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Simulation model of a ship's energy performance and transportation costs  

 

FABIAN TILLIG 

Department of Mechanics and Maritime Sciences 

Division of Marine Technology 

Abstract 

Society faces a major challenge to reduce greenhouse gas emissions to limit the effects and 

propagation of climate change. As the main contributor to global trade, the shipping industry 

adds significantly to global greenhouse gas emissions and must actively work towards reducing, 

or eliminating, emissions in a short period.  This thesis contributes by developing a generic 

model for quick and accurate prediction of the fuel consumption of existing ships or newbuilds 

in operational conditions. The aim is to be able to predict the potential of fuel-saving measures, 

e.g., design features, retrofitting, alternative propulsion, and operational improvements, and 

evaluate the impact of such measures both, logistically and technically. 

A novel energy systems model called “ShipCLEAN” was developed, which provides the 

opportunity to predict the propulsion power, fuel consumption, and daily costs and income of 

ships in realistic operational conditions, i.e., a wide variety of drafts, speeds, and environmental 

conditions. ShipCLEAN is a unique coupling of a generic power prediction model and a marine 

transport economics model. Aside from a calm-water power prediction based on empirical and 

standard series methods, the power prediction model includes simulating alternative propulsion 

methods (i.e., wind-assisted propulsion), respects all environmental loads acting on a ship at 

sea (e.g., wind, waves, current), is valid for multiple operational conditions (i.e., speed and draft 

of the ship), and balances the forces and moments in four degrees of freedom. Validation studies 

using five example ships (a container ship, a tanker, a cruise ferry, and two RoRo ships) show 

good agreement of the predicted propulsion power with both model tests in the design condition 

and full-scale measurements in variable operational conditions. A detailed uncertainty analysis 

provides an overview of how to further increase the prediction accuracy.  

Special focus of the study is put on evaluating measures to decrease the emissions of ships 

through operational optimization, i.e., speed optimization, alternative propulsion concepts, and 

new design of zero-emission concepts. ShipCLEAN includes novel methods to evaluate the 

aerodynamic interaction effects of Flettner rotors on a ship (in between the rotors and between 

the rotors and the ship), to control the rpm of each rotor in an array on a ship and to evaluate 

the hydrodynamic forces acting on a ship sailing at a drift angle.  

Results from application studies show that fuel savings of around 3% are achievable by 

optimizing the speed profile of a ship in operation. Wind-assisted propulsion shows the 

potential to save up to 30% of fuel if applied to a tanker on a Pacific Ocean trade. It is concluded 

that flexible power prediction models requiring limited input data help to identify and quantify 

potential fuel savings and to identify motivators for ship owners and operators to apply fuel-

saving measures. Further, it is concluded that four degrees of freedom analysis and methods to 

respect aero- and hydrodynamic interaction effects are crucial to accurately predict the 

performance of wind-assisted propulsion. 

Keywords: energy efficiency, energy systems model, performance prediction, ship design, 

speed optimization, wind-assisted propulsion.  
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1 Introduction 
Society faces a major challenge to reduce the emission of greenhouse gases to limit the effects 

and propagation of climate change. As the main contributor to global trade, the shipping 

industry significantly contributes to global greenhouse gas emissions and must actively work 

towards reducing, or eliminating, emissions in a short period. This thesis contributes by 

developing a generic model for quick and accurate prediction of the fuel consumption of 

commercial ships at sea (both existing ships and newbuilds) and to evaluate the potential of 

fuel-saving measures, economically and technically. Special focus is put on accurately 

evaluating the impact of wind-assisted propulsion on the ship and the fuel consumption. Novel 

methods to capture the aero- and hydrodynamic interaction effects on a wind-assisted propelled 

ship are presented. The model is validated against full- and model-scale data from five ships: a 

tanker, a container ship, a cruise ferry, and two RoRo ships.  

1.1 Background and motivation 

The International Maritime Organization (IMO) defined the goal of halving greenhouse gas 

(GHG) emissions generated from shipping by the year 2050, compared to the levels of 2008 

(IMO (2018)). To understand the impact of this target, it must be put in context of the annual 

growth of marine trade and the typical age of ships. As presented in Figure 1, between 2008 

and 2019, marine trade has grown from about 40 000 billion ton-miles to more than 60 000 

billion ton-miles, a growth of about 50% (UNCTAD (2019)). Regardless that the annual growth 

slowed down to less than 3% in 2019, marine trade is not expected to decrease in the next few 

years (UNCTAD (2019)).  

 

Figure 1: International maritime trade in cargo ton-miles (UNCTAD (2019)). 

With a 50% growth of transported cargo (ton-miles) and a targeted reduction of fleets’ GHG 

emission by 50%, a 66% reduction of emitted GHG per ton-mile must be achieved, even 

without any further growth of the maritime transport volume until 2050. Considering the 

average age of ships of about 21 years (UNCTAD (2019)), many ships built in or before 2019, 

which miss the targeted GHG emission reduction by a big margin, will still be operating in 

2050. Thus, future newbuilds must far exceed the reduction of GHG emissions of 66% per ton-

mile, preferably approaching zero emissions. 
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Such a decrease in GHG emissions is not achievable through classic design optimization, i.e., 

resistance, propulsion, and engine optimization. Instead, it is crucial to, apart from the classic 

design optimization, improve the performance of marine transport globally. Improvements can 

include alternative fuels for existing ships and newbuilds, e.g., synthetic or renewable fuels 

(Hansson et al. (2019)), alternative propulsion methods, e.g., wind propulsion (papers C, D, E, 

Viola et al. (2015), van Kolk (2019)) and wave propulsion (Bøckmann (2015)), as well as 

improvements of marine transport logistics, e.g., speed optimizations (papers A and D) and 

maximizing use (Varelas et al. (2013)). However, achieving the necessary reduction of GHG 

emissions while keeping the transport volume constant requires a radical change in ship design, 

operation, and marine transport logistics. 

To predict potential GHG emission reductions by technical or logistical measures, models 

representing ships’ energy systems are crucial. Such models must include modules for 

influences from ship design and operation, alternative propulsion, and environmental 

conditions. To face upcoming challenges, emissions from shipping and the effect of emission-

reduction measures must be predictable for all ships in realistic conditions. However, for most 

cargo ships, detailed information is not publicly available; it is often not even available to the 

ships’ owners and operators. Thus, models suitable for the upcoming challenges, i.e., a 

significant reduction of GHG emissions, must be quick, easy to use, accurate and applicable to 

a wide range of ships without adjustments or tuning, and without requiring detailed information 

about the ship. Further, such models must respect real-life environmental conditions, be able to 

model alternative propulsion methods, and must include marine transport logistics. This thesis 

presents a novel ship energy systems model, ShipCLEAN, fulfilling all the above requirements 

and thus providing a workbench to investigate potential emission and fuel consumption 

reduction from both technical and logistical measures. 

1.2 Ship performance models 

A ship is a complex energy system that is highly influenced by environmental conditions, 

especially wind and waves. An overview of the parts of a ship’s energy system and the 

interaction in-between the parts is provided in Figure 2.  

There is a wide range of ship performance models available, both commercially and 

academically, which aim to model the parts and interactions presented in Figure 2 to provide a 

prediction of the fuel consumption of a ship in realistic operational conditions. Generally, those 

models can be divided into two groups: (i) engineering-based models (white box), which aim 

to model the system’s physics (for example Calleya (2014), Mermeris et al. (2011)), and (ii) 

machine learning models (black box), which rely on measurement data (for example Aldous 

(2015), Bialystocki and Konovessis (2016), Vinther-Hansen (2011)). While black-box models 

are limited to performance analysis because they require measurement data from the ship, white 

box models can also be applied in the design, re-design, or retrofitting of ships and propulsion 

systems. Alternative propulsion, as well as early design and fleet logistics optimization, are 

especially of interest to achieve the necessary GHG emission reduction (see Section 1.1). Thus, 

the further categorization and discussion only consider white-box models. 
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Figure 2: Parts and interaction of the parts of a ship's energy system (see Paper A). 
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To understand the difference and possible applications of existing white-box models, the 

following categorizations can be made to clarify their features: (i) the necessary input data to 

perform a simulation (e.g., ship dimensions, model test results, etc.), (ii) the considered degrees 

of freedom (DOF) (i.e., only thrust/resistance or even considering drift, yaw, etc.), and (iii) the 

dynamic effects that are considered (i.e., static, quasi-static or dynamic). Naturally, there are 

couplings between the different categorizations.  

Category (i) – necessary input data 

Table 1 presents four stages of models, which are defined using the necessary input data. 

Obviously, the achievable prediction accuracy of a white-box model depends on the Stage the 

model is developed for. While a Stage I model, for example, must include various methods to 

estimate missing dimensions and rely on empirical or standard series methods, a Stage IV model 

can be based on the ship’s design using all available model test and CFD results, as well as 

possible full-scale measurements. This imposes different challenges in the model’s 

development. 

Table 1: Stages of available information for performance prediction models. 

Stage Available information 

Stage I Main dimensions (Loa, B, T, Δ, rpm, ship type, vdesign) 

Stage II Hull and propeller design 

Stage III Calm water model tests (resistance and propulsion) 

Stage IV Complete design information, including superstructure 

 

The model presented in Calleya (2014) is reported to qualify as a Stage I model. However, it is 

based on standard ships where only small changes should be applied. The model presented in 

Mermeris et al. (2011) is a Stage II or III model, as it requires more information about the hull 

and propeller (to provide accurate predictions it even requires CFD or model test results). Over 

the past few years, virtual twin models have become popular, e.g., van Os (2018). Those models 

provide accurate predictions of the performance but require a huge amount of detailed 

information about the ship. Thus, all virtual twin models are Stage IV models.  

With the increase in available information from Stage I to Stage IV and the applicability of 

more sophisticated prediction methods (e.g., model tests, CFD) once ship design details are 

known, naturally the prediction uncertainties decrease, i.e., the prediction accuracy increases. 

However, even Stage IV models have uncertainties in the prediction as a result of measurement 

and modeling uncertainties in model tests or CFD computations.  

For the new design of ships, e.g., when details of the ship are not decided, only Stage I models 

are applicable. During the design process, when more information becomes available, more 

detailed models (Stage II to IV) can be used. However, the highest flexibility in the design of 

the ship is during the start of a project, where only Stage I models can be applied. Retrofitting 

of existing ships with energy-saving devices or alternative propulsion requires that the model 

can predict the effect of such measures on the ship’s performance. Such methods can, in theory, 

be implemented in any type of white-box model.  
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Category (ii) – degrees of freedom 

Performance prediction and analysis models for ships are often only considering 1 DOF (e.g., 

Calleya (2014), Mermeris et al. (2011), and Lu et al. (2015)), the surge direction. In Paper C, 1 

DOF and 4 DOF methods are compared, showing that drift forces and yaw moments are 

considerable for high windage ships (e.g., PCTC or container ships) and especially when 

applying wind-assisted propulsion. Consequently, models developed to predict the effect of 

wind-assisted propulsion respect 4 DOF, e.g., van der Kolk et al. (2019), Viola et al. (2015). 

Category (iii) – static, quasi-static or dynamic consideration 

Most performance prediction and analysis models are quasi-static, i.e., the models capture the 

consequences of changes in the environment or operation of the ship but only evaluate the 

steady-state condition (e.g., Mermeris et al. (2011), Calleya (2014), van der Kolk et al. (2019), 

Viola et al. (2015)). These models neglect maneuvering, acceleration, and dynamic (i.e., ship 

motion) effects that occur during operation, for example in waves, but offer a robust and fast 

prediction and analysis of the performance of ships on a route or a longer period. Fully dynamic 

models require much shorter time steps and thus higher computational effort but give more 

detailed information about the system’s behavior, for example, about the engine performance, 

e.g., as presented in Taskar et al. (2016).  

Different objectives of existing white-box models 

The different models in the literature emphasize on different objectives. As examples, Mermeris 

et al. (2011) focus on the hotel loads, Vinther-Hansen (2011) on performance analysis, van der 

Kolk et al. (2019) on the effect of wind-assisted propulsion, and Taskar et al. (2016) on the 

dynamics of the propeller and engine system on a ship in waves. However, the presented 

performance models do not include any logistical or economic models to evaluate the effects 

on the profit of a ship in service. Economy-focused discussions, as in van der Kolk et al. (2019), 

are limited to single cases. 

1.3 Objectives and goals 

Drastic measures (technically and logistically) must be taken to reduce GHG emissions from 

shipping. Performance models, as presented in Section 1.2, can contribute to reducing the 

emissions by providing the opportunity to evaluate the impact of measures taken on the fuel 

consumption and emissions from a ship or a fleet of ships. However, to achieve the targeted 

reduction of emissions, measures and the evaluation of possibilities cannot be limited to single 

ships with detailed information available. Instead, a suitable model must be able to evaluate the 

impact of emission reduction measures on the ship without requiring detailed information, 

measurement data or extensive modeling and calibration. From the discussion in Section 1.2, it 

can be concluded there is no Stage I model available today that includes all parts of ships’ 

energy system, is flexible enough to apply to all cargo ships, combines performance modeling 

with economical modeling, and can accurately model the effects of alternative propulsion, e.g., 

wind-assisted propulsion. This thesis presents a ship performance and economics model 

targeted at filling this gap.  

The main objective of the research presented in this thesis has been developing a quick, 

accurate, and easy-to-use Stage I power and fuel consumption prediction model, valid for 

commercial cargo ships with conventional propulsion with the possibility to model alternative 

propulsion methods, i.e., wind-assisted propulsion. A Stage I model is chosen because, as 
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discussed above, the necessary input information must be limited to provide the opportunity to 

evaluate fuel-saving measures on a broad range of ships or a fleet of ships. A suitable Stage I 

model shall not require calibration or modeling effort before providing an evaluation of the fuel 

consumption of ships in realistic conditions. However, the model must be flexible enough to 

provide the opportunity to use any data available to increase the prediction accuracy. Thus, the 

model must be engineering-based and a white-box model. Additionally, the model must be able 

to reflect the performance of ships in realistic operational conditions. Thus, it must predict the 

performance at a wide range of environmental and operational conditions (e.g., wind speed, 

wave height, ship speed, draft). 

Another goal is that the model should be adapted to capture wind-assisted propulsion and model 

transport economics to present and evaluate measures (both technical and logistical) to reduce 

the environmental impact of shipping. Wind-assisted propulsion is seen as a promising, zero-

emission, alternative propulsion method (see e.g., Rehmatulla et al. (2017), Ballnii et al. (2017), 

Talluri et al. (2018), Viola et al. (2015), van der Kolk et al. (2019)). Further, wind-assisted 

propulsion requires detailed modeling of aero- and hydrodynamic interaction effects for 

accurate prediction of the effects on a ship’s fuel consumption and operation. Transport logistics 

and economics must be included to predict the impact of fuel-saving measures for ship owners 

and operators and to identify motivators to apply and install fuel-saving measures.  

To quantify and increase the accuracy of the model’s predictions, uncertainties should be 

identified and quantified. To increase the trustworthiness of the prediction, several questions 

must be investigated and answered. Questions of special interest in this thesis are:  

(i) Is it necessary to model 4 DOF, i.e., surge, drift, yaw, and heel, and what is the difference 

in accuracy between 1 DOF and 4 DOF predictions? 

(ii) Do aerodynamic interaction effects between Flettner rotors substantially affect the 

performance of wind-assisted propulsion? 

(iii) How do simplified (Stage I) methods perform when validated against model and full-

scale measurements and what is the prediction accuracy? 

Apart from the model’s development, a practical objective of this thesis is to investigate how 

wind-assisted propulsion can help reduce emissions from shipping and how ship design is 

influenced by wind-assisted propulsion. 

1.4 Methodology, assumptions, and limitations 

This thesis presents a summary of the development of a novel ship performance model called 

“ShipCLEAN”. The model is an energy systems model including different methods to estimate 

ship dimensions, resistance, and propulsion coefficients, power increase as a result of 

environmental loads, drift, heel, and rudder angles, as well as wind-assisted propulsion 

including aerodynamic interaction effects. The model is programmed in MATLAB (Mathworks 

(2020)) and is component-based, i.e., alternative methods can easily be incorporated for each 

part of the energy system, e.g., if more detailed information becomes available. ShipCLEAN is 

foremost based on existing and validated methods in the literature instead of self-developed 

methods. The main developing work presented in this thesis is thus about evaluating, 

modifying, and extending those methods. In most modules, ShipCLEAN does not rely on only 

one method. Instead, several methods are (i) averaged or (ii) switched in between depending on 

the ship type, speed, dimensions, etc. Only if the existing methods prove to be inaccurate, 

insufficient, or simply not existing, are own methods developed. This is the case with: (i) the 

standard hull series to provide the wetted surface and the opportunity to perform CFD 
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calculations with limited information about the ship, (ii) the propeller standard series for a more 

modern design approach, (iii) the lift and drag for ships sailing at a drift angle, since existing 

methods proved inaccurate, and (iv) the method to evaluate the aerodynamic interactions on 

wind-assisted ships. A description of the model, the modules and the assumptions made for 

each module is presented in Section 2. Examples of limitations of the model and general 

assumptions in the model’s development are presented below. 

For a Stage I model such as ShipCLEAN, the main assumption is that the ship in question is a 

conventional ship, which can be evaluated with the underlying methods, especially concerning 

the resistance and propulsive efficiency. Special hull forms or special propulsors will require 

corrections to the used methods or the implementation of alternative methods. Special hulls 

(e.g., catamarans, swath, planning hulls) and propulsors (e.g., waterjets, surface-piercing 

propellers) have not been investigated, alternative methods to capture the hydrodynamics of 

such special designs have not been evaluated. However, as a result of the component-based 

architecture, it would be possible to incorporate special methods or use model test data for the 

prediction. The latter would, however, not qualify as a Stage I model. 

Further, a Stage I model introduces some limitations owing to the nature of such a model. In 

general, only parameters that are an input to the model can influence the results. In this case, 

only the main dimensions and environmental conditions will influence the predicted power but 

not design features, e.g., bulbous bow form or special propellers. An exception is when other 

methods can alternatively be used, e.g., in ShipCLEAN, model test results can be used instead 

of the resistance and propulsion prediction with the empirical methods. However, concerning 

possible optimization studies, only the actual input data should be possible variables. The quasi-

static nature of the model introduces the limitation that no maneuvering and acceleration/ 

deceleration are captured, which might lead to small deviations in predicting the fuel 

consumption over a full route.  

As ShipCLEAN is based on several empirical, theoretical, and standard series methods, the 

model is only valid for the range of dimensions, ship types, and conditions for which the 

methods are valid. For ShipCLEAN, this means the model is assumed to be limited (and 

validated) for conventional cargo ships of any size traveling in normal service conditions, e.g., 

maximum wave heights of around 8 m. Exceeding such limitations will significantly decrease 

the prediction accuracy. Further, the engine model only includes fuel consumption curves for 

the standard fuel type for the selected engine types (e.g., heavy fuel oil for low rpm diesel 

engines). Alternative fuels require implementing special fuel consumption curves (see Section 

2.8). The module for wind-assisted propulsion only considers Flettner rotors (see Section 2.7), 

methods for other sail types are under development, but not included in this thesis. Some 

methods are based on results (CFD or model tests) from one or a limited number of vessels, 

i.e., the decrease of propulsion efficiency in waves and the added resistance in ice. The accuracy 

of these methods when used for other ship designs or ship types is not tested individually. 

Especially, the validation of the performance loss in waves is complicated, as resistance and 

propulsive efficiency are difficult to separate in full-scale measurements. Additionally, accurate 

information about the wavelength and wave height is seldom available for full-scale 

measurements. In the study about zero-emission ships (see Section 4.4), modules for batteries, 

solar panels, wind turbines, and hydro turbines were developed. These modules have not been 

validated but are based on existing, validated methods, and data from manufacturers.  
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1.5 Outline of the thesis 

This thesis is structured into six parts. The introduction in Section 1 is followed by a detailed 

description of the performance prediction model “ShipCLEAN” in Section 2. Section 3 presents 

an analysis of sources and quantification of uncertainties in the performance prediction, 

followed by a validation study using model- and full-scale measurement data. Finally, Section 

4 presents applications of the model “ShipCLEAN” on wind-assisted propulsion, ship design, 

and speed optimizations. The conclusions and an outlook on future work are presented in 

sections 5 and 6, respectively. 
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2 The generic energy systems model – ShipCLEAN 
As a Stage I model, ShipCLEAN was conceptualized following four criteria during the model’s 

development: 

• The input, i.e., required information about the ship, must be kept at a minimum, i.e., publicly 

available data such as the main dimensions. 

• The model must be valid for a wide range of ships and environmental conditions (all 

commercial ships and normal operational conditions). 

• The simulation and set-up time must be low, i.e., single point evaluations in real-life 

conditions must be provided in real time (less than 60 s). 

• A prediction and operational simulation using a new ship shall not require any calibration or 

modification of the model. 

To fulfill the above criteria, ShipCLEAN is a component-based model, divided into three parts: 

(i) a static power prediction part for calm water and trial conditions (see papers A and B), (ii) a 

dynamic operational analysis part, including added resistance and performance penalties as a 

result of e.g., fouling, wind, waves, drift, and ice, as well as analysis methods for wind-assisted 

propulsion (see papers C, D, E), and (iii) a transport economics part to evaluate the costs and 

income for a particular journey or over a longer time (see Paper D). ShipCLEAN requires only 

a few input parameters and no calibration to predict the propulsion power and fuel consumption 

of a ship at sea. With a simulation time per condition of about 10 seconds on a standard desktop 

computer for a full four degrees of freedom analysis of a wind-assisted propelled ship including 

rotor control and involuntary speed loss, ShipCLEAN offers fast predictions. An overview of 

the parts and modules of the model “ShipCLEAN” is provided in Figure 3. A summary of the 

details of the modules is presented in sections 2.2- 2.11. 

In Table 2, the minimum required information for each part of ShipCLEAN is presented. In 

general, any available information more than the minimum required can be used to reduce 

uncertainties (see Section 3). 

Table 2: Minimum required input for each part of ShipCLEAN. 

  Minimum required input 

I Static part (power prediction) Loa, B, Tdes, Δdes, propeller rpm, ship type 

IIa Dynamic part (operational analysis) 

Results from I, TWS, TWA, vS, T or Δ, water 

depth, water temperature, fetch (for wave 

height computation) 

IIb 
Wind-assisted propulsion (Flettner 

rotors) 

Same as IIa, number of rotors, size (18m x 

3m, 25m x 5m, 30m x 6m), position on the 

ship (long. and transv.) 

III Economics model 

Results from II, freight rate, fuel costs, 

utilization rate, cargo capacity, operational 

costs 
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Figure 3: Overview of the parts and modules of the model “ShipCLEAN” (see Paper D). 
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The static performance prediction part (part I) follows the ITTC78 approach (ITTC (1999)) in 

the resistance and propulsive efficiency prediction, mainly because a Stage I model must rely 

on empirical methods. Such empirical methods are often based on model tests that follow the 

ITTC procedure. Details on the resistance and propulsion prediction are presented in Section 

2.3, Tillig (2017), and in Paper A. To keep the required input at a minimum, numerous 

estimation formulas for ship dimensions are included in ShipCLEAN (see Section 2.2 and Tillig 

(2017) for details). The results of the static part are a full set of ship dimensions, a standard hull 

shape, a standard propeller matching the wake and rpm requirements, an engine diagram 

(including specific fuel oil consumption curves) and a design condition power prediction for 

calm water and typical contract conditions, i.e., 12 kn headwind, 2 m head waves (see Tillig 

(2017) and papers A and B).  

The dynamic part (part IIa) and the wind-assisted propulsion part (part IIb) are built around the 

four degrees of freedom (4 DOF) module (see papers C-E), where the equilibrium of forces and 

moments is found in four directions (surge, drift, yaw, heel). Added resistance, decreased 

propulsion efficiency, and course deviations are evaluated as occurring as a result of waves, 

wind, currents, fouling, draft, shallow water, drift, rudder angle, and ice (see sections 2.4, 2.5 

and 2.6). For the static case (which is evaluated in ShipCLEAN), all forces and moments acting 

on the ship must be in balance. 

∑𝐹𝑋 = ∑𝐹𝑌 = ∑𝑀𝑥 = ∑𝑀𝑧 = 0    (1) 

As some forces and moments depend on each other, e.g., the rudder side force and drag on the 

propeller thrust (total resistance), the balance and solution of Equation (1) can only be found 

iteratively. Details on the 4 DOF method are presented in Section 2.6 and in papers C-E. The 

dynamic part also accounts for involuntary speed loss in case the torque/rpm combination is 

outside of the engine diagram (see Section 2.8). To provide the possibility to perform extensive 

studies using a large number of points with different environmental conditions, a response 

surface methodology is included in the model (see Section 2.10).  

The results of the dynamic part are the required propeller power, main engine fuel consumption, 

drift angle, heel angle, rudder angle, and attained ship speed for each environmental and 

operational condition. 

The third part, the transport economics model, is a cost-income analysis over some time using 

specified fuel prices, freight rates, and utilization rate (see Paper D and Section 2.11). The 

results of this part include the operational and fixed costs of the ship, as well as the income 

considering journey times and freight rates. From this, the journey and daily profit is computed. 

2.1 Coordinate systems 

In a 4 DOF model, the heading (HDG) and course through water (CTW) are not identical 

because the ship drifts. As some forces, e.g., the resistance, are acting along the ship’s 

longitudinal axis (i.e., in HDG direction) and some in the direction or perpendicular to the 

CTW, e.g., the lift and drag because of drift, two coordinate systems are required. The 

coordinate systems, one ship (or HDG) fixed (x’, y’, z’) and one flow-oriented (CTW) fixed 

(X, Y, Z), used in ShipCLEAN are shown in Figure 4. Both systems have their origins in the 

forward perpendicular, with the x-axis pointing aft, the y-axis to starboard, and the z-axis 

upwards. 
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Figure 4: Coordinate systems in ShipCLEAN (see Paper E). 

The force and moment balance in the 4 DOF part of ShipCLEAN is evaluated in the flow-

oriented coordinate system, which requires the transfer of all forces and distances from the ship-

fixed coordinate system to the flow-oriented coordinate system according to equations (2) to 

(4). 

𝐹𝑋 = 𝐹𝑥′ 𝑐𝑜𝑠𝛽 + 𝐹𝑦′  𝑠𝑖𝑛𝛽     (2) 

𝐹𝑌 = 𝐹𝑦′ 𝑐𝑜𝑠𝛽 − 𝐹𝑥′ 𝑠𝑖𝑛𝛽     (3) 

𝐹𝑍 = 𝐹𝑧′      (4) 

2.2 Estimation of ship dimensions 

The first fundamental module of ShipCLEAN calculates all ship dimensions that are required 

but not defined. The estimation formulas used in ShipCLEAN are compiled in Table 3. In Table 

3, the estimation of ship dimensions is based on ships with a bulbous bow. However, typical 

cargo ships operate in a speed range where the performance of ships with and without a bulbous 

bow, but with identical wetted length (i.e., the length of the submerged hull), is expected to be 

similar (Schneekluth and Bertram (1998)). Thus, the power prediction is expected to be valid 

for straight stem ships, as well as ships with bulbous bow, although the Lpp is calculated 

assuming a bulbous bow. 

Table 3: Estimation formulas for ship dimensions. 

Estimation formula Reference 

Main dimensions 

𝐿𝑝𝑟 = 0.025 𝐿𝑜𝑎 [𝑚] 

𝐿𝑝𝑟 = 0.04 𝐿𝑜𝑎 [𝑚] 

(Tanker/Bulker) 

(Other) 

(Estimation by the author of this 

thesis) 

𝐿𝑝𝑝 = 0.98 𝐿𝑜𝑎 − 𝐿𝑝𝑟[𝑚] (Estimation by the author of this 

thesis) 

𝐿𝑤𝑙 = 𝐿𝑜𝑎 − 𝐿𝑝𝑟 [𝑚] - 

𝑐𝐵 =
Δ

1.025 (Lpp B T)
[−] 

- 
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𝑐𝑀 = 0.93 + 0.08 𝑐𝐵[−] Schneekluth and Bertram (1998) 

𝑐𝑃 =
𝑐𝐵

𝑐𝑀
 [−] - 

𝑐𝑊𝑃 = 0.763 (𝑐𝑃 + 0.34)[−] Bertram and Wobig (1999) 

𝐿𝐸 = 6.3 𝐹𝑛𝑑𝑒𝑠
2  𝐿𝑝𝑝[𝑚] Schneekluth and Bertram (1998) 

𝐴𝑅 = 0.036 𝐿𝑝𝑝 𝑇𝑑𝑒𝑠[𝑚2] Schneekluth and Bertram (1998) 

𝐷ℎ = 0.087 𝐿𝑝𝑝 [𝑚] Bertram and Wobig (1999) 

Propeller dimensions 

𝐷𝑃 = 0.75 𝑇𝑑𝑒𝑠 [𝑚] (initial) 

𝐷𝑃 = 1.524 (0.385662
(

𝑃𝐸−𝑑𝑒𝑠
0.7

)
2

𝑛6
)

0.1

(1.146 −

0.073)𝑍 − 2) + 0.085 (𝑍 − 2)(𝑍 − 4) [𝑚] (final) 

𝐷𝑃 ≤  𝑇𝑑𝑒𝑠 − 1 [𝑚] 

MAN (2013) 

 

Kracht (2000) 

𝑇𝑃 =
𝑅𝑑𝑒𝑠

(1−𝑡)𝑛𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑒𝑟
 [𝑘𝑁]   - 

𝐴𝑒

𝐴0
=

(1.3 + 0.3 𝑍)𝑇𝑃

(𝑝0 − 𝑝𝑣) ∗ 𝐷𝑃
2 + 0.15 [−] 

Holtrop (1977) 

Superstructure dimensions 

𝐻𝑠𝑢𝑝𝑒𝑟 = 24 + 2 [𝑚] 

𝐻𝑠𝑢𝑝𝑒𝑟 = 15 + 2 [𝑚] 

𝐻𝑠𝑢𝑝𝑒𝑟 = 12 + 2 [𝑚] 

(𝐿𝑝𝑝 > 100 m, PCTC) 

(𝐿𝑝𝑝 > 100 m, other) 

(𝐿𝑝𝑝 ≤ 100 m) 

(Estimation by the author of this 

thesis)  

 

𝐵𝑠 = 𝐵 [𝑚] 

𝐵𝑠 = 30 𝑚 

 

(𝐵 > 30 𝑚, Tanker, 

Bulker) 

(Estimation by the author of this 

thesis)  

𝐿𝑠 = 𝐿𝑝𝑝/2 [𝑚] 

𝐿𝑠 = 𝐿𝑝𝑝 [𝑚] 

𝐿𝑠 =
𝐿𝑝𝑝

7
, 𝐿𝑠 ≤ 30 [𝑚] 

(RoRo) 

(Cruise ship, container, 

PCTC) 

(Other) 

(Estimation by the author of this 

thesis)  
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2.3 Calm-water power prediction 

In ShipCLEAN, the prediction of the calm water propulsion power follows the principles of 

model test evaluations described in ITTC (1999). The calm water propulsion power, PD, of 

ships can be expressed by: 

𝑃𝐷 =
𝑃𝐸

𝜂𝐷
 𝑣𝑠      (5) 

with the effective power, PE, as: 

𝑃𝐸 =
1

2
𝜌 𝑐𝑇 𝑆 𝑣𝑆

2     (6) 

The unknown propulsive efficiency ηD, total resistance coefficient cT, and wetted surface S in 

equations (5) and (6) are estimated using empirical formulas, as well as hull and propeller 

standard series (see papers A and B for details). As discussed earlier, any information, e.g., 

hydrostatics or model test results, can be used if available because of the component-based 

approach. 

The wetted surface is as standard computed using the numerical hull standard series, several 

fully parametric hull models, as described in Tillig (2017). Five different models, for different 

ship types, are available: (i) full block, single skeg ships, (ii) full block twin skeg ships (iii) 

slender single skeg ships, (iv) slender twin skeg ships, and (v) slender twin skrew (open shaft) 

ships. The transition between slender and full block ships is set around cB = 0.75, depending on 

the ship type. It is found that the wetted surface from the standard series agrees well with actual 

data from existing ships. However, the boundaries of the standard series are narrower than those 

of empirical formulas as from Kristensen and Lützen (2012) or Hollenbach (1998). For full 

block ships, the average of the above methods shows good agreement with the standard series 

(less than 2% difference) while the wetted surface of slender ships is typically underestimated 

by 5%. For robustness and flexibility of the model, the adjusted and averaged results from the 

empirical formulas might as well be used instead of the (more accurate) computation using the 

standard hull series. 

The resistance coefficient cT is decomposed into two parts: the frictional resistance coefficient 

cF and the residual resistance coefficient cR. In ShipCLEAN, the three-dimensional viscous part, 

which is often estimated using a form factor k, is included in the residual resistance coefficient. 

As most empirical methods for calculating resistance are only valid for the design speed, the 

residual resistance coefficient is evaluated in two steps. At first the resistance coefficient at 

design speed is evaluated using an average of the results from the estimation methods presented 

in Kristensen and Lützen (2012) and in Hollenbach (1998). In the second step, the residual 

resistance in off-design speeds is estimated using generic curves related to the residual 

resistance coefficient at design speed, as presented in Figure 5. The curves presented in Figure 

5 are based on CFD computations using the standard series hulls and modifications of those 

hulls with large gooseneck bulbous bows (see Tillig (2017) for details about the standard hull 

series). 
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Figure 5: Different cR curves for the resistance prediction. 

For standard cases, two different cR curves are used, one for slower ships without a bulb effect 

(blue curve in Figure 5) and one with a moderate bulb effect for faster ships (red curve in Figure 

5). Additionally, a cR curve with a large bulb effect is available in ShipCLEAN that can be used 

for ships with large bulbs, optimized for a single speed (yellow curve in Figure 5). The bulb 

effect describes the increase of the cR at lower speeds as a result of unfavorable wave patterns 

created by the bulbous bow. Ships without bulbous bow are assumed to have no (tankers, 

bulkers) or small (faster ships) bulb effects. 

The propulsive efficiency is divided into two parts, the propeller open water efficiency and the 

hull efficiency. To estimate the propeller thrust and advance ratio, the effective wake and thrust 

deduction must be evaluated. The average of five empirical methods is used to predict the 

efficient wake of single and twin skeg ships, i.e., the methods developed by Harvald (Kristensen 

and Lützen (2012)), Schneekluth, Krüger, Heckscher and Troost (Schneekluth and Bertram 

(1998)). All the methods deliver high values of the efficient wake, especially for slender ships. 

Thus, the recommendation given in Kristensen and Lützen (2012) to reduce the wake fraction 

by 30% is followed for slender ships. For high blockage ships, such as tankers and bulkers, the 

wake is reduced by 5%. Twin screw (open shaft) ships have a much lower wake fraction. In 

ShipCLEAN the effective wake of twin-screw ships is evaluated using the same methods as for 

single and twin skeg ships, but with a reduced block coefficient to the value: 

𝑐𝐵𝑐𝑜𝑟𝑟 = 0.4 + (𝑐𝐵 − 0.4)/2    (7) 

Equation (7) is based on the author’s experience and assumes the efficient wake of a ship with 

a block coefficient of 0.4 is similar for ships with open shafts and skegs and much slower 

increasing with the block coefficient. With this method, typical open shaft ships, such as ferries 

and RoRo ships with block coefficients of around 0.7, are estimated to have an effective wake 

of about 0.15 to 0.2, which is reasonable when compared to existing ships. 

As the prediction of the thrust deduction is difficult, an estimation of the hull efficiency based 

on the ship type and block coefficient does reduce uncertainty. For open shaft ships, the hull 

efficiency is set constant to be equal to ηH=1.05 while the hull efficiency for all other ships is 

estimated according to Equation (8). Equation (8) is the author’s estimation to provide hull 

efficiencies between 1.05 for slender ships and about 1.14 for high blockage ships. 

𝜂𝐻 = 1.05 + 0.2 (𝑐𝐵 − 0.4)    (8) 
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As the effective wake, we, is estimated using empirical formulas (see Paper B), the thrust 

deduction can be computed using Equation (9). 

1 − 𝑡 = 𝜂𝐻 (1 − 𝑤𝑒)     (9) 

For some ships with low effective wake, this method will result in low, unrealistic, thrust 

deduction numbers. Thus, a lower limit of the thrust deduction of 0.1 is ensured by lowering 

the hull efficiency accordingly for such ships.  

The propeller open water efficiency is evaluated using the propeller standard series developed 

for ShipCLEAN (see Tillig (2017) for details) and the lifting line evaluation software OpenProp 

(Epps et al. (2009)). 

With all information at hand, the propulsive performance is evaluated using the ITTC 78 

method (ITTC (1999)). The same method is employed for off-design conditions, i.e., for 

conditions with increased or decreased propeller load, as described in the following sections. 

2.4 Draft and trim influences 

As cargo ships operate at different loading conditions (trim and draft), it is necessary to 

compensate for the power difference as a result of off-design loading conditions. Draft changes 

will not or only slightly affect the propulsive efficiency if the propeller is fully immersed in the 

water and not sucking air. Trim changes will most likely affect the propulsive coefficients; 

however, no general methods to evaluate these effects are available. In the design condition, 

the trim is often small (less than 0.1 m) and thus the influences on the propulsive efficiency and 

resistance will be small. Larger trim is often experienced in ballast drafts. However, in the 

ballast draft, the propeller is much less loaded, which will also influence the thrust deduction 

positively. Hence any negative effects from the trim can be (at least partly) compensated by 

higher hull efficiency. In fact, the propulsive efficiency in the ballast draft is often close to the 

propulsive efficiency in the design draft (Schneekluth and Bertram (1998)). Thus, it is assumed 

that only the resistance, but not the propulsive efficiency, is affected by draft and trim changes.  

In Hollenbach (1998), a method for estimating the residual resistance at ballast drafts is 

presented. This method is used in ShipCLEAN for displacements of maximum 80% of the 

design displacement. In contrast to the evaluation of the resistance at the design draft, no 

averaging of results from different methods is performed for the ballast draft. However, many 

ships operate on intermediate drafts, sometimes combined with a trim. Effects from draft 

differences are captured in two ways, (i) the wetted surface is adjusted and (ii) the residual 

resistance coefficient is adjusted. The difference in wetted surface is estimated using the 

admiralty formula: 

𝑆 = 𝑆𝑑𝑒𝑠𝑖𝑔𝑛  (
∇

∇𝑑𝑒𝑠𝑖𝑔𝑛
)

2/3

     (10) 

The relationship between the residual resistance coefficient in design and off-design draft 

depends on the design of the bulbous bow. Two curves of the relative cR are defined in 

ShipCLEAN, one for ships without or with moderate bulbs, e.g., tankers and bulkers, and one 

with normal designed bulbs, optimized for the design draft, e.g., ferries and RoRo ships. The 

curves are presented in Figure 6. It must be noted that these curves are adjusted to match the 

ballast cR evaluated with the method from Hollenbach (1998). In Figure 6, it is assumed that 

the ballast cR is equal to the design cR. The curves show it is assumed that the cR stays almost 
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constant for ships without bulbous bows but increases considerably with decreasing draft for 

ships with design draft-optimized bows. These curves are a general approximation based on 

CFD computations with the standard series hulls (see Tillig (2017)) as the real relationship 

between the cR and the draft depends on the hull form features, e.g., bulb shape, as well as 

transom shape and height. 

 

Figure 6: Relative cR for off-design conditions. 

Changes in the resistance because of trim are not considered in ShipCLEAN, as the influence 

on the resistance is difficult to capture in a generic model. One possibility to include trim in the 

model would be to combine the trim and draft changes and create cR curves based on the forward 

and aft draft, thus considering influence from the bulbous bow and the transom immersion. 

However, specifying such curves will require more test data on trim optimization, which are 

seldom performed, or extensive CFD computations. Further, such influences are more of 

interest for detailed operational analysis, which can be performed with higher accuracy if Stage 

III or IV models are used where model tests or CFD computations at different trim angles and 

drafts could be included. For a Stage I or II model, it can be assumed that the ship is operated 

on a favorable trim for the actual draft and additional influence from the trim can be neglected. 

2.5 Environmental loads 

A ship at sea experiences increased resistance as a result of several environmental influences. 

In ShipCLEAN, the influences from wind, waves, fouling, water depth, ocean current, and ice 

are respected. Details on the different methods are presented in Paper B and the references 

presented in Table 4. While some environmental influences only create additional resistance, 

some others (especially the wind) create side forces for which the ship must compensate using 

a drift and rudder angle. Methods to include the impact from drifting and steering of the ship 

are described in detail in Section 2.6 and Paper E. An overview of the methods used to predict 

the impact of environmental conditions and hull fouling on the performance of a ship is 

provided in Table 4. 
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Table 4: Methods used in ShipCLEAN to estimate the impact of environmental influences on 

a ship’s performance. 

Environmental influence Method  

Fouling SSPA roughness database (SSPA (2020)) 

Ice Li et al. (2019) 

Ocean current Trigonometric correction of the heading and speed through 

water  

Water depth ITTC (2014) 

Waves Stawave2 (ITTC (2014)), Liu et al. (2016), Taskar et al. (2016) 

Wind  Blendermann (1993) 

 

Influences from fouling are only considered as increased resistance of the hull, but not 

decreased propeller performance. The effect of propeller fouling is much more complicated as 

it does not only affect the frictional section drag and thus torque of the propeller, but a rough 

blade surface also decreases the sectional lift and thus the thrust of the propeller (Abbot and 

Doenhoff (1959)). This would not only require a decrease of the propeller efficiency in the 

model but an adaption of both the torque and thrust curves of the propeller. To estimate 

propeller fouling from full-scale measurements, it is necessary to measure the rpm, torque, and 

thrust on the propeller shaft. As the thrust measurements are complicated and seldom 

performed, it is often not possible to accurately estimate propeller fouling from full-scale 

measurements. Fouling on the propeller is not included in ShipCLEAN, even though the thrust 

and torque curves of the propeller can easily be modified in ShipCLEAN if methods to evaluate 

the changes as a result of fouling become available. Additionally, it is not modeled how the hull 

fouls over time. Thus, input following the classification of fouling according to SSPA (2020) 

is required. In general, it could be questioned if Stage I models need to model fouling, as this 

is more a topic of performance analysis, i.e., more focus on Stage IV or digital twin models. 

However, as presented in Section 4.1, decreased performance because of fouling can influence 

the economics and thus lead to different results in optimization and variation studies, e.g., speed 

optimizations. Thus, hull fouling is a good feature of a Stage I model to run scenario-based 

simulations but does not have to be as sophisticated as it must be for performance analysis (i.e., 

Stage IV) models. 

The influence of waves on the performance of a ship is that they not only increase the resistance 

but also decrease the propulsive efficiency. The resistance increase is accounted for using the 

average of the methods from ITTC (2014) and Liu et al. (2016) adjusted with an angular 

function to account for oblique waves according to results presented by Tsujimoto et al. (2008). 

A decrease of propulsion efficiency is observed on ships sailing in waves. This decrease can be 

divided into (i) an increase of the wake, (ii) decrease of the hull efficiency, and (iii) change of 

propeller open water efficiency as a result of the change in wake fraction (Taskar et al. (2016)). 

There are analytical/ empirical methods to determine the increased wake available (Faltinsen et 

al. (1980), Taskar et al. (2016)). However, all methods require the pitch motion of the ship, 

which is not estimated in ShipCLEAN. This is why such methods are not applicable. In 

Faltinsen et al. (1980), it is discussed that the thrust deduction follows the change in wake 

fraction, keeping the hull efficiency close to constant. However, the propeller will encounter 
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thrust losses when emerging out of the water and after re-entrance (Minsaas et al. (1983)), 

which can be reflected by a decrease in hull efficiency, as shown by Taskar et al. (2016). To 

include the effects of decreased propulsive efficiencies, the curves for different wave heights, 

wave lengths, and for wave angles of 0 degrees and 45 degrees presented in Taskar et al. (2016) 

are used in ShipCLEAN. In beam and following waves the effect was reported to be small 

(Taskar et al. (2016)) and thus assumed to be zero in ShipCLEAN. The values for the increase 

of the wake and decrease of the hull efficiency are presented in Table 5. As it is presented in 

Table 5, no changes in the propulsive coefficients are applied in waves shorter or equal to 0.6 

Lpp. It must be noted that the values for higher or longer waves are not extrapolated, but the 

values for 5m wave height and a wavelength of 1.6 Lpp are used. Changes for smaller waves are 

linearly interpolated assuming no change at zero-meter wave height. 

Table 5: Deviations of propulsive factors for a ship sailing in waves. 

Wavelength over Lpp  [-] 0.6 1.1 1.6 

Encounter angle  [deg] 0 45 0 45 0 45 

3 m wave height 

we/we-calm water [-] 1 1 1.02 1.01 1.02 1.01 

ηh/ηh-calm water  [-] 1 1 0.97 0.98 0.96 0.97 

4 m wave height 

we/we-calm water  [-] 1 1 1.03 1.02 1.03 1.02 

ηh/ηh-calm water    [-] 1 1 0.95 0.97 0.94 0.95 

5 m wave height 

we/we-calm water  [-] 1 1 1.04 1.03 1.04 1.03 

ηh/ηh-calm water    [-] 1 1 0.91 0.95 0.91 0.92 

 

2.6 Drift, yaw, and heel 

To compensate for the aerodynamic side forces, especially when applying wind-assisted 

propulsion, the ship drifts and heels, making it necessary for a performance prediction model 

to include 4 DOF. To respect 4 DOF, it is crucial to accurately predict the lift and drag forces 

of a hull sailing at a drift angle. Additionally, the center of the lateral resistance, i.e., the 

longitudinal position where the lift and drag forces act on the hull, is important for accurately 

predicting the rudder angle. In ShipCLEAN, low aspect ratio wing theory is employed to 

estimate the lift and drag forces. Details about the method can be found in Paper E.  

The lift and drag coefficient (in the flow-oriented coordinate system) are evaluated by (see 

Paper E): 

𝑐𝐿 = 0.8 0.5 𝜋 𝐴𝑅 sin 𝛽 + 0.6541 sin 𝛽 sin |𝛽| cos 𝛽   (11) 

𝑐𝐷𝑖 = 0.66 𝑐𝐿|𝛽|0.6 + 0.6541 sin3 |𝛽|    (12) 

The center of effort is evaluated using the empirical method presented in Inoue and Hirano 

(1987): 

𝐶𝑜𝐸 =
𝑁ℎ

𝑌ℎ
 𝐿𝑃𝑃 = (

𝑁𝑣

𝑌𝑣
sin |𝛽| +

𝑁𝑣𝑣

𝑌𝑣𝑣
(𝑠𝑖𝑛𝛽)2) 𝐿𝑃𝑃   (13) 
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𝑁𝑣 = 2 
𝑇

𝐿𝑝𝑝
      (14) 

𝑁𝑣𝑣 = 0.066 − 0.96 (1 − 𝑐𝐵)
𝑇

𝐵
    (15) 

𝑌𝑣 = 𝜋 
𝑇

𝐿𝑝𝑝
+ 1.4 𝑐𝐵

𝐵

𝐿𝑝𝑝
     (16) 

𝑌𝑣𝑣 = 0.244 + 6.67 ((1 − 𝑐𝐵)
𝑇

𝐵
− 0.05)   (17) 

As the aero- and hydrodynamic force centers are normally not at the same longitudinal position, 

a yaw moment is introduced, which must be compensated by a rudder angle. The rudder lift and 

drag forces are evaluated according to the method presented in Schneekluth and Bertram 

(1998). 

𝑥𝑅
′ = 𝑐𝐷𝑣𝑠

2 𝜌

2
𝐴𝑅 + 𝑇 (1 +

1

√1+𝑐𝑇ℎ
) (1 − cos 𝛿𝑅)    (18) 

𝑦′𝑅 = 𝑐𝐿𝑣𝑠
2 𝜌

2
𝐴𝑅 + 𝑇 (1 +

1

√1+𝑐𝑇ℎ
) 𝑠𝑖𝑛𝛿𝑅   (19) 

𝑐𝐿 = 2𝜋
𝐴𝑅 (𝐴𝑅+0.7)

(𝐴𝑅+1.7)2 𝑠𝑖𝑛𝛿𝑅 + 𝑠𝑖𝑛𝛿𝑅|𝑠𝑖𝑛𝛿𝑅|𝑐𝑜𝑠𝛿𝑅   (20) 

𝑐𝐷 =
𝑐𝐿

2

𝜋∗𝐴𝑅
+ |𝑠𝑖𝑛𝛿𝑅|3     (21) 

Owing to the ship's hull and aftbody skegs, the inflow to the rudder is not following the direction 

of the free inflow but is straightened towards the longitudinal axis of the ship. The inflow angle 

to the rudder can be evaluated by:  

𝛿𝑅 = 𝛿 − 𝛾𝑅𝛽     (22) 

𝛾𝑅 = −22.2 (𝑐𝐵
𝐵

𝐿𝑃𝑃
)

2

+ 0.02 (𝑐𝐵
𝐵

𝐿𝑃𝑃
) + 0.68     (23) 

The proposed method showed significantly better agreement with CFD and model test results 

than other empirical methods developed for maneuvering prediction, see papers B and E. 

Further on, the method does not require more dimensions or input than available for a Stage I 

model, such as ShipCLEAN. 
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2.7 Wind-assisted propulsion 

To reduce emissions from shipping significantly, alternative propulsion systems must be 

introduced. As it is discussed in Section 1.1, wind-assisted propulsion can be such an 

alternative. However, wind-assisted propulsion significantly changes how a ship’s performance 

must be analyzed. While for conventional propulsion it is often enough to perform a force 

balance in longitudinal (surge) direction, it is necessary to perform a multi-dimensional force 

and moment balance for wind-assisted ships because sails introduce large side forces and yaw 

moments. The 4 DOF method is described in Section 2.6. Additionally, the aerodynamics 

become important as a result of interaction effects between the sails and between the sails and 

the superstructure. The method used to estimate the interaction effects between the sails and the 

sails and the ship structure is explained in detail in Paper E.  

ShipCLEAN includes lift, drag and power consumption coefficients for Flettner rotors. Flettner 

rotors are chosen as a start for several reasons: 

(i) Flettner rotors produce high lift forces that reduce the required sail area, i.e., the required 

deck area and sail height. 

(ii) Flettner rotors are easy to operate and automize; thus, they are easy to operate for a small 

crew. 

(iii) Flettner rotors are not sensible to the angle of attack (as other sails), thus periodic and 

dynamic effects from rolling, pitching and unsteady/turbulent inflow must not be 

considered. 

(iv) Flettner rotors are well-investigated in literature. 

(v) Full-scale measurements were available from a cruise ferry equipped with a Flettner rotor, 

offering validation possibilities, see Section 3.3.2. 

The spinning rotors introduce circulation in the airflow, which, as a result of the air velocity 

difference, creates a pressure difference and lift force fulfilling the Kutta-Joukowski equation 

(see Paper E and Abbot and Doenhoff (1959)). In general, the lift generation of Flettner rotors 

is not different from other sail types other than that the circulation is initiated by the rotation of 

a cylinder instead of vortex separation at the trailing edge of a wing. This is why the sail module 

may be extended to other sail types. However, theoretically evaluating the lift force of the three-

dimensional wings or rotors is complex and time-consuming. Thus, ShipCLEAN uses lift and 

drag relations presented in the literature. The basis to evaluate the performance of sails are 

curves of the lift and drag coefficients based on the angle of attack (conventional sails) or the 

spin ratio (SR) (Flettner rotor). With the apparent wind angle (AWA) the lift and drag 

coefficients can be translated into thrust and side force coefficients. As Flettner rotors consume 

energy, curves for the power coefficient must be included and the consumed power is added to 

the propeller thrust to be delivered from the main engine. This procedure assumes the use of 

shaft generators to provide the power to rotate the rotors. The definition of the lift (cL), drag 

(cD), thrust (cT), side force (cS), and power coefficients (cP) are shown in Equation (23). 

𝑐𝑖 =
𝐹𝑖

0.5 𝜌 𝐴 𝐴𝑊𝑆2 , 𝑖 = 𝐿, 𝐷, 𝑇, 𝑆; 𝑐𝑃 =
𝑃𝑟𝑜𝑡𝑜𝑟

0.5 𝜌 𝐴 𝐴𝑊𝑆2   (24) 

For Flettner rotors, the spin ratio, lift, drag, and power coefficients are estimated by (see Paper 

E): 

𝑆𝑅 =
𝑣𝑇

𝐴𝑊𝑆
=

𝜔 𝑅𝑅

𝐴𝑊𝑆
     (25) 
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𝑐𝐿 = −0.0046 SR5 + 0.1145 SR4 − 0.9817 SR3 + 3.1309 SR2 − 0.1039 SR (26) 

𝑐𝐷 = −0.0017 𝑆𝑅5 + 0.046 𝑆𝑅4 − 0.44 𝑆𝑅3 +0. 724 𝑆𝑅2 − 1.64 𝑆𝑅 + 0.638 (27) 

𝑐𝑃 = 0.0001 𝑆𝑅5 − 0.0004 𝑆𝑅4 + 0.0143 𝑆𝑅3 −  0.0168 𝑆𝑅2 − 0.0234 𝑆𝑅 (28) 

The true wind speed (TWS) profile over the height above the water surface and the deck is 

captured by (see Paper E): 

 𝑇𝑊𝑆(ℎ) = 𝑇𝑊𝑆10  (
ℎ

ℎ10
)

0.27

    (29) 

Equation (29) assumes that a boundary layer is developed above the ship deck. To evaluate the 

wind speeds above the deck, the speed at deck height is assumed to be zero. At 10 m above the 

deck, the wind speed is assumed to be equal to the wind speed at a corresponding height (10 m 

+ deck height) above the sea surface. The lift, drag, and power consumption are evaluated at 

different heights (10 as a standard in ShipCLEAN) and different rpm. The optimal rpm is found 

as the maximum net power (propulsion power – consumed power) summed up over all heights. 

The Hellman coefficient of 0.27 corresponds to stable air above the sea surface and unstable air 

above the deck (see Paper E for a more detailed discussion and a verification of the force and 

power coefficients using model test, CFD, and full-scale measurement results). 

Aerodynamic interaction effects are divided into potential and viscous effects. Potential flow 

interaction caused by the bound vortex is captured by analytically solving the Navier-Stokes 

equation for potential flow, assuming that (i) the induced velocity from the sails at infinity is 

equal to zero, and (ii) the induced angular speed at the sails surface is equal to the angular speed 

caused by the circulation (Г) creating the lift of the sail. The inducted velocity (vT) can be 

computed by (see Paper E): 

𝑣𝑥(𝑥, 𝑦) =
𝑣𝑇𝑅𝑅

√𝑥2+𝑦2
cos (arctan(

𝑦
𝑥⁄ ))    (30) 

𝑣𝑦(𝑥, 𝑦) =
𝑣𝑇𝑅𝑅

√𝑥2+𝑦2
sin (arctan(

𝑦
𝑥⁄ ))    (31) 

Γ = 2 π RC 𝑣𝑇 , 𝑅𝐶 = 𝑅𝑅     (32) 

In Paper E, this method is described in detail, and it is shown how the circulation of the bound 

vortex can be estimated for Flettner rotors. As an example, the induced velocities in an array of 

four Flettner rotors, including the resulting wind speed and angles at the positions of the rotors, 

are shown in Figure 7. A polar plot of the rotor thrust for a similar arrangement with and without 

considering the interaction effect caused by the bound circulation is presented in Figure 8. The 

combined thrust delivered by all four rotors differs less than 1% if evaluated with or without 

interaction effects considering the bound vortex. 
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Figure 7: Induced velocities in an array of four Flettner rotors (see Paper E). 

 

Figure 8: Thrust per rotor with and without interaction effects from the bound vortex,  

vS = 12 kn, TWS = 12 m/s (see Paper E). 

Additionally, tip vortices will be created at the top and the root of the sail. The influences from 

tip vortices can be included similarly to the influences from the bound vortex. To solve the 

Navier-Stokes equation it is assumed that (i) the induced velocities from the tip vortices at 

infinity are zero, and (ii) the induced angular speed at a given radius of the vortex RC is equal 

to the angular speed caused by the circulation of the tip vortex at the radius RC. In contrast to 

the bound vortex, which is created in a horizontal plane, the tip vortices are created in a vertical 

plane, normal to the inflow, i.e., the apparent wind direction (Zuhal (2001)). Thus, the height 

must be included when calculating the distance to the center of the vortex and the induced 

velocities must be divided into horizontal and vertical parts before being divided into the x- and 

y-velocities. The tangential induced velocity (vT) from the tip vortices can be calculated using 

Equation (33), where Δh represents the difference between the analysed height and the root or 

top of the rotor. 

𝑣𝑇(𝑥, 𝑦, ℎ) =
𝑣𝑇𝑅𝐶

√𝑥2+𝑦2+Δℎ2
     (33) 
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The horizontal (vh), longitudinal (vx) and transversal (vy) induced speeds can be calculated by: 

𝑣ℎ(𝑥, 𝑦, ℎ) = 𝑣𝑇  cos (arctan (
√𝑥2 + 𝑦2

Δℎ 
⁄ )   (34) 

𝑣𝑥(𝑥, 𝑦, ℎ) = 𝑣ℎ  sin (𝐴𝑊𝐴)     (35) 

𝑣𝑦(𝑥, 𝑦, ℎ) = −𝑣ℎ cos (𝐴𝑊𝐴)    (36) 

To evaluate the induced velocities, Equation (32) can be used. However, to use Equation (32), 

the circulation (Г) and the radius of the vortex (RC), i.e., the radius on which the circulation 

reaches its maximum, must be defined. Unfortunately, there are no empirical formulations, 

systematic model test or CFD results for the circulation and the radius of the tip vortices 

available in the literature. Some studies, e.g. Zuhal (2001), investigate the structure of the wing 

tip vortex for a single wing with different angle of attacks. Zuhal (2001) presents results from 

model tests, showing that the tip vortex has a circulation of about 80-90% of the circulation of 

the bound vortex and that the radius at which the circulation reaches its maximum is about equal 

to the profile thickness. It must be noted that these results were obtained for one three-

dimensional wing, with only one free end without any winglet or endplate. A Flettner rotor (or 

any other sail on a ship) has two open ends, one at the root and one at the top, at each of them 

tip vortices are created. Further on, Flettner rotors have endplates that decrease the strength of 

the tip vortex. It is thus not possible to estimate the circulation and size of the tip vortices of a 

Flettner rotor from the measurements available in the literature. However, to simulate the effect 

that the tip vortices could have, it is assumed that the tip vortices created at the top and the root 

of a Flettner rotor have a total circulation of 80% of the circulation of the bound vortex and a 

radius (RC) equal to the rotor’s radius. Since a ship’s deck represents a large endplate, it is 

assumed that the vortex created at the root of the rotor has less circulation, 30% of the 

circulation of the bound vortex and the vortex at the top has a circulation of 50% of the 

circulation of the bound vortex. It could be argued that the created vortices should have lower 

circulation, because of the endplate at the top. However, the assumed values should represent a 

maximum level for the influences. In ShipCLEAN, the tip vortices are assumed to follow the 

direction of the inflow (AWA), not to lose in height and have constant circulation and radius 

downwind of the sails. 

Figure 9 presents the induced speeds from the tip vortices created at the top and the root of the 

rotors analysed at a height of one rotor radius above the root of the rotors, i.e., at the point of 

maximum circulation of the vortices created at the root. Only the horizontal parts of the induced 

velocities are respected. Figure 10 presents the same analysis for a height of half the rotor height 

over the base of the rotors. The influences are focused at the area straight downstream of the 

rotors at heights close to the root (or tip) of the rotors, but influence much wider areas when 

analysed at heights further away from the top and root of the rotors, as shown in figures 9 and 

10. Figure 11 presents a comparison of the thrust per rotor with and without the influence form 

the tip vortices, assuming the circulations and radii as discussed above. It is shown, that the 

thrust of the rotors downwind of other rotors is reduced due to the tip vortices. The difference 

of the total thrust over all wind angles was found to be about 2%. 
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Figure 9: Induced speeds from the tip vortices created at the root and the top at h=RR over the 

base of the rotors. 

 

Figure 10: Induced speeds from the tip vortices created at the root and the top at half the rotor 

height over the base of the rotors. 

Figure 11: Thrust per rotor with and without interaction effects from the tip vortices,  

vS = 12 kn, TWS = 12 m/s 
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It must be noted that, as discussed above, the values of the circulation and the radius of the tip 

vortices are not evaluated based on any measurements or estimation formulas but only assumed 

values. Thus, these results are only exemplary. Further investigations must be performed to 

better model the tip vortices. Thus, the results presented in Paper E do not include any influence 

from tip vortices, but only from the bound vortex. 

The viscous interaction effects are caused by vortex shedding from the sails, which propagate 

along the potential streamlines downwind of a sail. These vortices create two effects, a decrease 

of the local wind speed and a periodic fluctuation of the wind direction, with the mean direction 

equal to the local wind direction considering only the potential flow interaction. In 

ShipCLEAN, the viscous effects are captured with a decrease of the wind speed in a corridor 

following the potential streamlines downwind of sails with a width equal to the sail’s chord 

length. In the center of this corridor, the wind speed is defined to 95% of the local wind speed 

considering only the potential interaction effects. The resulting flow field for a rotor 

arrangement as in Figure 7 is presented in Figure 12. In Figure 12, the wind speed reduction in 

the vortex path is exaggerated to 20% of the local wind speed, for better visualization. 

 

Figure 12: Flow velocities in an array of four Flettner rotors, including potential (bound 

vortex) and viscous interaction effects (see Paper E). 

The method to only reduce the local flow velocity to account for viscous effects was developed 

for Flettner rotors (see Paper E). In contrast to wing sails, the lift and drag coefficients of 

Flettner rotors are not dependent on the angle of attack. Thus, the lift and drag coefficients in a 

flow with fluctuating directions but constant mean velocity will be constant, given that the spin 

ratio is constant. The thrust and side force coefficients in the vortex path will thus be equal to 

thrust coefficients in conditions with the same wind speeds but constant direction. However, 

other sail types, e.g., wing sails, are dependent on the angle of attack and will thus experience 

different lift and drag coefficients in the vortex path than in flows with stable direction. If the 

sails are in an area of the angle of attack well below stall angle, the lift coefficient will depend 

linearly on the angle of attack (Abbot and Doenhoff (1959)) and the losses will be equal to the 

Flettner rotor case. However, if the sail experiences angles of attacks larger than the stall angle, 

or below zero, the lift coefficient will drastically decrease and the drag coefficient will increase, 

reducing the sail’s performance. Such cases are not captured by the method in ShipCLEAN. 
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On typical arrangements, such as those shown above, it only happens at three areas of apparent 

wind angles and only for a span of about five degrees that one sail is in the vortex path of 

another. Thus, these conditions could easily be avoided if it is provided that the prediction 

model penalizes the performance enough. 

In Paper E, the performance of an array of four Flettner rotors is compared with and without 

interaction effects. It was found that the thrust forces do not differ significantly for the whole 

array. However, the aft rotors contribute much less, which moves the center of effort forward. 

The method developed for ShipCLEAN is verified against model test results for a two-rotor 

arrangement, see Paper E for details. 

Further on, it is shown in Paper E that rpm optimizations of each rotor considering the local 

wind speed and direction, as well as the drift and rudder angles, are important and increase the 

performance of sail-assisted ships, especially in beating conditions. The rpm optimization is 

performed using a scoring system to reef the rotors contributing the least to the forward thrust 

while optimizing the center of effort of the sail force to achieve an optimal rudder angle and 

minimize the propeller thrust by balancing rotor loading and drift resistance (see Section 2.6). 

The optimal rpm of each rotor on a RoRo ship with four Flettner rotors is presented in Figure 

13a and a comparison of the relative fuel consumption (FCwithSail/FCwithoutSail) is provided in 

Figure 13b. Exemplary results of applying wind-assisted propulsion to different ships on several 

routes are presented in Section 4.3. 

 

 

 

Figure 13: Results from rpm optimization for a RoRo ship with four Flettner rotors (TWS = 

20kn, vS = 18kn): (a) rotor rpm, (b) fuel consumption relative to the fuel consumption without 

sails (see Paper E). 
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2.8 Engine and involuntary speed loss 

In ShipCLEAN, engines are modeled using the engine limits, as shown in Figure 14, i.e., limits 

for the maximum power (3), maximum rpm (4), maximum torque (2), and the limit for 

minimum air supply (1). Details about the engine model are presented in Paper A. Engine limits 

and fuel consumption curves are based on MAN (2015). The limit curves are defined relative 

to the design rpm and design engine power. An extract of the definition is shown in Table 6. 

 

 

Figure 14: Illustration of engine limits (right) and engine layout points (left) (see Paper A). 

Table 6: Engine limit curves. 

rpm/rpmDesign 0 0.2 0.4 0.6 0.8 0.9 0.95 1 1.05 

P/PDesign 0.020 0.041 0.165 0.371 0.660 0.835 0.930 1 1 

 

The fuel consumption is based on the mean effective pressure (MEP) concerning the MEP and 

reference fuel consumption at the maximum engine power design point (L1). The MEP and the 

specific fuel oil consumption (sfoc) are calculated with (see Paper A): 

𝑀𝐸𝑃 = 𝑠𝑚𝑐𝑟 / (𝑉𝐻𝑛𝑧𝑟𝑝𝑠)    (37) 

𝑠𝑓𝑜𝑐 = 𝑠𝑓𝑜𝑐𝐿1 (0.1775 𝑀𝐸𝑃 / 𝑀𝐸𝑃𝐿1  + 0.82235)   (38) 

The cylinder volume (VH) is estimated using the stroke-to-bore ratio and bore for different 

engine types. Accordingly, the sfoc and MEP at the L1 point are specified based on the engine 

type. As an example, large low-speed, two-stroke engines are estimated with a stroke-to-bore 

ratio of four, a bore of 600 mm, sfoc at L1 of 200 g/kWh, and a MEP at L1 of 20 bar. The 

specific fuel oil consumption according to Equation (38) is valid for fuel oil. If alternative fuels 

should be used, other fuel consumption curves (if available) can easily be included. During 

journey simulations, auxiliary loads (e.g., hotel loads) are modelled as a constant power 

increase of the main engine. This assumes that 100% of the auxiliary load is on a shaft generator. 

This will slightly underestimate the fuel consumption, since auxiliary engines with higher 

specific fuel oil consumption are normally used on ships in operation. 
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2.9 Weather conditions for realistic journey predictions 

To perform fuel consumption predictions and studies on potential fuel-saving measures, reliable 

information about the environmental conditions is crucial. As ShipCLEAN is designed to be a 

Stage I model (see Section 1.2) hindcast data and weather statistics are of interest rather than 

weather predictions. 

The environmental conditions can be taken from: (i) on-board measurements from ships 

operating in the area of interest, (ii) hindcast data from the geographic area or, (iii) long-term 

statistics. Option (i) and (iii) often lack information about the wave height (as discussed in Paper 

E); thus, it must be evaluated based on the wind speed. 

𝐻𝑆 = 0.01616 𝑈𝐴√𝑓𝑒𝑡𝑐ℎ ; 𝑈𝐴 = 0.71 𝑇𝑊𝑆1.23, TWS in [m/s]  (39) 

The maximum wave height is computed by: 

𝐻𝑆−𝑚𝑎𝑥 =
0.2433

9.81
 𝑈𝐴

2     (40) 

While option (ii), hindcast data, probably offers the highest accuracy for the grid points, option 

(i), onboard measurements, provides data for an actual route, including local effects, e.g., close 

to coasts. However, to predict payback times of investments to increase ships’ energy 

efficiency, it is necessary to perform predictions of potential savings based on various possible 

weather scenarios. For these cases, option (iii), long-term statistics, are the obvious choice, as 

presented in Paper D. All options can be used in ShipCLEAN; however, option (iii) meets the 

model’s main purpose. 

2.10 Response surface methods 

To predict long-term fuel savings accurately, many conditions, i.e., many journeys, must be 

simulated. In Section 4.2 and Paper D, the use of statistical weather to predict the expected fuel 

saving and the variability between different journeys with the help of Monte Carlo simulations 

is discussed. In Paper D, the method is used to predict long-term fuel savings and economics 

for speed reduction and wind-assisted propulsion. For the study in Paper D, 10 000 runs were 

performed per route with about 70 waypoints per route. This added up to 700 000 simulated 

points per route. A direct simulation using the 4 DOF method in ShipCLEAN takes about 5-10 

seconds on a standard desktop PC, which would result in a simulation time of over 40 days for 

all 700 000 points. By using response surface methods (RSM), the computation time for all 

points was reduced to 60 seconds. 

To define the response surface and minimize the required number of simulations to build up the 

response surface, all environmental factors were sorted by their influence on the ship, i.e., if 

they require a 4 DOF simulation or if it is enough to respect the thrust direction only. Influences 

requiring a 4 DOF simulation are those that introduce side forces, i.e., the wind, and those that 

are dependent on the heading of the ship, i.e., the waves. All other environmental influences, 

e.g., shallow water, ice, and fouling are only dependent on the longitudinal speed through water 

and only affect the longitudinal thrust and can thus be added to the thrust after the 4 DOF 

analysis. With this categorization, the response surface becomes 5 dimensional (i.e., 4 variables 

and a response parameter), with the TWA, TWS, wave encounter angle, and Hs as input 

variables and the required propeller thrust as the output parameter. Considering the 

methodology used in Paper D (see also Section 2.9), i.e., the wave heights evaluated based on 

the wind speeds, the response surface reduces to be 3 dimensional with only the TWS and TWA 
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as input variables. With an increase in dimensions (i.e., input variables) the number of necessary 

simulations increases. As the used method requires the input data in grid format, each variable 

must have the same resolution. Thus, if 18 different TWA should be simulated as a base, the 3-

dimensional RSM would require 324 simulations and the 5-dimensional almost 105 000. 

The RSM in ShipCLEAN is an interpolation method built into MATLAB (Mathworks, 2020) 

called the gridded interpolation. The used interpolation method is a modified Akima 

formulation, i.e., a piecewise polynomial interpolation that gives the exact value at the sample 

points and avoids overshooting (Mathworks (2020), Akima (1974)). For example, using a grid 

of 324 sample points for a tanker (Ship 4 in Section 3) and a 3-dimensional response surface 

(TWA from 0 to 180 degrees in steps of 10 degrees, 18 different TWS from 0 to 52 kn, 

symmetric arrangement of sails) the difference of the required propeller thrust between the 

RSM output and the direct computation (in random conditions) was less than 0.1% (see Paper 

D for details).  

2.11 Transport economics analysis 

A transport economics model is integrated in ShipCLEAN. The model is based on a cost-

income analysis respecting running and operational costs (see Paper D and Psaraftis et al. 

(2019)). 

The costs (C) of a ship in operation can be evaluated using the fuel price p, the fuel consumption 

FC, and the operational costs (OPEX) X. 

𝐶 = 𝑗𝑜𝑢𝑟𝑛𝑒𝑦𝑇𝑖𝑚𝑒 (𝑝 𝐹𝐶 + 𝑋)    (41) 

For payback time studies, the costs must be evaluated for (i) the original ship, with the fuel 

consumption without the energy-saving measures, and (ii) the modified ship with the new fuel 

consumption but with the installation and running costs of the installed energy-saving measures 

added to the costs. The income I is a function of the load factor u, the cargo capacity Q, and the 

freight rate R. 

𝐼 = 𝑢 𝑅 𝑄      (42) 

With the income and the costs defined, the profit per day P can be evaluated, which can later 

be used for optimization studies. 

𝑃 =
(𝐼−𝐶)

𝑗𝑜𝑢𝑟𝑛𝑒𝑦𝑇𝑖𝑚𝑒
     (43) 
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3 Uncertainties and validation 
This section presents a validation of the power prediction and a prediction of uncertainties using 

the ShipCLEAN model. The uncertainties are identified in Section 3.1 and estimated in Section 

3.2. The validation is performed using model- and full-scale measurement data and is presented 

in Section 3.3. For the model validation and quantification of uncertainties, five example ships 

are used. Their dimensions and the available measurement results (model and full scale) are 

presented in Table 7. 

Table 7: Dimensions and available measurements of the example ships.  

 1 2 3 4 5 

Ship type Cruise ferry RoRo Container Tanker RoRo 

Loa [m] 210 190 350 183 212 

B [m] 31.8 26.4 45.6 32.2 26.7 

T [m] 6.8 7.8 13.0 11.0 6.0 

Δ [t] 28504 24050 128000 50610 21000 

cB [-] 0.652 0.637 0.640 0.798 0.642 

DP [m] 5.2 5.5 8.8 7.0 4.5 

rpmP [min-1] 130 130 102 130 120 

Z [-] 5 4 6 4 5 

nP [-] 2 1 1 1 1 

Model scale meas. x x x x x 

Full scale meas. x x x - - 

 

3.1 Identification and categorization of uncertainties 

In a Stage I model, such as ShipCLEAN, uncertainties originate from two sources, (i) 

uncertainties in the estimation of missing ship design parameters and (ii) uncertainties in the 

employed methods for predicting the different components. As explained in Paper B, the first 

group is referred to as design uncertainties (D) while the second group is referred to as method 

uncertainties (M). Design uncertainties are caused by the unknown design of the ships, e.g., 

unknown dimensions, hull shape, or propeller design. Method uncertainties originate from 

inaccuracies in prediction methods, including measurement uncertainties in, e.g., model tests. 

Design uncertainties can be fully eliminated once all parameters of a ship are known and 

available. Contrarily, method uncertainties can be reduced, but never eliminated, even if model 

tests, full-scale trials, or CFD computations are available. Details on the categorization of 

uncertainties are presented in Paper B. 

3.2 Estimation of design and method uncertainties 

This section presents the estimation of design and method uncertainties in ShipCLEAN. The 

analysis is divided into five parts. Section 3.2.1 presents an analysis of the static part, i.e., the 

calm water and 1 DOF power prediction, Section 3.2.2 presents an analysis of the dynamic (4 

DOF) part, Section 3.2.3 presents an analysis of the wind-assisted propulsion module, Section 

3.2.4 presents the analysis of the transport economics model, and Section 3.2.5 presents the 

analysis of the methods used to predict the environmental loads. To estimate design 
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uncertainties, the design of a ship must be varied in a way that it does not affect the predicted 

power with the methods used. As an example, the hull form can be varied without changing the 

main dimensions, which will affect the actual resistance of the ship, but not the predicted 

resistance with empirical formulas. Method uncertainties are estimated using published 

statistics and comparing different methods for the empirical methods and analyzing 

measurement uncertainties for model tests. 

3.2.1 One degree of freedom model 

Uncertainties in the 1 DOF part of ShipCLEAN are estimated in Paper B. Design and method 

uncertainties are estimated based on two example ships: a tanker (Ship 4) and a RoRo (Ship 2). 

Detailed results for the RoRo are presented in Table 8. The design phases defined in Paper B 

are quite like the model stages introduced in Section 2 but focused on the design process of a 

ship. Design phase I represents an early design phase, i.e., only the main dimensions are 

defined. In phase II, the hull design is defined, and model test results are available in phase III. 

Phase IV represents the end of the design project, i.e., the whole design of the ship, including 

the superstructure, is finished. However, full-scale measurements are not available. As a result 

of the available input parameters in the different design phases, in phase I, only Stage I models 

can be used and similar to phases II, III, and IV where Stage II, III, and IV models could be 

applied, respectively. 

Table 8: Estimation uncertainties in the propulsion power prediction for Ship 2 (see Paper B). 

 Design phase 

I II III IV 

D M D M D M D M 

SW 1% - - - - - - - 

k*cF +cR 3.1% 6.4% - 6.4% - 4.1% - 4.1% 

we 10.0% 7.1% - 7.1% - 2.0% - 2.0% 

ηH - 6.0% - 6.0% - - - - 

t - - - - - 5.0% - 5.0% 

η0 2.0% 1.5% - 1.5% - 1.2% - 1.2% 

AT 6.0% - 6.0% - 6.0% - - - 

AL 3.1% - 3.1% - 3.1% - - - 

cX 3.0% 2.0% 3.0% 2.0% 3.0% 2.0% - 2.0% 

RAWaves 2.2% 12.6% - 12.6% - 12.6% - 12.6% 

SFOC - 3.0% - 3.0% - 3.0% - 3.0% 

PD (CW) 10.0% 8.9% 2.1% 2.1% 

FC (CW) 10.4% 9.4% 3.7% 3.7% 

PD (sea) 10.5% 9.0% 3.2% 3.2% 

FC (sea) 10.2% 9.5% 4.3% 4.2% 

 

The results in Paper B showed slightly higher uncertainties for the tanker in phase I, caused by 

larger uncertainties in the prediction of the effective wake compared to the RoRo. The expected 

standard deviation of the propulsion power was estimated to be about 10% for the RoRo and 

12% for the tanker (phase I), which could be reduced to 3% for the RoRo and 2% for the tanker 

by eliminating the design uncertainties and performing model tests (phase IV). This analysis 

also shows the achievable accuracy for models of different stages, as discussed in Section 1.2. 
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In Paper B, how uncertainties are reduced in ShipCLEAN was also discussed. Huge reductions 

could be achieved by introducing the standard hull series to obtain the wetted surface, as all 

methods showed insufficient results compared to actual hulls. In other areas, such as the added 

wave resistance or resistance prediction, multiple methods were combined to reduce 

uncertainties. Even though the model has been further developed when compared between 

Paper B and E, the uncertainties will not be affected significantly as most of the development 

work was focused on extending the range of validity and the model’s functionality. 

It must be stressed that all power prediction methods, even model tests, do have uncertainties, 

as presented in Table 8. Thus, any power prediction will not be completely accurate if compared 

to full-scale measurements, which will have measurement uncertainties as well. From the 

results presented here and in Paper B it must be concluded that the largest modeling 

uncertainties appear in the estimation of the propulsive factors, i.e., the effective wake and hull 

efficiency and the added wave resistance.  

3.2.2 Four degrees of freedom model 

Uncertainties in the 4 DOF part of ShipCLEAN originate from prediction of the lift and drag 

of a ship sailing at a drift angle, from prediction of the center of lateral resistance (CLR), and 

from prediction of the rudder force. If only small side forces are introduced, for example, for a 

ship with low windage area (e.g., tankers) without sails, the accuracy of the 4 DOF method is 

equal to the 1 DOF method. Once the side forces become higher (e.g., when sails are 

introduced), the accuracy of the 4 DOF method increases compared to the 1 DOF method 

because added drag from drifting and steering is included. However, the methods to calculate 

the added drag introduce new uncertainties. 

As a result of the limited model test and CFD results available in the literature, it is impossible 

to quantify design uncertainties for the lift, drag, and CLR of the ship hull. In Paper E, it is 

discussed that hull form features, especially the waterline shape in the bow region, the transom 

shape/immersion, and the bilge radius must influence the lift, drag, and CLR of the hull; 

however, without systematic CFD computations or model tests, these influences are not 

quantifiable. Method uncertainties are discussed in Paper E. Uncertainties in predicting the lift 

force result in inaccurate predictions of the drift angle. It was found in Paper E that the deviation 

of the predicted drift angles from measured/CFD computed values was up to 3 degrees at a drift 

angle of 10 degrees. However, this inaccuracy mainly affects the thrust from sails, which can 

be reduced by about 1% because of this inaccuracy. Larger uncertainties are found in the drag 

(or lift/drag) prediction where differences of up to 15% were found. In the study presented in 

Paper E and Section 4.3, the average drag from drifting (for the long-term prediction) was found 

to be 8% (for Ship 5) of the total resistance. This would result in an uncertainty for the fuel 

consumption prediction of about 1.2%. In the variation study in Paper E, the highest added drag 

as a result of drift was found to be 20% (for both ships 4 and 5) of the total resistance, which 

would result in uncertainty of about 3%. However, it must be noted that the drift angle and 

added resistance are dependent on the TWA. Generally, in beating and downwind conditions, 

the side forces and thus the drift angles, are higher, which results in higher percentages of the 

added drag compared to the total resistance. However, with the rpm control of the Flettner 

rotors, the added drag is limited because the rpm of one or several rotors, if beneficial for the 

balance of side force, added drag and sail thrust. 

As discussed in Paper E, the CLR is difficult to predict, both theoretically, with CFD and in 

model tests. Thus, it must be assumed that the uncertainties are high, even though it is difficult 

to quantify because of the limited data available and large uncertainties in all methods. 
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Additionally, the impact of an inaccurate CLR on the performance of a wind-assisted ship is 

complex. The CLR influences the necessary rudder angle and with this, the side force delivered 

from the rudder and thus even the drift angle and drag from drifting. Additionally, the rpm 

control aims to optimize the rudder angle. Thus, an inaccurate CLR will even affect the 

delivered thrust from the sails. However, it must also be stated that the absolute position of the 

CLR is not important but only the relative position between the CLR and the center of the 

aerodynamic side forces. It can thus be assumed that the relationship between the final CLR 

(evaluated by CFD or model tests) and the center of the aerodynamic side forces can be adjusted 

to be equal to the relationship during simulations by moving the sails in a longitudinal direction. 

Thus, even though the uncertainties in the prediction of the CLR are large, the effect on the 

resulting fuel savings is small or even zero if the final sail arrangement is adjusted once more 

sophisticated methods to predict the CLR (e.g., CFD or model tests) become available. 

The rudder model consists mainly of the evaluation of the lift and the drag coefficients. 

Uncertainties in the prediction of the lift and drag coefficients must be categorized as design 

uncertainties, because the coefficients are based on airfoil theory, which is a well-validated 

theory. However, design details, such as the exact planform, the sectional profile, and eventual 

skegs in front of the rudder influence the lift and drag coefficients. Even the rudder area can 

differ from the area assumed in ShipCLEAN. A difference in the lift force between the actual 

design and the values in ShipCLEAN would mainly influence the optimal rotor position, 

comparable to the CLR. Additionally, there is an influence on the drift angle, and added 

resistance as a rudder with lower lift forces contributes less to the total hydrodynamic lift and 

the hull must create more lift. As the lift-to-drag ratio of a rudder is much better than that of a 

ship hull, rudders with less lift force (e.g., through less area or lower lift coefficients) would 

decrease the ship’s performance. In most conditions, this influence is small; however, especially 

in beating conditions, wind-assisted propelled ships require large rudder forces. Uncertainties 

in the rudder lift force will, comparable to the CLR, influence the balance of the ship and rpm 

optimization of the rotors. As for the CLR, the effects are difficult to quantify and for most 

conditions, differences in rudder lift forces can be balanced with re-arrangement of the sails. 

However, in beating conditions, the rudder design is important, especially for the TWA where 

the sails become effective as de-powering of the sails often happens as a result of large rudder 

angles. 

In conclusion, the largest uncertainties are caused by the estimation of the lift-to-drag ratio of 

the ship hull. Uncertainties in the estimation of the CLR, the rudder area, and rudder lift and 

drag coefficients can be balanced with re-arranged sails and the effect on the fuel consumption 

prediction is thus considered negligible. Only in some conditions, especially beating, the exact 

location of the CLR and the lift force from the rudder become important. However, because of 

the complexity of the system, including the rpm control, it is not possible to quantify these 

uncertainties exactly without extensive variation studies. The uncertainties in the CLR 

estimation and the rudder lift force show that it is crucial to re-evaluate the sail arrangement 

once the final design of the ship is available. 

3.2.3 Wind-assisted propulsion module 

In ShipCLEAN, three different Flettner rotors with defined heights, end plate, diameter, and 

maximum rpm are available. These are the only design parameters that influence the 

performance of Flettner rotors, according to literature. Thus, the design uncertainties are zero. 

Method uncertainties are found in the lift, drag, and power coefficients, as well as in the 

evaluation of the aerodynamic interactions. The lift, drag, and power coefficients are corrected 
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using full-scale measurement data (see Paper E). Thus, assuming similar build quality and 

motor efficiencies for all rotors, the method uncertainties for the lift, drag, and power 

coefficients are small. In Paper E, the uncertainty in predicting the forces of a single rotor is 

evaluated to be well below 4%, with the predicted lift and drag forces being within 1% of the 

full-scale measurements for the test case. The evaluation of the aerodynamic interactions is 

based on the potential flow Navier-Stokes equation (see Paper E) and shows results that are 

comparable to results from simulations of fleets of sailboats and model tests with two rotors 

(see Paper E). The main uncertainty in this approach is in evaluating the circulation caused by 

the rotors, see Paper E for details. However, the results in Paper E show that the main effect of 

the potential flow interactions is a difference in the location of the center of the aerodynamic 

force as the aft rotors become less and the front rotors more efficient. As for the CLR and the 

rudder in Section 3.2.2, the effect of this difference is complex but can be compensated in the 

detailed design of a ship or the sail arrangement once more sophisticated methods (CFD or 

model tests) are applied. 

The viscous interaction effects are much more difficult to model and cause higher uncertainties. 

However, viscous interaction effects do only occur in narrow TWA ranges, i.e., when one rotor 

is downstream of another rotor. To overcome these uncertainties, ShipCLEAN introduces 

performance decreases by reducing the local wind speed downstream of the rotors. These 

performance decreases are much larger than they would be, to avoid the ship sailing in those 

TWA ranges once routing algorithms are applied. Thus, the uncertainties are large but do not 

affect the fuel consumption predictions since the TWA ranges where the uncertainties occur are 

avoided. 

3.2.4 Transport economics model 

The validation and uncertainty quantification of the logistics model are not part of this thesis. 

However, it must be mentioned that all factors, the fuel price, the operational costs, the freight 

rate, and the utilization rate are linear factors in the model. Thus, any uncertainties in the 

evaluation of the input to the economics model will directly influence the resulting profit. This 

shows the importance of well-investigated economic factors as input for this model. 

3.2.5 Environmental conditions 

For the studies presented in this thesis, the TWA and TWS are either based on global weather 

statistics or on measurements from ships. It must be noted that any source of weather data, 

especially on-board measurements, will have uncertainties. However, such measurement and 

prediction uncertainties are not quantified in this thesis. For all studies presented, the wave 

heights are based on a defined fetch and the TWS, see Section 2.9. This introduces uncertainties 

since geographical effects, such as sheltered water, water depth or regions close to coastlines 

are disregarded. In this thesis, the uncertainties of the predicted wave heights are not quantified. 

However, in Table 9, the influence of differences in the wave height on the propulsion power 

of the 5 example ships is presented. The results show the importance of predicting the correct 

wave height and the magnitude of the uncertainties caused by uncertainties in predicting the 

wave heights using the method presented in this thesis. 

  



 

36 

 

Table 9: Relative propulsion power at design speed compared to the  

reference power at 3 m wave height (PD/PD 3m), TWS = 20 kn. 

 Ship 1 Ship 2 Ship 3 Ship 4 Ship 5 

Hs = 1 m 0.89 0.77 0.90 0.76 0.87 

Hs = 2 m 0.93 0.84 0.95 0.83 0.92 

Hs = 3 m 1.00 1.00 1.00 1.00 1.00 

Hs = 4 m 1.16 1.34 1.13 1.34 1.19 

Hs = 5 m 1.45 1.84 1.32 1.81 1.51 

3.3 Validation of the power prediction 

Model validation is comparing a model’s prediction with real-life measurement data, where the 

results from the measurements are unknown at the time the model predictions are performed. 

To consider a model validated, the maximum allowable difference between the prediction and 

the measurement must be defined before the comparison is made and sources of uncertainty 

and their magnitudes should also have been identified.  

The validation of ShipCLEAN is performed in two steps: (i) using calm water model test results 

from five ships to validate the static part (see Figure 3) and (ii) using full-scale measurement 

data from three of the five ships to validate the dynamic part.  During the validation study, the 

input to the ShipCLEAN model was limited to the ship’s dimensions and information given in 

Table 7, which is the minimum required input. However, for this study, the propeller diameter 

was included as input because it increases the accuracy of the prediction and is often available, 

even for Stage I models. Thus, ShipCLEAN was run as a pure Stage I model in the validation 

study. All predictions are performed before receiving measurement data. Following the results 

from Paper B, the model’s prediction of both, the calm water propulsion power/fuel 

consumption and the propulsion power/fuel consumption at sea shall not deviate more than 10-

12% (depending on the ship type) from the measured values, which is equal to the estimated 

standard deviation for a design phase I prediction (see Paper B and Section 3.2). As 

ShipCLEAN only predicts the full-scale values, only the full-scale prediction from model tests 

was used for validation. The focus of ShipCLEAN is predicting long-term fuel consumption 

instead of instantaneous predictions. To consider the model validated, it is required that the 

averaged difference between predicted power and power measured in full-scale tests (moving 

average over 10 days) stays within the defined standard deviation of 10-12%. As a result of 

limited input data (e.g., no wave height information), it is expected that individual measurement 

points show higher differences. 

3.3.1 Validation against model test results  

Results from model tests consisting of resistance, propeller open water, and self-propulsion 

tests are available for the five example ships. As ShipCLEAN follows an approach for the 

power prediction, which is like the scaling procedure of model tests, it is possible to compare 

individual parts of the prediction, e.g., the resistance or open water efficiency. It must be 

remembered that model test results are also affected by uncertainties caused by inaccuracies in 

the measurements but also human influence in the evaluation process, especially connected to 

the estimation of the form factor (ITTC (1999)). As the model tests are performed in calm water, 

only the static part of ShipCLEAN is used, i.e., the simulations are 1 DOF. 
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In Figure 15, the predicted power from ShipCLEAN is compared to the predicted power from 

model test results. The solid lines represent the standard prediction, dashed lines show the 

prediction with the high bulb effect cR curve (see Section 2.3), and the asterisk mark the design 

condition for each ship. The differences between the predicted power from ShipCLEAN and 

model test results are less than 2% for the design condition for ships 1, 3, and 4, i.e., for the 

cruise ferry, the container ship, and the tanker. The predicted power at design speed from 

ShipCLEAN for the two RoRo ships is 6% lower (Ship 2) and 8% higher (Ship 5) than the 

predicted power from model tests. All deviations are significantly lower than the 10% deviation 

defined as allowable for the validation, which is a good result. 

For Ship 2, the difference originates from a low propulsive efficiency (ηD about 0.595) during 

the model tests, which is caused by both a low hull efficiency of less than 1.02 and a propeller 

open water efficiency of less than 0.6, both considered much lower than usual. The propulsive 

efficiency predicted by ShipCLEAN for Ship 2 is 0.625. It must be noted that Ship 2 is the only 

ship in this study that has a controllable pitch propeller (CPP). In ShipCLEAN, CPPs are 

evaluated as fixed pitch propellers, which will cause large differences in propeller efficiency in 

off-design condition if the CPP is operated on a combinator curve or with fixed rpm, i.e., with 

variable pitch over the speed range.  

The available model test results for Ship 5 are limited to the propulsion power, with no 

intermediate results, such as the propulsive efficiency or the resistance available. Thus, a 

detailed investigation about the cause of the overprediction from ShipCLEAN cannot be 

performed. However, according to reports by the owner of the built ship, the fuel consumption 

is about 5% higher than when it is computed from the propulsion power from model test results. 

This could indicate an underpredicted power from model tests but might also be because of a 

higher specific fuel oil consumption of the main engine.  

 

Figure 15: Predicted propulsion power from ShipCLEAN over the propulsion power from 

model tests for five sample ships. Solid lines: prediction with standard cR curves;  

dashed lines: prediction with cR curve for high bulb effect. 
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In the off-design condition, i.e., at lower or higher speeds, the predictions differ more, except 

for the container ship and the tanker (ships 3 and 4). For all other ships, the prediction from 

ShipCLEAN shows lower power consumptions at low speeds than the predictions from model 

test results. This difference can be explained with the different bulb effects. As described in 

Section 2.3, three curves for cR over the ship speed are used in ShipCLEAN: one with almost 

no bulb effect for full block ships such as tankers, one with a moderate bulb effect for faster 

ships, and one with a significant bulb effect. Ship 4, the tanker, and Ship 3, the container ship, 

obviously have no or only small bulb effects at lower speeds. The container ship has, in fact, 

been rebuilt with a new bulbous bow to increase the performance at lower speeds. Ships 1, 2, 

and 5 are ships optimized for one speed, i.e., design speed, featuring large bulbous bows, 

resulting in higher resistance at lower speeds than predicted from ShipCLEAN. The cruise ferry 

(Ship 1) does not operate in off-design conditions. Thus, this resistance increases and difference 

in prediction does not influence the ship’s performance or the model’s prediction accuracy. 

However, ships 2 and 5 operate at different speeds, which will cause the ShipCLEAN prediction 

to be less accurate at lower speeds and the ship to be less efficient at lower speeds. It is shown 

in Figure 15 that the cR curve, which models a high bulb effect, gives better results for the 

RoRos and, especially, the cruise ferry. Thus, this curve should be used if it is known that the 

bulbous bow is optimized for a single speed and of large size, maybe even goose-neck shaped.  

From the results of this validation study, it can be concluded that the prediction accuracy of 

ShipCLEAN for calm water conditions is better than expected compared to the results presented 

in Paper B. The differences between the ShipCLEAN prediction and the model’s test results 

are less than 10% for all ships, which is less than the previously defined accepted difference. 

Thus, the calm water prediction can be considered validated. However, the modeling of the 

bulb effect for ships with large and single speed optimized bulbous bows is challenging and not 

accurate for all ships. 

3.3.2 Validation against full scale measurements 

To validate the dynamic part of ShipCLEAN, the measured power on-board ships in operation 

is compared to the predicted power from ShipCLEAN for similar environmental and 

operational conditions. Thus, additional to the propulsion power, the environmental loads, i.e., 

wind speed and angle, wave height and encounter angle, water temperature, water depth, current 

speed and direction, and the operational condition, i.e., ship speed, draft and trim, must be 

known. ShipCLEAN is run as the Stage I model it is designed to be, i.e., only the dimensions 

given in Table 7 are used. However, to increase the value of the study and reduce uncertainties 

caused by unknown environmental loads, on-board measurements of the wind speed and angles 

and other available measurements as presented in Table 10 are used for the prediction.. For all 

ships and all conditions, the 4 DOF method is used in ShipCLEAN.  

Full-scale measurements are available for three ships, as shown in Table 7. Ships 1 and 2 

operate on liner routes on the Baltic Sea while Ship 3 operates on a worldwide liner route. On-

board measurements were taken once every hour (Ship 1 and 3) or once every four hours (Ship 

2), regardless of the operational mode. Thanks to the coarse measurement intervals, 

maneuvering and acceleration could not be filtered out. An exception is Ship 1, where the on-

board measurements include longitudinal accelerations. With this data, only data points with an 

absolute value of longitudinal acceleration of less than 0.0003 m/s2 are used. It must be 

mentioned that measurement uncertainties are not quantified in this thesis. Table 10 presents an 

overview of the available measurement data for the three sample ships. 
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Table 10: Available measurement data. 

 Ship 1 Ship 2 Ship 3 

AWA, AWS x x x 

Speed over ground (SOG) x x x 

Speed through water (STW) x x x 

Draft, trim x x x 

Water depth x - - 

Water temperature x - - 

Position - - x 

Engine power x x x 

Rpm x x x 

Accelerations x - - 

 

The wave height is not measured on any of the ships but instead computed using the relationship 

shown in Section 2.9. This assumption does, of course, add uncertainties as the wave height 

does not necessarily follow the wind speed, especially in confined waters such as the Baltic 

Sea. However, reliable wave height measurements are close to impossible from on-board a ship. 

To increase the accuracy of the validation using full-scale measurements, hindcast data of the 

wave heights together with the ship’s positions should be used. All ships are assumed to be 

clean, i.e., no fouling is included in the predictions. 

For validation, all measurements with ship speeds higher than 5 kn are used. No limits on the 

wind speed or loading condition are implied. Table 11 presents the intervals of wind speed, 

draft, trim, and ship speed during full-scale measurements.  

Table 11: Wind, speed, and loading condition intervals during full-scale measurements. 

 Ship 1 Ship 2 Ship 3 

TWS [kn] 1.1 – 38.6 0.3 – 47.8 1.6 – 48.2 

Draft [m] 6.25 – 7.05 5.6 – 8.7 8.3 – 14.7 

Trim [m] -0.7 – 0.2 -1.3 – 0.3 -3.2 – 0.2 

vS [kn] 16.9 – 22.1 5 – 20 5 – 22.5 

 

The presented conditions are far from trial conditions. However, the goal of ShipCLEAN is that 

the model shall be applicable in all types of typical operational conditions. Thus, it is required 

that the model gives results with the expected accuracy (see sections 3.2 and 3.3), at least 

averaged over a longer period, e.g., a full journey or year. The results from the comparison of 

measured and predicted propulsion power are presented in Figure 16. 
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Figure 16: Comparison of propulsion power from full-scale measurement 

and ShipCLEAN prediction for three ships. 
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The results of all ships show variations in the power relation. However, for all ships, the moving 

average stays close to one and the expected value from validation with model test results, i.e., 

the relation between the propulsion power in model tests and according to the ShipCLEAN 

prediction (see Section 3.3.1). The moving average for Ship 1 shows a clear trend of decreasing 

performance over time, with the relative power being about 5% higher after 150 days, i.e., 

comparing the end of the measurement period with the beginning. This almost linear decrease 

in performance is most likely caused by fouling. 

Over the whole measurement period, the averaged power relation (prediction from ShipCLEAN 

divided by measured power) was 1.02 for Ship 1, 0.95 for Ship 2, and 1.03 for Ship 3. All these 

values were well within the expected deviation (see Section 3.2 and Paper B). In Section 3.3.1, 

the relationship between model tests and the calm water power prediction from ShipCLEAN 

(at design speed) was found to be 0.99 for Ship 1, 0.94 for Ship 2, and 1.02 for Ship 3. The 

largest deviation from the results from the model scale validation was found for Ship 1, which 

performed better in full scale than in model scale, compared to the ShipCLEAN prediction. 

From the above numbers, it must be concluded that ShipCLEAN gives accurate performance 

prediction for ships in operation, if seen over a long time, which is the focus of ShipCLEAN. 

However, the individual measurements showed large scatter. The reasons for this scatter are 

further analyzed in Section 3.3.3. 

3.3.3 Discussion of the validation using full-scale measurements 

The results for all three ships show a large variation in the power relations, between 0.8 to 1.25 

for Ship 1, 0.1 to 1.35 (with most points between 0.75 and 1.2) for Ship 2, and 0.5 to 1.8 (most 

points between 0.8 and 1.3) for Ship 3. Ship 1 is the only case that could be filtered for low 

acceleration and shows the smallest difference between the maximum and minimum power 

relations. This leads to the conclusion that most of the outliers for ships 2 and 3 are caused by 

de- or acceleration of the ship. Still, the analysis varies from an underprediction of the power 

by 25% to an overprediction by about 20% for Ship 1. To further investigate the source of the 

deviation, two pairs of neighboring measurement points with different power relations are 

picked for Ship 1. The data for TWS, TWA, water depth, draft, and roll and pitch motion 

together with the power relation is presented in Table 12. 

Table 12: Four distinct measurement points for Ship 1, including ship motions. 

IDX TWS 

[m/s] 

TWA 

[deg] 

Twater 

[oC] 

Depth 

[m] 

Tm 

[m] 

Roll 

[deg] 

Pitch 

[m] 

PShipCLEAN/ 

Pmeasured [-] 

7 3.7 3 18 54 6.7 0.15 0.0113 0.95 

8 1.5 157 18 52 6.7 0.02 0.006 1.03 

66 10.7 13 9 63 6.6 0.009 0.0093 1.01 

67 10.0 92 9 52 6.5 0.03 0.0294 0.91 

 

The wind speeds for the measurements in both pairs are almost identical, low wind (1.5 and 3.7 

m/s) for pair one and quite fresh wind (10.7 and 10.0 m/s) for pair 2. Even the TWA and the 

water depth are comparable. Comparing the measurements of the first pair, i.e., IDX 7 and 8, 

shows the ship is moving (both pitch and roll) for measurement 7 but is almost still for 

measurement 8. Obviously, the ship experiences waves in the time of measurement number 7 

but almost calm water for measurement number 8. This results in an underprediction (5%) of 

the power for measurement 7 and an overprediction (3%) for measurement 8. The same can be 
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seen for measurement 66 and 67, where the ship is rolling and pitching during measurement 67 

but much calmer in measurement 66. This shows that the ship experiences different wave 

heights, despite the similar wind speeds, most likely as a result of the ship’s route, which leads 

partially through protected waters. As the wave height for the ShipCLEAN prediction is based 

on the TWS (see Section 2.9), the wave height in the prediction will be constant for constant 

TWS.  

A similar study can be performed for Ship 3, where the ship’s positions are available. The power 

relation and the positions during two days with almost constant TWS (around 12 m/s) are 

presented in Figure 17. 

 

Figure 17: Position and power relation during two days for Ship 3. 

During the two days, the power relation reduces from 1.8 (80% overprediction from 

ShipCLEAN) to about 0.8 (20% underprediction from ShipCLEAN). From the positions during 

the first period of the two days, the ship is sailing in protected waters, i.e., exiting the Red Sea, 

while it is on the open Indian Ocean at the end of the two days. It can be assumed that, despite 

the high wind, the ship sails on calm seas during the beginning of the period but experiences 

high waves during the end. As for the case of Ship 1, this can explain some of the variations in 

the power relations. 

From the examples shown above it can be concluded the problem of predicting the correct wave 

height is a main cause for the variation in power relation. However, during some periods, it was 

found that, for Ship 3, the ship speed changed over time (both, STW and SOG), but the 

measured propulsion power did not change even though all measured environmental influences 

were constant. An example is presented in Figure 18. This effect cannot be explained with the 

measurements available. 
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Figure 18: Measured speed through water and speed over ground and predicted and measured 

power over 10 hours for Ship 3. 

For Ship 2, a further difficulty is that the ship has a controllable pitch propeller (CPP), which 

is treated like a fixed pitch propeller (FPP) in ShipCLEAN. In Figure 19, the propeller rpm over 

the ship speed is presented. The ship is operated at two distinct propeller rpms (governed by the 

ship’s engine arrangement), which requires adjustments of the propeller pitch when the ship 

speed is varied. Variations in propeller and propulsive efficiencies attributable to the pitch 

variations are not captured by ShipCLEAN because of the difficulties when evaluating CPP 

without model test data or extensive computational effort (see Paper A for a discussion). 

 

Figure 19: Propeller rpm over ship speed for Ship 2. 

Further to the abovementioned influences, the variation of the draft and trim will influence the 

accuracy of the prediction from ShipCLEAN. As discussed in Section 2.4, the influence from 

draft changes is modelled with a resistance prediction at ballast draft and generic cR curves in 

between the ballast and the design draft. The influences from trim are not modelled in 

ShipCLEAN. Since Ship 3 experienced the largest differences in draft and trim during the 

measurement period, the analysis is done for Ship 3. Figure 20 presents the relation of the 

predicted and the measured propulsion power over the trim. An almost linear relation between 

the power relation and the trim of the ship can be observed. Thus, it must be concluded that the 

influences of trim on the propulsion power are significant and must be included in future 

versions of ShipCLEAN, even though these influences are difficult to model. However, it must 

also be noted that the trend could be different for ship types that are commonly model tested at 

large trim for ballast conditions, e.g., tankers and bulk carriers. It is possible that the method 
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used to predict the resistance coefficients at ballast draft (which is based on model test results, 

see Section 2.4) includes the trim effects and that the inaccuracies shown in Figure 20 are 

smaller for such ships. 

 

Figure 20: Relation between predicted and measured power over the trim (Ship3).  

To evaluate the influence of the mean draft on the prediction accuracy, conditions with less 

than 0.1 m of trim (to bow or stern) are analysed. Figure 21 presents the power relation over 

the draft for all conditions with less than 0.1 m trim. A slight increasing trend can be seen with 

decreasing draft, i.e., ShipCLEAN overpredicts the power at smaller drafts compared to the 

prediction around design draft. Additionally, a hump can be found just below the design draft 

of 14 m. This is most likely due to more unfavourable wave patterns created by the bulbous 

bow which might be just above the water surface for these conditions. From the results 

presented in Figure 21 it can be concluded that the effect of draft changes is well modelled, 

considering that ShipCLEAN is a generic model without any information about the hull form 

required for the prediction. However, it must be noted that almost no measurements at even 

keel are available for drafts between 9 m and 11.5 m. 

 

Figure 21: Relation between predicted and measured power over the draft for even keel 

conditions (Ship 3). 
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Additionally, in Norsepower (2019), a study analyzing the fuel-saving potential with Flettner 

rotors on a cruise ferry was presented. ShipCLEAN was used to predict the fuel savings based 

on the collected weather data while measurement data was used to analyze the actual fuel 

savings in operation. The difference between the predicted fuel savings from ShipCLEAN and 

the measured fuel savings was found to be as low as 1.7% (Norsepower (2019)). 

In conclusion, despite the few input parameters and no filtering of the measurement data for 

calm weather or design draft, ShipCLEAN can provide accurate predictions of the propulsion 

power, when averaged over a longer period. Significant variations in the power relations of 

single measurement points during a short period were observed for all three ships. One 

important cause for these variations was identified to be the wave height, which was estimated 

based on the TWS instead of measurements or hindcast data. Additionally, trim highly 

influences the prediction accuracy. Apart from the wave heights and the trim, other factors, 

which were not measured, seem to influence the propulsion power. Such factors could be, e.g., 

the water depth. It must further be noted that sensor accuracy and measurement uncertainty was 

not part of this study. 
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4 Examples of applications and results 
This section presents selected applications of the ShipCLEAN model and results obtained to 

reduce emissions generated from shipping. In Section 4.1 two different ways of speed 

optimization, one speed profile optimization during a journey and one journey time 

optimization, are presented. Speed optimization is a simple and economically motivated method 

of reducing a ship’s fuel consumption. Section 4.1 presents how ShipCLEAN can be used to 

do such study for any cargo ship, existing or newbuild. Section 4.2 presents two approaches for 

long-term predictions of expected fuel consumption on specified routes with the use of weather 

statistics. These approaches help quantify the effects of fuel-saving measures, e.g., wind-

assisted propulsion or speed optimization, for more than one journey but a full year or lifetime 

of a ship. The application of wind-assisted propulsion to two ships on three different routes is 

presented in Section 4.3. Further the design and operation of wind-assisted ships is discussed. 

Wind-assisted propulsion is widely seen as a suitable measure to reduce fuel consumption. 

However, sophisticated methods (as included in ShipCLEAN) are necessary to evaluate the 

potential and challenges of wind-assisted propulsion fully (see Section 1). Finally, Section 4.3 

discusses two approaches to design zero-emission ships—one relying fully on wind propulsion 

and renewable energies and the other focusing on batteries and electrical propulsion. All studies 

(except the zero-emission ships) are presented in more detail in the appended articles (Paper A-

E) and will only be summarized below. 

4.1 Speed optimization  

The ship speed is the single most important factor for a ship’s fuel consumption. Thus, it is 

important to (i) choose the optimal mode of operation to ensure optimal speeds throughout the 

journey, and (ii) choose the optimal average speed for a journey. With the help of ShipCLEAN, 

the speed profile over a journey can be analyzed and optimized concerning the defined weather 

along the route and a fixed journey time. However, even choosing the correct journey time is 

important. Naturally, lower speeds (and longer journey times) will reduce fuel consumption; 

however, the operational costs increase, and the income decreases with longer journey times. 

Through the unique coupling of a performance prediction model and an economic model, 

ShipCLEAN can be used to optimize the journey time for maximum profit, i.e., balancing fuel 

consumption, costs, and income. 

Paper A presents a study comparing the fuel consumption of an MR tanker (Ship 4 from Section 

3) on a Baltic Sea route with four different modes of operation, i.e., constant propeller torque, 

constant target speed, constant average speed, and constant rpm. All operational modes resulted 

in the same journey time and identical routes were used for all modes of operation (no weather 

routing). The analysis was done using realistic weather conditions (see Paper A for details). 

The results of the study are shown in Figure 22. The difference between the best (constant target 

speed) and worst (constant torque) operational mode was found to be about 3%. Certainly, this 

is not a huge fuel saving but one that is without any economic risk because it does not involve 

any investments or schedule changes. In analyzing the accumulated fuel consumption and speed 

profile over the route, it is obvious the best alternative is to operate the ship on as constant a 

speed as possible. Times with high ship speeds especially lead to high fuel consumption. 
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Figure 22: Comparison of different operational modes: (left) ship speed and (right) 

accumulated fuel consumption (see Paper A). 

It can be concluded that it is important to choose the optimal operational mode to minimize fuel 

consumption. From the results obtained from the study in Paper A, it is concluded that high 

speeds must be avoided in favor of a constant target speed. Using routing or simulation models 

(as ShipCLEAN) and weather forecasts, a target speed can be obtained that compensates for 

areas of rough weather and possible speed loss by choosing a target speed slightly higher than 

the necessary average speed.  

A journey time optimization is presented in Paper D, were the speed of a container ship (Ship 

3 from Section 3) is optimized with regards to best profit. Journey time optimizations try to find 

the best trade-off between reduced fuel consumption as a result of reduced speed with increased 

operational costs because of longer journey times, which requires the coupling of sophisticated 

power prediction models with logistical models, as it is available in ShipCLEAN. During the 

study, a Pacific Ocean crossing was simulated using statistical weather in Monte Carlo 

simulations to provide reliable long-term predictions of the fuel savings. Journey time 

optimizations were performed for different fuel prices and two possible route options: the 

rhumbline, i.e., a constant heading, and the great circle route, i.e., the shortest route. Results 

from the study are shown in Figure 23 and Figure 24. 
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Figure 23: (Left) optimal average speed and (right) optimal round-trip time (right) for two 

route alternatives, with and without fouling (see Paper D). 

 

Figure 24: Profit per day for different fuel prices and round- trip times (see Paper D). 

As the fuel consumption of ships is roughly proportional to the cube of the ship speed, but 

operational costs only increase linearly with the journey time, the optimal journey speed 

naturally decreases with increased fuel prices. The optimal round-trip times increase from about 

24 days for both routes with a fuel price of 300 USD/t to about 28 days for the great circle and 

29.5 days for the rhumbline route, with a fuel price of 1 000 USD/t. In Figure 24, it is presented 

that the curves of the daily profits over the round-trip time show wide and flat maxima, meaning 

there is no distinct optima of journey times but rather a region of favorable journey time. The 

reduction of the optimal ship speed from about 24 kn to about 20.5 kn with increasing fuel 

prices (for the great circle route) results in a reduction of emissions by about 6.015 t of CO2 

(about 34%). 

The results of this study show the importance of optimizing the ship speed and journey time 

using a coupled power prediction and transport economics model. It can be concluded that 

increased fuel prices, e.g., by implementing a bunker levy, lead to reduced ship speeds and thus 

a considerable reduction of CO2 emissions. 
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4.2 Prediction of fuel consumption using statistical weather  

To predict long-term fuel savings, it is necessary to simulate many journeys in varying, realistic 

environmental conditions. Varying environmental conditions can be simulated using statistical 

distributions and Monte Carlo simulations, as done in papers D and E. To provide the statistical 

distributions of environmental conditions, two possibilities are discussed in papers D and E: (i) 

using on-board measurements to estimate statistical distributions and weighting curves for 

different conditions and (ii) using long-term mean values and standard deviations (i.e., 

probability density functions) for each waypoint. 

The first option, using on-board measurements, is discussed in detail in Paper E on the example 

of two routes: one Pacific Ocean and one Baltic Sea route. The wind rose plots, i.e., the 

combination of measured TWA and TWS, are presented in Figure 25. 

 

Figure 25: Wind rose plots of the measured TWA and TWS: (left) Pacific Ocean and  

(right) Baltic Sea (see Paper E). 

An important pre-requisite for this method is that the TWS and TWA are not correlated, i.e., 

that the wind speed is not dependent on the wind direction. For the examples shown in Figure 

25, this is the case since the TWS distribution is similar for each TWA region. With this 

prerequisite fulfilled, probability density functions (pdf) are fitted to the measured TWA and 

TWS, as presented in Figure 26 and Figure 27. In Paper E, Weibull distributions are chosen for 

the TWS while the TWA was found to be best represented by Kernel distributions. 
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Figure 26: Distribution of the measured TWA: (a) Pacific Ocean, (b) Baltic Sea (see Paper E). 

 

Figure 27: Distribution of the measured TWS: (a) Pacific Ocean, (b) Baltic Sea (see Paper E). 

Using the pdf, weights for specified TWA and TWS ranges can be calculated by (with x1 and 

x2 as the boundaries of the specified ranges): 

𝑤 = ∫ 𝑝𝑑𝑓 𝑑𝑥
𝑥2

𝑥1
/ ∫ 𝑝𝑑𝑓 𝑑𝑥

𝑥𝑚𝑎𝑥

0
.    (40) 

The long-term mean value of the fuel consumption can then be evaluated by summing up the 

estimated fuel consumption for all TWA and TWS combinations that were selected to be 

representative (i.e., mean values of the specified ranges) multiplied with the weight for the 

range. As an example, in Paper E, 10 TWA ranges (for a symmetrical case) and five TWS 

ranges were defined. Thus, only 50 conditions must be simulated, instead of all the 6,000 

measurement points that were available from full-scale measurements for one year. The 

difference between the statistically obtained fuel consumption and the directly evaluated was 

found to be about 3%. As this method was used to predict the fuel savings from Flettner rotors, 

this was sufficiently accurate. If the accuracy needs to be higher, more TWA and TWS intervals 

could be defined, which will increase the accuracy but also the computational effort. 

In summary, the presented method gives fast and accurate results for long-term fuel 

consumption predictions and is based on real, experienced weather on the route. However, one 

drawback of the method is that only the mean value of the long-term fuel consumption is 

evaluated. Thus, it is not possible to predict how much the actual consumption might differ 
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between journeys. A second drawback is that the statistics are only available for journeys where 

weather observations are available for a long period and not globally. 

To also evaluate the standard deviation of fuel savings, it is necessary to evaluate the variation 

of the weather at each waypoint and to simulate many journeys, which is done in the second 

option, i.e., long-term mean values and standard deviations for each waypoint. Using global 

weather statistics, this option can also be used for any arbitrary route. This method is described 

in detail in Paper D, where the mean value and standard deviation of the TWA and TWS were 

taken from Onogi et al. (2007). Examples of values are presented in Figure 28 for an Atlantic 

triangular route (Rotterdam – New York – Houston – Rotterdam).  

 

Figure 28: Mean value and standard deviation, (top) TWA, and (bottom) TWS (see Paper D). 

If long-term measurement data is available, it could also be used to provide the mean value and 

standard deviation. However, this would require a measurement campaign stretching over 

several years on a ship traveling similar routes during the time or on stationary weather buoys 

on or close to each waypoint. Using the mean values and standard deviations, a pdf for each, 

the TWA and TWS for every waypoint can be obtained. For this study, Weibull distributions 

are assumed for the TWS and normal distributions are assumed for the TWA. The distributions 

for the whole route are presented in Figure 29. 
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Figure 29: Pdf of the (left) TWA and the (right) TWS for the Atlantic route (see Paper D). 

With a pdf for TWA and TWS on each waypoint, Monte Carlo simulations can be performed. 

In Paper D, 10 000 runs were performed for the whole route using the response surface method 

presented in Section 2.10. The results of the Monte Carlo simulations are a mean value and a 

standard deviation, indicating the expected fuel consumption and variation between journeys. 

Especially the latter, the variation in fuel consumption, is a huge advantage of this method 

compared to the one presented before. However, the computational effort is significantly higher 

for this method.  

In conclusion, two methods to estimate and use statistical distributions of realistic weather 

condition are presented. The first, using measurement data and a weighting system, provides 

low computational effort and thus a quick prediction of the expected fuel consumption while 

the second, Monte Carlo simulations using distributions at each waypoint, require more 

computational time but also provide the standard deviation of the fuel consumption. 

4.3 Operation, design and analysis of wind-assisted propelled 
ships  

Wind-assisted propulsion is one possible and promising alternative to reducing the emissions 

from shipping, as discussed in sections 1.2 and 2.7. Using ShipCLEAN, the fuel-saving 

potential of Flettner rotors were analyzed in two studies: (i) in Paper D, an MR tanker operating 

in the Atlantic Ocean is equipped with several Flettner rotor arrangements, and (ii) the design 

and operation of wind-assisted cargo ships, using improved analysis methods, is discussed in 

Paper E considering a RoRo on the Baltic Sea and an MR tanker on the Pacific Ocean as 

examples. All examples are evaluated using fixed routes and speeds, i.e., no voyage or speed 

optimizations were performed. 

The first study, presented in Paper D, aims to predict fuel savings from the installation of 

Flettner rotors on an MR tanker (Ship 4 from Section 3) operating on an Atlantic Ocean trade 

route (Rotterdam - New York - Houston - Rotterdam), as shown in Figure 30. As a result of the 

westerly winds on the North Atlantic, this route is not favorable for wind-assisted propulsion, 

as the Atlantic crossings are in headwind or dead-downwind conditions. Thus, an additional 

aim was to investigate how much the fuel savings (or penalties) could vary in between journeys. 

Thus, the second approach from Section 4.2 was used, i.e., Monte Carlo simulations with 

probability distributions for every waypoint.  
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Figure 30: North Atlantic triangular route (see Paper D). 

The fuel savings achieved with 1, 2, 4 and 6 Flettner rotors of three different sizes (3m x 18m, 

4m x 24m and 5m x 30m) were analyzed. The analyses were done with an earlier version of the 

wind-assisted propulsion module in ShipCLEAN, which did not account for the interaction in 

between the sails and the sails and the superstructure. This means the force of the Flettner rotors 

acts in the geometrical center of the arrangement and that the rpm of the Flettner rotors is not 

controlled individually. Further, the lift and drag coefficients of the ship sailing at a drift angle 

were improved, as presented in Paper E. However, the employed methods are already 

considering 4 DOF, i.e., the additional resistance from drift and rudder angles are accounted for 

and the heel angle is evaluated to not exceed 10 degrees. In addition to the fuel savings, the 

payback times assuming three different fuel price scenarios (500 USD/t, 800 USD/t, 1 000 

USD/t) were estimated including installation and operational/ maintenance costs (see Paper D 

for details). Resulting fuel savings and payback times are presented in Figure 31. 

Results show that, even on a route with much headwind, fuel savings of more than 12% are 

achievable with wind-assisted propulsion. As presented in Section 2.7, these results include the 

propulsion thrust from the sails but also the added power as a result of drift and rudder angles, 

as well as the added power to rotate the Flettner rotors. With the chosen statistical approach, it 

is also possible to conclude that the standard deviation of the fuel saving is less than the total 

fuel saving, meaning that it is not expected that the Flettner rotors increase the fuel consumption 

of a full journey. Naturally, the payback times of the investment to install Flettner rotors are 

coupled to the fuel prices. It is also obvious that the payback time is shortest for the 

arrangements with only one rotor, even though the fuel savings increase with the number of 

rotors. This occurs because the costs of the Flettner rotors increase linearly with the number. 

However, the savings do not because of headwind regions and necessary reefing at times.  
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Figure 31: Results from Monte Carlo simulations: (top) fuel savings (including standard 

deviation) and (bottom) payback times with different arrangements of Flettner rotors on a MR 

tanker on the Atlantic Ocean (see Paper D). 

In Paper E, the wind-assisted propulsion module in ShipCLEAN was extended and improved 

by improving the lift and drag formulations for a ship sailing at a drift angle, adding sail-sail 

and sail-superstructure interaction effects, adding the vertical wind speed profile and adding an 

individual rpm control for the Flettner rotors, see Section 2.7. The rpm control improves the 

overall performance of the Flettner rotors as it balances the provided propulsion force and the 

added power to drive the rotors plus added resistance from drift and rudder drag. Additionally, 

the rpm control aims to achieve the optimal rudder angle by moving the center of the sail force 

(see Section 2.7 and Paper E for details). As presented in Paper E, the lift, drag and power 

coefficients were adjusted with the use of full-scale force and power measurements on a Flettner 

rotor. The versatility of the new wind-assisted propulsion module was, in Paper E, presented 

on two example ships under realistic environmental conditions: a RoRo (Ship 5 from Section 

3) on the Baltic Sea and an MR tanker (Ship 4 from Section 3) on the Pacific Ocean. Details 

about the ships can be found in Paper E. Figure 32 presents polar plots of the relative fuel 

consumption (FCwith sails/FCwithout sails) for both ships with four Flettner rotors sailing in 20 kn 

TWS. The ship speed is defined as 12 kn for the tanker and 18 kn for the RoRo. 
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Figure 32: Polar plots of the relative fuel consumption, TWS = 20kn, vS= 12kn (Tanker), 

18kn (RoRo) (see Paper E). 

Both ships experience increased fuel consumption with the Flettner rotors when sailing in 

headwinds up to a TWA of about 30 degrees (tanker) and about 45 degrees (RoRo). The 

maximum of the fuel consumption increase is about 10% for the RoRo at 15 degrees TWA. 

However, sailing at a TWA of around 110 degrees, the fuel consumption is decreased by about 

65% (tanker) and 55% for the RoRo. With higher wind speeds or more Flettner rotors, both 

ships could be fully propelled by the Flettner rotors. However, fuel consumption will not 

become zero because of the required power to rotate the Flettner rotors. 

Both ships were tested with different Flettner rotor arrangements, as presented in Figure 33.  

Arrangements with an identical number of rotors have similar geometrical centers of the rotors. 

However, because of the interaction effect, the actual center of the side and thrust force will be 

different for each arrangement. The aim of the study was to investigate the influence of changes 

of the rotor arrangements and the ship design on the expected fuel savings in realistic weather 

conditions. As the variation of the fuel saving in between journeys was not relevant for this 

study and because a lot of different arrangements and designs were investigated, the first option, 

as presented in Section 4.2, was chosen. In this method, the weighting function for different 

TWA and TWS ranges are established based on measured weather along the routes. The 

expected fuel saving is then the weighted sum of fuel savings estimated at the reference wind 

speeds and directions. The predicted fuel savings are presented in Figure 34 and the payback 

times assuming different fuel prices are shown in Figure 35.  

For the tanker, fuel savings of up to 32% are achievable with six Flettner rotors while three 

Flettner rotors can give fuel savings of more than 20%. The faster RoRo ship can experience 

up to 15% fuel saving with four Flettner rotors. The differences between the arrangements with 

identical numbers of rotors are small and mainly as a result of different rudder loadings. As 

observed before, the fuel savings do not increase linearly with the number of rotors but the costs 

do. Thus, the payback times are shortest for the arrangements with the fewest number of rotors. 

The payback times for the RoRo and the tanker are comparable, between 7-10 years for a fuel 

price of 325 USD/t, which decreases to 2.5-4 years assuming a fuel price of 760 USD/t. 
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Figure 33: Arrangements of Flettner rotors on (top) the tanker, and (bottom) the RoRo (see 

Paper E). 
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Figure 34: Fuel savings with different sail arrangements: (left) tanker and (right) RoRo (see 

Paper E). 

 

Figure 35: Payback times for different fuel prices, (left) tanker, and (right) RoRo 

(see Paper E). 

In Paper E, it is further discussed how to improve the arrangement of Flettner rotors and ship 

design in general. It is shown that the optimal positioning of the rotors can increase the fuel 

savings from 32% to 36% for the tanker (arrangement T6.1) and from 14% to 21% for the RoRo 

(arrangement R4). Further, it was investigated how adding a keel to both ships and a second 

rudder to the tanker would influence the fuel savings. For the tanker, the savings increased from 

32% to 36% (T6.1). For the RoRo, the increase was from 14% to 17% (R4). 

From the studies presented in Paper D and Paper E, it can be concluded that Flettner rotors can 

provide huge fuel savings under realistic conditions. It was shown in Paper E that the position 

of the rotors is crucial to maximize the benefits and that special design features like keels and 

double rudders can further increase the potential fuel savings. It must be noticed that such 

studies require a flexible white-box model, preferably a Stage I model, such as ShipCLEAN.  
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4.4 Zero-emission ships 

As discussed in Section 1.1, the IMO goals of emission reduction in shipping are only 

achievable with radical action in ship design and operation. During this thesis work, two studies 

took emission reduction of ships some steps further and aimed at designing ships with zero 

emission under operation: (i) the design of a fossil-free operated ship with unlimited range and 

(ii) the design of a fully electric RoPax ferry. In both studies, ShipCLEAN was used as the 

design and prediction tool. 

In the first study, the development of a fossil-free operated ship is presented in detail by Luis 

et al. (2020), aiming to design a ship that is powered and operated purely on renewable energy. 

A sketch of the design that consists of a full block hull shape, six Flettner rotors, two vertical 

wind axis turbines, 1 780 solar panels (480W each) on the weather deck, a dual-mode propeller 

for propulsion and power generation, and batteries is provided in Figure 36. 

 

Figure 36: Sketch of the fossil-free operated cargo ship. 

In the design and prediction process, ShipCLEAN provides the attained speed and power 

consumption for all conditions: (i) pure sailing, (ii) in hybrid propulsion, i.e., sailing and electric 

propulsion, (iii) sailing and hydropower generation, i.e., dual-mode propeller in turbine mode, 

and (iv) when operated in pure electric propulsion. A detailed description of the operational 

modes and detailed results are presented in Luis et al. (2020). Generally, results show that, for 

a route in the Mediterranean Sea, average speeds of up to 7 kn are achievable. However, it was 

also found that renewable energy production on-board a ship cannot cover the energy 

consumption of the ship as a result of hoteling and navigational/operational loads.  

A conclusion of the study is that fossil-free operation of cargo ships is possible, even for long 

journeys, but not for unlimited range as a result of on-board consumption, which requires 

charged batteries at the start of the journey. Considering the advances made in unmanned 

shipping, the hotel load and other consumption of ships might be reduced in the future, which 

will possibly lead to reaching the target of developing fuel-free operated ships with unlimited 

range. A versatile performance prediction model that can model wind-assisted and pure wind-

propelled ships is crucial to predict the ship speed, power generation, and power consumption 

of such ship. 
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The second study aimed to design a zero-emission, fully electric ferry by using only batteries 

as energy storage. ShipCLEAN was used in the initial design investigation of the project. Two 

problems were investigated: (i) what is the achievable range with electric propulsion for 

different speeds, considering that the deadweight and main dimensions (except the 

displacement) are kept constant), and (ii) variation of the ship speed considering average 

weather, turnaround times and speed regulations. For both investigations a quick and accurate 

Stage I power prediction model is crucial. 

The first part is an investigation of the necessary battery weight to achieve a specified range 

with different ship speeds while considering the increase in propulsion power as a result of the 

increase in displacement. The main dimensions were kept constant at a length overall of 212 

m, beam of 26.7 m, draft of 6.3 m, and a displacement without batteries of 17 400 t. In Figure 

37, curves of the power consumption over the displacement are presented for a range of 300 

nm together with the installed battery capacity using the battery weight and the initial 

displacement. The feasible displacements are found at the intersections of the curve for the 

installed battery capacity and power consumption. It can be seen in Figure 37 that the range of 

300 nm is not achievable with a ship speed of 21 kn but is feasible for all other investigated 

ship speeds.  

 

Figure 37: Power consumption over displacement for a 300 nm range and different ship 

speeds. 

In the second study, the ship speed at the open sea leg (speed restrictions were respected at the 

start and end of the journey) was varied to visualize the effect of the ship speed on the energy 

consumption and the required charging power. The turnaround time was kept constant at two 

roundtrips per day during this investigation. Thus, a higher ship speed will lead to longer harbor 

times. The resulting energy consumption and required charging power are presented in Figure 

38. 
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Figure 38: Required charging power and energy consumption over the ship speed on the open 

sea leg. 

From the charging power curve, it can be concluded there is an optimum (about 17 kn) where 

the best trade-off between low power consumption and long harbor times is obtained. 

Additionally, with the results presented in Figure 38, it is possible to obtain the minimal ship 

speed and energy consumption if a maximum charging power limit is introduced, as it would 

be in reality as a result of power system limitations. 

From the two presented studies, it can be concluded that (i) it is possible to design emission-

free operated ships, but only for a limited range and (ii) a quick and accurate Stage I power 

prediction model is crucial for early design simulations and investigations. These early 

investigations will significantly increase knowledge of the potentials and limitations in a phase 

of design projects when most of the decisions are made. It is, therefore, crucial to integrate 

Stage I models, such as ShipCLEAN, in the design process of ships. 
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5 Conclusions  
This thesis presented the development of a novel ship energy systems model, ShipCLEAN, 

which can predict the propulsion power and fuel consumption of ships under realistic conditions 

while requiring few input parameters, i.e., main dimensions, ship type, propeller rpm, design 

speed, and environmental conditions. It was developed to be a pure white box, modularized 

model, which makes it easy to introduce changes or alternative methods to increase the accuracy 

or predict the performance of unconventional ships. The model is quick and easy to use, i.e., 

low computation and set-up times and no calibration of the model is required. 

Validation against model- and full-scale measurements showed the prediction accuracy is good, 

especially considering the few input parameters. It was proven that the predicted propulsion 

power at design condition is well within 8% from model test results and from long-term 

averages from full-scale measurements. During the validation study, full-scale measurements 

included off-design conditions (speed and draft) as well as rough weather (wind speeds above 

40 kn), proving that ShipCLEAN can predict the propulsion power in all kinds of service 

conditions. However, the full-scale validation showed a huge variation in the relationship 

between measured and predicted power in short times for all ships. The detailed analysis 

concluded that the origin of these variations arose mainly from ship and environmental data 

that were not measured but estimated, especially the wave height. A systematic dependency of 

the prediction accuracy on the trim of the ship was found. Thus, it must be concluded that the 

influences from trim on the propulsion power must be included in future versions, despite the 

difficulties discussed in Section 2.4. 

It was shown in comparison studies that 4 DOF analysis is necessary once large side forces are 

introduced into the ship. This is the case for wind-assisted propelled ships and for ships with 

high windage area, such as PCTC or container ships. As shown in Paper C, the difference 

between power predictions 1 DOF and 4 DOF methods for a wind-assisted tanker can be as 

large as 10%. 

From a detailed uncertainty analysis, it is concluded that the power prediction from 

ShipCLEAN is well within 10% from model and full-scale measurement results, which is an 

accurate prediction considering the limited required input. From the analysis it is concluded 

that the highest method uncertainties are caused by the prediction of the propulsive coefficients 

(especially the effective wake) and the added resistance and decreased propulsive efficiency of 

a ship in waves. Further, it is concluded that to achieve high prediction accuracy, reliable and 

complete information of the wind speed and direction, wave height and direction, current speed 

and direction, water temperature, and water depth are more important than detailed information 

about the ship, e.g., hull form, etc. 

A sail module to evaluate the effect of sail-assisted propulsion is included in ShipCLEAN. From 

application and development, it is concluded that it is crucial to respect 4 DOF for wind-assisted 

ships and ships with high superstructure areas (e.g., PCTC, container), as well as to model 

aerodynamic interactions in between the sails and the sails and the superstructure. For power 

predictions of low windage ships without sails, it is enough to perform 1 DOF simulations, 

which require substantially less computational time, i.e., about 1/5 of the time for a 4 DOF 

simulation. Regardless that the interaction effects do not significantly affect the delivered thrust 

of the sails, they highly affect the longitudinal center of the sail force. From example 

applications, it is concluded that an individual rpm control of Flettner rotors, considering the 

local wind speed and angle, is crucial to maximize the effect, especially in beating (around 30-



 

64 

 

60 degrees TWA) conditions. Results from applications of Flettner rotors on a tanker and a 

RoRo show potential long-term fuel saving of up to 30% (tanker) and 15% (RoRo) in realistic 

weather conditions for routes on the Pacific Ocean (tanker) and the Baltic Sea (RoRo). 

The unique coupling of a performance model to an economic model proved to be crucial to 

identify motivators to reduce the environmental impact. The coupled model also provides the 

opportunity to easily evaluate payback times of fuel-saving investments. For ship owners and 

operators, the ultimate motivator for investments is cost savings, with ShipCLEAN it is possible 

to identify measures to motivate lower speeds and investments in fuel-saving techniques by 

presenting that the costs for the owners and operators will decrease. In conclusion, the coupling 

of an economic model and a performance model makes ShipCLEAN a unique workbench to 

perform new design and retrofitting studies, as well as logistics planning studies, e.g., journey 

time optimization and route planning. 

Several application studies were presented. Generally, it is concluded that a variable Stage I 

model, as ShipCLEAN, can significantly contribute to reducing the emissions from shipping 

through improved ship design, improved ship operation, alternative propulsion, and better 

maritime logistics. It was shown that the correct ship speed, both the average speed over the 

journey and the instantaneous speed, are crucial to lower fuel consumption and decrease the 

emissions. Wind assisted propulsion was shown to provide up to 30% fuel consumption 

reduction for a tanker on a Pacific Ocean trade, with payback times of less than eight years. 

From the studies, it is concluded that higher fuel prices significantly increase the motivation to 

decrease the ship speed and invest in alternative propulsion. Finally, studies on zero-emission 

ships proved that it is possible to design ships that are operated at reasonable speeds and with 

reasonable operational range without the use of fossil fuels. 
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6 Future work 
As this thesis is about model development, there are many areas where more work and 

investigations are needed. ShipCLEAN is defined as a pure white-box model, thus no 

calibration will be done in the model. As shown in Section 3, the prediction accuracy is good 

with the methods used today. Validation studies show that the predicted power, averaged over 

a longer time (a journey or a year) in realistic environmental conditions, is well within 10% of 

full-scale measurements. However, the uncertainty analysis showed there are still some 

modules and methods in ShipCLEAN that can be improved and modified to further increase 

the accuracy. Naturally, the functionality of the model can be widened by implementing more 

couplings and more options to model fuel-saving techniques. This section gives an overview of 

possible areas for improvement and future extensions/couplings of the model. 

Method improvements 

Method improvements are always targeted to reduce uncertainties; thus, improvements should 

be done in modules and methods where high uncertainty was identified (see Section 3). Areas 

where improvements and further investigations are more impending are the added wave 

resistance in combination with the reduction in propulsion efficiency and the lift, drag, and CLR 

of a ship sailing at a drift angle. Performance decrease in waves is a complicated matter not 

only because there are many effects but also because validation and full-scale measurement is 

difficult. The development of own methods is naturally not part of the model development of 

ShipCLEAN, but newly developed methods should be continuously evaluated and integrated. 

The method to estimate the lift and drag of a ship sailing at a drift angle is based on wing theory. 

However, with the little data available, some dependencies that should exist in theory, as a 

dependency on the beam and the block coefficient, could not be established (see Paper E). 

Particularly, the uncertainties introduced from the prediction of the CLR are potentially large 

but cannot be quantified exactly (see Section 3). More model test or CFD data is required to 

further develop today’s methods or to develop alternative methods. Further, the ice resistance 

method is simplified and could be improved, possibly by coupling a more sophisticated model. 

The full-scale validation showed the importance of including the influence of trim on the 

propulsion power. However, the influence from the trim on the resistance and propulsion power 

is complicated to capture in a generic way since it highly depends on hull form features, e.g. 

bulb shape and transom immersion. One approach could be to model the bulb effect and the 

effect from transom immersion individually using the forward and aft draft. A second approach 

could be to use CFD computations with the standard series hulls. 

Wind-assisted propulsion 

An important part of ShipCLEAN is the prediction of fuel saving from wind-assisted 

propulsion. One important step forward would be to extend the sail module to include more sail 

types than only Flettner rotors. A possible challenge with this development is the fact, that, in 

contrast to the Flettner rotors, other sail techniques are sensitive to the angle of attack to the 

sail. This requires analysis of the dynamic effects from ship motions, i.e., rolling and pitching, 

and thus periodically changing wind angles on the achieved thrust from the sails.  

To better model the aerodynamic interactions, methods to predict the circulation and the radius 

of the tip vortices created by sails (including Flettner rotors) must be included. Such methods 

could be based on systematic model tests or CFD results. 
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Couplings  

ShipCLEAN is the coupling of a performance prediction model to a transportation economics 

model. To further increase the model’s applicability, more integrations could be realized. There 

are some obvious areas were specialized model could increase the applicability. ShipCLEAN 

provides accurate performance and economic predictions in realistic conditions but does not 

offer the opportunity to perform route optimization. The integration of a specialized routing 

model would increase the applicability of ShipCLEAN for ship owners and operators. 

The integration of a more sophisticated, possibly dynamic, engine model would increase the 

accuracy and variability of the fuel consumption prediction by, e.g., respecting more 

environmental conditions for the engine, respecting aging of the engine, modeling alternative 

fuels, and possibly model engine dynamics.  

One focus area during the development of ShipCLEAN was wind-assisted propulsion. Sails 

introduce large external forces into the ship, which are captured hydrodynamically by 

performing (static) 4 DOF analyses and aerodynamically by respecting the interaction of the 

sails. Further areas of interest would be to investigate the ship’s structural response because of 

the side forces acting on the ship from the sail foundation. Coupling ShipCLEAN to structural 

analysis software, e.g., FEM software, would provide the opportunity to investigate these 

interactions. External forces will also influence the ship’s motions (especially rolling) and the 

ship’s motions will, in turn, influence the sails’ performance as the apparent wind angle will 

fluctuate periodically, especially as a result of rolling. Thus, the coupling of ShipCLEAN to a 

ship motion model/software would offer opportunities to interesting studies for wind-assisted 

propulsion in real-life conditions. 

Prediction of the environmental conditions 

As discussed in Paper E and Section 3.2, the largest uncertainties in the performance prediction 

with ShipCLEAN are in the prediction of the environmental conditions the ship is operating in, 

especially the waves. The weather data available from the full-scale measurements, and in the 

study presented in Paper E, lack information about the wave height and direction. Wave 

statistics cosupled to the wind direction and strength or hindcast data of the wave height and 

direction must be included in the model (apart from the wind data available now) to increase 

the accuracy. Alternatively, the wave height estimation must be coupled to more parameters 

than only the wind speed, e.g., the geographical position of the ship, the water depth, the wind 

speed profiles over time, and more. 

Application 

Further, as for any model development, the model’s application is important. Both for validation 

and development purposes but also to contribute and make an impact on the way towards 

greener shipping, better ships, and fewer emissions. 
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