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Abstract: Amplitude and phase noise correlation matrices are of fundamental importance for
studying noise properties of frequency combs. They include information about the origin of noise
sources as well as the scaling and correlation of the noise across the comb lines. These matrices
provide an insight that is essential for obtaining low-noise performance which is important
for, e.g., applications in optical communication, low–noise microwave signal generation, and
distance measurements. Estimation of amplitude and phase noise correlation matrices requires
highly–accurate measurement technique which can distinguishes between noise sources coming
from the frequency comb and the measurement system itself. Bayesian filtering provides a
theoretically optimum approach for filtering of measurement noise and thereby, the most accurate
measurement of phase and amplitude noise. In this paper, a novel Bayesian filtering based
framework for joint estimation of amplitude and phase noise of multiple frequency comb lines
is proposed, and demonstrated for phase noise characterization. Compared to the conventional
approaches, that do not employ any measurement noise filtering, the proposed approach provides
significantly more accurate measurements of correlation matrices, operates over a wide range of
signal–to–noise–ratios and gives an insight into comb’s dynamics at short scales (<10−8 s).

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Measurement of amplitude and phase noise of optical frequency combs can be performed using
a variety of analog and digital measurements techniques, see e.g. [1,2]. Typically, analog
techniques require complex calibration procedures and phase–locked loops [3]. Most importantly,
as the functionalities are implemented in the analog domain, it becomes very challenging to
implement any sophisticated signal processing techniques, especially, at high-speeds (beyond
10 GHz). Digital measurement techniques on the other hand, employ a balanced receiver, an
analogue-to-digital converter (ADC) for sampling the signal of interest and a computer for storing
and processing the data offline. The measurement of amplitude and phase noise is thereby
performed offline, on the sampled data, allowing for the implementation of advanced digital
signal processing and machine learning techniques. What makes digital measurement techniques
even more attractive is that recent advances in optical communication systems have enabled
balanced receivers operating with up to 100 GHz of analog electrical bandwidth and ADCs
with sampling rates in the range of 160 Gs/s [4]. This is opening up for new opportunities for
ultra-broadband noise characterization of frequency combs.

Irrespective of the measurement technique, an effective method for filtering the measurement
noise must be employed. This is because the thermal noise floor will set a limit on the magnitude
and the frequency range in which the amplitude and phase noise can be measured. Most of
the conventional techniques do not provide effective filtering of measurement noise and are
therefore limited to high signal–to–noise ratio (SNR) of frequency comb lines, MHz measurement
ranges and approximately −140 dB rad2/Hz phase noise levels [1,2][5–7]. Most importantly, for

#391165 https://doi.org/10.1364/OE.391165
Journal © 2020 Received 20 Feb 2020; revised 16 Apr 2020; accepted 16 Apr 2020; published 23 Apr 2020

https://orcid.org/0000-0001-5981-5624
https://orcid.org/0000-0002-3504-2118
https://doi.org/10.1364/OA_License_v1
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.391165&amp;domain=pdf&amp;date_stamp=2020-04-23


Research Article Vol. 28, No. 9 / 27 April 2020 / Optics Express 13950

correlation matrix computation joint amplitude and phase noise estimation of multiple frequency
lines, which may easily have different SNRs, is needed.
In many practical cases, the requirement on high SNR per frequency comb line is difficult

to satisfy. This is because the output power of the frequency comb is divided among multiple
carriers, resulting in lower available power, and hence low SNR, per comb line. This makes
accurate noise characterization using conventional approaches rather challenging. A common
approach is to employ optical or electrical amplification prior to the phase noise measurement,
to increase the signal power. However, this approach also increases the thermal noise level due
to amplifier noise. It is therefore of great significance to have an amplitude and phase noise
measurement technique that is highly–sensitive and works well across wide range of SNRs.

It has recently been demonstrated that Bayesian filtering provides an optimum filtering of the
measurement noise allowing for a record sensitive optical phase noise measurement. In Ref.
[8], phase noise measurements from ultra–low power signals (−73 dBm), as well sensitivities
down to −200 dB rad2/Hz and measurement ranges up to 10 GHz offset frequencies have been
demonstrated for a single frequency laser. In short, the results in [8] demonstrated that Bayesian
filtering can be used to surpass the thermal noise limit of the detection system. Bayesian filtering
thus holds a great potential for providing a unifying framework for noise characterization of
lasers and optical frequency combs overcoming the limitations of measurement noise.

In this paper, a Bayesian filtering framework for joint estimation of amplitude and phase noise
of multiple frequency comb lines is proposed. The theoretical foundation and solution to the
Bayesian filtering equations are presented. The extracted amplitude and phase noise traces are
used to compute the corresponding amplitude and phase noise covariance and correlation matrices.
The subsequent eigenvalue decomposition is also presented and it provides an insight into how
various noise sources (from e.g. the input continuous wave laser and radio frequency oscillators)
contribute to the amplitude and phase noise across difference comb lines. Simultaneous detection
of multiple lines is realized using a digital measurement technique in which the comb under test
(CUT) is heterodyned with another local oscillator (LO) frequency comb, similar to a dual-comb
interferometer [9,10]. In this manner, the noise performance of multiple lines is captured at
once [7], allowing for computation of the amplitude and phase noise correlation and covariance
matrices with single line resolution. The proposed framework in this paper, is much more general
and complete compared to [8] in which only phase noise of a single frequency laser is estimated.
Moreover, compared to the proof-of-principle results we presented in [11], this paper includes
significant extensions in terms of the method itself, as well as numerical and experimental results.
We numerically and experimentally validate the performance of the framework with electro-

optic frequency comb sources reported in [9], focusing only on phase noise characterization.
These frequency combs have well-defined phase noise characteristics that are dictated by the
performance of the radio-frequency oscillator driving the modulators and the optical phase noise
of the input continuous-wave laser [12], thus providing a reliable source to assess the framework.
The performance in terms of accuracy is investigated numerically by computing the mean square
error (MSE) as a function of SNR. Experimentally, we demonstrate accurate joint phase noise
tracking and estimation of 49 frequency comb lines, simultaneously. The estimated phase noise
traces are later used for computation of the phase noise correlation matrix and compared to
the state–of–the–art method that does not employ any measurement noise filtering. Finally,
eigenvalue decomposition of the phase correlation matrix is performed to get an insight into
magnitude of noise sources and their evolutions.
The rest of the paper is structured as follows. In section 2, the state–space model for joint

estimation of amplitude and phase noise of multiple frequency comb lines is presented. The
state–space model provides the necessary framework for the solution of the Bayesian filtering
equations. In section 3, numerical simulations are presented. The benefits of the proposed
framework, in terms of the mean square error, eigenvectors and eigenvalues estimation, are
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investigated and compared to the state–of–the–art method. In section 4, experimental results
for the phase noise correlation matrix estimation as well as the corresponding eigenvalue
decomposition are presented for an electro–optic comb.

2. Theoretical framework for joint amplitude and phase noise tracking

2.1. State–space model

In Fig. 1, a dual–comb heterodyne set–up for frequency comb noise characterization, using a
digital measurement technique, is shown. It employs a comb under test (CUT) that is mixed with a
local oscillator (LO) comb in a balanced receiver. The resulting signal, y(t), is a down–converted
comb, characterized by M spectral lines. The spacing ∆f is equal to the difference in repetition
rates between the CUT and the LO comb. The down–converted signal y(t) is then sampled by
an ADC and the product M∆f is kept within the bandwidth set by the minimum between the
Nyquist condition for sampling and the 3 dB bandwidth of the balanced receiver BW rec

3dB, i.e.
M∆f ≤ min(Fs/2,BW rec

3dB), where Fs is the sampling frequency of the ADC.

Fig. 1. (a) System set-up for numerical and experimental investigations. Two optical
frequency combs are heterodyned together, and the donwconverted frequency comb is
sampled and digitized, obtaining the sequence yk. (b) Typical power spectral density of the
downconverted comb. (c) Bayesian filtering framework for joint estimation of static, Q, and
dynamic parameters, [φ1k , . . . , φ

M
k ] and [a

1
k , . . . , a

M
k ]

The sampled photocurrent yk, where k is a discrete-time index, is then stored and passed
to the Bayesian filtering framework for off-line signal processing. By heterodyning the two
combs, the m-th line phase, of the downconverted comb, φm

k is given by the phase difference:
φm

k = φ
m,CUT
k − φm,LO

k with m = 1 · · ·M. The m-th line amplitude am
k is given by the product:

am
k = 2R

√
Pm,CUT

k Pm,LO
k . R is the responsivity of the receiver photodiodes, Pm,CUT

k and Pm,LO
k

are the powers of the CUT and LO frequency comb m-th lines, respectively.
In this paper, we assume that the CUT and the LO comb are generated by two identical and

independent laser and RF sources, hence they equally contribute to the downconverted comb
amplitude and phase noise. Given the stored data, y1:T := [y1, . . . , yT ], where T is the length
of the measurement data in samples, the objective is to perform joint tracking of the down-
converted frequency combs’ phases φk := [φ1k , . . . , φ

M
k ]
> and amplitudes ak := [a1k , . . . , a

M
k ]
> for

k = 1 · · · T , where > denotes the transpose operator. We consider amplitude and phase noise of
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the donwconverted comb as a discrete-time stochastic processes, indexed by k and m in time and
line number, respectively.
Implementation of the Bayesian filtering framework requires a state-space model (SSM) that

consists of: 1) a measurement equation, which describes the relation between measurements yk
and the time-varying phase and amplitude noise, i.e. [φk, ak] and a state equation 2) which is an
approximate model describing the evolution of the optical phase and amplitude noise. In this
paper, a random walk model is employed. For any given time index k, the proposed SSM is:

φm
k = φ

m
k−1 + qm

φ,k−1 with m = 1 · · ·M, (1)

am
k = am

k−1 + qm
A,k−1 with m = 1 · · · , (2)

yk =

M∑
m=1

am
k sin

(
∆ωmTsk + φm

k
)
+ nk, (3)

where initial amplitudes and phases are set to zero, i.e. φm
1 = 0 and am

1 = 0. Here Fs = 1/Ts
denotes the sampling frequency of the ADC and nk is the measurement noise. It is assumed
that nk has a Gaussian distribution with zero mean and variance σ2

n . It contains contributions
from thermal and quantum noise sources associated with photodetection, amplifiers and ADC.
The angular frequency difference between the comb lines is expressed as ∆ωm = 2π∆fm.
qφ,k =

[
q1φ,k, . . . , q

M
φ,k

]>
and qA,k =

[
q1A,k, . . . , q

M
A,k

]>
are multivariate Gaussian distributed

random variables with zero mean and covariance matrices QA and Qφ , respectively. The diagonal
elements of QA and Qφ describe our assumptions on the variance (strength) of amplitude and
phase noise sources, respectively. The off-diagonal elements describe the phase and amplitude
correlation between M frequency combs lines, respectively. The cross-covariance matrix between
amplitude and phase noise of comb lines is denoted QA,φ . All these matrices together, form the
complete noise matrix Q, which is defined as:

Q :=


Qφ Q>A,φ
QA,φ QA

 . (4)

The matrix Q includes all the necessary information to get an insight into noise sources and
correlations of the frequency combs under consideration.

2.2. Bayesian filtering

As we only have access to the measurements yk, the objective of Bayesian filtering is to estimate
amplitude and phase noise which are explicitly hidden in yk. (A detailed treatment of Bayesian
filtering is beyond the scope of this article and the interested reader is referred to [13]). We
assume that the underlying model of am

k and φm
k is governed by (1) and (2), and the measurements

depend on am
k and φm

k via (3). Strictly speaking, given yk, we would like to estimate amplitudes
and phases that minimize the following MSE problem:

∑
k E[(xk − xtruek )

2], where xk := [φk; ak]
>,

E[·] denotes the statistical expectation and xtrue := [φtrue
k ; atruek ]

> are true amplitude and phase
noise profiles. The solutions are then said to be optimal in the mean square error sense and are
theoretically, the most accurate estimations of amplitude and phase noise in the presence on
measurement noise. We denote these solutions as xoptk := [φopt

k ; aoptk ]
>. According to the Bayesian

filtering theory, the optimal estimate xoptk are obtained given by computing the expectation of the
filtering distribution [13]:

xoptk = E[xk |y1:k] =
∫

xkp(xk |y1:k)dxk . (5)

In (5) p(xk |y1:k) is the posterior probability distribution, or filtering distribution of xk given
the measurement from 1 to k, i.e. y1:k. Typically, all solutions to (5) are iterative in k. An



Research Article Vol. 28, No. 9 / 27 April 2020 / Optics Express 13953

exact solution to (5) can be obtained if the measurement Eq. (3) is linear and is expressed via
Kalman filtering equations. Since the measurement Eq. (3) in our case is nonlinear in xk, only an
approximate solution to (5) can be obtained. There are several approximate solutions, however,
and in this paper we consider a solution based on an extended Kalman filter (EKF) due to its
ability to handle large traces of data (we consider the size yk of up to 60 · 106). Taking into
considerations the state–space model specified in (1)–(3), the EKF filtering equations for every
time step k = 1 · · · T are expressed as following:

vk = yk −

M∑
m=1

aopt,mk−1 sin
(
∆ωmTsk + φ

opt,m
k−1

)
,

sk = hx(xoptk−1)[Σ
opt
k−1 +Q]h>x (x

opt
k−1) + σ

2
n ,

kk = [Σ
opt
k−1 +Q]h>x (x

opt−
k )s−1k ,

xoptk = xoptk−1 + kkvk,

Σ
opt
k = Σ

opt
k−1 +Q − kkskk>k .

(6)

Implementing the system of equations in (6) requires initial conditions for x0. Typically,
x0 = 0 and Σ0 is initialized as a diagonal matrix. Here, hx(·) = [hφ(·),hA(·)] is the gradient of
the measurement function (3) with respect to the hidden states xk. hx(·) contains the gradient
with respect to the phases hφ(·) and the amplitudes hA(·) expressed as:

hφ(xk) =
[
a1k cos (∆ω1Tsk + φ1k), . . . , a

M
k cos (∆ωMTsk + φM

k )
]
,

hA(xk) =
[
sin (∆ω1Tsk + φ1k), . . . , sin (∆ωMTsk + φM

k )
]
.

(7)

The EKF Eqs. (6), once executed for every time-step k, return the optimal estimations of the
amplitude and phase noise xopt1:T := [φopt

1:T ; a
opt
1:T ]
> with the associated uncertainty covariance matrix

sequence Σopt
1:T . This is under assumption that we have the knowledge of the correlation matrix Q,

variance of the measurement noise σ2
n and the frequency offset ∆f . These are so called static

parameters and their estimation needs to be performed in conjunction with the EKF equations as
illustrated in Fig. 1 and explained next.

2.2.1. Static parameter estimation

The frequency spacing ∆f and the measurement noise variance σ2
n can be extracted by inspection

of the power spectral density of the photocurrent prior to the Bayesian filtering. The matrix
Q, however, needs to be jointly estimated from the observed data y1:T together with x1:T . The
Bayesian treatment for the optimal estimation of Q, in the MSE sense, is obtained by maximizing
the posterior distribution of Q given the observations y1:T :

Qopt = argmax
Q

[
p(Q|y1:T )

]
= argmax

Q

[
p(y1:T |Q)p(Q)

]
, (8)

where p(y1:T |Q) is the likelihood function. It describes how likely it is that a particular choice of
matrix Q is responsible for generating the observations y1:T . The prior probability describes our
belief (initial values) on Q prior to any observation yk. Domain knowledge can typically be very
useful in determining good priors which can significantly reduce the convergence time of the
static parameter search algorithm.
To avoid numerical approximation errors due to limited precision, it is common practice to

work in the log domain of the probabilities, transforming then the maximization of the likelihood
in (8) into the minimization of the negative-log-likelihood LL−(Q) := − log p(y1:T |Q). Then,



Research Article Vol. 28, No. 9 / 27 April 2020 / Optics Express 13954

LL−(Q) is the cost function we want to minimize. Typically, for a general state‘space model
LL−(Q) can be approximated as [13]:

LL−(Q) ≈ 1
2

T∑
k=1

[
log 2πsk(Q) + v2k(Q)sk(Q)−1

]
, (9)

in which vk and sk are computed by the EKF Eqs. (6) for a known matrix Q. Equation (8) is then
reformulated as:

Qopt = argmin
Q
[LL−(Q) − log(p(Q))] . (10)

An efficient approach to minimize (9) is to employ the expectation maximization (EM)
algorithm [13], see Fig. 1. The advantage of EM over other optimization techniques is that at
each iteration the optimal parameter, in our case the covariance matrix Qopt that minimizes (9),
is returned in a closed form, and the procedure is theoretically guaranteed to converge [14]. EM
involves a two step procedure, starting from an initial guess of the matrix Q(0): the expectation
step (E) followed by the maximization step (M), which are then iterated N times. During the n-th
EM iteration the E step requires computation of the smoothing state estimate xsk := [φs

k; a
s
k]
>.

This smoothing estimate can be computed once the sequence has been filtered with the EKF
using the Extended Kalman Smoother (EKS). The EKS runs backwardly in time and produces a
smooth state estimate sequence xs1:K with associated smoothed covariance sequence Σs

1:K . Here
K represent the number of data samples used for parameter estimation, and typically N � T .
The EKS is initialized by setting xsK = xoptK and Σs

K = Σopt
K . Then, for every k = K − 1 · · · 0 the

following equations are computed

Gk = Σ
opt
k

[
Σ
opt
k +Q(n)

]−1
,

xsk = xoptk +Gk(xsk+1 − xoptk ),

Σs
k = Σ

opt
k +Gk(Σ

s
k+1 − xoptk )G

>
k ,

(11)

where Q(n) is the estimation of the matrix Q during the n-th EM iteration. Once completed the
filtering and smoothing procedure, the M step concludes by calculating the updated parameter
Q(n+1) using

Q(n+1) = P − C − C> + B , (12)

where P, C and B are defined as

P = 1
T

K∑
k=1
Σs

k + xs
k[x

s
k]
> , (13)

C = 1
T

K∑
k=1
Σs

kGs
k−1 + xs

k[x
s
k−1]

> , (14)

B = 1
T

K∑
k=1
Σs

k−1 + xs
k−1[x

s
k−1]

> . (15)

EM iterates by repeating the E and M steps, invoking EKF and updating the values of Q at the
end of each M step. EM can be halted when the improvement on the cost function becomes
negligible, that is when a minimum of (9) is found. Typically, the EM does not need that many
iterations to converge. Our experience is that the EM will converge before N = 1000 iterations,
and Q reaches its optimal value, i.e. Q(N) ≈ Qopt. Once the EM has converged, Q(N) is used in
the EKF equations to estimate amplitude, aopt1:T , and phase noise, φopt

1:T , respectively, see Fig. 1(c).
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2.3. Covariance and correlation matrix computations

Noise characterization of the frequency comb can the be performed by computing phase noise
and RIN spectrum using φ

opt
1:T and aopt1:T , respectively. Additionally, the sample amplitude and

phase noise covariance matrix can then be calculated on a window of samples of length K,
embracing the contiguous temporal indices from l to n:

Σu,l:n =
1

K − 1

n∑
k=l
(uk − ūl:n) (uk − ūl:n)

> =

©«

σ2
u,11 σ2

u,12 · · · σ2
u,1M

σ2
u,21 σ2

u,22 · · · σ2
u,2M

...
...

...

σ2
u,M1 σ2

u,M2 · · · σ2
u,MM

ª®®®®®®®¬
(16)

where u = aopt1:T or u = φ
opt
1:T . K = n − l + 1, ūl:n denotes the mean estimate of ak or φk over

the current window, i.e. φ̄l:n = K−1
∑n

k=l φk and āl:n = K−1
∑n

k=l ak. The reason for choosing
the window length is because the dynamics of the frequency comb, and thereby the matrix
coefficients, may be time–dependent. The correlation matrix is directly obtainable from the
covariance matrix (16) by performing normalization of the diagonal:

ρu,l:n =
[
diag

(
Σu,l:n

) ]−1/2
Σu,l:n

[
diag

(
Σu,l:n

) ]−1/2
=

©«

1 ρu,12 · · · ρv,1M

ρu,21 1 · · · ρv,2M
...

...
...

ρu,M1 ρu,M2 · · · 1

ª®®®®®®®¬
(17)

where the diag(·) operator sets the anti-diagonal elements of a matrix to 0. The diagonal terms of
Σu,l:n contain the information about the variance of amplitude or phase noise associated with the
different frequency lines. The off-diagonal coefficients of matrix, ρu,l:n, contain the information
about the linear correlation among amplitudes and phases, ranging from 1 (perfect correlation) to
-1 (perfect anticorrelation).

3. Numerical results

In this section, we investigate the performance of the proposed framework to estimate the phase
noise covariance and correlation matrix of an EO comb. The dominant type of noise, for these
combs, is the phase noises originating from the continuous wave (CW) laser and the RF oscillator.

In the simulation set–up, we generate directly the down-converted comb signal, yk that contains
frequency components at ∆ωm = 2π∆fRF + 2π(m − bM/2c + 1)∆f , where ∆fRF = 2.5 GHz and
∆f = 100 MHz. We consider M = 49 comb lines. The CW laser and the RF oscillator phase
noise are simulated as Wiener processes. The combined linewidths for the laser and the RF
oscillator are assumed to be ∆νL = 1 kHz and ∆νRF =0.5 kHz, respectively. For an EO comb, the
phase noise of the down-converted frequency comb line m is assumed to be line-dependent and
generated as [12]:

φm
k = φ

L
k + mrφ

RF
k , (18)

where mr = m − bM/2c + 1 is the relative line index, b·c is the floor function, φLk and φRFk are
phase noise sources associated with CW laser and RF oscillator phase noise. The sampling
frequency is Fs = 10 GHz. Measurement noise is added to signal yk, resulting in the following,
per comb line: SNRm =

ā2
m
/4

σ2
n TsfBW

, where i = 1, . . . ,M, ām is the average amplitude of the line m
and fBW is the bandwidth in which the SNR is measured. An average SNR is then defined as:
SNRavg = (1/M)

∑
m SNRm.
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In Fig. 2, the ability of the proposed framework to learn the system parameters is shown. We
start with our guess (prior) on Qφ at iteration k = 0, i.e. Q(0)φ . For the considered case, we
assume that Q(0)φ is a diagonal matrix. The true matrix denoted by Qtrue

φ is not diagonal as shown
in Fig. 2. In fact, since the EO comb phases are generated according to (18), the true matrix can
be expressed as Qtrue

φ = 2πTs[∆νL +mrm>r ∆νRF], where mr = [−bM/2c, . . . , bM/2c]>. Now, as
the number of EM iteration is increased, the estimated Qφ approaches the true matrix Qtrue

φ . This
is also indicated by the evolution of LL−(Q) which decreases as the number of EM iterations is
increased. Even though our initial assumption on the initial guess Q(0)φ was wrong, the framework
was still able to converge to the correct Qφ .

Fig. 2. (Numerical) (a) Evolution of the estimated Qφ matrix during the EM learning
algorithm. Each matrix is estimated after the n-th EM iteration. (b) Negative log–likelihood
of the matrix Qφ plotted for every EM iteration number.

Next, we investigate the effectiveness of the framework to perform filtering of the measurement
noise and operate at a wide range of SNRs. We also perform a benchmarking with a conventional
digital phase noise measurement technique, shown in Fig. 3, that does not employ any filtering of
the measurement noise [15]. The approach shown in Fig. 3 employs a bank of bandpass (BP)
digital filters, with bandwidth fBW , to extract different frequency combs lines. Thereafter, for
each filtered line, denoted by imk , a Hilbert transform is applied to recover the corresponding
orthogonal quadrature qm

k . The phase information, per comb line, is estimated by taking the
inverse trigonometric tangent of reconstructed field, i.e. tan−1(imk /q

m
k ). The resulting phase is

processed through an unwrapping function that smooths every phase jump greater than π by
adding multiples of 2π to obtain smoother transitions and to make the phase as a continuous

Fig. 3. Illustration of the conventional method for phase noise estimation of the donwcon-
verted. The resulting phases are denoted as φ1,convk , . . . , φM,conv

k .
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function of the time index. Finally, a linear detrending of the traces will produce the desired
phase noise of the lines φm,conv

k for m = 1, . . . ,M.
In Fig. 4, we compare the accuracy of the conventional and the Bayesian filtering based

approach for estimation of the correlation matrices when varying SNRavg. The true correlation
matrix is denoted by ρtrueφ,T and is depicted in left column in Fig. 4(a). The structure of ρtrueφ,T is
as expected for an EO comb. For the particular case, of the simulated EO comb, it can be seen
that the lines closer to each other have a positive phase correlation, while the distant lines are
anti-correlated.

Fig. 4. (Numerical) (a) True correlation matrices (left) shown together with the the estimated
matrices obtained by the conventional method (center) and the Bayesian filtering method
(right). The true correlation matrix is the same for all the simulations. Each row is a
simulation with different value of average SNRavg, obtained by averaging the SNR per line
over all lines. (b) The RMSE between the true and the estimated phase noise traces, for all
M = 49 comb lines, as function of the SNRavg. The linewidth under consideration is 1 kHz
and 1 MHz.

The estimated matrices obtained by the conventional and the Bayesian method are denoted
by ρconvφ,T and ρBFφ,T , respectively. In Fig. 4(a) these are shown for the SNRavg of 10, 15 and 20
dB. The noise measurement bandwidth is 100 MHz. Figure 4(a) illustrates qualitatively that the
estimated correlation matrices, ρBFφ,T , are very similar to ρtrueφ,T for the considered ranges of SNRavg.
This is not the case for ρconvφ,T . The difference between ρconvφ,T and ρtrueφ,T is especially pronounced
for SNRavg of 15 and 10 dB. The reason for the discrepancy is the inability of the conventional
method to provide accurate phase noise estimation for multiple comb lines.
This is investigated in more details in Fig. 4(b) where the Root Mean Square Error (RMSE),

between the estimated and the true phase noise traces computed for all M = 49 lines, is plotted
as a function of SNRavg. The Bayesian approach has a significantly lower RMSE compared
to the conventional one. This is due to the intrinsic property of the Bayesian filtering to filter
out measurement noise when performing phase noise estimation, a property that is not part
of the conventional phase estimation method. In addition, we also investigated how the Laser
source linewidth ∆νL impacts the system performance. If such linewidth is increased up to 1
MHz, it is possible to notice in Fig. 4(b) an increase in the RMSE. This shows that larger phase
displacements cause performance loss in the phase tracking framework.



Research Article Vol. 28, No. 9 / 27 April 2020 / Optics Express 13958

To investigate the benefits of the proposed framework in greater details, we compute the
variance of the differential phase ∆φm

k = φ
m
k − φ

c
k, where c is the line index of the central line.

For an EO comb, the variance of ∆φm
k is expected to be a quadratic function of the line index

due to line-dependent phase noise generation process, namely σ2
∆φk
= (m − bM/2c)2σ2

RF,k [16].
We consider a relatively high SNRavg of 25 dB, and calculate the variance on the whole signal
duration T .
Figure 5 shows that the variance of the differential phase obtained using Bayesian filtering

practically overlaps with the true one. The differential phase variance obtained using the
conventional approach shows an offset and also an erratic behaviour due to the effects of the
measurement noise. Lowering the SNRavg, results in an even more inaccurate computation of the
differential phase variance using the conventional method.

Fig. 5. (Numerical) Variance of the differential phase, σ2
∆φm

T
, using Bayesian filtering (blue

curve) and a conventional method (black curve). The red curve represents the ground truth.

An insight into the of sources of phase noise and their contributions to individual frequency
comb lines can be obtained by performing the eigenvalue decomposition of the phase noise
correlation matrix. More precisely, the eigenvectors will depict how the sources of phase noise
are contributing to the phase noise of each frequency comb lines. The eigenvalues will be directly
proportional to the variance of the phase noise sources. For the considered case, the CW laser and
the RF oscillator are the main sources of phase noise and therefore only two eigenvalues (λ1, λ2)
and eigenvectors (v1, v2) will be significant. The other M − 2 eigenvalues and the correpsonding
eigenvectors will be close to zero.

The question is now to which phase noise source, the CW laser or the RF oscillator, (λ1, v1) and
(λ2, v2) belong to. It can be shown that, using (18), the contribution from the CW laser will be
equal for all frequency comb lines, while the contribution from RF oscillators will scale linearly
with m. This is exactly what eigenvectors (v1) and (v2) are showing in Fig. 6. We can therefore
conclude that the eigenvalue (λ1) and eigenvector (v1) are associated with the RF oscillator.
Figure 7 shows the evolution of two main eigenvalues as a function of the observation time.

We also plot the evolution of CW laser and RF oscillator phase noise variances. It is observed
that the eigenvalues converge to the phase noise variance of the CW laser and RF oscillator
with a proportionality constant equal to the norm of vector v1 and v2. Since the phase noises of
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Fig. 6. (Numerical) Normalized eigenvectors corresponding to the two principal eigenvalues
for the longest observation time k = T . The eigenvectors are extracted using a conventional,
(Black curve), and a Bayesian filtering, (Blue curve), method. The true eigenvectors that
associated with the CW laser and the RF phase noise are depicted in red.

both laser and RF oscillator are modelled as Wiener processes, the variances increase with the
observation time.

Fig. 7. (Numerical) Evolution of two main eigenvalues as a function of the observation time
(τobs). We also show the evolution of the variance of the CW laser and the RF oscillator
phase noise, σ2

L,τobs and σ
2
RF,τobs , respectively.

For shorter observation times (τobs<10−8s), there is a discrepancy between (λ1, λ2) and
(σ2

RF ‖v1‖
2 ,σ2

L ‖v2‖
2). However, the discrepancy is more significant for (λ1, λ2) obtained using

the conventional phase noise estimation. Even for the Bayesian filtering approach, a relatively
small discrepancy exists. The reason is that it is quite challenging to effectively filter the
measurement noise at such short time–scales. The consequence of this is that there is uncertainty
in phase estimation at shorter time scales and this uncertainty is significantly increased if the
measurement noise is not filtered.
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4. Experimental results

For the experimental validations, a set-up shown in Fig. 1(a) is used [15]. Two EO combs with
line–spacings of 25 GHz and 25.05 GHz, respectively, are employed. It is assumed that the CUT
and LO comb have equal and independent contributions to the overall phase noise and, therefore,
the estimated phase noise covariance needs to be divided by a factor 2 [17].
After the balanced detection and the ADC, the down-converted comb consists of M =49

comb lines, spaced at ∆f = 50 MHz and centred at ∆fRF = 4.5 GHz. The power spectrum
density (PSD) is shown in Fig. 1(b). The sampling frequency and the 3–dB bandwidth of the
real–time sampling scope are Fs = 50 GS/s and 16 GHz, respectively. The number of samples
stored for processing and subsequent phase noise estimation is 12.5 · 106. From the PSD, the
extracted measurement noise variance is σ2

n = 10−3 corresponding to SNRavg = 19.6 dB. The
noise measurement bandwidth is 50 MHz.

In Fig. 8, the estimated phase noise traces of frequency combs lines that have different powers
(SNRs) are plotted. The evolution of the phase noise traces is important for gaining a qualitative
insight into the phase stability and computation of the timing jitter as explained in [7]. We
consider frequency comb lines that have 0 dB and -5 dBm of relative power. The first thing that
should be noted is that the estimated phase noise traces for 0 and -5 dBm are very similar, as
expected, when using the Bayesian filtering approach. This is clearly not the case when using the
conventional method. The estimated phase noise traces using the conventional method show
significantly more erratic behaviour, especially for -5dBm. This erratic behaviour is caused by
the measurement noise.

Fig. 8. (Experimental) Evolution of the estimated phase noise as a function of time using
for comb-lines with different relative powers. (a) Comb line number m = 3 with 0 dBm of
relative power. (b) Comb line number m = 7 with -5 dBm of relative power.

In Fig. 9, we plot the the variance of the differential phase noise defined as: ∆φm
k = φ

m
k − φ

c
k,

where c is the line index of the central line. As an inset, we also show the estimated covariance
matrices. Since the true variance, of the differential phase noise variance, and correlation matrix,
are unknown, a quantitative computation of the error is not feasible. However, we do expect the
variance of the differential phase noise to be a quadratic and smooth function of the line index as
shown by numerical simulations in Fig. 5. Comparing Fig. 9 with the numerical one, a similar
trend is observed. The curve obtained using the conventional phase noise estimation approach is
on top of the curve obtained using Bayesian filtering. According to the numerical simulations,
this is an indication of a bias with respect to the true curve. Moreover, we observe a more erratic
behavior, when using the conventional approach, due to the measurement noise. Additionally, the
erratic behaviour is also present in the correlation matrix estimated by the conventional approach.
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Fig. 9. (Experimental) Variance of the differential phase, σ2
∆φm

T
, using Bayesian filtering

(blue curve) and a conventional method (black curve). (b) estimated correlation matrices.

We can thereby, qualitatively, conclude that more accurate estimation of the differential phase
noise variance and correlation matrix can be obtained using Bayesian filtering.
We also compared the extracted phase noise correlation matrices for different observation

times τobs, which correspond to the Fourier frequencies fobs = 1/τobs. On Fig. 10, the correlation
matrices calculated for both methods are shown for frequencies of fobs = 4 KHz and fobs = 5
GHz. It is possible to notice that in the low frequency regime the comb phases are all positively

Fig. 10. (Experimental) Correlation matrices of the phase noise traces estimated for
different Fourier frequencies. (a) and (c) show the correlation corresponding to fobs = 5
GHz for the conventional and Bayesian filtering framework respectively. (b) and (d) show
the correlation corresponding to fobs = 4 kHz for the conventional and Bayesian filtering
framework respectively.
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correlated, as at low frequency the combination of RF and Laser phase noise is the dominant
source. In the high frequency regime instead, the correlation matrices appear close to diagonal,
indicating that the phase noise of the comb is dominated by uncorrelated shot noise.

Next, we perform eigenvalue decomposition and plot the eigenvectors (v1, v2) in Fig. 11. It is
observed that v1 is constant as a function line index indicating that (v1, λ1) are associated with
the CW laser. The eigenvector v2 exhibits a linear evolution and is thereby associated with the
RF oscillator. The behaviour of v1 and v2 is as expected for an EO comb.

Fig. 11. (Experimental) Normalized eigenvectors corresponding to the two principal
eigenvalues for the longest observation time k = T . The eigenvectors are extracted using a
conventional, (Black curve), and a Bayesian filtering, (Blue curve), method.

In Fig. 12, the eigenvalues λ1 and λ2 are plotted as a function of the observation time, τobs.
The evolution of λ1 and λ2 are proportional to the phase noise variances of the CW laser, σ2

L,k,
and the RF oscillator, σ2

RF,k, respectively. For the simulations, the observation time, τobs, down
to 10−9s was considered, while for are experimental data we are limited to 2 · 10−7s. This is also
one of the reasons why we do not see a big difference between the eigenvalues obtained using the
Bayesian filtering and the conventional approach.

Fig. 12. (Experimental) Evolution of two main eigenvalues as a function of the observation
time τobs.
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For observation times below 10−6s, the evolution of λ2 obtained by the Bayesian filtering
approach is on top of the curve obtained using the conventional phase estimation approach. This
observation is also observed for the numerical simulations, and we therefore tend to conclude
that λ2 obtained by the Bayesian filtering is closer to the true one.

It should be noticed that the evolution of eigenvalues λ1 and λ2, as a function of τobs, is different
compared to the numerical simulation in Fig. 7. This implies that the phase noise statistics of
the CW laser and the RF oscillator employed in the experiment are different compared to the
simulations. An reason for this is likely that the Wiener process is not a good approximation of
the CW laser and RF oscillator phase noise employed in the experiment.
To further investigate the nature of the phase noise processes, we employed the extracted

eigenvectors (v1, v2) to recover the laser and the RF oscillator phase noise from the detected
phases of the comb lines. Let Φ be the matrix of dimension T ×M containing the digitized phase
noise samples of all the comb lines for the whole acquisition time. Using a generalization of
(18), we can write

Φ = φL1:T · v1 + φ
RF
1:T · v2 (19)

where φL1:T , φ
RF
1:T are the sources phase noise vector of dimension T × 1 and v1, v2 are the

corresponding eigenvectors of dimensions 1×M. Exploiting the orthogonality of the eigenvectors,
it is easy to show that the independent sources can be extracted from the whole phase noise matrix
by using φL1:T = Φ · v>1 | |v1 | |

−2 and φRF1:T = Φ · v>2 | |v2 | |
−2. In Fig. 13 we show the power spectral

densities of the Laser and RF oscillator phase noise. As it can be seen from the spectra, these
processes do not correspond to Wiener phase noise, as only the high frequency content follows
the characteristic 1/f 2 power law. It can also be noticed that the Bayesian filtering technique is
able to filter out the measurement noise, affecting the conventional noise characterization at high
frequency.

Fig. 13. (Experimental) Power spectral density of the extracted phase noise traces using
the Eigenvector projection with a conventional method (black curve) and with the Bayesian
filtering framework (blue curve). (a) shows the extracted laser source phase noise and (b)
the RF oscillator phase noise.

5. Conclusions

A Bayesian filtering framework for joint amplitude and phase noise estimation of multiple
frequency comb lines has been proposed and demonstrated for the first time. The framework is
optimum in the mean square error sense, thereby providing the theoretically highest achievable
accuracy. Significant improvements, compared to the state-of-the-art method, in terms of the
accuracy of the estimated phase noise and correlation matrix as well as eigenvalues has been
demonstrated numerically and experimentally. Most importantly, the proposed method provides
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accurate estimates over a wide range of SNRs. This is an important feature, as a wide range of
frequency combs have large variations of SNR per comb lines. In summary, the flexibility and
the optimally can promote the proposed method to become the new reference tool for comb noise
characterization.
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