voltage control in LV-grids by monitoring time series of
process data. Experimental results show that various common
types of cyberattacks (DoS, replay, integrity) on LV-grids
can be successfully detected using a model-free data-driven
approach that does not require building complex models of
the underlying system. As we have shown, monitoring control
signals and voltage measurements both at the controller’s
side and the assets’ side is a particularly effective attack-
detection architecture. Future work is planned to consider
more sophisticated stealthy integrity attacks, and investigate
the detection capabilities in other control scenarios, such as
power balancing and medium voltage-control.

ACKNOWLEDGMENT

This work has been financially supported by the Danish
project RemoteGRID, which is a ForsKEL program under En-
erginet.dk, under the grant agreement 2016-1-12399, the Eu-
ropean Unions Horizon 2020 research and innovation program
under grant agreement 774145 within the project Net2DG.
The work has also received funding from the European
Community’s Horizon 2020 Framework Programme under
grant agreement 773717, and the Swedish Civil Contingencies
Agency (MSB) through the project “RICS”.

REFERENCES
[1] F. Skopik, “Security is not Enough! On Privacy Challenges in Smart Grids,”

International Journal on Smart Grid and Clean Energy, 2012.
[2] MARSH, “Could Energy Industry Dynamics Be Creating an Impending Cyber

Storm?” https://urlzs.com/G2F42, 2018.
[3] C.-H. Lo and N. Ansari, “Decentralized Controls and Communications for Au-

tonomous Distribution Networks in Smart Grid,” IEEE Transactions on Smart Grid,
2013.

[4] A. Bidram and A. Davoudi, “Hierarchical Structure of Microgrids Control System,”
IEEE Transactions on Smart Grid, 2012.

[5] R. Pedersen, M. Findrik, C. Sloth, and H.-P. Schwefel, “Network Condition Based
Adaptive Control and its Application to Power Balancing in Electrical Grids,”
Sustainable Energy, Grids and Networks, 2017.

[6] M. Kemal, L. Petersen, F. Iov, and R. L. Olsen, “A Real-Time Open Access
Platform towards Proof of Concept for Smart Grid Applications,” Journal of
Communication, Navigation, Sensing and Services (CONASENSE), 2017.

[7] P. Aristidou, G. Valverde, and T. Van Cutsem, “Contribution of Distribution
Network Control to Voltage Stability: A Case Study,” IEEE Transactions on Smart
Grid, 2017.

[8] T. le Fevre Kristensen, R. L. Olsen, J. G. Rasmussen, and H.-P. Schwefel,
“Information Access for Event-Driven Smart Grid Controllers,” Sustainable Energy,
Grids and Networks, 2017.

[9] M. Ma, A. M. Teixeira, J. Van Den Berg, and P. Palensky, “Voltage Con-
trol in Distributed Generation under Measurement Falsification Attacks,” IFAC-
PapersOnLine, 2017.

[10] A. M. Giacomoni, S. M. Amin, and B. F. Wollenberg, “A Control and Communi-
cations Architecture for a Secure and Reconfigurable Power Distribution System:
An Analysis and Case Study,” in 18th IFAC World Congress, Milano, Italy, 2011.

[11] D. Kundur, X. Feng, S. Mashayekh, S. Liu, T. Zourntos, and K. L. Butler-Purry,
“Towards Modelling the Impact of Cyber Attacks on a Smart Grid,” International
Journal of Security and Networks, 2011.

[12] Y. Isozaki, S. Yoshizawa, Y. Fujimoto, H. Ishii, I. Ono, T. Onoda, and Y. Hayashi,
“Detection of Cyber Attacks against Voltage Control in Distribution Power Grids
with PVs,” IEEE Transactions on Smart Grid, 2016.

[13] R. Pedersen, C. Sloth, G. B. Andresen, and R. Wisniewski, “DiSC: A Simulation
Framework for Distribution System Voltage Control,” in 2015 European Control
Conference (ECC), July 2015.

[14] S. McLaughlin, D. Podkuiko, and P. McDaniel, “Energy theft in the advanced
metering infrastructure,” in International Workshop on Critical Information Infras-
tructures Security. Springer, 2009.



[15] I. Rouf, H. Mustafa, M. Xu, W. Xu, R. Miller, and M. Gruteser, “Neighborhood
Watch: Security and Privacy Analysis of Automatic Meter Reading Systems,”
in Proceedings of the 2012 ACM conference on Computer and Communications
Security. ACM, 2012.

[16] P. Srikantha and D. Kundur, “Denial of Service Attacks and Mitigation for Stability
in Cyber-Enabled Power Grid,” in Innovative Smart Grid Technologies Conference
(ISGT), Power & Energy Society. IEEE, 2015.
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