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ABSTRACT
Joining sequenceoptimization is a combinatorial problem, requiring exten-
sive computational time. The significance of determination of an opti-
mal sequence for improved geometrical quality is substantial. Previously,
genetic algorithms have been studied for defining the optimal sequence.
However, these algorithms are highly dependent on the internal param-
eters, requiring additional computational analysis and thereby extended
evaluation time. In this article, a novel robust stepwise algorithm is intro-
duced to determine the optimal weld sequence. Application of the pro-
posed algorithm leads to drastic time improvements for defining the
optimal weld sequence of each assembly. Three industrial assemblies are
evaluated. Comparison with the previously applied population-based opti-
mization algorithms indicates that the optimization time can be reduced
drastically with the proposed stepwise algorithm. The stepwise algorithm
is intended to be applied in a geometry assurance digital twin, where the
assembly parameters are being optimized for each individual assembly.
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1. Introduction

Controlling the geometrical outcome of manufactured goods is a common challenge within the
manufacturing industry. Today, complex products are designed from several sub-assemblies. These
sub-assemblies often consist of two or more components joined with different joining methods. The
inconsistencies between the geometry of each component during the manufacturing processes result
in part geometrical variation. Assembly process variations are derived from the fixture, material han-
dling, joining, and other interacting processes. The assembly sequence, i.e. the order in which the
parts are mated together, is of importance for the final manufacturing cost and also the assembly
outcome (Bahubalendruni and Biswal 2016, 2018). The process variation, together with the part vari-
ation, are the sources resulting in the non-nominal produced products (Wärmefjord, Carlson, and
Söderberg 2016; Camelio, Hu, and Ceglarek 2003).

To handle the geometrical variation, geometry assurance activities such as locator design, and
matching are performed. To support the decision making during these activities in all the product
realization phases, Söderberg et al. have proposed a virtual geometry assurance process and toolbox
(Söderberg et al. 2016). In this process, joining simulations are performed on the transition between
the concept and verification phase. Later in the production phase, real-time adjustments of assembly
parameters are performed using digital twins (Söderberg et al. 2017).
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Figure 1. Schematic view of a self-compensating assembly line.

For real-time adjustments of the assembly parameters for sheet metal assemblies, a self-
compensating assembly line, or the geometry assurance digital twin, is introduced (Söderberg et
al. 2017). Figure 1 presents the layout of such a concept for an assembly of two parts. Each part is
being scanned, and the deformations are captured (Wärmefjord et al. 2017). Later the parts are being
sorted, classified, and selectively chosen to be assembled (Aderiani et al. 2019). In the assembly cell,
the parts are positioned in the fixture, and the adjustments of the assembly parameters are proposed
by the analysis module. In the analysis module, a Computer-Aided Tolerancing (CAT) tool is inter-
acting with an optimizer. The CAT-tool evaluates the geometrical outcome of the assembly, given the
part deviations from the scanned data. The optimizer uses the outcome of the CAT-tool to propose
improvements for the assembly parameters.

Within the assembly process parameters, the joining process has been shown to have a sig-
nificant effect on the final geometrical outcome of the assembly (Wärmefjord et al. 2016). The
sequence of joining is one of the aspects the importance of which for the final assembly has
been addressed in previous studies (Liao 2005; Tabar, Wärmefjord, and Söderberg 2019; Xie
and Hsieh 2002). Finding the optimal sequence for each assembly using physical experimenta-
tion is economically infeasible. Therefore, numerical simulations are used for this purpose. In
the concept of the presented self-compensating assembly line, an optimal spot welding sequence
needs to be proposed for each individual assembly using numerical simulations. Using CAT-tools
together with FEM calculations to evaluate the outcome of each individual exhaustively for all
possible permutations of sequences requires extensive calculation time (Tabar, Wärmefjord, and
Söderberg 2018). Previous studies have mainly focused on time-dependent Genetic Algorithms
(GAs) to find the optimal sequence (Liao 2005; Xie and Hsieh 2002; Tabar, Wärmefjord, and
Söderberg 2018). These algorithms require adjustments of the algorithm operators for higher effi-
ciency, which makes them unsuitable for application in environments with a limited optimiza-
tion time frame, such as the proposed geometry assurance digital twin concept, see Figure 1.
Even with the optimal algorithm operator parameters, GAs and other population-based algo-
rithms require several assembly deformation evaluations to converge, which again makes them
more time-consuming. Therefore, there is a preeminent need for a rapid algorithm to propose
an optimal spot welding sequence with a lower number of assembly evaluations by the CAT-
tool.
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1.1. Compliant variation simulation

Predicting the geometrical outcome of the assemblies, given the part tolerances, has been real-
ized by CAT-tools. These tools often use transformation matrices to transfer the nominal part, by
rotations and translations, to the allocated tolerance form with different approaches (Hong and
Chang 2002; Zheng et al. 2011; Rao and Wu 2005). The effect of part deviations is often modelled
using Monte Carlo (MC) simulations (Söderberg et al. 2016). For compliant assemblies such as sheet
metals, the parts are bent and deformed during assembly. Therefore, to represent this behaviour, the
Finite Element Method (FEM) is often used for modelling. FEM is used for structural and topology
optimization in several applications (Kuczek 2016; Li et al. 2016).

The Method of Influence Coefficients (MIC) is proposed to evaluate the outcome of sheet metal
assemblies (Liu and Hu 1997). MIC builds linear relationships between part deviation, stiffness
matrix, and assembly deviation. In the geometry assurance digital twin concept presented Figure 1,
the 3D scanned data of the parts are used for part deviations, representing the physical deviated parts.
Using the MIC method, the assembly response to the existing part deviation is retrieved (Söderberg
et al. 2017).

The MIC method has been complemented by a contact modelling algorithm for more accurate
simulation outcomes. During the assembly of the compliant parts, theymay cut through each other in
the adjacent areas virtually. To avoid this behaviour during the simulation, contact points are defined
on the nodes in the adjacent areas. In cases where penetration happens, these contact points apply
negative forces to bring the parts back to their mating condition (Lindau et al. 2016).

Joining operations are included in the assembly model, with the small local deformation assump-
tion (Liu and Hu 1997). Assuming the parts are in their elastic zone during assembly, the local
deformation in the joint is considered to be small and negligible compared to the total assembly
deformation. At the location of the joints, a stiff element is added to the weld nodes, forcing them to
contact and lock them in all degrees of freedom. The simulation of the variation of the spot-welded
assembly taking the sequence into account has been developed by introducing the sensitivity of the
assembly to part deviation (Lorin et al. 2019, 2018).

1.2. Spot weld sequence optimization

Spot welding sequence optimization is about finding the best sequence among all the possible alter-
natives for the objective. The problem is a combinatorial one. By increasing the number of the welds
that are included in the sequence, the number of possible solutions increases drastically, which puts
the problem in the category of NP-hard combinatorial problems.

Several objectives and approaches are considered for this purpose. A neural network approach
has been proposed for finding the optimal path of continuous welding with respect to local shrinkage
of the material (Fukuda and Yoshikawa 1990). A surrogate modelling approach using neural net-
works with an efficient sampling strategy has been introduced for sequence optimization of spot
welds with CAT-tools (Tabar,Wärmefjord, and Söderberg 2020). Huang et al. have proposed a genetic
algorithm for finding the optimal sequence with respect to geometrical displacements (Huang, Hsieh,
and Arora 1997). Other studies have also implemented GAs to optimize the sequences with respect
to deformations (Liao 2005; Xie and Hsieh 2002). Using CAT-tools, general guidelines and strategies
for the welding sequence of sheet metals are proposed for reduced geometrical variation (Wärme-
fjord, Söderberg, and Lindkvist 2010a). Identifying the most important weld points for geometrical
quality, weld point geometry, and their sequence are evaluated using CAT-tools and GAs (Tabar,
Wärmefjord, and Söderberg 2019). Evolutionary algorithms, Ant Colony Optimization (ACO) and
Particle Swarm Optimization (PSO) are implemented and compared on three different assemblies
to reduce geometrical variation (Tabar, Wärmefjord, and Söderberg 2018). Based on the GA, a rule-
based algorithmhas been proposed to find the optimal sequence of welding individualized assemblies
with respect to geometrical deviation (Tabar et al. 2019). In a series of physical tests, it has been
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identified that considering the sequence of weld points in the CAT-tool and compliant variation
simulation with contact modelling increases the accuracy of the simulations (Wärmefjord, Söder-
berg, and Lindkvist 2010b). Considering state-of-the-art variation simulation, see Lorin et al. (2019,
2018), where contact modelling is combined with the MIC approach, optimizing the sequences for
each assembly is time consuming. The rule based approach introduced by Tabar et al. (2019) has been
shown to be more time efficient compared to standard evolutionary algorithms. However, the depen-
dency of these algorithms on the internal parameter settings results in different performance with
different parameters. Identifying the optimal parameter settings for these algorithms adds another
layer of time-consumption to the problem. Therefore, in this article a novel robust algorithm is
proposed for finding the optimal welding sequence, in which the number of evaluations by the CAT-
tool is significantly lower compared to GAs and the previously introduced algorithms. Moreover,
the algorithm does not involve additional internal parameters, making it more robust compared to
previously introduced algorithms.

1.3. Scope of the article

In this article, a novel search algorithmhas been proposed for finding the optimal sequence of welding
using CAT-tools combinedwith contactmodelling. The proposed algorithm is intended to reduce the
number of assembly evaluations by the CAT-tool, and thereby reduce the optimization time. Section 1
provided an introduction to the problem. The rest of the article is structured as follows. Section 2
presents the modelling approach and the proposed optimization algorithm. Section 3 presents three
reference assemblies to be evaluated by the proposed approach. Section 4 evaluates the efficiency of
the proposed algorithm and compares the results with previously applied GA, PSO, a hybrid GA-
PSO, and the rule-based GA. Finally, in Section 5, conclusions are drawn based on the evaluation
presented.

2. Optimization approach

In this section, the assembly modelling approach using the MIC method is presented for retrieving
the assembly deviation. This is followed by the presentation of the proposed algorithm.

2.1. Assemblymodel evaluation

To evaluate the assembly’s geometrical outcome, the CAT-tool RD&T (RD&T Technology AB 2017)
is used. This tool follows the MIC and contact modelling introduced in Section 1.1 to retrieve the
assembly’s response to part deviation and imposed forces during assembly. The following steps are
followed to retrieve the geometrical outcome of the assembly.

(1) Positioning in the fixture and clamping. Considering an assembly, including parts x and y, with
the small strain assumption, the following linear relation holds:

Fx = Kxdx Fy = Kydy, (1)

where Fx and similarly Fy are the forces needed to close the gap between the clamps in the part
fixture. The stiffness matrices for each part areKx andKy. The gaps to be closed in the fixture by
the clamps are represented by dx and dy.With this information, the part deformations are calcu-
lated. A sensitivity matrix S is built based on the response of the assembly to a unit disturbance
of the clamping points. Now, this sensitivity matrix can be used to retrieve the assembly response
to part deviation, when they are positioned in the fixture and clamped:

dc = Sdp, (2)
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where dc is the deformation of the assembly when the clamps are applied in the assembly fix-
ture. The gaps that need to be closed when the deviated parts are positioned in the fixture are
represented by dp.

(2) Joining. The next assembly step is joining. In this step, to model the behaviour of the joints, a stiff
beam is added to the model locking the joint nodes together. The updated stiffness matrix of the
assembly is represented by K j. Then, the forces that are needed to weld the parts together can be
calculated by

Fj = K jdj, (3)

where Fj is the force required to lock the joining nodes together. The displacements in the joining
nodes are represented by dj.

(3) Release from the fixture and springback. The springback, when the assembly is released from the
fixture, can be calculated by

K jdr = −Fc, (4)

where dr is the displacement after the assembly is released from the fixture. Negative forces, equal
to the forces needed to close the clamps, are applied to the assembly. These forces are denoted as
Fc. The final assembly response to the part deviation after joining is calculated by the summation
of the displacements of the part deviations (Equation 1), clamping displacement (Equation 2),
and springback displacements (Equation 4).

During all the stepsmentioned above, a contact algorithm evaluates the assembly to avoid penetration
of the parts virtually, see Section 1.1. The contact forces needed to bring the parts back to theirmating
condition is calculated by

Fm = K jdm, (5)

where the forces needed to bring the parts back to their mating condition is Fm. The penetration
displacement is denoted by dm. To avoid iteration of the contact algorithm and reduce the calculation
time, a new method for building the sensitivity matrices and for retrieving the contact and joining
forces is introduced (Lorin et al. 2019, 2018).

To evaluate the deformation of the assembly after welding in a sequence, the deformation of all
nodes (from the mesh model) of the assembly in the normal direction is calculated. The Root Mean
Square (RMS) of the deformations among all the nodes is considered for minimization between dif-
ferent sequences. The RMS of the deformation of all the nodes is chosen owing to its generic form to
represent the whole assembly. Any other critical measure can also be evaluated for the minimization
of the assembly deviation. Defining di as the deviation of node i of the assembly, i = {1, . . . , k}, then
the RMS of the deviation of the assembly (D) is calculated by

D =
(
1
k

k∑
i=1

di2
)1/2

. (6)

2.2. Problem formulation

With the MIC and contact modelling approach presented above, assembly deviation after joining in
a sequence can be retrieved. The CAT-tool RD&T is used to evaluate the geometrical outcome of the
assembly D (from Equation 6) after spot welding in a sequence.

WithN weld points on the assembly, there areN! possible permutations that need to be evaluated.
Evaluating all the possible sequences to find the best sequence forminimized geometrical deviation of
the assembly is not feasible. The assembly deviation can only be retrieved when all the weld points are
set on the assembly. Therefore, running all the primary and pairwise combinations of the sequence
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elements with a branch and bound approach is not applicable. This is due to the non-cumulative
aspect of the welding sequence, for which the summation of the deformation after each welding step
cannot be considered. To describe this point further, consider an assembly of four weld points. An
array of numbers creates a sequence, and each member of this array is referred to as an element of
the sequence. All the possible alternatives for the first element are {[1], [2], [3], [4]}. At the first level,
the assembly is evaluated with only one weld point with each of these alternatives, and the minimum
assembly deviation is found. Assuming that weld point 4 results in the minimum deviation, in the
second level the assembly is evaluated with alternatives {[4, 1], [4, 2], [4, 3]}. With this approach, since
the deformation cannot be added at each level, and weld point 4 does not get the chance to appear in
other sequence elements, the geometrical deviation of the optimizationwill be outside the boundaries
of the problem.

Previous research (Huang, Hsieh, and Arora 1997; Liao 2005; Tabar, Wärmefjord, and Söder-
berg 2018) provided the GA approach to solve this optimization problem wherein only complete
solutions are evaluated, such as [1, 2, 3, 4] or [4, 2, 3, 1] on the examplewith fourweld points.However,
population-based algorithms like GAs require several evaluations of complete sequences to converge,
which is time-consuming.

In general, the formulation of the problem for an assembly with N weld points can be expressed
as

minimize
D

D(Wi)

subjectto W : {1, . . . ,N} → {N, . . . , 1}, N ∈ N

Wi ⊆W, i ∈ N : 1 ≤ i ≤ |W|
Wi = {ai1, . . . , aij}, aij ∈ N : 1 ≤ j ≤ N

|Wi| = N.

(7)

The problem considersminimizing the RMSof the assembly deviation (D fromEquation 6) among all
possible permutations,W. For an assemblywithN weld points, only complete sequence combinations
of welds 1 to N should be considered to build the permutations. In other words, no sub-sequences
with less than N elements are allowed for evaluation.

2.3. Proposed stepwise algorithm

To increase the efficiency, i.e. save evaluation time, a stepwise algorithm is proposed here.
With the formulation provided in Equation (7), the proposed algorithm suggests evaluation of the

complete sequences, while the optimization is performed stepwise for each element. An algorithm
with N weld points will have N−1 steps at its elementary form. The steps of the algorithm are as
follows.

Step 1

(1.1) Generate all possible complete solutions.
(1.2) Evaluate all possible alternatives of the primary ‘s’ elements of the sequence. The parame-

ter s can be defined as one or more depending on the number of elements in the sequence.
In the example of the assembly with four weld points, if s = 1 the first level is built with
{[1, 2, 3, 4], [2, 1, 3, 4], [3, 1, 2, 4], [4, 1, 2, 3]}. The rest of the elements can be chosen in any arbi-
trary order. To increase the accuracy of the algorithm, these primary elements can be defined
as two, s = 2. In this approach, the initial step starts by generating all the combinations of the
first two elements, [1, 2, 3, 4], [2, 1, 3, 4], [4, 3, 1, 2], [3, 4, 1, 2] and so on.
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(1.3) Find the sequence with minimum deviation (D from Equation 6) among the evaluated
sequences.
For explanation, assume that the sequence [4, 1, 2, 3] results in the minimum D.

(1.4) Set the first element of the sequence equal to the first element of the sequence with minimum
D. From [4, 1, 2, 3], if s = 1 the primary element of the sequence is set to [4], and if s = 2 the
primary elements of the sequence are [4, 1].

Step 2

(2.1) Generate an updated set of solutions with the determined elements. All the possible combina-
tions should be contained in the next element after the decided elements.
f s = 1, the solutions {[4, 1, 2, 3], [4, 2, 1, 3], [4, 3, 1, 2]} are built for evaluation. For s = 2,
{[4, 1, 2, 3], [4, 1, 3, 2]} are created.

(2.2) Evaluate the created solutions.
(2.3) Find the sequence with minimum D.
(2.4) Set the next element according to the sequence with the minimum D.

Steps 3 . . . (N − 1)

(3) Iterate Steps (2.1) to (2.4) until the complete sequence is set.

With this algorithm, the problem is identifying s elements among all possible N alternatives in the
first step, (

N
s

)
,

and (
N − k+ 1

1

)
at the other steps, where k is the step number. Therefore, instead of evaluating N! sequences,

(
N
s

)
s!+

N−s∑
n=2

(
n
1

)
, (8)

sequences need to be evaluated. This number of evaluations for reaching an optimum is considerably
lower than N!. For instance, in s = 1, the multiplication of the elements

∏N
n=2 n turns into the sum-

mation
∑N

n=2 n. For longer sequences, Step 1 can be conducted multiple times, with larger s values
to reach a higher accuracy.

The overall optimization approach is that the stepwise algorithm generates the feasible solutions
and calls the CAT-tool RD&T to evaluate the assembly deviation for each sequence, at each step. The
proposed stepwise algorithm is realized in MATLAB� and the connection to the CAT-tool is built.
Algorithms 1 and 2 are the pseudocodes of the presented stepwise algorithm.

In Algorithm 1, the input of the algorithm is the number of weld points, or joints, N, in the
assembly. The number of primary elements to be considered to generate the first step sequences s,
as mentioned in is Step (1.2), is also an input. The optimal weld sequence and the corresponding
assembly deviation (Equation 6) evaluated by the CAT-tool are the outputs of this algorithm. In the
initialization phase, the required variables are being created. In Step 1, the algorithm calls a function
to create the required sequences at each step. This function is referred to as Generate Step Sequences
(GSS). This function is presented in Algorithm 2, where, based on the number of welds and the step
number and the defined s, the sequences at each step are created. The assembly deviation D of the
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Algorithm 1 Stepwise spot weld sequencing algorithm
Input: N Number of welds in the assembly

s Desired number of primary elements in the sequence
Output: W∗s Optimal weld sequence

D∗ Assembly deviation of the optimal sequence

Initialization
1: Define N
2: Define s
3: Ws← [1 : N], define the sequenceWs
4: l← 0, number of sequences to be evaluated
5: for i = 1 to N − s do
6: l← l+ 1
7: end for
8: l← (N

s
)
s!+ l, calculated number of sequences to be evaluated

9: [Stepall]← [0] l×N+1, pre-define the matrix of all steps

Step 1
10: [Step1]u×v ← GSS (Ws, 1, s), generate Step 1 sequences, see Algorithm 2
11: [Stepall](1:u)×(1:N+1)← Evaluate(Step1), evaluate each sequence in the first step and save the

corresponding assembly deviation D in the (N + 1)th column.
12: [~, y]← Min(Stepall((1 : u), (N + 1)), find the row of the sequence with minimum D.
13: Ws← Stepall(y, (1 : N + 1)), assign the sequence with the minimum D

Main loop
14: for k = s+ 1 to N − 1 do
15: [Stepk]u×v ← GSS(Ws, k, 1), create the step sequence
16: [Stepall](1:u)×(1:N+1)← Evaluate(Stepk), evaluate each sequence in Step k
17: [~, y]← Min(Stepall((1 : u), (N + 1)), find the minimum row
18: Ws← Stepall(y, (1 : N + 1)), assign the sequence
19: end for
20: W∗s ←Ws, assign the last evaluated sequence as the optimum
21: D∗ ← Stepall(l,N + 1), assign the last evaluated assembly deviation as the optimum

generated sequences are evaluated by the CAT-tool RD&T. After all the elements of the sequence are
determined, Algorithm 1 returns the optimal sequence and the corresponding assembly deviation.

3. Reference assemblies

Three automotive sheet metal assemblies are evaluated for optimal welding sequence with the pro-
posed approach. Thematerial in all the assemblies is steel. The elasticmodulus is 210GPa, the density
7800 kg/m3, and the thicknesses of the sheets vary for each assembly. The thicknesses are specified
in the description of each assembly. The assembly models are prepared using the CAT-tool RD&T.
The mesh models of the parts are used in the model. The part deviations are introduced into the
model with the deformed part meshes. The positioning systems of the parts and the assemblies are
introduced to the models. The locations of the welding points are introduced, and contact modelling
is performed on the models. All weld points are functional and locking all the degrees of freedom in
the position of the weld.

Changing the positioning system and the clamping positions results in differentmodel behaviours.
The same applies to changes in thematerial properties. The proposed stepwise algorithm is applicable
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Algorithm 2 GSS, Generate Step Sequences (GSS)
Input: Ws Weld sequence generated at the previous step

k Step number from Algorithm 1
e number of elements, s or one, to be included in the sequence generation

Output: Seq Weld sequence sample

1: [Seq]u×v ← perms(Ws(k, end)), generate all the possible permutations of the not assigned
elements.

2: for i = 1 to u do
3: E← Seq(1, e), assign the primary elements of the sequence
4: if E �= Seq(i, e) then
5: c← i− 1, calculate the interval number, when the corresponding element changes
6: end if
7: end for
8: [z]x×y ← Seq(1 : c : end, :), assign the sequences, without the decided elements
9: d← [0]x×k−1, pre-define the decided elements matrix
10: for j = 1 to k− 1 do
11: d(:, j)←Ws(j), assign the decided elements
12: end for
13: Seq← [d, z], concatenate the decided element to the new step sequences

to all models with different assembly properties and changes to the reference system and clamping
positions.

To compare the evaluation time, each assembly is evaluated using the CAT-tool on a workstation
with a 2.7GHz CPU and 32GB of RAM, and the time is recorded. In the following, the details of each
assembly are presented.

3.1. Assembly I

Assembly I consists of two sheet metal parts joined together with seven weld points. The sheet thick-
ness for Part 1 is 1.6mm and Part 2, 1.2mm. Figure 2(a) shows the CAT model of the assembly. The
position of the weld points and their numbering are depicted. The positioning system and the locking
directions are shown by arrows. Contactmodelling is performed using 154 contact points.With these
model properties, each simulation of assembly deviation, for a specific welding sequence, requires 7.2
seconds on the specified workstation.

3.2. Assembly II

This assembly consists of three sheet metal parts joined together with seven weld points. The sheet
thickness for Part 1 is 0.76mm, Part 2, 0.75mm, and Part 3, 0.8mm. Figure 2(b) shows the CAT
model of this assembly. The positioning system, the weld points with the spheres, and their corre-
sponding numbering are shown. This model is prepared with 62 contact points. This model requires
3.73 seconds to evaluate the assembly deviation for a specific welding sequence, using the CAT-tool.

3.3. Assembly III

This assembly consists of three sheet metal parts joined together with nine weld points. Seven weld
points are set in a sequence {W1, . . . ,W7}. Two weld points, {W8,W9}, are set simultaneously after
the first seven weld points are welded. The model is prepared with 194 contact points. The sheet
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(a) (b) (c)

Figure 2. Three sheet metal reference assemblies. (a) Assembly II, (b) Assembly III.

thicknesses for Parts 1–3 are 0.8mm. Figure 2(c) shows the CAT model of the part. The positioning
system, the weld points, and their corresponding numbering are shown in this figure. With the above
settings, the model requires 12.35 seconds to evaluate the assembly deviation for a specific welding
sequence.

4. Method evaluation

To evaluate the accuracy and time efficiency of the proposed algorithm, and provide a comparison,
an exhaustive search method, the previously applied GA, the PSO described in Tabar, Wärmefjord,
and Söderberg (2018), a hybrid GA-PSO, and a rule-based GA presented in Tabar et al. (2019) are
applied to the three reference assemblies. In the following, descriptions of the applications of these
methods to the problem are presented.

4.1. Exhaustive search

To identify the optimum sequence, and the corresponding assembly deviation (D), as the point of
comparison, all the possible sequences on the three reference assemblies are evaluated using the CAT-
tool RD&T. Table 1 presents the global optimum sequence with the minimum assembly deviation.
The efficiency of the algorithms has been compared with the achieved results, presented in this table.
For Assembly III, there are 60 sequences that result in the minimum RMS of geometrical variation,
while in Assemblies I and II there is a single optimum with several near-optimum sequences. The
sequence presented in Table 1 for Assembly III is one of the 60 sequences and their corresponding
assembly deviations.

Table 1 also presents the single evaluation time for each assembly in seconds. Total evaluation
times to find the sequence with the minimum assembly deviation are also presented in hours. The
total evaluation time is the product of the number of available sequences (7! = 5040) and the single
evaluation time.

Table 1. Optimal sequence, assembly deviation (in millimetres) and evaluation time of the reference assemblies from the exhaus-
tive search.

Assembly Optimal sequence Assembly deviation (D) Single Eval. Time (s) Total Eval. Time (h)

I {1-4-2-5-3-6-7} 0.32 7.2 10.08
II {3-5-7-2-4-6-1} 0.08 3.73 5.22
III {3-4-6-7-2-5-1-(8, 9)}a 0.655 12.35 17.29
a The sequence of welds are represented by the weld numbers, where {W1-W4-W2-W5-W3-W6-W7} is represented by {1-4-2-5-3-
6-7}. In Assembly III, welds W8 and W9 are welded simultaneously at the end of the sequence, represented by (8,9).
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Figure 3. Mean number of function evaluations (NFEs) for different population sizes in 100 trials.

4.2. Genetic algorithm

A standard GA, which has been applied previously to this problem (see Tabar et al. [2019]), is applied
to the three assemblies for comparison. In theGA, a single-point crossoverwith a roulette wheel selec-
tionmethod for selecting the offspring is used. Themutation operator consists of inversion, insertion
and swapping operators. The crossover rate is 0.5 and the mutation rate 0.9. Population sizes 1 to 56
are evaluated. Since, at the maximum, the stepwise algorithm requires 56 evaluations from the CAT-
tool, the GA at population size 56 will have a minimum of 56 evaluations. Thereby, population sizes 1
to 56 are evaluated. At each population size, the GA algorithm is run 100 times to reach the assembly
deviations, mentioned in Table 1, as the ending condition to compare the computational efficiency.
ThemeanNumber of Function Evaluations (NFEs) are depicted in Figure 3 for time comparison. The
required time for each single evaluation (one NFE) for each assembly is reported in Table 1. Using
the GA, to retrieve a sequence with the assembly deviationmentioned in Table 1, Assembly I requires
at least 70.1 NFEs from the CAT-tool. Each NFE is equivalent to one instance when the GA calls
the CAT-tool to evaluate the assembly deviation. Assembly II requires 62.2 NFEs, and Assembly III
requires 107.8 NFEs on average. Using the GA, these evaluation times vary based on the population
sizes that are used in the algorithm. Finding out which population sizes are the most suitable for
each assembly is not known prior to the evaluation of many sequences, which makes the approach
time-consuming.

Moreover, to evaluate the accuracy of the algorithm compared to the stepwise algorithm, GA has
been run 100 times at each population size with the end condition of reaching 56 NFEs. This is equal
to the maximumNFEs that the stepwise algorithm requires to find the optimum for the three assem-
blies. The ranges of the retrieved assembly deviations at each population size in the 100 trials are
depicted in the first row, right column of Figure 4 for Assembly I. The corresponding figures for
Assemblies II and III are presented in the Supplemental data for this article (which can be accessed
at https://doi.org/10.1080/0305215X.2020.1757090). As can be seen, the variability of the retrieved
optimum in all population sizes are high with 56 evaluations. In Assembly I, Figure 4, the error of the
retrieved optimum of assembly deviations can be up to 40% of the global optimum, retrieved from
the exhaustive search (see Table 1). In Assembly II, this error is up to 25%, and in Assembly III, 2.3%.
This means that the GA is not robust at 56 NFEs and fails to provide satisfactory accuracy with this
NFE, or in other words evaluations from the CAT-tool RD&T.

https://doi.org/10.1080/0305215X.2020.1757090
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Figure 4. Mean number of function evaluations (NFEs) (left column) and assembly deviation range (right column) for different
population sizes in 100 trials between the compared algorithms for Assembly I.

4.3. Particle swarm optimization

A particle swarm optimization algorithm has been setup to compare the accuracy and the time con-
sumption to the proposed stepwise algorithm. This type of swarm-based optimization approach has
been a competitor of the GA and previously applied to the problem (Tabar, Wärmefjord, and Söder-
berg 2018). The same analysis as for the GA is performed. The results are presented in the second
row of Figure 4 for Assembly I. PSO requires at least 64 NFEs to reach the optimum in Assembly I.
For Assembly II, 60 NFEs, and 111 NFEs for Assembly III, see the Supplemental data.

The accuracy of the algorithm is also evaluated. For Assembly I, the error is up to 40% of the global
optimum, for Assembly II, 30%, and for Assembly III, 2%.

4.4. Hybrid evolutionary algorithm

A combined GA and PSO hybrid algorithm, referred to as GAPSO, is also applied to the assemblies
for comparison. The number of required NFEs to reach the optimum and the range of the retrieved
optimum with a maximum of 56 evaluations are shown in the third row of Figure 4 for Assembly I.
The minimum number of NFEs using this algorithm is 307 for Assembly I, 216 for Assembly II, and
370 for Assembly III.
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The errors of the method among all population sizes, from the collected ranges of RMS assembly
deviation (D), compared to the exhaustive search result are 57% for Assembly I, 137% for Assembly II
and 8% for Assembly III.

4.5. Rule-based GA

A rule-based GA has been previously applied to the problem and showed improved results compared
to the stand-alone GA (Tabar et al. 2019). This algorithm is also included in the comparison between
the algorithms presented above.

The results of the above evaluations are depicted in the last row of the Figure 4 for Assembly I. For
Assemblies II and III, see the Supplemental data. The minimum average number of NFEs required
to reach the global optimum is 56 for Assembly I, 42 for Assembly II and 21 for Assembly III.

The range of the retrieved optimum by having a maximum of 56 NFEs as the ending condition,
in 100 trials, shows the error among the trials. These errors are up to 2% of the global optimum for
Assembly I, 27% for Assembly II and 1.2% for Assembly III.

4.6. Stepwise algorithm sequence evaluation

To evaluate the sequence of welding in an assembly, the stepwise algorithm suggests deciding the
elements of the sequence based on their position in the sequence array. The first step is to define
the primary elements. As the algorithm states, the first and/or second elements can be chosen as the
primary elements. Figure 5 shows the evaluations of the first elements of the three assemblies and
compares them with the exhaustive search results. The left column represents the stepwise algorithm
with s = 1 in the initialization step. The right column of Figure 5 depicts the initial first step with
all combinations of the primary two elements, s = 2. With this information, the primary elements
of the sequence are determined based on the sequence that results in the minimum RMS geometri-
cal deviation of the assembly (D) in this step. Following the algorithm, in Step 2 the sequences are
updated, and a new set of sequences are generated and evaluated. This process is continued until
all the elements of the sequence are determined. Figure 6 shows the evaluated sequences in each step
until convergence is achieved. Table 2 presents the optimal sequence and the corresponding assembly
deviation obtained using the stepwise algorithm when one element and two elements are evaluated
in the initial step of the algorithm. The algorithm results in the optimum sequence in all cases by
evaluating the primary two elements of the sequence in the initial step, with negligible errors from
the global minimum of assembly deviation. When s = 1, the accuracy of the retrieved convergence
values has been optimal in Assemblies I and II, and near-optimal in Assembly III. Considering that
the stepwise algorithm with s = 1 requires half of the evaluations of s = 2, the convergence values
are accurate. For Assemblies I and II, the first four elements of the sequences are the same as the opti-
mal sequence achieved by the exhaustive search presented in Table 1. While in Assembly III, since
60 sequences result in the minimum assembly deviation, the sequence elements vary between the
exhaustive search and the stepwise algorithm.

4.7. Evaluation time comparison

To compare the evaluation time, the number of times that algorithms call the CAT-tool to evaluate a
sequence is considered. The NFEs for all the compared algorithms (see Sections 4.2 to 4.5) and the
stepwise algorithm are counted. The stepwise algorithm needs a fixed number of evaluations, NFE,
for s = 1 and s = 2. These numbers are presented in Table 3. The GA’s and PSO’s performances are
close to each other, while the hybrid algorithm requires a longer evaluation time to converge.

Using the stepwise algorithm with s = 1 saves 57 to 75% of the evaluation time in the evaluated
assemblies compared to the GA. Considering that the stepwise algorithm results in near-optimal
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Figure 5. First step of the stepwise algorithm with one and two elements compared to the exhaustive search.

Figure 6. Optimization steps using the stepwise algorithm.

results with 27 evaluations, the improvements are drastic compared to theGA, PSO andGAPSO algo-
rithms. When s = 2, 56 evaluations are required to reach the optimum, saving 10 to 48% of the
evaluation time compared to the GA. By increasing the s value, the accuracy of convergence increases;
however, the evaluation time also increases, since a larger set of sequences needs to be evaluated in
the initial step of the algorithm. Having s = n in an N weld-point assembly increases the NFEs to(

N
n

)
n!

Therefore, s = 1, 2 is recommended in the stepwise algorithm. It is shown that the stepwise algorithm
with s = 1 identifies the near-optimal with negligible errors from the global optimum sequence with
the lowest NFEs possible (see Table 3).
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Table 2. Optimal sequence and the assembly deviation (in millimetres) of the refer-
ence assemblies retrieved from the stepwise algorithm with s = 1 and s = 2.

Optimal sequence Assembly deviation (D)

Assembly s = 1 s = 2 s = 1 s = 2

I {1,4,2,5,6,7,3} {1,4,2,6,7,5,3} 0.32 0.32
II {3,5,2,7,4,6,1} {3,5,7,2,4,6,1} 0.08 0.08
III {6,2,1,5,4,3,7,(89)} {3,4,5,2,6,7,1,(89)} 0.667 0.655

Table 3. Evaluation time comparison.

Assembly I Assembly II Assembly III

Algorithm NFEs Time (s) NFEs Time (s) NFEs Time (s)

GA 70.1 504.7 62.2 232 107.8 1331.3
PSO 64 460.8 60 223.8 111 1370.8
Hybrid GAPSO 307 2363.9 216 805.7 370 4569.5
Rule-based 56 403.2 42 156.7 21 259.4
Stepwise (s = 1) 27 194.4 27 100.7 27 333.45
Stepwise (s = 2) 56 403.2 56 208.9 56 691.6

The advantage of the algorithm is that it tends to identify the critical weld points stepwise for
each element of the sequence. This approach takes into consideration the previous weld points of the
sequence element and the weld points after. In other words, the problem turns into the summation
of the combination of possible elements that need to be evaluated, rather than the multiplication of
possible elements. This helps to reduce the evaluation time considerably compared to the previous
GA applications, where the sequences are evolved based on the evaluation of the random sequences
in each population generation. Moreover, the algorithm is free from extra operators and parame-
ters. Therefore there is no requirement for fine tuning prior to the optimization procedure, i.e. of
population size or mutation and/or crossover operators in the GA. This advantage is more tangible
comparing the evaluation time of the stepwise algorithm and the rule-based GA. Although the eval-
uation times are close to each other (as shown in Figure 4), the optimal parameter settings of the
rule-based GA are not known initially, and to find these requires extensive evaluation time.

Unlike the population-based algorithms, the proposed stepwise algorithm requires the same num-
ber of evaluations (NFEs) at each trial. This means that the stepwise algorithm performs the same
steps at any trial, evaluating identical sequences compared between the trials, and converges to the
same optimum. This makes the algorithm more robust and insensitive to parameters compared to
the the evaluated population-based algorithms. Independent of the number of trials of the algorithm
on an assembly, the same computational time is expected. To clarify this point further, the plot of the
number of trials to the number of evaluations (NFEs) for the stepwise algorithmwill be a straight line
for either 27 or 56 NFEs.

The other advantage of the algorithm is that the evaluations in each step are independent of each
other. Therefore, in each step, the evaluations can be performed in parallel. This is similar to the
parallel algorithms, such as parallel GA, where the evaluations are performed in parallel in several
steps.

4.8. Accuracy comparison

The accuracies of the retrieved optimumby different algorithms are compared against each other. The
results of this comparison are shown in Table 4. For each population-based algorithm—GA, PSO and
GAPSO—and the rule-based algorithm, the population size that results in the lowest mean NFEs is
chosen for this comparison.Asmentioned in Sections 4.2 to 4.5, at each population size the algorithms
are run 100 times with a maximum of 56 NFEs. The generation that results in 56 NFEs is considered
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Table 4. Accuracy comparison.

Assembly I Assembly II Assembly III

Algorithm Mean D Range D Mean D Range D Mean D Range D

GA 0.33 0.03 0.08 0.01 0.657 0.012
PSO 0.33 0.10 0.08 0.02 0.657 0.012
Hybrid GAPSO 0.33 0.03 0.08 0.02 0.656 0.007
Rule-based 0.33 0.01 0.08 0.01 0.656 0.005

Stepwise (s = 1) 0.32 0 0.08 0 0.667 0
Stepwise (s = 2) 0.32 0 0.08 0 0.655 0

in the reported results. The mean and the range of the retrieved optimal assembly deviation (D) over
100 trials at the population size with the minimum NFEs is reported in Table 4 for each algorithm.
All the population-based algorithms—GA, PSO and GAPSO—and the rule-based algorithm involve
inaccuracies in the retrieved optimal value. It is worth mentioning, once more, that to retrieve the
population size that results in the minimum NFEs for these algorithms, extensive evaluations are
performed over population sizes 1 to 56, with 100 trials at each population size.

For Assembly I, all the population-based algorithms fail to retrieve the global optimum, while GA,
PSO and the hybrid GAPSO lie in the higher ranges from the optimum compared to the rule-based
algorithm. However, the stepwise algorithm identifies the optimum without any errors compared to
the exhaustive search results reported in Table 1. Since at any trial the stepwise algorithm performs
the same steps, the retrieved optimum is always the same. Therefore, the stepwise algorithm involves
zero range in the retrieved optimum (see Table 4).

The same comparison applies to Assemblies II and III, where the population-based algorithms
GA, PSO andGAPSO, and the rule-based algorithm, fail to retrieve the global optimum, having larger
ranges from it in 100 trials. While the stepwise algorithm finds the global optimum at s = 2 for all
the assemblies.

The stepwise algorithm is more robust, insensitive to parameters, and results in the same accuracy
at any trial, while the population-based algorithms are shown to be sensitive to the internal parameters
and to result in different optimum values at any trial and any population size.

5. Conclusion

A rapid stepwise algorithm for optimization of the spot welding sequence with respect to the geomet-
rical deviation of the assembly is proposed. The proposed stepwise optimization algorithm is applied
to three sheet metal assemblies. The accuracy of the algorithm is compared to an exhaustive search
performed on all the assemblies, and also four other population-based algorithms—GA, PSO and
GAPSO—and a rule-based GA. The evaluation times of the algorithms to reach to the optimum are
also compared. The results show that the presented stepwise algorithm results in an accurate optimal
geometrical deviation of the assembly while requiring considerably lower, up to 75%, evaluation time
compared to the population-based algorithms. The algorithm is parallelizable and does not require
internal operators. This aspect makes the algorithm require no fine tuning of the parameters, lead-
ing to less preparation time. By a comparison performed between the stepwise algorithm and other
population-based algorithms, it is shown that the stepwise algorithm is more robust, insensitive to
parameters, and results in identical and accurate optima on each trial. Thereby, the algorithm is specif-
ically well suited to the presented self-compensating assembly line, where a sequence is proposed for
each individual assembly rapidly to improve the geometrical quality.

Future research includes developing a sensitivity analysis approach based on the presented opti-
mization method to identify the critical areas to be improved by an optimal sequence. Accurate
identification of the essential weld points for geometrical quality, known as geometry weld points, is
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also within the scope of future research. Application of the proposed sequence optimization approach
to other assembly aspects, such as clamping sequences, also lies within the scope of future research.
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