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Abstract
The GNSS reflectometry technique has been proven to be usable for mea-
suring several environmental properties, such as soil moisture, snow depth,
vegetation, and sea level. As numerous GNSS installations are already
installed around the world for geodetic purposes, the technique opens up
a large data set for new analyses, complementing other environmental
measurement campaigns. However, a main drawback of the technique
is that its precision generally is worse than more specialised equipment,
and while this is in part compensated for its low cost and maintenance
requirements, improved precision is still a main goal of research in the
field of GNSS reflectometry.

The first topic of this thesis concerns the development of new methods
for analysing GNSS-R data to retrieve precise measurements, especially
in the case of sea level. As GNSS-R measurements are usually done over
time spans of around half an hour, the dynamic sea surface has proven
to be a challenge to measure. However, using inverse modelling with
least squares adjustment, we prove that we can significantly improve the
retrieval precision. Developing on the inverse modelling approach, we also
prove that high-precision real-time GNSS reflectometry is also feasible
using Kalman filtering.

The other main topic of this thesis is finding new applications for the
GNSS-R technique. Firstly, we show that when a GNSS-R installation
is mounted close to a body of water, it is possible to determine whether
the surface is frozen or not. Secondly, while GNSS reflectometry is
traditionally performed with high-precision geodetic instruments, we show
that everyday devices, such as a mobile phone, can be used instead.
We find that the precision of the mobile devices is on a similar level as for
geodetic equipment.

Finally, this thesis explores and highlights one of the challenges that
are still left in GNSS-R research: absolute referencing of sea level mea-
surements. Past research has mostly focused on precision, leaving out
accuracy, and we show that there are unknown effects that cause an offset
between GNSS-R measurements and co-located tide gauges.
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Chapter 1

Introduction

Our world is full of noise. From the constant sound of a city to interference
on a radio channel, different types of noise are always around us. Mostly,
noise is considered a nuisance and something to be avoided, as it disturbs
our ability to discern other, more interesting, signals. The sound of the
city may drown out the sound of our nature, or the interference on a
radio channel may make it impossible to hear the news. However, if the
noise itself is analysed it may very well carry some information which
can be interesting in its own right, such as the intensity of the traffic.
The technique discussed in this thesis is another example of such a case,
where something that is usually considered to be noise becomes the signal.

Global Navigation Satellite Systems (GNSS) is a collective term for all
satellite systems that are used for positioning and navigation. The most
famous is the American GPS constellation, but more systems exist: the
Russian GLONASS, the Chinese BeiDou, and the European Galileo con-
stellation are all globally available satellite systems that send out signals
which can be used to determine a position anywhere on earth. In ordinary
usage of GNSS, it is desirable that the signal travels directly from the
satellite to the GNSS device on earth, but sometimes the signal is reflected
on one or more surfaces before it reaches the antenna. These reflections
are called multipath signals — as they can come from many different
directions at once — and are a major source of error in positioning applica-
tions (Georgiadou and Kleusberg, 1988). However, in GNSS reflectometry
(GNSS-R) the multipath effect is a valuable signal rather than noise.

Multipath signals originate from reflections in the environment around
a GNSS antenna, therefore, by analysing the exact impact of the multipath
it is possible to retrieve information about the reflecting surfaces (Nievinski
and Larson, 2014a). The reflection is affected by various surface properties,
and GNSS reflectometry can therefore be used for measuring for example
sea level, snow height, soil moisture, and vegetation (Larson et al., 2009,
2008b; Martin-Neira et al., 2001; Rodriguez-Alvarez et al., 2011; Small
et al., 2010).
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Figure 1.1: GNSS reflectometry is a close-range remote sensing technique;
while the technique measures the immediate surroundings of an antenna,
no direct contact with the surface is required. This allows measurements
in areas which are not easily directly accessible.

While measurements with GNSS reflectometry are usually less precise
than dedicated equipment, they have other benefits. In contrast to many
other in situ measurements, GNSS-R measurements typically cover a large
area around the antenna (Nievinski, 2013), essentially a midway between
point measurements and regional measurements from e.g. satellites or
airplanes. This also allows the equipment to be mounted at some distance
away from the area of interest, in case direct access is unfeasible. Further-
more, having no direct contact can also decrease wear, and thus make the
equipment require less maintenance, decreasing the operating costs.

Still, higher precision is always sought after. Therefore, this thesis is
dedicated to new and improved methods for GNSS reflectometry, and in
the coming chapters I will introduce both new GNSS-R techniques as well
as new usage areas.

1.1 Interferometric GNSS reflectometry

The field of GNSS reflectometry has since its inception by Martin-Neira
(1993) branched out to several sub fields. The initial concept was developed
with spaceborne applications in mind, with ground based installations used
only for test purposes (Martin-Neira et al., 2001). However, since then,
ground based GNSS reflectometry has become an interesting technique in
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Figure 1.2: The two-antenna GTGU installation at the Onsala Space
Observatory has a clear view of the sea surface. The upward antenna
receives right-hand circularly polarized (RHCP) signals, and the downward
antenna receives left-hand circularly polarized (LHCP) signals.

itself, with many different application areas (Larson, 2019).
The main focus of this thesis is the technique which has come to be

called interferometric GNSS reflectometry. The main benefit of this tech-
nique is that it can use off-the-shelf equipment to perform environmental
measurements, requiring no purposefully built antenna or a special receiver.
This means that already installed GNSS antennas can be used, as no spe-
cialised hardware is needed; any GNSS installation that happens to be in
a location with a view of an interesting area can be used. Standardised
hardware also means that the costs for dedicated GNSS-R installations
can be kept down.

1.2 The Onsala test installation

In developing the new techniques, much of the testing has been performed
on the dedicated GNSS-R installation GTGU at the Onsala Space Obser-
vatory, which is in many senses an ideal GNSS-R installation. The antenna
is mounted on a beam over the sea surface, which gives a clear view of
the sea surface as seen in Figure 1.2. Also, the islets in the inlet of the
bay ensure that the waves in the bay are mostly quite small, resulting in a
flat and highly reflective surface. Close to the antenna there is also a high
precision tide gauge available (Elgered et al., 2019), allowing for accurate
comparisons.

As displayed in Figure 1.2, the installation consists of two antennas
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mounted in opposite directions. The two antennas can be used together
for measuring sea level (Löfgren et al., 2011), but in this thesis only
the upward antenna is used. This ensures that the technique is widely
implementable without any special installation requirements.

1.3 Thesis overview

The rest of this thesis will go deeper into the field of interferometric
GNSS reflectometry, and for most of it I will leave out ’interferometric’ for
brevity. The next chapter, Chapter 2, will focus on previous development
of GNSS reflectometry and set the background for my own work. It is
meant as a guide for new prospective users who want to learn more
about the technique. Then Chapter 3 will continue with introducing a
few new methods for GNSS-R retrievals that we have developed, mostly
based on Papers I and III on inverse modelling and Kalman filtering,
respectively, but also including some previously unpublished experiments
with particle filtering. The 4th chapter is based on Papers II and IV, in
which we introduce two new ways of using GNSS reflectometry, first for
detecting sea ice, and then for using mobile phones and tablets for GNSS-R
measurements. In Chapter 5 I discuss some ongoing developments on
referencing GNSS-R measurements to an absolute reference point. Finally,
Chapter 6 summarises the appended papers and my contributions to them.



Chapter 2
A guide to interferometric GNSS re-
flectometry

In interferometric GNSS reflectometry, the basic observation is the signal-
to-noise ratio (SNR) recorded by GNSS receivers as they track the currently
visible satellites. The SNR is affected by several factors, such as antenna
design, signal strength, and receiver quality, but most importantly for
GNSS reflectometry, it is also affected by multipath signals (Georgiadou
and Kleusberg, 1988; Ray and Cannon, 2001). Multipath is usually con-
sidered noise in most GNSS applications, since it can sometimes resemble
other effects of interest (Braun et al., 2001; Larson et al., 2007), but in
GNSS reflectometry it is instead the source of information.

2.1 Multipath signals in GNSS

The effect of multipath can be very varying as it depends on the topography
and electromagnetic properties of the surroundings of the GNSS antenna
(Nievinski and Larson, 2014a), but here we will focus on a narrow subset of
multipath: signals that have been reflected only once and from a (mostly)
flat, horizontal surface. Such multipath signals are highly coherent, which
results in a coherent combination of the direct and the reflected signal,
and it is this property that allows us to extract much information from
the reflections.

In a coherent combination of two signals, the result depends on their
phase offset, i.e. the delay between the two signals. From Figure 2.1 it
is clear that both the reflector height h (the height between the antenna
and the reflecting surface) and the satellite elevation above the horizon
ε impact the path length difference between the direct and the reflected
signals, and therefore the relative delay. As the surface acts as a mirror,
the problem can be visualised as determining the difference in time of
arrival for two receivers, one at the height y = h above the surface, and
and a virtual antenna below the surface at y = −h.
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ε

ε

Figure 2.1: The geometric delay of a GNSS signal reflected from a hori-
zontal surface, such as the sea surface, depends on both the reflector height
h and the satellite elevation ε.

At low elevations, the path length difference will be small, going
towards 0 at the horizon, and for zenith elevation the difference will reach
2h. Because of the large distance to the satellites, the two incoming
rays in Figure 2.1 can be approximated as being parallel (to within a
milliarcsecond), therefore, the path length difference, or the geometric
delay, can be written as (Georgiadou and Kleusberg, 1988)

τG = 2h sin(ε). (2.1)

The composite power of the direct and the reflected signals, due to
their interference, can be written as (Georgiadou and Kleusberg, 1988)

P = Pd + Pr + 2
√

PdPr cos (Φ) , (2.2)

where Pd and Pr are the power of the two signals, and Φ their relative
phase offset, usually called interferometric phase in the field of GNSS
reflectometry. Because of the elevation dependence of the geometric delay
in Equation (2.1), the phase offset will vary across a satellite arc, and with
it, the power of the composite signal.

In the receiver, it is the composite signal that is measured, and therefore
its power P defines the SNR that the receiver records, which thus also
varies according to Equation (2.2). The cosine term in the equation creates
a very distinct oscillatory behaviour in the signal strength as visible from
Figure 2.2. These oscillations are the foundation of interferometric GNSS
reflectometry. As we will see in the coming sections, their frequency,
amplitude, and phase all contain information about the surface which the
multipath signal was reflected off.

Signal strength measurements are usually stored in logarithmic units
by GNSS receivers, and thus have to be converted to linear units in
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Figure 2.2: Signal strength for the L5 signal from GPS satellite G10
recorded at the GTGU installation in Onsala, 25th of January, 2019.
Left: C/N0 in logarithmic units as recorded by the receiver. Right: SNR
detrended with a 2nd order polynomial after first converting to linear units.

W/W before further processing. In the process it is important to note
that while the signal strength measurements are referred to as SNR in
GNSS-R literature, in practice, what is usually recorded in the receiver
is the carrier-to-noise-density ratio (C/N0) measured in dB-Hz. However,
the two are closely related, and in logarithmic units their relationship
can be written C/N0 = SNR + BW, where only the receiver bandwidth
BW has been added. Often, the manufacturers do not give all details
about bandwidth and how they calculate C/N0, and thus the conversion is
mostly done assuming a bandwidth of 1 Hz (Larson et al., 2013b; Löfgren
et al., 2014), i.e. assuming C/N0 = SNR. While the true bandwidth for
any realistic GNSS receiver is much higher (Joseph, 2010), the difference
only amounts to a constant scaling factor in linear units. Therefore, under
the 1 Hz bandwidth assumption, the SNR in W/W can be retrieved as

SNR [W/W] = 10C/N0 [dB-Hz]/10.

The geometry shown in Figure 2.1 is somewhat simplified as it assumes
optical rays with point-like reflections. Because of the frequencies used
in GNSS reflectometry, the footprint of the reflections will be finite and
cover a significant area. The size of the footprint is usually assumed to
be roughly the first Fresnel zone (Larson, 2016; Larson and Nievinski,
2013), the size of which depends on the antenna height and the satellite
elevation angle (Hristov, 2000, p. 323). While the footprints are easy
to predict their considerable size at low elevation may create some less
straightforward situations where part of the reflections come from for
example the sea, and other parts from the shore. Thus, the signal may
not always be as clear as the oscillations shown in Figure 2.2, which are
for an almost optimal reflection geometry.
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2.2 Lomb-Scargle retrievals

The most straightforward way of extracting information and measurements
from the SNR oscillations is by spectral methods. By detrending SNR
series with a low order polynomial, approximating the effect of Pd + Pr

in Equation (2.2), we are left with a roughly sinusoidal time series as
seen in the right half of Figure 2.2, corresponding to the last part of
Equation (2.2). The expression for the geometric delay in Equation (2.1)
results in a variable interferometric phase

Φ = 4πh

λ
sin (ε) + ϕ, (2.3)

which, when combined with the latter part of Equation (2.2), gives us an
SNR residual which is proportional to

2
√

PdPr cos
(

4πh

λ
sin (ε) + ϕ

)
, (2.4)

where λ is the wavelength of the GNSS signal, and ϕ is a residual phase
delay. Thus, the SNR becomes a sine wave as a function of sin (ε) with a
frequency of

f = 1
2π

∂Φ
∂ sin (ε) = 2h

λ
, (2.5)

and therefore, by determining the frequency of the oscillations through
spectral analysis it is possible to retrieve information about the reflector
height and its changes. However, because of the non-regular sampling of
the SNR data in sin (ε), ordinary FFT methods are inapplicable without
resampling, and usually the Lomb-Scargle periodogram is used instead
(Larson et al., 2009).

Each detrended SNR arc can be translated into a height measurement.
As an example, the Lomb-Scargle spectra of the detrended SNR data in
Figure 2.2 are presented in Figure 2.3. In this figure, the frequencies have
been converted to their corresponding reflector height, h = fλ/2, showing
a peak at just above four metre. Thus, by extracting the peak position
we can retrieve one sea level measurement.

As seen in Figure 2.3, the spectra is often not a perfect peak. Sometimes
other multipath sources influence the oscillation pattern, and create either
a secondary peak or noise in the spectra. Therefore, it is common to
screen the retrieved peaks with the condition that the peak power should
be well above the noise floor. Larson et al. (2013a) suggest the criterion
Ppeak/Paverage > 3, to remove uncertain measurements.

There are however a few caveats to translating the peak position to a
reflector height measurement. The expression in Equation (2.5) assumes
that both the residual phase ϕ and the reflector height h are constants,
which may not necessarily be true. The effect and causes of varying
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Figure 2.3: Lomb-Scargle periodogram of the detrended SNR series shown
Figure 2.2.

phase offsets will be discussed in Chapter 5, so for now we will focus on
how to work around the assumption of a static reflector height. Early
studies of interferometric GNSS reflectometry evaluated the acquisition of
snow height (Larson et al., 2009) and soil moisture (Larson et al., 2008a).
In both of these applications the assumption of a non-changing reflector
height is either true, or approximately so, especially during the span of
a single SNR arc, which spans roughly half an hour at most (Löfgren
et al., 2014). However, when retrieving sea level with GNSS reflectometry,
the assumption can no longer generally be said to be valid, since tidal
changes can have a significant effect on the reflector height. Therefore, the
retrieval method has to be corrected, and the expression for the frequency
becomes1

f = 1
2π

∂Φ
∂ sin (ε) = 2h

λ
+ 2 sin (ε) ∂h

∂ sin (ε) = 2h

λ
+ 2ḣ tan (ε)

λε̇
.

Solving for h gives us

h = fλ

2 + ḣ tan (ε)
ε̇

, (2.6)

where the last part of the right hand side is the height rate correction
term of Larson et al. (2013a).

One problem with the height formula in Equation (2.6) is obvious:
the height is dependent on its own rate of change, which requires a time
series of heights to estimate. As using height rates from a co-located tide
gauge defeats the purpose of using GNSS reflectometry in the first place,

1For the full derivation, see Appendix A.
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there are two different self-contained solutions. Either, the rate of change
is estimated from tidal models, or the problem is solved iteratively by
calculating approximate heights first, and then estimating the height rate
to apply a correction. For locations where the sea level is dominated by
tides, the former may work quite well, however, if the tides are small,
and meteorological effects dominate the sea level variations, it will fail to
realistically estimate the correction term. The latter method, meanwhile,
is fully self contained and does not use any external information about
the system that is studied. Therefore, that is the method of correction we
chose for the studies in this thesis.

2.3 Lomb-Scargle in practice

Lomb-Scargle analysis is relatively easy to implement and use, and readily
available software packages exist for anyone who wish to test GNSS
reflectometry (Roesler and Larson, 2018). It is also straight forward to
implement in most modern programming languages. The flow of such a
program would be as follows:

1. Extract C/N0 data from the RINEX files2, and convert from dB-Hz
to linear units (W/W).

2. For each satellite arc, determine the azimuth and elevation time
series using orbit data from either broadcast ephemerides, or from
precise SP3 orbit files. The choice matters little as the small resulting
differences in angles are negligible for GNSS-R retrievals.

3. Split the arcs in ascending and descending parts if applicable, and
then detrend the SNR data with respect to elevation using low order
polynomials.

4. Determine an angle mask to filter out SNR data from unwanted
directions, i.e. with reflections from other surfaces.

5. Retrieve the spectral power densities as a function of sin (ε), using
e.g. Lomb-Scargle analysis, for each of the remaining arcs. Then,
assuming the expression of Equation (2.5) is valid, transform the
peak positions to reflector heights.

6. Remove all peaks where the peak power is too low in comparison to
the noise floor.

7. Use the retrieved reflector heights to estimate a height change rate,
and calculate final heights according to Equation (2.6).

2Tools for extracting SNR data are available at https://github.com/Ydmir/rinpy.

https://github.com/Ydmir/rinpy


Chapter 3
New techniques

In the previous chapter, the focus was on how the oscillation frequency of
SNR arcs corresponds to the vertical distance to the reflector. However,
some features of the SNR oscillations depend on other properties of the
surrounding of GNSS antennas (Nievinski and Larson, 2014a) and can
therefore be used for environmental measurements. To retrieve parameters
corresponding to these features we have to turn to other methods than
spectral analysis, such as inverse modelling, which have previously been
shown to be usable for measuring snow depth (Nievinski and Larson,
2014b,c).

In Section 3.1, I describe how to use least-squares adjustment and
an inverse model to retrieve parameters from SNR data, especially in
the case of sea surface measurements, based largely on Paper I. Then, in
Section 3.2, I briefly explain how to use the inverse model in a Kalman
filter to do GNSS reflectometry in realtime, as shown more detailed in
Paper III. Finally, the last section of this chapter deals with an extension
of the spectral analysis, by combining it with a particle filter, achieving
close to realtime retrievals.

3.1 Inverse modelling of GNSS reflectometry

In inverse modelling, the desired property cannot be observed directly
with the available equipment. Instead, some observable that is dependent
on the desired quantity is observed, and by modelling the relation between
the two, the desired property can be inferred. In inverse modelling of
interferometric GNSS-R data, the observables are the SNR and the satellite
elevation, and the desired quantities are the reflector height and other
properties of the surroundings of the GNSS antenna.

When the model relating the observable to the desired quantity is
known, the raw measurements can be translated into estimates of the
properties, and if there is a one-to-one relationship between them, the
process is straight forward. However, for a single GNSS SNR measurement
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there is no unique height to which it corresponds, because of the oscillating
nature of the SNR. Even if all other parameters (such as antenna properties,
satellite signal strength, etc.) were known, a specific value for the SNR
would still correspond to a large number of possible heights. Therefore,
as in spectral GNSS-R methods, the analysis is performed using a longer
series of detrended SNR data, and in order to retrieve physical properties
from the data a model for the oscillations is fitted to the data using
non-linear least-squares adjustment.

Model for SNR oscillations
The expression on which spectral analysis is based, given in Equation (2.4),
is also the basis for the inverse modelling. From that expression we can
see that the amplitude of the SNR oscillations depends on the direct and
reflected power

A′ =
√

Pd · Pr,

and while it is ignored in spectral analysis, both depend on the satellite
elevation, making the oscillation amplitude A′ to become a function of
elevation. According to Nievinski and Larson (2014b), the direct power
can approximately be expressed as

Pd = P · Gd,

where P is the incident RHCP power, and Gd the antenna gain in the
satellite direction. Meanwhile, the reflected power becomes

Pr = P |X|2S2.

The factor X is a combination of both the antenna gain in the direction of
the reflection point and the surface Fresnel coefficients, and accounts for
the mix of RHCP and LHCP signal that arises in the reflection. The last
factor, S, arises from the loss of coherence of a signal from a reflection on
rough surfaces (Beckmann and Spizzichino, 1987), and can be expressed
as

S = exp
(

−k2s2

2 sin2(ε)
)

,

where k = 2π/λ is the signal wavenumber, and s is a measure of the
surface roughness.

In principle, it is possible to model everything but s with sufficient
knowledge of the setup, including the knowledge of the satellite output
power pattern as well as the surface composition. However, in practice
both the exact satellite output power P and the gain pattern of the specific
antenna G, may often be unknown. Therefore, we choose a simplified
model where the amplitude and phase of the oscillations are unknown
parameters and all elevation-dependent amplitude effects are assumed to
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Figure 3.1: Example of fitting the model of Equation (3.1) to detrended
SNR data.

be captured by the same exponential function. The model equation then
becomes

δSNR = A · cos
(

4πh

λ
sin (ε) + ϕ

)
· e−Λk2 sin2(ε), (3.1)

where the unknown parameters are the maximum amplitude A, a phase
offset ϕ, the combined antenna-surface damping coefficient Λ, and the
reflector height h. If the antenna characteristics are known they can be
included together with the Fresnel coefficients in the model function, thus
decoupling Λ from the gain pattern, making it rely only on the surface
properties.

As the model has several parameters, but only one observable (i.e.
the SNR), some assumption about the dynamics has to be imposed.
Otherwise all parameters have to be estimated at each epoch, using only
a single SNR measurement, making the solution underdetermined.

Amplitude, phase, and damping all depend on mostly antenna and
surface properties which in most circumstances are quite stable, and
therefore we choose to model them as being constant on the timescale of a
day. However, the last unknown, height, is a completely different matter
as it can vary on a much shorter time scale, when for example measuring
sea level. Therefore, the height needs to be parametrized to allow for a
time dependent height estimate, and for this our choice has fallen on using
B-splines.

B-Splines for modelling dynamic sea height
B-splines were originally developed for computer graphics to approximate
arbitrary curves and shapes with a finite set of parameters (Bartels et al.,
1995). This makes them a prime candidate for parametrizing a variable
reflector height for sea surface applications (Hobiger et al., 2014), as the



14 New techniques

38.0 38.2 38.4 38.6 38.8 39.0
Day of year, 2017

10

5

0

5

10

15
S

ea
 s

ur
fa

ce
 h

ei
gh

t [
cm

] Tide gauge
B­spline
Basis functions

Figure 3.2: A B-spline consist of several overlapping basis functions.

sea surface dynamics can be very varying from site to site. Compared to
for example using a tidal composition to represent the sea level, this allows
for approximating sea surface heights even when wind and pressure are a
dominant factor.

The B-spline is constructed recursively from the 0th order basis function
(Stollnitz et al., 1995)

N0
j (t) =

{
1 if tj ≤ t < tj+1
0 otherwise .

Higher order basis functions can then be defined as

Nr
j (t) = t − tj

tj+r − tj
Nr−1

j (t) + tj+r+1 − t

tj+r+1 − tj+1
Nr−1

j+1 (t).

For a chosen degree r, this then allows us to approximate the sea surface
height using a finite set of N node heights h1, ..., hN as

h(t) =
N∑

j=1
hjNr

j (t) + ∆PCO.

Here, the GNSS-frequency dependent vertical phase centre offset, ∆PCO,
has been added to make the height refer to the antenna reference point
regardless of which GNSS-signal frequency is used.

The time resolution of the B-splines is dependent on the number and
density of the knots, t0, ...tN+r+1, which define the boundaries of the
nodes, where a denser placement of knots naturally leads to higher ability
to resolve fast changes in sea surface height. Therefore, a high enough
density of knots to resolve short time changes driven by wind and pressure
changes is desirable. However, more knots also leads to more parameters
in the least-squares analysis, with an increased computational burden as
a consequence. Furthermore, past a certain number of nodes, increasing
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the knot density further only increases the risk of overfitting, leading to a
deterioration in the retrieval precision.

A major benefit of using a time-variable reflector height estimate is that
there is no need to apply a height rate correction, in contrast to spectral
analysis. Instead, the height change is already accounted for directly in the
modelling. And whereas the correction term in Equation (2.6) is applied
to a whole arc using the average values of elevation and height rate, using
a time variable height instead uses the right values for each measurement
epoch.

Implementing GNSS-R inverse modelling
The initial steps in retrieving information from SNR data using inverse
modelling are very similar to the first steps in spectral analysis; the data has
to be converted to linear units, be detrended to retrieve the oscillations, and
screened to remove unwanted influences before further processing. However,
unlike spectral analysis, the subsequent steps are not necessarily performed
on each satellite arc independently. Instead all available data from a certain
time span can be used, regardless of which satellite or frequency the signal
comes from. Indeed, even satellites from different systems can be used
in combination, rather than just performing the analysis on only GPS
or Galileo etc. This is possible because the different signals share some
information between them: most prominently the reflector height, but also,
for example, the surface conditions. Other parameters are more dependent
on GNSS-frequency and GNSS-system, and thus the parametrization
has to reflect these different conditions. The number of parameters will
therefore increase as follows:

Amplitude: Is partly dependent on the satellite transmission power,
which varies with GNSS satellite system and generation (Steigen-
berger et al., 2018), but also for example on frequency-dependent
reflection coefficients. Therefore the amplitude is estimated for each
signal within each satellite block.

Phase: Depends mostly on antenna and surface properties which
are GNSS-frequency dependent, which means that it must be esti-
mated independently for each GNSS signal, i.e. GPS-L1, GPS-L2,
GLONASS-L1, etc.

Damping: Varies mostly with surface properties and is therefore
shared among all GNSS signals, satellites, and systems, so only one
parameter is necessary.

Height: Also shared among all GNSS signals, satellites, and systems,
but the number of parameters instead increases with the time over
which the inversion is performed as more B-spline nodes have to be
added.
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Inverse modelling is an iterative process, where a set of parameters is
tested to see how well they reproduce the output to be adjusted accordingly.
Therefore, an initial guess for the state is needed to start the iterations.
For most of the parameters, the choice of starting value does not affect the
results very much, only slightly affecting the number of required iterations
and thus computational load.

However, in the case of the height, the convergence is sensitive to the
initial estimate and a careful choice has to be made. If the initial estimate
and the true heights are too large apart the least-squares solver is prone
to become stuck in a local optimum. This can be solved by for example
increasing the search span of the parameters with global optimization
techniques (Reinking, 2016), forcing the algorithm to search through a
larger search space before narrowing down the final solution. However, we
choose to tackle the problem differently, by improving the quality of the
initial estimate, through using spectral analysis to find a rough estimate
of the height. By first running a spectral analysis, we can use the resulting
time series to fit an initial B-spline curve, which greatly increases the
chance of convergence. This technique is especially helpful at GNSS-R
sites where the tidal range is large, and any fixed initial height estimate
would be too far off at least part of the time.

GNSS-R retrievals based on inverse modelling open up for several new
possibilities in comparison to spectral methods. Firstly, the additional
parameters that are retrieved mean that more information about the
environment of the antenna can be inferred. One such result is presented
in Chapter 4, where we use GNSS reflectometry to measure the presence
of sea ice. Secondly, the model can be extended with additional details.
The effects of antenna gain and surface reflection coefficients have already
been briefly mentioned, and more effects will be discussed in Chapter 5.
Furthermore, the inversion model does not necessarily have to be used
with least-squares adjustment, but can also be the basis for other retrieval
methods, as will be shown in the next section.

3.2 Kalman filtering for GNSS reflectometry

Kalman filtering is a type of sequential filtering technique, where the state
of a system is predicted and updated each time new data is available.
Compared to least-squares adjustment, which can often be applied to
the same set of problems (Sorenson, 1970), the major benefit is the on-
line processing which gives access to computationally efficient real time
solutions.

I will only describe the Kalman filter in general terms here as it has
been extensively studied and better explanations can be found elsewhere,
e.g. (Brown and Hwang, 1992; Zarchan and Musoff, 2015). But in very
brief terms, the basic idea behind the Kalman filter is to predict the state
of a system, represented by the state vector x, and the corresponding



New techniques 17

uncertainty, the covariance matrix P , given the best guess of the previous
state of the system and a model of its dynamics, and then update the state
estimate with new (noisy) measurements. In doing so, two models are
needed: the dynamic model, explaining the time evolution of the system,
and the measurement model, explaining the relationship between the state
and the measurements.

In the original formulation, both of these relationships were assumed
to be linear (Kalman, 1960), still the Kalman filter has found some of its
greatest applications in nonlinear systems (Sorenson, 1970). Since the
measurement model in GNSS reflectometry, i.e. Equation (3.1), is both
sinusoidal and exponential, our problem clearly falls into this category.
One way of tackling the non-linearity is with the extended Kalman filter
(EKF), by linearisation of the problem (Jazwinski, 2007), however it is
prone to divergence, especially when the system is highly nonlinear (Ljung,
1979). Another approach is the unscented Kalman filter (UKF) building
on the unscented transform (Julier and Uhlmann, 1997), which has proven
to perform well where the EKF fails (Wan and van der Merwe, 2000).

The unscented transform
The unscented transform is a method for determining the first moments of
a random variable that has undergone a transformation. Where the EKF
approach would be to locally linearise the transformation, which can often
skew both mean and variance estimates (Julier and Uhlmann, 1997), the
unscented approach is to propagate a minimal set of sigma points through
the transformation, and using the transformed sigma points for estimating
the statistics of the transformed variable (as illustrated in Figure 3.3).
This has shown to provide more accurate estimations of the mean and
covariance on many nonlinear systems than local linearisation can provide
(Julier, 2002).

Estimated mean
and covariance

Sigma points

Figure 3.3: The unscented transform can estimate the mean and covariance
of random variables undergoing even highly nonlinear transformations by
propagating a minimal set of sigma points through the transformation.
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In addition to its performance benefits, the lack of need to compute
Jacobian matrices for the transformations can also make the algorithm
easier to implement, as these can otherwise be non-trivial to derive (Julier
and Uhlmann, 1997). This makes the UKF ideal for GNSS reflectometry,
with its highly nonlinear measurement model.

Dynamical models and B-splines in Kalman filtering
In Kalman filtering, estimations of the temporal development of the
parameters are needed, in addition to the measurement model. In the
least-squares inversion of Section 3.1, the amplitude, phase, and damping
were considered to be constant parameters. This works as the inversion
has to be run on shorter batches of data, i.e. one or a couple of days, which
allow the parameters to change on longer timescales. However, a Kalman
filter could in principle be run indefinitely, just adding new measurements
as they become available, and thus we have to allow the parameters to
change.

All three parameters depend in part on surface conditions, and can
therefore change with for example weather (Larson et al., 2008a) and
growth season (Small et al., 2010). This makes their dynamic behaviour
complex to explain and predict, so in the Kalman implementation we
will treat them as random processes with small fluctuations, i.e. small
process noise. This means that in the prediction step of the Kalman filter
we will assume them to stay constant, but increase their corresponding
uncertainty as they might have changed slightly in either direction, thus
allowing the filter to change their values in the update step if it improves
the residuals.

The functionality of the Kalman filter implementation depends on the
chosen values for the process noises. If a process noise is too small, the
filter will be unable to adapt to changes in the environment, loosing the
ability to measure such changes and to provide more information than
just reflector height estimates. However, if it is too large, the parameters
can absorb some of the height variations, e.g. if the phase is allowed to
vary quickly the filter may constantly vary the phase instead of setting the
appropriate height, as these two effects would be indistinguishable in the
model function, i.e. Equation (3.1). In our study in Paper III we found
that the precision of the height estimate started to degrade if especially
the phase and damping coefficient were given too large process noises.

If height is also modelled as a random process, similar concerns would
apply. Too small process noise and the height filter would be unable to
follow the natural variations caused by tides and meteorological phenom-
ena, but if a too large process noise is used the filter may instead overfit
and catch for example unmodelled elevation-dependent phase changes.
As the true dynamics vary much between different sites, with varying
tidal ranges and weather exposure, the right process noise can be hard
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to define. Therefore, to sidestep this issue we continue on the same path
as in the least-squares inversion, by using B-splines to represent the sea
surface. These are modelled as constants, i.e. without process noise, but
initiated with a high uncertainty so that they can be adjusted to fit the
measurements.

As a set of B-spline nodes cover only a finite time, some scheme to
renew their coverage is needed so that the state vector does not have to
be excessively large, and the filter stopped and restarted each time the
B-spline nodes run out. In our implementation, this is solved by keeping
just the relevant node heights in the state vector using a special prediction
step; once a B-spline node no longer has a bearing on a new measurement
it is shifted out of the vector and a new node is added. Thus, the filter
can run indefinitely while the state vector is kept to a minimum.

Implementing realtime GNSS reflectometry
As in both of the previously discussed algorithms, the Kalman filter uses
the SNR oscillations as the basic measurement. Thus to really operate the
filter in real time, the detrending of the SNR arcs has to also be performed
in real time. In the other algorithms the detrending was done using data
from a full satellite passage, thus removing the trend without removing
the oscillations. However, in true realtime operation, the SNR data has to
be detrended before a full satellite arc is available, and therefore another
scheme is needed.

The trend of the arcs for a particular satellite are mostly constant, as
it depends mostly on the antenna gain pattern and the satellite signal
strength. Thus one solution is to include the arc trend in the model
as a slowly varying process. However, even simpler to implement is
using the average of the last few passages of the same satellite to fit the
trend. This keeps the number of parameters in the state vector low, thus
improving the computational efficiency and reducing the number of process
noises that have to be determined for the filter to work correctly.

As shown in Figure 3.4, the UKF approach is only needed in the
update phase, using the detrended SNR observations and an estimate
of their noise levels, R. In the prediction step, the default prediction is
that nothing has changed, which is trivially a linear prediction, and well
suited for an ordinary Kalman filter approach. Only the covariance matrix
P is modified in the prediction, with the addition of the process noise
covariance, Q. For simplicity and lack of better models, the process noise
is assumed to be completely uncorrelated, i.e. that Q is diagonal.

However, when a prediction step would take the filter out of the
currently valid region of the B-spline approximation, a new B-spline needs
to be introduced and a special prediction step is applied. First a normal
prediction step is applied, i.e. modifying the uncertainties, and then the
shift operation is applied. All the node height estimates in the state vector
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are shifted by one position, which means that one node is shifted out of
the vector, and a new one introduced. Without adding a tidal harmonic
analysis to the model, the best estimate for the new node is the same value
as the node immediately before it. In addition, the covariance matrix has
to be changed accordingly, shifting the rows and columns corresponding to
the height nodes. The row and column of the new node are again copied
from the previous node, but with increased self covariance to signify the
uncertainty of the height assumption.

Update

Pre-process

UKF:

Standard
 

Shift

x

P

tj tj+1

hi-2

hi-1

hi

hi+1

hi-1

hi

hi+1
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Output:

  

Figure 3.4: Visualisation of the Kalman filter algorithm, using the un-
scented transform to perform the update step while still using the normal
prediction step. However, a special shift step is introduced each time a
new B-spline node is needed to cover the new time step.

3.3 Particle filter with Lomb-Scargle periodograms

The final method presented in this thesis is an extension of the spectral
methods presented in the previous chapter. Instead of just using the peak
position of a Lomb-Scargle spectra as a height measurement, the whole
spectra can be interpreted as a probability distribution for the position
of the reflector height. Here, we will use this in a particle filter, as the
measurement probability, to combine all Lomb-Scargle spectra into a time
series of reflector heights.

Particle filters, like Kalman filters, belong to the family of Bayesian
filters, but are inherently more suited to model nonlinear and multimodal
problems (Fox et al., 2003). While a standard Kalman filter models a
linear process using only the mean and the variance to represent process
and measurement noise distributions, thus only giving exact solutions
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for Gaussian distributions, particle filters use an ensemble of particles to
estimate the distributions, giving an approximate solution for any kind of
distribution (Arulampalam et al., 2002).

In Bayesian filtering, there are two distributions that define the dy-
namics: the probability of measurement xτ given the previous state xτ−1,
p(xt|xτ−1), and the observation likelihood, p(zτ |xτ ), that the measure-
ment zτ comes from the state xτ . It is for the second distribution that we
will use the Lomb-Scargle spectra, and thus interpret it as the likelihood
of the spectra arising from a particular sea state.

Like the Kalman filter, the particle filter also includes a model of the
dynamics of the state. To keep the complexity low and to keep it simple to
implement, we choose to use a two variable state xτ = (hτ , vτ ), where hτ is
the reflector height, and vτ the height change rate, thus xτ+1 = xτ +vτ ·∆t.
The uncertainties of the state model, i.e. the system noise, is simulated
by adding random noise to the height and its rate of change. A bonus of
including the height rate in the model is that the height rate correction of
Equation (2.6) can be included directly, without iterating.

After retreiving Lomb-Scargle spectra following the outline in Sec-
tion 2.3, the particle filter algorithm can be described by the following
steps, illustrated in Figure 3.5.

1. Initiate N particles, xi
0 = (hi, vi), i = 1, ..., N , and give them equal

weights, wi
0 = 1

N .

2. Propagate states and add random noise W and V for height and
change rate, respectively:

hi
τ = hi

τ−1 + vi
τ−1 · ∆t + W,

vi
τ = vi

τ−1 + V,

where ∆t = tτ − tτ−1.

3. Compute the probability that xi
τ = (hi

τ , vi
τ ) gave rise to the mea-

surement, i.e. the Lomb-Scargle spectra, and scale the weights
accordingly:

wi
τ = wi

τ−1 · Plomb(hi
τ ) · p(vi

τ ),

where p(v) is the probability of having a change rate of v. Then
renormalize the weights:

wi
τ = wi

τ

N∑
j=1

wj
τ

.

4. Resample N new particles based on the weights wi
τ using an appro-

priate resampling strategy (Hol et al., 2006), and reset the weights
to wi

τ = 1
N .
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I) Initial state

II) Propagate

III) Determine weights

IV) Resample

Using Lomb-Scargle spectra
and change rate distribution

V) Estimate maximum
     likelihood

Figure 3.5: The Lomb-Scargle spectra can be used as the measurement
probability in a particle filter. Particles corresponding to high power in
the spectra are given higher weight. The particle filter can easily handle
possible multi-modality of the spectra, as it is approximated by an ensemble
of particles.

5. Calculate the estimated value of the state vector, x̂τ .

6. Step up the time index, τ = τ + 1, and go to step 2.

The extra scaling of p(v) in step 3 restrains the change rate to realistic
values, and is implemented as a Gaussian distribution centred around
v = 0. Similar results can be achieved by another implementation of the
random noise instead. The implementation thus contains three parameters
that have to be determined for a functioning filter: the process noise of
the height and its rate of change, as well as the width of the distribution
p(v).

A short test campaign indicates that the particle filter works on par
with smoothed Lomb-Scargle retrievals, as seen in Figure 3.6. Both the
particle filter and the Lomb-Scargle algorithm, using a moving average
of 50 retrievals, produced a RMS error of 2.6 cm. However, while such
averaging of Lomb-Scargle results depends on data recorded both before
and after the time in question, the particle filter only depends on the past
information. Thus, similar to the motivation of using Kalman filtering
over least-squares inversion, particle filter could see a possible usage in
applications where near-realtime results are desirable.
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Figure 3.6: Top: Time series of all Lomb-Scargle spectra from 3 days
overlaid with particle filter particles and maximum likelihood estimates for
each epoch. The particle marker sizes are scaled with the particle weights.
Bottom: Sea level measurements from the particle filter compared to
results from Lomb-Scargle retrievals as well as the tide gauge records. The
smoothed line uses a running average of 50 retrievals. While the results
in the bottom panel were calculated with 2000 particles to achieve high
accuracy, the top panel includes only 40 particles at each epoch for clarity.
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Finally, comparing to the Kalman filter implementation of Paper III, the
particle filter has much fewer parameters, making it simpler to implement
and adjust for a particular installation. Furthermore, being based on the
Lomb-Scargle retrievals it is computationally less complex. Thus, if a
simple, low latency implementation is wanted, particle filtering may just
be the way.



Chapter 4
New applications

Since its inception, GNSS reflectometry has found several unanticipated
uses (Larson, 2019), and with new methods and new technology come
even more opportunities for environmental measurements with reflected
GNSS signals. In this chapter I briefly introduce how to both measure
new properties of the environment, and how to make GNSS reflectometry
mobile, based on Papers II and IV.

4.1 Detecting sea ice

An improvement of both the Kalman implementation and the least-squares
inverse modelling is that they retrieve several parameters describing the
shape of the SNR oscillations, not only the frequency or the reflector
height. These parameters, as explained previously, depend partly on
properties of the reflecting surface, especially the damping parameter.
The damping parameter is affected by both the electromagnetic properties
of the reflecting surface and its roughness, and therefore becomes sensitive
to the exact surface conditions.

In the transition from open water to ice, both the physical appearance
of the sea surface and its electromagnetic properties can change (Eicken,
2003), which should make the damping parameter sensitive to this tran-
sition. That GNSS reflectometry can indeed be used to detect sea ice
is shown in Figure 4.1, where it can be seen that the damping signifi-
cantly changes during the period in which the Swedish Meteorological
and Hydroligical Institute reported sea ice in the vicinity of the GTGU
installation at Onsala Space Observatory.

As information about the sea ice coverage is of great importance for
instance for marine shipping (Jevrejeva and Leppäranta, 2002), and sea
ice formation usually starts at the land-water boundary (Granskog et al.,
2006) where the low resolution of spaceborne remote sensing techniques
makes sea ice detection difficult, a network of ground-based, coastal GNSS
receivers could perceivably be used in conjunction with other techniques to
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Figure 4.1: Left: Time series of the retrieved damping parameter using
Kalman filtering and least-squares inversion at GTGU. The dark grey
dashed lines shows the start and the end of the period in which SMHI
reported sea ice in the vicinity of the installation. The light grey dotted
line shows the date of the photo on the right. Right: Photo of GTGU
taken on 6th of February, 2012. Photo: Johan Löfgren.

improve the detection of coastal sea ice growth. The same installations can
naturally also be used as tide gauges – as shown in the previous chapters
– and still provide data for tectonic studies, which shows the versatility of
the GNSS-R technique and its capacity to combine several measurements
in one sensor.

4.2 Mobile GNSS reflectometry

In parallel with the development of more advanced techniques for GNSS-
R retrievals, the underlying hardware has undergone improvements as
well. There are now more GNSS satellites than ever, and many of them
transmit more signals in addition. Currently there are over 100 operational
GNSS satellites in orbit – when combining all four constellations, GPS,
GLONASS, Galileo, and BeiDou – and it is not uncommon to have 50
satellites or more in view at any given time and location.

At the same time the GNSS receivers have been developed to utilize
all new available signals, and high-end receivers can track several hundred
signals at once, with sampling times well under a second. But it is not only
the high end of the receiver market that has seen improvement. GNSS
chips for everyday devices have also improved, with more capacity and
precision.

Modern mobile telephones and tablet computers now carry GNSS chips
capable of recording GNSS signals from all available systems, albeit mostly
with limited receiver bandwidth and thus only recording signals in the
L1/L5 frequency band. Furthermore, with the increased computational
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Figure 4.2: Left: Time series of sea surface heights retrieved from both
the GTGU installation and from the tablet computer, compared to the
measurements from the close-by tide gauge. Right: The tablet test
installation – consisting of a Samsung Galaxy Tab A and a power bank,
mounted on a tripod – in front of the GTGU antenna.

capacity of the phones and tablets, some new mobile devices are even
capable of recording raw GNSS signals and make these available for post
processing. Consequently, smart devices are currently capable of precise
network positioning (Realini et al., 2017).

The same recorded data that makes network positioning possible on
a mobile device is also the data that is necessary for GNSS reflectom-
etry. Thus, GNSS reflectometry is feasible using such devices, and as
shown in Figure 4.2 (with more details in Paper IV), the tablet seems
to perform on a similar level as the high-end equipment of the GTGU
installation. While the analysis was done on a separate computer in this
test implementation, the computational capacity of a mobile phone or
tablet computer allows for implementing the full process on the device
itself. Thus, mobile GNSS reflectometry could become a viable low budget
alternative to tide gauges, but also for snow measurement, soil moisture
sensing, and vegetation monitoring, where simple GNSS reflectometry
algorithms have proven useful (Larson, 2019). This could lead to a more
widespread usage of the technique, and make it available to a wider public.
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Chapter 5
Atmospheric delay and absolute level-
ing

A radio signal propagating in the atmosphere will be affected and have a
different propagation path than what would be experienced in vacuum.
The topic has been well studied, as it is important in for example radio
astronomy imaging (Rohlfs and Wilson, 2013), and for positioning applica-
tions in GNSS (Hofmann-Wellenhof et al., 2007). The effect has also been
shown to be of importance in GNSS reflectometry (Santamaría-Gómez and
Watson, 2017; Williams and Nievinski, 2017), where it can significantly
affect the mean retrieved reflector height. But how to properly account for
it is still a topic of research. In this chapter we will look at both already
suggested correction methods, as well as new ones, for spectral analysis as
well as inverse modelling methods.

5.1 Effect of the atmosphere

There are two main effects of the atmosphere on the propagation of
radio waves: the variable index of refraction causes the signal path to
deviate from a straight line, and the speed of propagation is lower in the
atmosphere than in vacuum. These effects, the refraction and the delay,
are illustrated in Figure 5.1. While the two effects have the same source,
they are quite different in nature, and as a first approximation they can
be treated separately. In GNSS reflectometry they will mainly affect the
height retrieval, as they affect the oscillation frequency of the detrended
SNR.

The first effect to be included in GNSS reflectometry was the atmo-
spheric refraction, accounting for the changed angle of incidence that
is caused by the curved propagation path, leading to a higher appar-
ent elevation than vacuum elevation (see Figure 5.1a). The refraction
is straight-forward to account for — both in methods based on inverse
modeling as well as spectral analysis — as the true incidence elevation,
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Figure 5.1: The effect of the atmosphere on GNSS reflectometry is twofold.
Firstly, the signal will be refracted and thus have a higher true elevation
than the vacuum elevation to the satellite. Secondly, the signal propagation
speed will be slowed down slightly by the atmosphere. The latter will affect
the reflected signal slightly more than the direct signal, leading to additional
phase delays.

also called apparent elevation, can be retrieved by adding a correction term
to the vacuum elevation angle (Santamaría-Gómez and Watson, 2017),

εa = ε + δε.

In the work by Santamaría-Gómez and Watson (2017), the approximation
formula for the refraction correction given by Bennett (1982) was used,
which, when modified for change of units, becomes

δε = 1
60

283
T + 273

P

1010.16 cot
(

ε + 7.31
ε + 4.4

)
,

where the temperature T is given in degree Celsius, the pressure P is given
in hectopascal, and the elevations are expressed in degree.

The correction term is elevation dependent, with a larger effect at
low elevations (Bennett, 1982). Therefore, at the antenna, the vacuum
elevation span travelled by a satellite according to the orbit files will be
larger than what is experienced at the antenna. Thus, if the vacuum
elevations are used to retrieve the SNR oscillation frequency, the frequency
will be slightly underestimated, leading to a too low reflector height, or
conversely a too high sea level.

The second effect is the lowering of the speed of propagation of the
signal, caused by the troposphere. As this effect affects the reflected signal
slightly more – it passes through a lower part of the atmosphere with
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slower propagation speed – it will lead to an additional interferometric
delay. Thus, the geometric delay of Equation (2.1) has to be complemented
with a tropospheric component to form a total delay

τ = τG + τT = 2h sin(εa) + τT.

According to Williams and Nievinski (2017), the tropospheric delay com-
ponent can be written as

τT = 2∆τz
h · mh(ε) + 2∆τz

w · mw(ε),

where ∆τz
X = τz

X(−h)−τz
X(0) are the differences in the wet and hydrostatic

zenit tropospheric delay components, and mX(ε) the respective mapping
functions. Following the work of Williams and Nievinski (2017) the VMF1
mapping functions (Böhm et al., 2006) are used, and the delays are
calculated using the Global Temperature and Pressure (GPT2w) model
(Böhm et al., 2006), so that the corrections can be calculated at any
station regardless of access to real weather data. Note that we here use
the vacuum elevation to be consistent with the formulation of the mapping
functions.

The difficulty of correcting for the effect of the troposphere depends
on which retrieval method that is used. In the methods based on inverse
modelling, it is relatively straight forward as it will amount to an extra
phase delay ∆ϕ = kτT, which can be added directly to the model function
in Equation (3.1). For spectral retrievals a correction method has to
be employed instead, as it cannot directly be included in the retrieval
procedure. Williams and Nievinski (2017) suggests that a correction term,
similar to the height rate correction of Equation (2.6) can be employed,
noting that

f · λ = ∂τ

∂ sin (εa) = 2h + 2ḣ
tan (εa)

ε̇a
+ ∂τT

∂ sin (εa) , (5.1)

which gives a tropospheric height correction

δhT = −1
2

∂τT

∂ sin (εa) , (5.2)

which has to be added to the retrieved reflector height from Chapter 2.
However, there are a few caveats to using this correction term. As the
authors note in introducing the correction term, it is an instantaneous
correction taken at a specific value of the elevation, the choice of which will
necessarily affect the correction term. In principle this means evaluating
the correction term at the average elevation of the arc. However, unless
the elevation range is small, the bias will change significantly during
the arc. The effect is non-linear, with exponentially larger offsets at
low elevations, and thus its average will not correspond to the value of
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the average elevation of the arc. Furthermore, the amplitude of the SNR
oscillations decrease with higher elevation, thus low elevations are weighted
more in the spectrum analysis. Thus, the average elevation is not the
optimal choice for evaluating Equation (5.2), and to more accurately asses
the magnitude of the correction, the equation has to be integrated over
the full elevation range, using weights corresponding to the decreasing
oscillation amplitudes. This is not easily done in spectral analysis, as
several parameters of the shape of the oscillations are unknown.

As an alternative, the input to the inversion routine has to be adjusted
to mitigate the effect of the troposphere. In inverse modelling methods
this was achieved by adding the delay to the model. In spectral methods,
we can instead perform a variable substitution, similar to how Santamaría-
Gómez and Watson (2017) remove the effect of sea surface variations, i.e.
exchanging ε for ε′, such that

f · λ = ∂τ

∂ sin (ε′) = 2h.

Exchanging 2h in the right hand term of Equation (5.1), and assuming
that ḣ = 0, we can in a finite approximation arrive at1

∆ sin (ε′) = 1
1 − ∆τT

∆τ

∆ sin (εa) . (5.3)

Thus, the troposphere can be accounted for through exchanging sin(εa)
by

sin(ε′
n) = sin(εa

0) +
n∑
i

∆ sin (ε′
i)

when calculating the spectral densities. Note however that the tropospheric
delay component is also height dependent, thus to calculate the correction
term in Eq. (5.3), an estimate of the height is needed. To solve this,
we calculate the correction in an iterative fashion, first estimating the
height ignoring the tropospheric effect, then calculating a modified sine of
elevation as the input to the next iteration of the spectral analysis.

5.2 Applying the corrections

Previous GNSS-R studies have only used one of the two aspects of the
atmosphere, either the atmospheric bending (Santamaría-Gómez and
Watson, 2017) or the tropospheric delay (Williams and Nievinski, 2017).
However, as noted in the previous section, the effect of the two are
of entirely different natures, where the first one changes the geometry
and the other slows down the signal. Therefore, to fully correct for the
atmospheric influence, both of these effects have to be corrected for. Ideally,

1The full derivation can be found in Appendix A.
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Figure 5.2: One-day running average of the difference between sea level
measured by the tide gauge at the Onsala Space Observatory and the nearby
GTGU GNSS-R installation, using two retrieval algorithms and different
strategies for correcting for atmospheric effects.

their combined effect should be evaluated using ray tracing techniques
(Nikolaidou et al., 2020), but as the computational costs of employing ray
tracing in the GNSS-R retrievals would be prohibiting, we use the above
mentioned approximations.

The results of applying the different corrections for both inverse mod-
elling and Lomb-Scargle retrievals are shown in Figure 5.2, where the
difference between the sea level measured by the tide gauge and the
GNSS-R installation at Onsala is shown. From the figure it can be seen
that while the sea level results are shifted by the same distance for both
GNSS-R algorithms when only correcting for atmospheric refraction, the
picture looks different when correcting for the tropospheric delay. In the
case of atmospheric refraction, the correction is handled exactly the same
in both algorithms – correcting the elevation on the ‘observation’ level –
thus it is expected that their average sea level estimation should coincide.
However, when addressing tropospheric delay, the exact calculated delay
is added directly to the inversion model whereas it is only applied as an
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approximate correction in the case of Lomb-Scargle analysis. In Figure 5.2,
the difference in handling is visible as an offset between the sea level
measurements.

The correction term of Williams and Nievinski (2017) is seen to under-
estimate the correction compared to inverse modelling with tropospheric
delay, by approximately 35 %. The mean elevation of the arcs are on
average 6.0°, which corresponds to an offset of roughly 9 cm when using
Equation (5.2), which is seen as the distance between the lines b and c
in Figure 5.2. However, as discussed above, the offset rather corresponds
to using Equation (5.2) for a lower elevation, where the 14 cm offset seen
between inverse modelling with and without troposphere delay modelling
corresponds to the value of the correction term at 4.5°. In comparison,
the newly suggested correction method corrects for 90 % of the average
offset between line II and III in Figure 5.2, showing that our suggested
variable substitution is better at correcting for the tropospheric delays.
However, as it is still only an approximate correction, its effect is still
smaller than when adding the modelled delay directly to the retrievals, as
done in inverse modelling.

5.3 Absolute leveling of GNSS reflectometry

One of the proposed advantages of GNSS reflectometry is the inherent
capacity of correcting for vertical land motion and tying the measured sea
level to an absolute reference point (Nievinski et al., 2020). However, in
most GNSS-R studies to date, only relative sea level is measured, and the
few that do try to measure absolute sea level often find significant offsets
in at least some of the measurements (Santamaría-Gómez and Watson,
2017; Williams and Nievinski, 2017).

The atmospheric effects have been shown to be one of the contributions
to the vertical offset of the GNSS-R retrievals, however Williams and
Nievinski (2017) found that while they underestimated the reflector height
without tropospheric corrections, they overestimated it when applying
their correction method. As shown in the previous section, the results
would most likely overshoot even more when applying a more rigorous
correction. Furthermore, in the study they neglected the correction for
atmospheric refraction which would have increased the reflector height
even further. This is consistent with the findings in Figure 5.2, where
the reflector height is seen to be overestimated with roughly 20 cm when
accounting for both atmospheric refraction and tropospheric delay.

Even though the atmospheric corrections make the reflector height
estimate overshoot, the underlying physical principles are well understood
and documented, and therefore they should be included in GNSS reflec-
tometry for correctness. It can also be seen in results that the corrections
are necessary. For example, Williams and Nievinski (2017) found that, by
applying their tropospheric correction term, they reduced the elevation de-
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Figure 5.3: RMS error of GNSS-R retrievals from GTGU using inverse
modelling compared to the Onsala tide gauge, with (colour) and without
(greyscale) tropospheric delay modelling.

pendency of residuals. And, in inverse modelling, incorporating the model
for tropospheric delay reduces the RMS error of the retrieved sea level,
as presented in Figure 5.3. While the effect is small, it is still significant
and consistent for all satellite systems, showing that the correction indeed
removes systematic effects. Therefore, the offset must be explained by
some other, yet to be corrected for, phenomena.

Candidates for such phenomena must fulfil two criteria: the effect must
differ for the direct and the reflected signal, and it must be elevation
dependent. If it fails to meet either, there will be no effect on the reflector
height. Unless there are differences between the effect on the direct and
the reflected signal, there will be no change in the interferometric phase.
This excludes for example satellite errors and ionosphere effects. And
if there is no elevation dependence, the effect will just be folded into
the constant offset in Equation (2.3), giving no effect on the oscillation
frequency.

One candidate phenomena is the electromagnetic bias; as wave throughs
are wider than the peaks, more energy is scattered at the bottom than at
the top, shifting the average reflection point downwards (Ghavidel et al.,
2016). However, in GNSS-R studies this has been found to be a minor
effect, with a maximum of only 4 cm at a site that is more exposed to
wind and waves than GTGU (Sun, 2017). Wind-driven offsets have been
observed at Onsala as well, but the offset only reaches significant values
at extreme wind events (Nievinski et al., 2020), thus it can only explain a
minor part of the 20 cm offset seen in Figure 5.2.

A more likely candidate is the combined interaction of the Fresnel
reflection coefficients and the antenna pattern. In the reflection, the phase
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of the circularly polarized GNSS signals are shifted with the argument of
the Fresnel coefficient, which depends on the angle of incidence (Hristov,
2000). Furthermore, some power is shifted between the two circular
polarisations. The effect is small at grazing angles, but almost complete
at zenith where the reflected signal will be mostly LHCP. Since a GNSS
antenna is not completely insensitive to LHCP signals this will lead to a
combination of the two components in the receiver, and the interferometric
phase will depend on the composite signal. According to Nievinski (2020),
the effect can be on the order of 10 cm, depending on elevation, signal,
and antenna.

To test the effect of the coupled antenna-surface reflection coefficients,
we used the multipath simulation software mpsim (Nievinski and Larson,
2014a) to calculate the induced phase shift as a function of elevation. The
calculate phase shift was then added directly into the model function in
Equation (3.1), to remove its effect. The result is an upward shift of 6 cm,
still short of explaining the remaining residual. However, only the gain
of the antenna pattern was available, and thus effects arising from the
phase center variation were neglected. To fully model the coupling, the
full antenna pattern is needed, including phase center variations for both
RHCP and LHCP, and both negative and positive elevations.



Chapter 6
Summary of appended papers

Paper I

Improving GNSS-R sea level determination through inverse mod-
eling of SNR data

In this first paper we developed and tested a new method to retrieve
environmental parameters from GNSS SNR data. The method is based
upon inverse modelling using least-squares adjustment as opposed to Lomb-
Scargle analysis, which has been the prevalent method. This development
resulted in more precise measurements, partly due the method being able
to use data from several satellites at once.

For this article, I was responsible for developing the idea and running
the analysis. I then prepared the manuscript in collaboration with my
co-workers.

Paper II

Coastal sea ice detection using ground-based GNSS-R
An addition, and improvement, of the inverse modelling is that it can

retrieve several different properties of the GNSS SNR data. Some of the
parameters in the inverse retrievals are sensitive to the electromagnetic
properties of the reflecting surface. For a sea surface, this results in a
detectable signal when the sea transitions from open to frozen. Our work
in this paper resulted in the first demonstration of coastal GNSS-R being
sensitive to sea ice conditions.

My contributions to this article consisted of making the data analysis
as well as preparing and being main responsible for the manuscript.
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Paper III

Real-time sea-level monitoring using Kalman filtering of GNSS-
R data

Based on the inversion model used in the previous two papers, we
developed and demonstrated a method to retrieve measurements in real
time using Kalman filtering. The results proved to be on a similar level
as the results from least-squares inversion, making real time GNSS-R
feasible.

In the preparations for this article I developed and tested an imple-
mentation of the method and ran the analysis. I prepared the manuscript,
which was then finalized together with my co-authors.

Paper IV

Can we measure sea level with a tablet computer?
For the fourth paper, we decided to test the capacity of modern

phones and tablet computers to perform environmental measurements.
Newer models of mobile phones and tablets are able of recording raw
GNSS data. Thus it is possible to do GNSS reflectometry with handheld
devices. We demonstrated that the precision of sea level retrievals using
GNSS-R was on the same level of precision when using a mobile device as
when using high-end geodetic equipment. This opens up for mobile and
inexpensive GNSS-R measurement campaigns.

For this paper I proposed and tested the idea. I also wrote the manuscript
together with my co-author.



Appendix A
Derivations

Height rate correction

The height rate correction is a result of the height being time dependent.
Starting from the expression for the geometric phase delay

Φ = 4πh

λ
sin (ε) + ϕ, (A.1)

we can compute the instantaneous frequency in sin (ε) as

f = 1
2π

∂Φ
∂ sin (ε) = 2h

λ
+ 2 sin (ε) ∂h

∂ sin (ε) . (A.2)

The reflector height is not directly dependent on the satellite elevation,
however as they both vary with time we can reformulate the derivative of
the height as

∂h

∂ sin (ε) = ∂h

∂t

∂t

∂ sin (ε) . (A.3)

The first factor on the right hand side is simply the rate of change of the
height ḣ, and the second can be calculated as(

∂ sin (ε)
∂t

)−1
= 1

ε̇ cos (ε) . (A.4)

Combining the above equations results in

f = 2h

λ
+ 2ḣ

λε̇

sin (ε)
cos (ε) = 2h

λ
+ 2ḣ tan (ε)

λε̇
. (A.5)

Finally, solving for h we have

h = λf

2 − ḣ tan (ε)
ε̇

, (A.6)
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where the last part is the height rate correction. While the rate of change
for the satellite elevation, ε̇, can as the elevation itself be computed from
orbit files, the rate of change for the height is an unknown in the retrievals.
One way of retrieving ḣ is to first retrieve reflector heights from the Lomb-
Scargle spectra under the assumption ḣ = 0, and using the retrieved time
series to calculate a better estimate. This new estimate is then used to
correct the retrieved heights.

A new correction for troposphere

With the addition of troposphere, the expression for the phase delay in
Equation (2.3) instead becomes

Φ = 4πh

λ
sin(ε) + ΦT + ϕ, (A.7)

where
ΦT = 2π

λ
τT (A.8)

is the additional phase delay introduced because of the tropospheric path
delay τT.

Now, analogous to Equation (2.5), the instantaneous frequency instead
becomes

f = 1
2π

∂Φ
∂ sin (ε) = 2h

λ
+ 1

2π

∂ΦT

∂ sin (ε) . (A.9)

Williams and Nievinski (2017) recognised the last part as a correction
term that can be added after the reflector heights have been retrieved,
similar to the height rate correction in the previous section. However, as
explained in Chapter 5, there are problems with choosing which angle to
evaluate the correction at, resulting in poor accuracy in the correction.

Instead, we recognise that we can perform a variable substitution from
ε to ε′, or rather sin (ε) to sin (ε′), such that

f ′ = 1
2π

∂Φ
∂ sin (ε′) = 2h

λ
. (A.10)

Combining Equations (A.9) and (A.10) results in

∂Φ
∂ sin (ε) − ∂ΦT

∂ sin (ε) = ∂Φ
∂ sin (ε′) , (A.11)

or equivalently
∂ (Φ − ΦT)

∂ sin (ε) = ∂Φ
∂ sin (ε′) . (A.12)

From this we can develop an expression of how sin (ε′) changes with sin (ε):

∂ sin (ε′)
∂ sin (ε) = 1

1 − ∂ΦT
∂Φ

. (A.13)
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Going back to path delays instead of phase delays, and approximating
the expression to finite differences, we finally have

∆ sin (ε′) = 1
1 − ∆τT

∆τ

∆ sin (ε) . (A.14)

Therefore, by starting at an initial elevation ε′
0 = ε0, the adjusted sine of

elevation can then be calculated sequentially as

sin(ε′
n) = sin(ε0) +

n∑
i

∆ sin (ε′
i) , n 6= 0. (A.15)

To retrieve the corrected height estimate, these new elevations are used
in the Lomb-Scargle retrievals, producing a frequency f ′ which can be
used in e.g. Equation (A.6) instead of the true oscillation frequency f .
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