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Abstract

Surface acoustic waves (SAWs) are mechanical vibrations that propagate on the surface of
solids while dissipating little power, consequently enabling them to propagate freely over
long distances. The speed and wavelength of SAWs are reduced five orders of magnitude
compared to when light is used as a carrier at gigahertz frequencies. The unique prop-
erties of SAWs combined with the possibility to let them interact with artificial atoms,
discovered and shown for the very first time in the appended Paper I of this thesis, open
up for exploration of new regimes of quantum physics. The appended Paper II is a book
chapter providing an overview of many of the new areas of research, as well as going into
depth of the method and significance of the results of the appended Paper I.

The essential interaction between artificial atoms and SAWs was further investigated
by using Autler-Townes splitting to achieve fast control of the interactions. The appended
Paper IV, shows a transmitted field extinction of 80 %, and provides proof of concept
for a SAW router in the quantum regime. In addition, due to the artificial atom’s highly
frequency dependent coupling to SAWs, electromagnetically induced transparency (EIT)
could be observed in the appended Paper V. Furthermore, the EIT region was distin-
guished from the Autler-Townes splitting region by a threshold in the applied power.
The results produce parallel findings to quantum optics, but are perhaps best described
as part of a different field, quantum acoustics.

Among the many possible areas of research emerging as an outcome of this work, a
variety of potential quantum experiments would benefit greatly from a higher conversion
efficiency between electric signals and SAWs. Due to this, focus was put on improving
this conversion efficiency by studying superconducting unidirectional transducers (UDTs),
making use of advances in classical SAW devices. The appended Paper III shows that
99.4 % of the acoustic power can be focused in a desired direction and that the conversion
between electric signals and SAWs is greatly improved by using UDTs, thereby eliminat-
ing the largest source of loss of standard symmetric inter-digital transducers. There is,
however, a trade-off between conversion efficiency and bandwidth. This finding allows
tailoring of quantum experiments based on SAWs that may pave the way towards further
investigating quantum sound.

Keywords: Surface acoustic wave, interdigital transducer, unidirectional transducer,
quantum acoustics, superconducting circuits, artificial atom, qubit, phonon, phonon
router, Electromagnetically Induced Transparency
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Chapter

Introduction

Every day sound is used as a communication tool. People can hear your voice because
the pressure in your lungs vibrates your vocal cords, and this creates sound. Sound
propagates in air as vibrations of pressure and density, quantities that oscillate in both
time and space. The science of sound is called acoustics and sound propagates as acoustic
waves through medium such as gas, liquid or solid.

Although the word acoustic is derived from the Greek word akouein with the meaning
“to hear” [1], humans can only hear acoustic waves that have frequencies in the range
between 20 Hz and 20 kHz. This is a very small part of the acoustic spectrum, which
also includes ultrasound (sound at frequencies above human hearing) and infrasound
(sound at frequencies below human hearing). In this thesis we focus on a small part
of the ultrasound spectrum; acoustics at gigahertz frequencies and we use acoustics to
communicate in the quantum regime by combining two fields of science; acoustics and
quantum optics. The combined fields might be better described as a different field,
quantum acoustics, where we study how acoustic waves interact with artificial atoms and
in many ways mimic quantum optics by the usage of superconducting circuits and where
we combine quantum theory with acoustic theory.

1.1 Acoustics - a very brief historic background

Acoustics has been studied for several millennia. Already in ancient Greece, in 6th
century BC, acoustics was studied with the incentive to understand music. Allegedly,
Aristotle described sound as compression and rarefactions of air in the 4th century BC,
and in Rome, around 20 BC, acoustics was used to build theaters with good acoustic
properties [1]. Since the scientific revolution started in the 16th century, the understand-
ing of acoustics, its mathematical description and possible applications have advanced
rapidly. One of the most famous acoustic inventions is Bell’s electric speech machine (the
telephone) from the 19th century, which formed the 20th century’s society.

Another discovery of the 19th century, which is of great importance for this thesis,
is Rayleigh’s prediction and description of the first type of surface acoustic wave (SAW)
[2,3]. An acoustic wave that travels near the surface of an elastic solid, named Rayleigh
wave. This type of wave can be observed at large scales in for instance earthquakes, where
they cause a lot of destruction because they can be both large and propagate far due to
their low propagation loss. Rayleigh waves can also be observed at small scales where
they are used for, for instance, SAW-filters and sensors [2,3]. However, the practical use
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of SAWs relied on later discoveries such as the piezoelectric effect and the interdigital
transducer.

The piezoelectric effect was discovered by Jacques and Pierre Curie in the early 20th
century [1]. They found that applying an electric field over plates of certain natural
crystals, such as quartz, changed the thickness of the crystal. Today, quartz crystals are
widely used for regulating oscillator frequencies [3].

From the discovery of the piezoelectric effect, the first transducer emerged, which was
used to generate acoustic waves in the sea in the ultrasound frequency range [3]. The
driving force was to use these transducers for sound navigation and ranging (sonar) in
submarines to detect mines during and after World War I [1]. Sonar is still used for
military applications, but also to study the ocean and marine life, and a similar type of
ultrasonic imaging is used for medicine diagnostics, for instance, to observe features in
organs or to monitor real-time movements of heart valves.

During the 20th century several sub-disciplines to acoustics developed such as un-
derwater acoustics and bioacoustics (including medical imaging), both mentioned above.
Advances were also made within arts (music, communication and psychology), earth sci-
ence (seismic waves and sound in the atmosphere), engineering (architecture, electrical,
chemical and mechanical acoustics such as shock, vibration and noise) and fundamental
(physics) acoustics.

Although the field of acoustics, its applications and several sub-disciplines continued
evolving rapidly during the 20th century, it was not until the late part of that century
that SAWs could be generated and detected efficiently. It was a key starting point when
the interdigital transducer (IDT) was introduced by White and Voltmer in 1965 [4]. Af-
ter this, many different designs followed and since they can be incorporated in electric
circuits, they are used in a diversity of applications [3]. The possibility to design an IDT
originates from the advances in radio frequency and microwave engineering, which devel-
oped during the wireless and electronics technology revolution driven by the invention
of the MOSFET (metal-oxide-semiconductor field-effect transistor) using semiconductor
technology. The MOSFET was the first transistor that could be made compact, miniatur-
ized and mass-produced and it is the basis of modern electronics [5]. It enabled for scaling
down computers from taking up an entire room to exist on small IC chip and is part of
the digital communication technology. The scalability of the MOSFET lead microwave
engineering to nanoelectronics. These advances in engineering are used in various fields
such as acoustics, quantum optics and quantum acoustics, and provide the essence of the
fabrication techniques used to build the devices in this thesis (see Chapter 4).

1.2 Quantum optics - a very brief historic background

In the field of quantum optics [6], physical properties are studied by letting light (i.e.
electromagnetic waves) interact with matter in the quantum regime. This means that
their physical properties need to be described by quantum mechanics. In contrast to
classical mechanics where entities exist in a specific place at a specific time, entities in
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quantum mechanics may exist in several places with different probabilities; they have a
certain probability of being at a certain point and other probabilities of being at other
points. In addition, many quantities are restricted to discrete values (quantization) and
behave as both particles and waves where the accuracy of predicting a value of a quantity
is limited by the uncertainty principle. By approximating quantum mechanics, many
theories in classical physics can be derived.

Light has been studied since ancient times [7], for instance by using mirrors and
lenses, and during the 17th and 18th century light was discussed to be of either particle
or wave nature in classical physics. A famous experiment that was thought to prove the
wave nature of light is the double-slit experiment by Young performed in the beginning
of the 19th century. However, this experiment actually demonstrates the principle of
wave-particle duality. Wave-particle duality means that light is neither only a particle
nor only a wave, but have certain properties of both. In Young’s experiment, a coherent
light source is aimed towards a plate with two parallel slits and the light passing the slits
is observed on a screen behind it. The light passing the two slits interfere and produces
bright and dark regions on the screen, which is due to the wave nature of light and would
not appear if light would simply be particles. On the other hand, light is absorbed at
the screen at discrete points, featuring the particle nature of light, and the density of the
interference pattern represents the number of particles hitting that point on the screen.

Later experiments show that if one detects what slit the particle passes through, the
interference pattern is not formed. This is an example of the concept of wave-particle
duality. It states that all quantum objects (including electrons and particles with larger
mass) exhibit both wave and particle nature, but depending on how it is measured it
shows either wave or particle character.

The discussion about light as particles or waves continued into the beginning of the
20th century. Max Planck studied patterns of black body radiation and described that the
energy was radiated and absorbed in discrete energy packages (“quanta”). Albert Einstein
further developed this idea with the photoelectric effect, in which certain materials eject
electrons when illuminated with light of particular wavelengths. In this way light could
be described as a particle (later known as a photon), with a discrete amount of energy
that depends on the frequency of the wave nature of the light. Niels Bohr showed that
their description of quantization of light corresponded to his theory of quantized energy
levels of atoms, which Einstein expanded on to explain the absorption and emission of
energy by atoms [7].

In this framework a physical property, such as the electromagnetic field or the prop-
erties of an atom, can be quantized and then they can only take certain discrete values.
For instance, an electron in an atom can only exist at certain energy levels. When the
atom interacts with light, it can get excited, 7.e. an electron in the atom moves from one
energy level to a higher one. After a while, the electron relaxes back to the lower energy
level and the atom emits a single quantum, later known as a photon in the case of light
and a phonon in the case of sound.

During the years 1924-1926, central parts of the theory of quantum mechanics were
established. De Broglie postulated that all matter has wave properties and Heisenberg,
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Schrodinger and Dirac developed the theoretical foundations of quantum mechanics that
is still used today [7]. During this time, quantum optics also started concerning the
quantum nature of light in addition to the more commonly studied light interacting with
matter. These two branches within quantum optics differ concerning what is described as
quantized. Previously light interacting with matter was solely described semi-classically,
where the light field was considered classical and the matter was quantized. To describe
quantization of light, or more generally electromagnetic fields, quantum electrodynamics
(QED) is required, which was developed during this time.

Electromagnetic fields also include light that we cannot see, for instance radio fre-
quency waves and microwaves. The advances in radio frequency and microwave engineer-
ing have benefited several other research fields, as mentioned in the previous chapter,
and it has also enabled for combining different types of systems. Microwaves can be
generated using semiconductor electronics and when this is done to study quantized elec-
tromagnetic fields in electronic circuits; it is called circuit-QED [8,9]. Circuit-QED is of
special interest for this thesis, where we use superconducting circuits to study quantum
physics using acoustic waves.

At the end of the 1960s, it was possible to let atoms interact with electromagnetic
fields confined in resonators and put atoms close to mirrors [7], and thus changing the
interaction strength dramatically [10-12]. This was later referred to as cavity quantum
electrodynamics (cavity QED) [13-15], in which atoms (or other quantum systems such
as photons and ions) can be confined in optical and microwave cavities [16] and let
them interact with single modes of a confined electromagnetic field. This interaction
has reversible transition dynamics (Jaynes-Cummings model [17]) where the atom can
exchange excitations with the field coherently until the coherence is lost. Using cavity-
QED, strong coupling between the atom and the field could be achieved in both the
optical [18,19] and the microwave domain [20].

Many advances in the optical domain has been performed using a LASER (Light
Amplification by Stimulated Emission of Radiation). The LASER is a classical device,
introduced and demonstrated around the 1960s [21], which emits coherent light. This
allows for a diversity of quantum experiments such as studying self-induced transparency,
resonant interactions and the dynamics of single atoms interacting with both propagating
light and light in cavities [7]. LASERs are also used for laser cooling [22, 23], control of
individual quantum systems, buildup of interference at the single photon level, harmonic
generation and parametric down-conversion [24,25]. In addition to the many uses in
quantum optics, LASERs are used in applications such as lithography (used as part of
the device fabrication, see Chapter 4), laser pointers, fiber-optics, laser surgery and much
more.

The advances in quantum optics combined with information processing, are basic
concepts for quantum cryptography and quantum computation. Instead of classical bits
(0 or 1), a quantum computer is based on quantum mechanical two-level systems (qubits).
A qubit can be built by using a quantum system such that only two energy levels are used
and the other energy levels can be disregarded. Unlike classical bits, each qubit can exist
in coherent superpositions of 0 and 1. By making arbitrary operations on a single qubit
(single qubit gates) or by coupling two different qubits (two qubit gates) controllably,
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universal quantum computing can be made. Such computations are performed using
unitary transformations acting on all states of superposition simultaneously. This enables
for a high degree of parallelism that can increase the computational speed exponentially.

The possibility to transfer a quantum superposition to another type of quantum sys-
tem was shown for a trapped ion, where the quantum superposition of its electronic
states was transferred to a quantum superposition of vibrational modes of the trap [26].
If another ion shares these vibrational modes, the superposition can be transferred to
it [27] and hence the quantum superposition can be transferred from one ion to another.
However, the quantum state changes when it is measured directly. An example of this
can be found in the double slit experiment, where the interference pattern is lacking
due to the photon detection at each slit. In 2012, Serge Haroche and David Wineland
were awarded The Nobel Prize in Physics for enabling measurements and manipulation
of single ions [28,29] and photon states [28, 30, 31] without destroying these quantum
systems.

As part of this type of research, there is also quantum entanglement, quantum tele-
portation and quantum encryption. A quantum mechanical system is entangled if the
quantum state of each particle or group of particles in the system cannot be described
independently of the states of the other constituents in the system. Quantum entangle-
ment can occur over large distances and is used for quantum teleportation. In quantum
teleportation, quantum information such as the state of an atom or photon can be trans-
mitted from one location to another, which have shared quantum entanglement. The
information can be shared if coherence is not lost. A practical use of quantum telepor-
tation is secure communication with quantum encryption, in which it is impossible to
detect the quantum information without changing the quantum system.

In addition to the applications, the increased control in isolating, manipulating and
measuring individual quantum systems has given more possibilities to studying funda-
mental quantum physics phenomena. In parallel with the many possibilities with natural
atoms, ions and photons there are also other systems that are used for studying quantum
electrodynamics and using them for applications such as quantum computation. These
are systems such as quantum dots [32], nitrogen-vacancy centers in diamond [33], rare-
earth ions in crystals [34] and the most important ones for this thesis, superconducting
circuits (see Chapter 2).

In superconducting circuits, the non-linearity is obtained using superconducting arti-
ficial atoms that come in various forms with different specifications. For instance, there
is the Cooper-pair box [35,36], the transmon [37], the flux qubit [38,39] and the phase
qubit [40] among the many types of superconducting artificial atoms. Since superconduct-
ing circuits can be designed and fabricated with lithography processes to suit a certain
experiment, they make it possible to study some unique physical phenomena and also
combine them with different types of quantum systems such as acoustic waves used in
this thesis and described in the following section.
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1.3 Quantum acoustics

In quantum acoustics, the interaction between matter and sound (or acoustic waves) is
studied in the quantum regime. In contrast to classical acoustics and similar to quantum
optics, physical properties in quantum acoustics require a quantum mechanical descrip-
tion. A quantum of sound is the minimum amount of mechanical vibration involved in
an interaction and it is called a phonon, which is an analogue to the photon in quantum
optics.

Typical mechanical systems in the quantum regime consist of micro-scale mechani-
cal beams and drums that are cooled down to such low temperatures that the thermal
excitations of the mechanical vibrations are frozen out [41-44]. Mechanically oscillat-
ing systems can interact with electromagnetic waves in both the optical [45,46] and the
microwave domain [46-48|, and are studied in the field of optomechanics. The coupling
between these mechanical systems and electromagnetic waves is linear, but they can be
designed to interact with superconducting artificial atoms [42] and in this way it has been
possible create non-classical states [43]. It has also been shown that the same supercon-
ducting artificial atom can be coupled to both an electromagnetic microwave cavity and
a micromechanical resonator [44].

In addition to coupling to superconducting artificial atoms, the versatility of mechan-
ical oscillators enables for interaction with different types of quantum systems, such as
nitrogen-vacancy defect centers in diamond [49-51] and quantum-dots [52]. Moreover,
mechanical oscillators are quantized in vibrational states and motional entanglement has
been shown between the vibrational states of two trapped ions separated by 0.24 mm [53],
of two diamonds spatially separated by 15 mm at room temperature [54], between two
massive micromechanical oscillators separated 600 pum [55] and between a macroscopic
mechanical oscillator and a propagating electric signal [56]. The possibility to entan-
gle a quantum state has also been demonstrated in a system using two nanomechanical
oscillators on two different chips separated by 20 cm [57].

By scaling these types of systems, it might be possible to transfer quantum informa-
tion over large distances in quantum networks, which in turn could be integrated with
optomechanical devices to transfer quantum information between the optical and the mi-
crowave domain and be part of a future quantum internet [57,58]. Using the possibility to
transfer quantum information between different types of systems, the benefits from each
system can be harvested while opting the drawbacks. Combining different quantum sys-
tems requires the coupling between them to be sufficiently strong to not lose coherence.
An example where such strong coupling has been achieved is in optomechanical crystals,
which are artificially made cavity structures for both optical photons and phonons [59].

The systems mentioned above are bound to the eigenmodes of certain structures,
but there are also propagating mechanical vibrations that can be used in the field of
quantum acoustics. For instance, SAWs, which propagate on the surface of solids with
low dissipation. Such waves are widely used in classical applications (see Section 1.1),
but they have also proven to be useful for cell manipulation [60,61] and rapid mixing of
very small amounts of fluids in life science [62,63], as liquid [64] and gas sensors [65] as



1.3 Quantum acoustics 7

well as for studying fundamental quantum effects with possibilities for future quantum
applications. An overview of the present state of research using SAWs is presented in
Ref. [66], which maps interdisciplinary research using a range of devices from nano- up
to macroscopic scale.

Classical SAWs have been proposed to transport quantum information by being car-
riers of quantum particles in the form of electrons and holes in semiconductors [67],
by manipulating and carry different types of excitations [68-70] and for charge carrier
modulation in graphene [71,72]. In semiconductor systems, SAWs have been used for ab-
sorption in double quantum dots [73] and phonon assisted tunneling [74]. Furthermore,
SAWs in semiconductor systems have been used to transport single electrons on demand
several times between two quantum dots separated by 3-4 pm [75,76], to transport co-
herent spins though quantum dots [77] and to transport spin information between two
quantum dots separated by 4 um [78]. SAWSs have also been used to carry single electrons
to regions with holes to form excitations that decay into streams of single photons [79].
These types of systems provide possibilities to manipulate quantum information in flight
due to the slow speed of the SAWs, transport information over large distances due to
the low dissipation and transfer information between different types of quantum systems
(e.g. electrons and photons).

In contrast to systems where classical SAWs are used to carry quantum particles,
the quantum nature of propagating SAWs can be studied using much lower powers and
by letting them interact with superconducting artificial atoms. That is the quantum
mechanical system described and demonstrated in this thesis, with the ultimate goal of
measuring and controlling quantum sound.

The interaction between SAWs and superconducting artificial atoms was experimen-
tally shown for the first time in the appended Paper I in 2014. This work shows that
propagating SAWs can interact in the quantum regime using superconducting circuits.

Later experiments demonstrated that such artificial atoms can also be placed inside
SAW resonators [80-85] (initial work [86, 87] covered in the appended Paper II), and
this confine the acoustic modes similar to the previously mentioned mechanical systems.
There are also resonators where bulk acoustic waves (BAWs) are used instead of SAWs. In
the BAW system, the artificial atom was placed on sapphire, a commonly used substrate
in quantum optics, with only a thin layer of piezoelectric material under parts of the
artificial atom [88]. With clever engineering, it should be possible to implement a similar
solution in both SAW resonator and propagating SAW systems. Nonetheless, advances in
quantum control, for instance superposition of states, have been showed using both a SAW
resonator [84] and a BAW resonator [88]. SAW resonators have also been demonstrated
to interact with spins in nitrogen-vacancy defect centers [89], and SAWs can be combined
with optomechanical resonators to drive coherent oscillations [90,91].

The advances in quantum acoustics and quantum optics have opened up new pos-
sibilities in a joint SAW and quantum research field. An advantage using SAWs and
BAWs is that well-established methods from quantum optics can be used together with
the unique properties of acoustic waves. SAWs’ five order of magnitude slower speed than
light makes their wavelength at microwave frequencies comparable to the wavelengths of
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optical light. This combined with the fact that many of the piezoelectric materials used
for SAWs are also used in optics, raises the potential to connect microwave circuit QED
with optical wavelength systems using SAW [92]. Building such hybrid systems to utilize
the benefits and avoid the drawbacks present in different quantum research fields is of
great interest [93,94] and a universal theoretical platform has been developed to link a
wide range of artificial atoms [95].

There are many possibilities with artificial atoms, and they can even reach regimes
that are not possible with natural atoms. An example of this is the superconducting
artificial atom in the appended Paper I, which is twenty times larger than the wavelength
of the field it interacts with and could easily have been made larger. Such as system
cannot be treated as a point-like source, unlike known cases of both artificial and natural
atoms interacting with light. The large artificial atom couples to SAWs in many points
separated wavelengths apart and has a frequency-dependent coupling due to interference
effects caused by the many coupling points [96] (summarized in the appended Paper
IT). The work in the appended Paper I and in Ref. [96] has led to both theoretical
predictions [97,98] and experimental demonstrations of giant atoms [99], which are hard
to demonstrate in other types of architectures.

There are also experiments where the slow speed of the propagating SAWs can be ben-
eficial, for instance in in-flight manipulation of propagating carriers of quantum informa-
tion. A first demonstration of time control of the scattering properties SAWs interacting
with an artificial atom can be found in the appended Paper IV where the artificial atom
is used as a router of propagating SAWs. In this experiment, a strong electromagnetic
drive was used to change the energy levels of the artificial atom such that its interaction
with the propagating SAWs was manipulated. For a weaker drive, the same device could
be used to demonstrate Electromagnetically Induced Transparency in the acoustic field
and distinguish it from Autler-Townes splitting by finding the threshold between these
two regimes, which is shown in the appended Paper V.

Although there are many physical phenomena that are easier to study with super-
conducting artificial atoms than with natural atoms, there are also experiments that are
more difficult to perform. One example is the detection of single propagating photons or
phonons. In quantum optics, radiation can be characterized by the correlation of emitted
photons in time using single photon detectors [100,101]. These do not exist commercially
for microwave photons since microwaves have several orders of magnitude lower energy.
Instead, the temporal correlation is made from measurements of the amplitude of the
field [102-106]. To conduct a similar experiment with propagating SAW phonons, a more
efficient conversion between electric microwave signals and SAWs would be beneficial.

The improvement of this conversion has been studied extensively in classical SAW
devices ever since the generation and detection of them was possible with the interdigital
transducer (IDT) [107] on piezoelectric materials. Different types of materials, origins
of losses and transducer types have been studied and characterized [2,3,108-110]. The
transducers are engineered in several ways to suit various application; among those are
the unidirectional transducers (UDTs) [3,111]. UDTs have lower losses than IDTs because
they can focus the SAWs in one direction rather than emitting them symmetrically in
both directions, as happens in IDTs. Both UDTs and other types of transducers have
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been investigated for gigahertz frequencies [112], following the increasing frequencies used
for telecommunications, and some experiments have utilized higher harmonics [113]. Al-
though, it has been shown that the loss of the transducers reduces dramatically when they
are superconducting [114], most of the studies with SAWs have been done at room tem-
perature. Superconducting UDTs and IDTs are studied and compared in the appended
Paper IIT and [115] to improve the conversion efficiency between electric microwave signals
and SAWs in the quantum regime.

By increasing the electric/SAW conversion, the coupling between the artificial atom
and SAWs is also increased. For such systems, the artificial atom no longer acts as
an antenna emitting SAWs, which one would expect, but as its own cavity [116]. In
such a system, an excitation can be emitted and absorbed several times before it leaves
the artificial atom. This further shows an interesting regime that can be reached in
the field of quantum acoustics, where both experimental and theoretical efforts strive to
investigate fundamental quantum phenomena as well as possible quantum applications
using acoustic and hybrid systems. The combined efforts in a diversity of fields have
already made several advances and the work described in this thesis is part of this effort.

1.4 Outline of the thesis

This chapter has aimed to give a very brief overview of acoustics and quantum optics,
and describe some of the advances made in quantum acoustics. The introduction will
be followed by two theory chapters; Chapter 2 about quantum optics focusing on super-
conductivity, quantization of electric circuits and artificial atoms and Chapter 3 about
acoustics focusing on surface acoustic waves, their generation and detection using super-
conducting circuits and their interaction with superconducting artificial atoms.

The fabrication and measurement of the devices used in the appended papers, is
covered in Chapter 4 and the results are introduced in Chapter 5. This is followed by
a summary and discussion of the thesis and the appended papers together with future
possibilities for experiments with propagating SAW phonons in Chapter 6.






Chapter

Superconductivity

Certain metals become superconducting when cooled down below certain temperatures
[117]. In the superconducting state the electrical resistance is zero, permitting a current
to flow without dissipation, and magnetic fields are expelled from the interior of the
material. This is known as the Meissner effect.

In a superconductor the electrons near the Fermi surface are paired into Cooper
pairs [118], generally due to weak attractive interaction mediated by the vibrating lattice.
The Cooper pairs have bosonic properties, instead of fermionic as single electrons have,
and form a condensate. In BCS theory, superconductivity is a macroscopic effect of this
condensation. Breaking up a pair into single electrons costs energy and changes the
energy of the entire condensate. The result is an energy gap between the ground state
and the lowest excited state of the superconductor. At zero temperature all electrons in
the superconductor are paired, but at finite temperature some electrons are not paired.

2.1 Superconducting circuit quantization

Superconductors can be used in electric circuits for quantum experiments. These circuits
contain a huge number of atoms, but at low enough temperatures their low energy per-
formance can exhibit quantum behavior. A quantum mechanical system is described by
the time dependent Schrodinger equation

H|U(t)) = z’haatblf(t», (2.1)

where H is the Hamiltonian representing the total energy of the system, |W(t)) is the
state vector of the quantum system at time ¢ and A = h/27, h being Planck’s constant.

A property of the quantum mechanical system, for instance momentum or position, is
represented by an operator A. By applying the operator to the state vector of the system,
the property represented by the operator can be obtained. In the Schrodinger picture
operators are time-independent while the state vectors |W(t)) are time-dependent and
obey the Schrodinger equation in Eq. (2.1). However, the time evolution of a quantum
system can be described in both the Schrodinger picture and the Heisenberg picture
[119]. In the Heisenberg picture the operators are instead time-dependent and obey the
Heisenberg equation

ih0,A(t) = [A, H] = AH — HA, (2.2)
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while the state vectors |W) are time-independent. Both these pictures equivalently de-
scribes the time evolution of pure states.

If the system is a statistical ensemble of states |¥;) with a probability w; for the
system to be in that state, we can introduce a density operator p = >; w;|¥;)(¥;| to
describe the system. The time evolution of p is given by the Liouville-von Neumann
equation

ihdwp = [H, p] (2:3)

which is equivalent to Eq. (2.1) for a pure state [119]. Given p, the expectation value
of system operators and their time evolution can be calculated from (A) = Tr(Ap) and
0i(A) = Tr(Adp), respectively. Eq. (2.1), (2.2) and (2.3) are valid for closed systems, and
can be used as good approximations for systems where the influence of the surroundings
are negligible.

In order to understand the dynamics of the system, in either of these pictures, the
Hamiltonian should be determined. A systematic way is to go from a classical description
of an electric circuit to quantum description by quantizing the circuit using the lumped
element approximation. We will start by describing the approximation steps, then quan-
tize a classical linear LC resonant circuit and finally describe nonlinear elements necessary
for building superconducting artificial atoms, using the same steps in the approximation.

The first step in this approximation is to choose generalized coordinates. Generalized
coordinates are an independent set of variables that can be obtained by identifying the
nodes of the circuit and assigning a coordinate to each node. Since we are mostly inter-
ested in describing circuits containing nonlinear elements, it turns out that choosing flux
nodes

2,(0)= [ ; Vi ()t (2.4)

as generalized coordinates is convenient. Here V,, is the voltage at node n, which also is
the branch voltage across the element if it is connected to ground.

The second step is to write down the Lagrangian £, which is equal to the difference
between the kinetic energy and the potential energy of the circuit. Using the node fluxes
as generalized coordinates the Hamiltonian becomes

H=Y" aaqfobn ~ L, (2.5)

where @, is the time derivative of the flux at node n and % are the generalized momenta
equal to the node charges @),,. The node charges

t
Qult) = [ Lt (2.6)
with I,, being the current going into node n.

The third step is the step where we go from the classical to a quantum mechanical
description. In this step the generalized coordinates and momenta are promoted to
operators which obey the canonical commutation relation

n

lq)”’ ap] = ifi6 . (2.7)
b
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—C L Figure 2.1:  Circuit
diagram of an LC res-
onator, with a capaci-
tance C' and an induc-

—_—— tor L. The flux node is
marked with ®.

Here 6,,, is the Kronecker delta.Using this recipe, we can quantize any electrical circuit.

2.1.1 LC resonator

The LC resonator consists of a capacitor and an inductor and its circuit diagram is shown
in Figure 2.1. The capacitor has two conductors separated by an insulator and it stores
energy in the electric field between the two conductors when a voltage is applied. The
energy of a capacitor

cv? 092

E
C 9 9 )

(2.8)

where & = (I)l — (I)Q.

The inductor is a coil storing energy in the magnetic field while a current flows through
it. The voltage drop over an inductor V' = LI, where I is the time derivative of the current
and the energy of an inductor is

oL (VY w o)

2 9 L | 2L

In the Lagrangian, terms with ® represents kinetic energy and terms with ® represents
potential energy. Since the Lagrangian is the difference between the kinetic and potential
energy, the Lagrangian for the capacitor and the inductor become

2

Lo = O;I’ (2.10)
@2

Ly == 57 (2.11)

In the LC resonator the energy oscillates between electric energy in the capacitor and
magnetic energy in the inductor and hence the Lagrangian for the LC resonator is
co? @2

2 2L

Lic= (2.12)
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Figure 2.2: The energy spec- <
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From the Lagrangian and using Eq. (2.5), we derive the Hamiltonian

(2.13)

: P2 P2 H2 P2 L
HLC:C(DQ_(C )_C o cv? o L

5 Ta9n)T 2 ToarT o Tt

This Hamiltonian is analogous to a mechanical harmonic oscillator. If we replace L with
the mass m, [ with the velocity v = &, 1/C with the spring constant k for a mass-
spring system and CV with the position z, we get the Hamiltonian H = mi?/2 + kx?/2.
This Hamiltonian describes the total energy of a classical mass-spring system where

the resonant frequency f = 2m\/k/m. For the LC resonator the resonant frequency is
f=2n/VLC.

The Hamiltonian for the LC resonator in Eq. (2.13) is so far classical. By promoting
the charge and flux coordinates to quantum operators obeying the commutation relation
in Eq. (2.7), the LC resonator can be described quantum mechanically. The charge can
be measured as the number of Cooper pairs at the node n = —@Q/2e (marked with ® in
Figure 2.1) and the phase difference across the inductor can be defined as ¢ = 27® /P,
where &, = h/2e is the superconducting magnetic flux quantum. Then the quantum
mechanical Hamiltonian for the LC resonator becomes

Hpo = 4Ecn? + E2ng52. (2.14)
Here Ec = ¢2/2C is the charging energy required to move an electron of a Cooper pair to
the node in Figure 2.1 and Ep = (®y/27)?/L is the inductive energy. This Hamiltonian
is a quantum harmonic oscillator and is identical to the one for a particle in a one-
dimensional quadratic potential. The second term describing the potential energy is
quadratic and it produces the shape of the potential in Figure 2.2. The discrete energy
levels in Figure 2.2 are equidistantly spaced and corresponds to the eigenenergies for an
infinite number of eigenstates |k), k = 0, 1, 2..., as the solution to the Schrodinger Eq. (2.1)
for Hyc. The spacing between the energy levels is hf, where f = \/8E,E¢/h = 21 /v/LC
is the resonant frequency of the quantum harmonic oscillator [120].

Since the energy levels are equidistantly spaced in the quantum harmonic oscillator,
it is difficult to address certain energy levels separately. For instance a signal applied
to drive the quantum harmonic oscillator from its ground state |0) to the first excited
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state |1) may also excite higher energy levels and then we do not know in which state
the quantum harmonic oscillator is. In order to drive transitions without exciting higher
energy levels, the spacing of the energy levels should be non-equidistant so that the
transitions can be addressed individually. To design such a system, we need to introduce
nonlinearity to the system to create a quantum anharmonic oscillator. A common way
to do this is by replacing the inductor with a Josephson junction.

2.1.2 Josephson junctions

A Josephson junction has two superconductors interrupted by a weak link, for instance a
thin barrier of insulating material or normal metal or a section where the superconduc-
tivity is weakened. In 1962, Josephson predicted that Cooper pairs can tunnel through
this weak link, resulting in a supercurrent

Is(t) = Iosin (1) (2.15)

even at zero voltage across the junction [121]. The critical current o = 7A/(2eRy) is the
maximum value of the supercurrent that can flow through the junction without resistance.
It is limited by the choice of the normal resistance Ry of the two SQUID barriers. A
is the BCS superconducting energy gap and it is 200 ueV for thin film aluminum, which
has a critical temperature of ~1.3 K. If the current exceeds I, quasiparticles can tunnel
and the junction becomes resistive. ¢ is the phase difference between the wave functions
of the superconductors separated by the weak link and e is the elementary charge.

For a voltage across the junction, the phase difference evolves in time according to

do(t) 26V _2m

i =V W=5.ve, (2.16)

where @ is the magnetic flux quantum [121]. Using Eq. (2.15) to express d¢/dt Eq. (2.16)
can be rewritten to

) 1 dls(t)
~ 2nlccosg(t) dt

V(t) (2.17)

Comparing this to the classical expression for an inductor (V = LdI/dt), the Josephson
junction can be modeled as a nonlinear inductor

D 1

B S oo

(2.18)

Further, if Eq. (2.16) and Eq. (2.4) are compared, the phase difference across the
junction can be expressed in terms of flux:

¢ =2mP/Dy. (2.19)

Thus, the Josephson junction can be covered by the Lagrangian description. The energy
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(]. — COS ¢) = EJ,maX(l — COS ¢),
(2.20)

where Ejnax is the Josephson energy of the junction. Since we are using flux nodes as
generalized coordinates, F; corresponds to a potential term in the Lagrangian.

So far, the description has been of an ideal Josephson junction. However, a real
Josephson junction has capacitive properties as well and can be modeled as a nonlinear
inductance in parallel with a capacitance C; (see Figure 2.3). Using the Lagrangian for
a capacitor in Eq. (2.10) and the energy for the nonlinear inductor in Eq. (2.20), the
Lagrangian for the Josephson junction is

ers

Ly 5

— Ejmax(1 — cos ¢). (2.21)
The second term describing the nonlinear inductor is a cosine function instead of the
quadratic function as in Eq. (2.11) for a classical inductor. Circuits with classical in-
ductors and capacitors can only produce harmonic LC-oscillators, whereas circuits with
Josephson junctions can be used to build anharmonic oscillators such as artificial atoms.
The key element for building these anharmonic level structures is the nonlinearity pro-
vided by the cosine function.

2.1.3 Superconducting Quantum Interference Devices

If one or more Josephson junctions are placed in a superconducting loop, it will be
possible apply an external magnetic field to thread a flux @, through the loop to change
the Josephson energy. This type of circuit element is called a Superconducting Quantum
Interference Device (SQUID) and is often used in superconducting artificial atoms because
of its tunability. The type of SQUID used in this thesis has two Josephson junctions, see
Figure 2.4, and is the so-called DC SQUID.
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Figure 2.4: Circuit diagram
of a DC SQUID: a supercon-
Ejn.Cn E;;,Cjp ducting loop interrupted by
two Josephson junctions. Each
Josephson junction has a ca-
pacitance Cj; and Josephson
—_— energy FEj;, for ¢ = 1,2. The
flux node is marked with ®.

The SQUID is described by the Schrodinger equation (Eq. (2.1)), where the state
vector W is the complex order parameter introduced in Ginzburg-Landau theory such
that the local density of the superconducting electrons is described by |¥?|. The order
parameter must be single valued, which for a SQUID leads to fluxoid quantization [117].
This means that when completing the loop the phase of the condensate can only change
with multiples of 27 and the flux is quantized in multiples of ®,. For the DC SQUID
this results in

(I)ext + (I)ind + @1 - <I>2 == n(IJO, (222)

using Eq. (2.19), the phase difference across the two junctions 27®, /¢y and 27w, /o,
the external magnetic flux through the loop ®.,; and the flux induced by a circulating
current ®;,q4 in the loop inductance. Note that the flux across the two junctions have
different signs due to the circulating current in the two branches of the loop. For a small
loop ®;,q can be neglected. The integer n is set by the number of flux quanta in the loop,
which depends on the external magnetic flux according to

]- q)ext 1
- < < —. 2.23
5 < o, ~"t3 (2.23)

% (q)ext - nq)O) (224)
+ 1 (Do — ) . (2.25)

Assuming a symmetric SQUID, the two Josephson junctions have the same capaci-
tance and the same Josephson energy (Cj; = Cjs = Cy and Ej; = Ej5 = Ej). Then the
Lagrangian becomes

Cy (@1 + &3 2 2
Lsqum = (122> + EJmaz <COS T "+ cos o 2) =
0 0 (2.26)
. Doy 27
= C;P? + 2E ] jyax |COS 7Tc1>0 *l cos ;O

using Eq. (2.24) and (2.25) and dropping the constant terms since they do not affect the
dynamics of the SQUID. If this Lagrangian is compared to the Lagrangian in Eq. (2.21),
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the symmetric DC SQUID behaves like a single Josephson junction with a capacitance
of 2C'; and a tunable Josephson energy

7T(I)ext

COS
Do

EJ(CI)ext) - 2E'J,max

(2.27)

As seen in Eq. (2.18), the Josephson junction acts as a nonlinear inductor. Similarly, the
SQUID acts as a nonlinear inductor with

h
 2elg| cos(TPey /Do)’

Lj(Pext) (2.28)

which can be tuned using an external magnetic flux. The tunability is important in many
applications, such as for superconducting artificial atoms used in this thesis work.

2.2 Superconducting artificial atoms

Artificial atoms can be made in superconducting circuits as small circuits designed to
have an atom-like energy structure. They can exhibit quantum behavior if the temper-
ature is low enough and they can be made to interact with electric microwave signals
on chip. This version of quantum optics is known as cavity QED if the interaction is
with superconducting cavities [8,13], or waveguide QED in the interaction is in open
transmission lines [122-125].

A superconducting artificial atom is based on a nonlinear element, such as a Joseph-
son junction or a SQUID, together with traditional linear circuit elements, such as a
capacitance. The nonlinear element causes the energy levels of the artificial atom to be
separated non-equidistantly, essentially perturbing the equal spacing of the energy levels
for a simple harmonic oscillator. (Compare the quantum harmonic oscillator in Figure 2.2
to the quantum anharmonic oscillator in Figure 2.5.) The transitions between these en-
ergy states define the frequencies at which the artificial atom can absorb and re-emit
electromagnetic or acoustic energy (see Chapter 3.6), i.e. get excited by or emit photons
or phonons. If a SQUID is used as the nonlinear element, these transition frequencies
can be tuned in situ using an external magnetic flux. If the transition between the two
lowest energy levels can be addressed separately from higher energy levels, the artificial
atom can be used as a quantum-bit (qubit) to store and process quantum information.
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2.2.1 The Cooper Pair Box

Figure 2.5: The energy spectrum of a quan-
tum anharmonic oscillator is discrete and the
shape of the potential is a cosine function
(blue line). Due to this potential the energy
levels (black lines) are non-equidistantly sepa-
rated such that the transition frequencies are
different. Depending on if the anharmonicity
is negative or positive, the separation between
the energy levels either decreases such that
hfor > hfia > hfaz > ... as in the figure or
increases such that hfo1 < hfia < hfaz < ...
(not shown in the figure).

There are several ways to design superconducting artificial atoms. In this thesis we have
used the transmon [37], which is a variant of the Cooper Pair Box (CPB) [126, 127].
The circuit diagram of a CPB can be seen in 2.6 where a small superconducting island
(at the node ®) is coupled to a superconducting reservoir via a Josephson junction.
In Figure 2.6 the Josephson junction is exchanged with a SQUID to produce a tunable
Josephson energy E;(®ext) (see Eq. (2.27)). The Josephson junctions allows Cooper pairs
to tunnel onto and off the island from the reservoir and charge the island. These charges
can be induced by a voltage source via a gate capacitance Cj.

L,

E;.Cp

Figure 2.6: Circuit diagram of a Cooper Pair
Box (CPB). The number of Cooper pairs on
the superconducting island (node ®) can be
adjusted using a voltage source V;, capacitively
coupled via Cj to the island. Here the island is
coupled to ground via a SQUID, which enables
tuning of the Josephson energy by changing
the external magnetic flux through the SQUID
loop.

The Lagrangian for the circuit in Figure 2.6 can be found using Eq. (2.4), (2.10) and
(2.26) (for the SQUID, if one Josephson is used use Eq. (2.21) instead). The Lagrangian

Cy Cy

Lcpg = — (‘I) - Vg)2 + Lsquip = =~ (‘I) - Vq)Q

2 2

Cy . 27 d
+ L2 4 Ej(®ext) cos il

2.2
5 o, (%)



20 Superconductivity

where C'; = 2C' is the collective capacitance of both Josephson junctions in the SQUID
and @ is the flux at the island node. Inserting Lcopp in Eq. (2.5), the Hamiltonian becomes

c,+Cy. c,v? 27 d
Hepp = SRR 1 Ey(®ey) cos — (2.30)
2 2 D,
which can be rewritten to
(Q +CyVy)?
Hepp = ————F5 — Ej(Pex : 2.31
CPB Q(C’g n CJ) J( t) cos ¢ ( )

where constant term (C’ng2 /2) is neglected since it does not depend on @) and the node

charge
OLcpB

0

Q= = (C, +C))d - C,V,. (2.32)
The island charge is measured in number of Cooper pairs on the island n = —Q/2e
and the number of Cooper pairs induced by the voltage source is given by n, = C,V/2e.
Defining the charging energy Ec = ¢?/2Cy, for Cx. = C, + C; as the total capacitance,

the Hamiltonian is
Hepp = 4Ec(n — ny)? — Ej(Pext) cos ¢. (2.33)

In the same way as the third step in Section 2.1, we promote ® and () to operators,
obeying the canonical commutation relation in Eq. (2.7). This implies [n, ¢] = i and using
Baker-Hausdorf lemma, [119] it can be rewritten as [e'?, n] = €. Then e*¢|n) = [n 1),
where |n) is the charge eigenbasis of the Cooper pair operator n and counts the number
of Cooper pairs. The Hamiltonian can then be projected onto the charge eigenbasis using

cos ¢ = (€ + ¢719) /2,

Hepg =) <4Ec(n ~ny)?n){n| — E](;{%)a)

n

(In — 1)(n| + |n + 1><n|)> L (2.34)

From Hcpp the energy level structure of the CPB can be divided in two different regimes;
the charge regime when E; < E¢ and the phase regime when E; > FE¢. In the charge
regime, the energy spectrum is highly dependent on n,. Although V, can be applied such
that n, = 0.5 separating the two lowest energy levels well from higher energy levels and
the CPB can be used as a qubit, n, can change when unwanted charges are induced by
noise from the environment. This changes the energy spectrum. In this way, the CPB is
sensitive to charge noise. In order to decrease the effect of charges from the environment,
E;/E¢ is increased and the dependence of n, decreases. This is the phase regime and
operating the CPB in this regime, it is known as a transmon.
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2.2.2 The transmon

A transmon is operated in the phase regime where E; > Es and the energy levels are
much less affected by n,. A common way to reduce E¢ is to add a capacitance C shunting
the SQUID (see Figure 2.7). For increased E;/Ec the energy level structure becomes
less anharmonic. Anharmonicity is needed in order to address certain transitions between
energy levels separately, which is necessary in order to use the transmon as a qubit.

J_ C Figure 2.7: Circuit diagram of
Tq) I a Transmon: a Cooper pair box
with an additional shunt capac-
itance (Cs) such that it is less

sensitive to charge noise. The
Vo superconducting island (node ®)

is coupled to ground via a capac-

itively shunted SQUID, which

enables tuning of the Josephson

energy by changing the exter-
—1_ nal magnetic flux through the
-_ _ SQUID loop.

En.Cn Ep.Cpr ==C;

Since F¢ is decreased more charge states need to be accounted for and the charge
eigenbasis is no longer sufficient. Using n = —id/0¢ we can express n in the phase
eigenbasis instead. Then the Hamiltonian in Eq. (2.33) becomes

2
Hr =4FE¢ <_288¢ - ng> — Ej(Pext) cos ¢, (2.35)

which is used in HrV,,(¢) = E,,V,,(¢) where U,,(¢) are eigenstates expressed in the
phase basis and E,, are the energy levels.

In Section 2.1 we saw that contributions from capacitors can be viewed as kinetic
energy and contributions from inductors can be viewed as potential energy. Using the
same argument, Fo can be viewed as kinetic energy and E; as potential energy. Since
E¢c < Ej the potential energy dominates and cos ¢ can be approximated with its Taylor
expansion around zero, cos ¢ ~ 1 — ¢?/2 + ®*/24 — .... The leading term in the Taylor
expansion is a quadratic term and, without the other terms, this will produce the har-
monic oscillator described in Section 2.1.1. Therefore, we can treat this as a perturbation
from the exact harmonic solution and then the energy levels of the transmon can be
approximated with

1\ E
En~ —E;+\/8E,Ec (m + 2) - TQC (6m? +6m +3) . (2.36)

for m = {0,1,2,...} [37]. From this, we can get the anharmonicity

a = (E2 - El) - (El - Eo) = E2 + E(] - 2E1 = _EC- (237)
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which is small compared to the energy transitions

hfmitm = Emi1 — Em = \/8E,E¢c — Ec(m + 1) (2.38)

since Fc < F;. Although the anharmonicity of the transmon is limited, it is sufficiently
large to use the transmon as a qubit. Thus, the transmon is and has been frequently
used in superconducting circuits to study various quantum phenomena as well as systems
towards realizing a quantum computer [9,120, 128, 129].

The transmon and the Cooper pair box are just two of many types of superconducting
structures used for quantum experiments. An advantage using superconducting circuits
is the possibility to design and fabricate them with lithography processes to suit certain
experiments. In this way it possible to pinpoint unique physical phenomena to study and
also to combine different types of quantum systems, for instance coupling superconducting
qubits to mechanical systems to study quantum acoustics [9] which is the focus of this
thesis.

2.3 Interaction between an atom and a propagating
field

As described in Section 2.2 superconducting artificial atoms can be designed to interact
with electric microwave signals, either with certain modes in a cavity or with a propagat-
ing field in an open transmission line (TL). In this thesis we focus on propagating fields
and this section describes interaction between a propagating field and an artificial atom,
following the derivation in Ref. [130] and [131], with the aim to obtain the reflection and
transmission coefficients. These coefficients will be obtained for an atom considered as
a two-level system in a propagating electromagnetic field in the Section 2.3.3 and for a
three-level system interacting with two electromagnetic fields in the Section 2.4.

Electromagnetic waves propagate in a TL or a waveguide. For on-chip superconduct-
ing circuits the TL is commonly a coplanar waveguide (CPW) [132] consisting of a center
conductor in between two ground planes.

The TL is typically longer than the wavelength of the field, and consequently it cannot
be described by a single lumped element as previous circuit elements. In order to use the
lumped element approximation in Section 2.1, the TL is divided into small parts with
length Ax such that the field in each part is approximately constant (see Figure 2.8).

For a transmission line with inductance Ly and capacitance Cy per unit length, the
Lagrangian can be written as

_ A:UCOCi)i ((bn—&-l _ (I)n)2 _ Qi (cbn-i-l _ (I)n)2
Lo =2 ( 2 2AzL, ) 2 2AzCy  2AzL, (2.39)

n n

using the conjugate momenta (node charge) @, = AzCy®,, and the coordinates (flux
nodes) ®,,.
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Figure 2.8: Circuit diagram of a transmon in an open transmission line. The shunt capacitance
is included in C'y and the transmon couples to the transmission line via the coupling capacitance
C..

If we let the propagating field in the TL interact with the transmon described in
Section 2.2.2, we can assign node indices n < 0 to the TL on the left of the transmon and
n > 0 to the TL on the right side of the transmon (see Figure 2.8). The transmon has
node index J and is coupled to the TL at node index n = 0 through the capacitance C.
and Josephson energy E;. Thus, using Eq. (2.39) and (2.29) with @y = C, <<I>0 — <I>J)

Q= (C.+Cy) d; — C.9,, the Lagrangian for the system

((I)n-‘rl ((I)n—l - (I)n)2
2€(I>J

(Qo+Qy)? Qo
20 20

(2.40)

+ + Ej(Pey) coOs

where the conjugate momenta (),, to the flux nodes ®,, fulfill the canonical commutation
relations [®,,, Q] = i1hdn, and [@,, @,,] = [Qn, @] = 0. From the Lagrangian we obtain
the Hamiltonian

B Qr Z (P — D), (Qo+Qy)° Qo 2ed;
H_g;OQAxC’O +Z ohil, T ag, Tag ~Brees—m, o (241

describing the combined system where the transmon interacts with an open TL.

The time evolution of the @), and ®,, operators can be expressed by the Heisenberg’s
equation of motion for operators in Eq. (2.2) [130,131]. Using the canonical commutation
relations above, we obtain

Qn -1 = Qq)n + (I)nJrl

o

d, = fi 2.42 = 2.42

0, AeC, or n # 0, (2.42a)  0,Qn Aol (2.42d)
QO + QJ QO (I)_l — 2(130 + (I)l

Oy = — 2.42 = )
8t 0 CJ + Cc ( b) E)tQO A{L‘LO (2 426)
b, — Q@ (2420)  9,Qy = —Ey 2 sin 227 (2.42f)

C'J h OJ
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2.3.1 The continuum limit

In the continuum limit Az — dz and we choose the coordinate x such that the transmon
is located at x = 0. Then ®,(t) becomes a flux field ®(¢,z) and @, (t)/Az becomes a
charge density field Q(¢,z) for z # 0. ®(t,z) and Q(t,z) are canonical field operators
and satisfy the equal-time commutation relation [®(t, z), Q(t,2")] = ihd(x — 2').

Away from the transmon (z # 0), the continuum equations of motion corresponding
to Eq. (2.42a) and (2.42d) can be obtained by letting Az — 0~ for n < 0 and Az — 0F
for n > 0. Then

Q(t, x)
Co

02®(t, )

atq)(tv JZ) = L[) )

and 0 Q(t,x) = (2.43)

which can be combined into the massless Klein-Gordon equation in one spatial dimension

[130,131]. Assuming plane waves, the solutions for right- (—) and left-propagating (<)
parts of the field away from x = 0 can be written as

hZ, L
<— —z(wt:Fk:w:(:) 2\t i(wtFkex)

“(tx)=4— ym / + (a;)'e ) (2.44a)
hZz, L

“(t,z) = =iy 0/ dw\/_ =milwiFhor) _ (azj)TeZ(“ﬁFk‘”’:)) , (2.44b)

where a7 and (a7 )" are the bosonic creation and annihilation operators for right- and
left-moving plane waves with frequency w.

These operators obey the canonical commutation relations [a., (a})'] = [a$, (a$)T] =
S(w—w') and [af, (a7)T] = [a5,a] = 0 [130,131]. The wavenumber k,, is expressed in

terms of frequency and the dispersion relation follows w = wgk,,, where vy = 1/y/LoCy

is the speed of the propagating fields in the TL. Zy = /Lo/Cy is the characteristic
impedance of the TL.

At z = 0 the flux field is continuous, and consequently ®, = ®(¢,0) (not to be
confused with the flux quantum). However, the node at n = 0 has a finite capacitance
C., implying that the spatial derivative of the flux field does not have to be continuous
at = 0 [131]. In the continuum limit at x = 0 Eq. (2.42¢) becomes

0, ®(t,0%) + 0, ®(¢,07)  9(P(t,01) = d7(¢,07) + &7 (£,07) — D (¢,07))

Ly a Zo :

(2.45)

using the relation 9,9 (z,t) = Fvy 0,97 (x,t) for x < 0 and 9,97 (1, 1) = dvy 10,07 (z, 1)
for £ > 0 from Eq. (2.44). ®(¢,07) is the total flux field equal to the sum of incoming
®7(t,07) and outgoing flux field ®*(¢,07) for Az — 0~. Similarly ®(¢,07) is the total
flux field equal to the sum of incoming ® (¢,0%) and outgoing flux field & (¢,07) for
Ax — 0T, &g = P(¢,0) = ®(t,07) = (¢,07), since the flux field is continuous at x = 0.
Thus, Eq (2.45) can be rewritten to

Qo = —

8, B (£, 0) — 9, (¢, 0)
Zo

0,Qo = , (2.46)
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where ®™(¢,0) and ®°"*(¢,0) are the incoming and outgoing fields from both sides at
xz=0.

Now the equations of motion in the continuum limit can be expressed by Eq. 2.42b,
2.42¢, 2.42f, 2.43 and 2.45 and the Hamiltonian can be written as

_ [ Q@) 1 (00(t2)\" | (Q+Q,)° , @ 2e®,
H—/ 2Co d:v+2L0/ o dzr + 5C, —I—QCC Ejcos - . (2.47)

In this way the TL is modeled as a bath of harmonic oscillators, with an interaction
point to the transmon at x = 0. This is an example of an open quantum system, where
the interaction between the system (the transmon) and the surroundings (the TL) is not
negligible. The surrounding environment is often called a bath and usually contains many
degrees of freedom, which are impossible to describe exactly. The total density operator
prot(t) for the combined system and bath satisfies the Liouville-von Neumann equation
in Eq. 2.3 in the Schrodinger picture [133]. However, for these open quantum systems
the total density operator cannot be described simply. Instead, the time evolution of the
system can be described with a reduced density operator psys(t) = Trpath(Pros(t))-

The reduced density operator effectively evolves according to a master equation, where
the interaction with the bath is included but the bath degrees of freedom are traced
out. In some cases, such as for the transmon in the open TL, the interaction with the
environment is of great interest [130]. Then the master equation is used together with
input-output equations [133].

In the following paragraphs, some steps and necessary approximations will be pre-
sented briefly. The derivations to find the master equation and the input-output equa-
tions can be found in Ref. [133] and Ref [134]. These are used to find the reflection
and transmission coefficients, first, for a two-level system interacting with one field, and
second, for a three-level system interacting with two fields.

2.3.2 Time evolution of an atom interacting with a transmission
line

In order to find the quantum optical master equation, the Hamiltonian describing the total
system is required to be on a form that can be divided into three parts; Hgy describing
the transmon, Hj, describing the interaction between the transmon and the TL and
Hy.in describing the TL. This is, however, not straightforward for the total Hamiltonian
in Eq. 2.47 since it contains terms with ()y. Either, approximations need to be made to
go from the total Hamiltonian in Eq. (2.47) to a Hamiltonian on the required form as is
done in Ref. [131] or the equations of motion need to be approximated such that they
can be recognized as the quantum Langevin equations as is done in Ref. [130].

In a similar way as in Ref. [130], the time integral is taken over Eq. (2.46) such that
ZoQo = @™ (t,0) — ®°"(£,0). From this, using Qg from Eq. (2.42b), an expression for the
outgoing flux field is obtained

ZyC, C.Cy

PO (t,0) = P(t,0) + ——=Q,; — Z
(7) (7)+OC_|_CJQJ

[ — mn out
OGO 0) + 8L 0)). (248)
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The last term in this expression can be neglected if the frequencies of ®™ and the transmon
dynamics (@) are much lower than (C. + C)/ZyC.C; [130]. Thus, the final equations
of motion are given by Eq. (2.42f) and

QJ + 20 at(I)m + ZoczatQJ
C.+Cy

These equations of motion can be written on the form of the quantum Langevin equations,
since both @ ; and @ fulfill equation (3.1.11) in section 3.2 in Ref. [133] using X = —Q).
Furthermore, the approximated Eq. (2.48) corresponds to the input-output relation [130].
From these identifications, it can be assumed that a Hamiltonian for the field, the system
and the interaction can be found as separate Hamiltonians.

0®; =

(2.49)

Using either way of approximating the total system (as in Ref. [131] or Ref. [130])
such that it can be described by a Hamiltonian on the form Hio = Hgys + Hing + Hpatn,
Eq. 2.3 in the Schrédinger picture can be transformed into the interaction picture where
arbitrary operators are given by

Aint(t) — 6%(Hsys+Hbath)tA6_%(Hsys+Hbath)t (250)

and the time evolution is governed by the interaction Hamiltonian. From here on, an
operator in the interaction picture will be marked with superscript “int”.

By writing the density operator in the interaction picture and tracing out the bath,
an equation for psy(t) can be found using the following assumptions:

e The system and the bath are uncorrelated at time ¢t = 0.
e The interaction is weak, such that Hj, < Hgys, Hpath-

e The bath is large compared to the system, meaning that the state of the bath does
not change significantly by the interaction.

By just using these assumptions, the time evolution of the system density operator in the
interaction picture depends on its state at all earlier times. To remove this dependence
and turn it into a differential equation, we further assume that it is sufficient to know
pis(to) at one point in time to to obtain plht(t) for all ¢t > t,. This is known as the
Markov approximation and it is motivated by assuming that the interaction Hamiltonian
can be rewritten as a product of system and bath operators; Hiy = Agys ® Apagn. Then
each term in the equation for plit(t) will contain a function of the form f(t —t) =
Trpatn (Abatn (1) Abath (t) pparn) [134]. If pIt(t) is approximately constant during the decay
time of the this function, the Markov approximation is valid. This can be interpreted as
a bath without memory of interactions with the system, and if the system changes the

bath this change will have decayed before it can affect the system at a later time.

Using these approximations the differential equation

Q) =~ [ Tovaa ([HE), (B~ 1), ) @ pran]]) - (251)

is obtained [133,134], which is the Born-Markov master equation. From this, specific
master equations can be derived by inserting appropriate forms of Hgys and Hijy.
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2.3.3 Interaction between a two-level atom and a propagating
field

In order insert appropriate forms of Hyys and Hiy, and continue following the derivation
of the master equation describing the transmon interacting with an open TL in Ref. [130,
133], we want to consider the transmon as a two-level system interacting weakly with the
bath (TL). This is possible if the incoming coherent signal propagating through the TL
has an angular frequency w, close to wyy and the anharmonicity is sufficiently large [130].
For a two-level system the system Hamiltonian

Hgys = ——5 0 (2.52)
where hwyy is the energy difference between the two levels (e.g. the ground state and the
first excited state of the transmon) with an angular transition frequency wio. The Pauli
matrix o, = |1)(1] —|0)(0].

The interaction Hamiltonian can be written as

Hiy = i/ooo dwm(w)\/? (aL - aw) X (2.53)

where r(w) is the Fourier transform of a coupling coefficient x(z) [134]. The coupling
coefficient is zero everywhere except a small range around = = 0 [134]. The operator X
is a system operator coupling to the field, which is described by the Hamiltonian

Hioin = h/ dwwalaw (2.54)
0

with [a,,al] = 6(w — w’) [134].

Since we want to examine scattering of a propagating field, we also include a coherent
input field ®, in ®™. This field can be added by modifying Hyy in the master equation
V2C,

to Heys + 56 ©p(t) X [130] and by assuming that the coherent voltage field impinges on

the transmon with amplitude A, and angular frequency w,,.

The operator X can be expanded in eigenoperators of Hgy, such that X =32, (X, +
X,7) with [Hyys, XE] = £hw, XF [130]. In this eigenbasis, X represents the raising and
lowering operators for a transition with frequency w,. For a two-level system there is only
one transition frequency wig, then X = X + X~ with X* = 44| X 0|o®, X9 = (1] X]0),
ot = |1)(0], 0= = |0)(1| and [Hyys, X*] = thwioX*. Thus, this can be inserted into
Eq. (2.53) and using Eq. (2.50) the interaction Hamiltonian in the interaction picture can
be written as

. 00 e , . . ,
H™(t) = z/ dwr(w)y| — (awe_“"t —al ewt) (X Tt 4 X ety (2.55)
0

int 2 w

To obtain the final master equation in the Schrodinger picture and to find a solution to
it for a coherent drive, the following steps are made and can be found in Ref. [130,134]:
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1. The expression for the interaction Hamiltonian in the interaction picture (Eq. (2.55))
is inserted into Eq. (2.51).

2. The commutators and integrals are evaluated using the cyclic property of the trace
and the rotating wave approximation is used.

3. The equation is transformed back to the Schrodinger picture, by using the solution
of Eq. (2.50) for A. Thus, the equation describes the time evolution of the system
density operator psys.

4. A unitary transformation to a rotating frame with frequency w, and a rotating wave
approximation is performed on the equation for the time evolution of the system
density operator. Then the equation becomes independent of time and the equation
can be solved in the steady state for 0,pss = 0.

5. The solution is then transformed back to the non-rotating frame.

This gives us the system density matrix element

Ap v w0l 10 2o (Owy 4 iv10) pitont
2 hwioZo(Vio + Owp) + Y1047

Po1 = (256)

where I'yq is the relaxation rate between the first excited state and the ground state and
Ow, = w, — wy is the detuning between the angular driving frequency and the angular
resonance frequency of the qubit. The off diagonal elements in p are subjected to pure
exponential decay, which for py is the dephasing rate

r
Y10 =Ty + % (2.57)
where I'y is the pure dephasing rate. The amplitude of the incoming field A, relates to
the number of incoming photons Ny, through

A

N = s —
2ZOthO

(2.58)

according to Ref. [130].

Reflection and transmission coefficients

To understand how the transmon scatters an incoming field, we will calculate the expected
reflection and transmission coefficient. The coherent input field mentioned above can be
assumed as a coherent voltage field that impinges on the transmon from the left only, i.e.
V7 (t,07) = Apsinw,t and V< (¢,07) = 0. Then, by separating the terms in Eq. 2.48 into
left and right propagating waves, the reflected field can be expressed as the expectation
value of the voltage

VE(,07) = 0,9 (¢,07) = 0,9 (¢,01) + 5 ZoCe 0:Qy. (2.59)

(OC+CJ)
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From identifying the equations of motion as the quantum Langevin equations, —(Q);
was identified as the operator X and the expectation value (X) = Tr(pX). The time
derivative of the expectation value

(@ X (1) = (OXT (1) + (A X (1)) = iwio({(XT (1)) — (X7 (1)) = w10 X0l (), (2.60)

where X and X~ obeys the Heisenberg equation in Eq. 2.2 and the Pauli matrix o, =
ot + 07 =|1)(0| + |0)(1]. Inserting this into Eq. (2.59), we obtain

ZyC, 1
V%(t’o_) = mwl()p(mKO’x) = 5\/%10F102@<0‘x> (261)

with I'jg = %ZOMMXNP as the 1-0 relaxation rate [130]. This relaxation rate was
found in Ref. [130], by solving Eq. 2.51 for the diagonal elements in pgs in the steady

state (by setting O;psys = 0).

The expectation value of (0,) = TT(psys0z) = po1 + p1o = 2Re[po1]. Using pp; from
Eq. (2.56), we obtain

_ hwiA 020 Owy cos(wpt) — Y10 sin(wpt)

Va(t,07) = 2.62
&0 2 hwi0vioZo + hwio0w?2 Zg + A2y (2:62)
and from this the reflection coefficient is calculated to
- Ow
Ve(t,07) 1 -3

r=-——"—%-=-rg 5 —, (2.63)

V= (t,0 auwp 23

( ) L+ (’yw) + 10710

where 79 = I'19/2710 and €2, is the Rabi frequency of the incoming field (see equation (1-2)
in Ref. [125]). The squared Rabi frequency Q2 = 2N;,I'yo [135] with Ny, from Eq. (2.58).
The calculation in Eq. (2.63) is done by only treating the input and output fields in
terms of e~*»' and disregarding €™ [130]. This can be done since we are interested in
the amplitude and phase of the fields. If we would do the opposite and treat the input
and output fields in terms of e™»’ and disregard e , we would obtain the complex
conjugate.

—iwpt

Similarly, the transmitted field can be evaluated using Eq. (2.48) for right propagating
fields, such that

ZoC.
V7(t,07) = 9,87 (£,07) = 9,07 (£,07) + — o) 2.64
(1,07) = D07 (1,0%) = 087 (1,07) + 5 50, (264
and from this, the transmission coefficient can be expressed as
V= (t, 0%) ey Q.
Voo vewoy T (2.65)

using 7 from Eq. (2.63). From Eq. (2.63) and Eq. (2.65), the scattering of a field from
an artificial atom can be described. However, here the atom has been approximated as a
two-level system and the higher energy levels have been disregarded.
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2.4 Interaction between a three-level atom and two
fields

In this section, one more energy level will be included, such that the transmon can be
viewed as a three-level system. This three-level system interacts with two electromagnetic
fields instead of one as in the previous section. We start by following the derivation in
Ref. [130] and continue by following Ref. [136] to distinguish the two different regimes
where either electromagnetically induced transparency or Autler-Townes splitting occurs
depending on the strength of the fields and the system parameters.

Similar to the Hamiltonian for the two-level system in Eq. (2.52), the Hamiltonian
for a three-level system can be written as

2
Hoys =Y Ep|n)(n| (2.66)
n=0
where
hwm = El - EO and h(dzl = E2 - El (267)

for angular transition frequencies wig and wo; of the 0-1 transition and the 1-2 transition,
respectively.

This three-level atom interacts with two fields; one probe field A, sin w,t with angular
frequency w, close to wyy and amplitude A,, and one control field A, sinw.t with angular
frequency w, close to wo; and amplitude A.. The interaction Hamiltonian is given by
Eq. (2.53), but now with

X = i Xyo| (J1){0] = [0)(1]) + il Xar | (12)(1] = [1)(2]). (2.68)
Consequently, Eq. (2.60) can be rewritten for a three-level system as
(0:X (1)) = —w10]X10\<]1><0| + |0><1‘> - W21|X21’<|2><1‘ + |1><2’> (2.69)

and used in Eq. (2.59) to obtain

VE(t07) = \/’;7 (\/wmrm<u><0| +[0)(1]) + Jwa Do ([2)(1] + |1><2r>) . (270)

Thus, V< (¢,07) includes parts with frequencies around w, and parts with frequencies
around w,.. Since, we are interested in the reflected and transmitted properties of the
probe field we can concentrate on those parts of V< (¢,07). The reflected probe field

VT (13) (o] + fo) (). (271)

Using the same steps as for the two-level system in one field, but with the unitary trans-
formation matrix

Vo (£,07) =

10 0
Ut)= |0 et 0 , (2.72)
0

0 e—i(wp—l—wc)t
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and assuming A. > A, the system density matrix element

Z.Apeiiwpt VART
P10 = — ;
VhwiZo 2(y10 — i0wy) + 42/2

hwa1Zo (’}/20 7’L'(6wp+awc))

(2.73)

with the detunings dw, = w, —wip and Jw, = w.—ws. Inserting this into Eq. (2.71) using
<\1)<O] + \O>(1]> = 2Re(p10) and dividing with the incoming probe field, the reflection

and transmission coefficient
I'o
ro= - _ _— (2.74)
2(710 — i0wy) + ygofi(al/pmwc)

['o
2(y10 — 10wy) +

t = l+r=1- (2.75)

Q2/2
Y20 —1(Owp+0Owc)
Note that these have been obtained by only treating the input and output fields in terms
of e7™rt and disregard e™»* as for the two-level atom in the previous section. €, and €,
are the Rabi frequencies for the probe and the control field, respectively [136].

2.4.1 Distinguishing electromagnetically induced transparency
and Autler-Townes splitting

The scattering parameters in Eq. (2.74) and (2.75) can be evaluated using certain as-
sumptions resulting in two different important physical phenomena; electromagnetically
induced transparency (EIT) and Autler-Townes splitting. Although both these phenom-
ena can appear as transparency windows in measurements of transmission, their origin
is different. The distinction was made clear in Ref. [136]. This will be shown in the
following derivation of the different regions.

For a resonant control frequency (Ow. = 0), Eq. (2.74) can be rewritten as

R FlO _ 2F10(720 - i@wp) (2 76)
- i 2 - . . 2 :
2(’}/10 — z@wp) + Qz/2 (710 — Z&wp)(’}/zo — z@wp) + %

Y20 —10wp

The poles of the reflection coefficient in Eq. (2.76) can be obtained by solving the de-
nominator equal to zero for s = i10w,. We find the two poles

Y20 + Y10 \/(710 — 720)? — §22
L= + )

2.77
5 5 (2.77)
If the two poles are different, the reflection coefficient can be expressed on the form
A A_ —
r=—t 4 . where A, =Ty, (1 o 07 o ) . (2.78)
S+TF8 5-78 \/(710—’720)2—93

If (y10 — Y20)? > Q2 sy are real and the two terms in Eq. (2.78) can be rewritten as
s A
r=—"* 4+ > (2.79)
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These terms are Lorentzians centered at wyg, one wider (s ) and one narrower (s_). One
Lorentzian is positive and the other is negative since s+ > 0 while A, and A_ have
different signs depending on if 719 > y20 (Ay < 0 and A_ > 0) or if 719 < Y20 (Ay > 0
and A_ < 0). These Lorentzians give rise to a transparency window centered around
wio caused by Electromagnetically Induced Transparency (EIT) [136] and appear
due to interference between two ways of transiting between the state |0) and |1) of the
artificial atom. One way is directly from |0) to |1) and the other is from |0) to |1) to |2) to
|1). This can be thought of as Young’s double slit experiment mentioned in Chapter 1.2,
where the light passing through the two slits give rise to an interference pattern with
dark (transparent) and light regions due to the difference in propagation distance though
the two slits.

The other regime can be found by assuming that (y19 — 720)% < 2, such that sy and
Ay are complex. For a strong control Q% > (y19 — 720)?
Y20+ 0 W2 I'10(720 — 710)

+ d A~ -Ty+
2 g ANt e 10 i,

Si ~ —T'. (2.80)

Then the two terms in Eq. (2.78) can be approximated as

PART) AT
_ Y10+720 Y10+720
r= | _ . 0wn=0e/2 w0 (2.81)
(v10+720)/2 (710+720)/2

and these are two Lorentzians with equal width shifted £./2 from wyq. This separation
from wyg is caused by Autler-Townes splitting which is due to Rabi dressed energy
levels. The transparency in transmission appears due to shifted resonance frequencies
instead of the interference effect resulting in EIT.

Since the signature of both Autler-Townes splitting and EIT appear as a transparency
window, they might be difficult to distinguish. The threshold between the regions appear
when (710 — Y20)? — 922 = 0 [136]. Then s, = s_ = (Y20 + 710)/2 and the reflection
coefficient can be expressed on the form

—4I'10

. r
po eyl t7m) 2:82)

2
Padiad A ; _ 710t720
(710+720)/2 (Zawp 2 )

The first term is a Lorentzian with half width at half maximum (y29 + 710/2) and center
at wig and the second term is a squared Lorentzian.

What was reported as EIT in Ref. [137,138] was actually found to be Aulter-Townes
splitting [136]. Observations of EIT has been reported in atomic three-level systems
[139,140], and in circuit QED using a three dimensional cavity [141]. An analogue to EIT
has been demonstrated in optomechanical devices [142,143] and we have demonstrated
EIT in a propagating SAW field using a superconducting artificial atom in the appended
Paper V. In the appended Paper V we also show the threshold distinguishing EIT from
Autler-Townes splitting.

The Autler-Townes splitting was first demonstrated for a single atom in a three-
dimensional space using electromagnetic waves [144,145]. However, the extinction did
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not exceed 12 % due to the spatial mode mismatch between the incident and scattered
field of the single atom. By confining the propagating fields in a one-dimensional open
transmission line and using an artificial atom, an extinction of 90 % [103,137] to 99.6 %
[138] was achieved. This effect is demonstrated for a superconducting artificial atom
interacting with a propagating SAW field in the appended Paper IV. Both the appended
Paper IV and V are described more in detail in Chapter 5.






Chapter

Surface Acoustic Waves

Surface acoustic waves (SAWs) are mechanical vibrations elastically propagating along
the surface of solids. They were first described by Lord Rayleigh in Ref. [146], and are
important in many natural phenomena, such as earthquakes. In earthquakes, they can
destroy large land areas because they dissipate very little power into the bulk, allowing
them to propagate very long distances. Although the low dissipation of the SAWs was
found interesting, it was not until 80 years after their discovery that SAWs could be
artificially generated on a piezoelectric material when the interdigital transducer (IDT)
was introduced by White and Voltmer [4]. After this, many different designs followed,
for instance with advanced features to shape the SAW pulse response or direct the SAW
beam. Since piezoelectric materials’ polarization charges are coupled to their particle dis-
placements, electric power can be converted into SAW power and vice versa. This allows
a variety of interdigitated transducers to be incorporated as electric circuit elements, such
as bandpass filters, resonators and delay lines. They are also very important in many
commercial applications, for instance in TV and mobile technology.

Here, we will focus on the type of SAWs that can be described as pure Rayleigh
waves. These waves are confined to the surface and decay exponentially into the bulk.
This chapter aims to give a brief introduction to this type of SAWSs, their motion and how
they can be generated, which is explained in detail in [2,3,108]. A semi-classical approx-
imation of a qubit coupled to surface acoustic waves will also be described, following the
supplementary material in the appended Paper I and the appended Paper II. For a full
quantum model, the reader is referred to Refs. [96,147] and the summarized version in the
appended Paper II. Later in this chapter, a unidirectional transducer generating SAWs
in a preferred direction is discussed together with a more extensive model to describe its
more complicated response.

3.1 Basic properties

When a SAW propagates, the material near the surface moves elliptically together with
a quasi-electrostatic wave. The elliptic motion is produced from compression in the
propagation direction and shearing in the direction normal to the surface [2]. Since
the compressional motion dominates, the electrostatics can be described by an electric
potential at the surface that only extends about a wavelength into the bulk. At the
surface this potential can be expressed as a plane wave

oz, t) = \qﬁ]ej(“t’k“’”) (3.1)
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for a SAW propagating along the z-axis at time ¢t with an angular frequency w = 27 f.
|¢| is the magnitude of the wave at the surface and k = 27/ is the wave vector for a
wavelength A\ of the SAW [108]. The frequency and wavelength of the SAWs are related
by A = fug, for a speed vy of the SAW.

SAWs can propagate in any material and their speed is determined by the mate-
rial properties. They can be generated on piezoelectric materials, which are usually
anisotropic. For a given cut of an anisotropic crystal, there are only a few directions
where the SAW will propagate without curving (known as beam steering) [2].

The cut and orientation also affect the piezoelectric properties of the substrate. The
strength of the electromechanical coupling coefficient K? depends on how the strain and
stress relate to the electric field, 7.e. how the permittivity relates to the stiffness of the
material, all of which can be orientation dependent. For SAWs, K? is approximated as
the change of speed when the SAW propagates under a metallized surface

A - Um
K2=220 — ol tm (3.2)
(% Vo

where vy is the speed of the SAW on a metal free surface and v,, is the speed when the
surface is covered by a metal sheet [3]. K? is listed for some piezoelectric materials in
Table 1 in the appended Paper II. For example, the strong piezoelectric material lithium
niobate, Y-cut with propagation in the Z-direction, has vy = 3488 m/s and K? = 4.8 % [3].
This is almost 70 times stronger than gallium arsenide, which has K2 = 0.07 % on the
(100) surface with a SAW traveling along the [011] at the speed of 2864 m/s [2]. The
impact of different strengths of K? will be seen in the next section and its importance
when using SAWs in quantum experiments will be discussed in Chapter 5.2.

Another important property for SAWs is the effective dielectric permittivity e, of
both the material that the SAW propagates and the medium above. The permittivity
relates the polarization charge to an applied electric field for any dielectric material and it
is usually expressed in relation to the permittivity in vacuum ¢y. The effective dielectric
permittivity is defined such that it expresses the capacitance per unit length between
two electrodes on the surface of the piezoelectric material. For YZ lithium niobate the
effective dielectric permittivity €., = 46¢y, while it is 12¢, for gallium arsenide [2]. The
effective dielectric permittivity is, in addition to the electromechanical coupling coefficient
and SAW speed, listed for some piezoelectric crystals in Table 1 in the appended Paper
II. All of these properties are important to consider when generating and detecting SAWs.

3.2 Generation and detection

To generate a SAW, the simplest configuration is a single electrode IDT consisting of long
electrodes in a periodic structure seen in Figure 3.1. All electrodes have the same finger
width a, which is usually equal to the separation between them. The periodic structure
can be divided into unit cells with length A\g, where each unit cell has one electrode
connected to the top bus and one connected to the bottom usually grounded bus.
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When a voltage is applied over the IDT, an electric field is created between the
electrodes connected to the top bus and the lower grounded bus. This creates strain in
the underlying piezoelectric material, which generates SAWs in both directions from each
unit cell. The propagating SAWs carry a total power

W 2mevg

Poaw = |¢|* —"—=

saw = |0 e

where W is the beam width set by the electrode overlap (see Figure 3.1), 1/Y; is the

characteristic impedance from treating the IDT as a transmission line [2] and K? qualifies
how much electric power can be converted to or from SAW power.

= [¢]*Yo, (3.3)

If the applied voltage V is on resonance with the center frequency of the IDT fy =
v/ Ao, the contributions from all unit cells add in phase and a resonant SAW is emitted.
The generated SAW carries a surface potential ¢ = V E(w)A(w), which is a product of
the element factor F(w) and the array factor A(w).

The magnitude of ¢ carried by the SAW emitted by one unit cell, which in the case
of a single electrode IDT is the response of the electrode connected to the top bus, is
proportional to the applied voltage with a proportionality factor called the element factor.

The element factor )

EW) = j 2 Flos) (h), (3.4)

2600
describes the superposition of the response of a single electrode in the IDT. It relates to
Fps] (k), which is the Fourier transform of the surface charge density when a voltage
is applied to one electrode and all other electrodes are grounded. Since E(f) is varying

slowly with frequency, it is usually approximated with a constant 0.84jK? for single
electrode IDTs [3].

The array factor is a superposition of multiple electrodes and describes the wave
amplitude from the number of unit cells in the IDT, NNV,,. If we define the x-axis parallel
with the bus bars in Figure 3.1, the electrodes connected to the top bus are centered
around the coordinates x1, 3, z3...xn, and the wave amplitude due to electrode n has
the form e/*(#=2n)  For a single electrode IDT, the coordinates z, are evenly spaced
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with |z,41 — ] = Ao and by adding the amplitude contributions from each electrode
connected to the top bus in the IDT, the array factor can be obtained as

Np —jkNpAo . in (kNpAo)
A . —jknXo _ _—jkXo 1—e p . _ dk(Np+D)Ag S 2 .
(w)—Ze =€ TS ? Y -
el 1 — ek sin (TO)
(3.5)
. & : w—wo
_ i@t Bl (”pro) __impry e B (”Np wo )
sin (Wﬂ) sin (WM)
wo wo

Here, geometric progression and Euler’s formula has been used, and w is the angular
frequency of the applied voltage [3]. From the array factor, it is evident that the strength
of the SAW response for a certain applied voltage increases with the number of unit cells.

In the same way as the IDT emits SAWs, it can also detect them. The incoming SAW
generates a current in the IDT

I = —2¢E(w)A(w)Yo, (3.6)

where F(w) and A(w) can be inserted from Eq. (3.4) and Eq. (3.5), respectively. The
generated current creates a voltage and in this way the incoming SAW is converted to
electric signal.

3.2.1 Three port scattering matrices

The conversion between electric signals and SAWs by the IDT, can be modeled as a
complex scattering matrix with three ports; two acoustic ports (1 and 2 in Figure 3.1)
and one electric port (3 in Figure 3.1)". This scattering matrix relates the incoming and
outgoing signals through

Dot 511512513 in
Dour | = | 521522523 i | (3.7)
V= S31532533) \V T

where the signs represent the direction of the wave. Traditionally, + is towards the right
for acoustic waves and towards the IDT for electric waves. Assuming energy conservation
and reciprocity the complex scattering elements can be simplified to S3; = Si3 and
S3o = So3. If the IDT is symmetric, as in the case for the single electrode IDT, this can
be further simplified to S3; = S50, So1 = S12 and S7; = Sg9.

A more convenient scattering matrix for IDTs is the P-matrix, where the voltage and
current is related for the electric port. The P-matrix is defined as

Dout P11 PraPys .
Gout | = | Po1Po2Pas in | (3.8)
I Py Py Pss) \ 'V

"Note the different notation in the appended Paper 1, where port 1 is the electric port, 3 is the
acoustic port facing the qubit and 2 is the other acoustic port.
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where Pj3 corresponds to how much electric signal is converted into acoustic signal per
unit voltage and Ps3 is the IDT admittance. Similarly to the S-matrix, the P-matrix
elements can be related; Py = Pio, P31 = —2Pi3 and P3y = —2Ps3.

The elements of the two scattering matrices are related through

Sy = Py — %, Sy = Py — }m, (3.9)
Sy = Pry — %, Sy = Py — }m, (3.9b)
n= 200 S = 2T, (394)
33 = 212? (3.9e)

where 1/Y7, is the characteristic load impedance of the electric transmission line, usually
509 [3].

3.3 Double electrode interdigital transducers

The single electrode IDT introduced in Section 3.2 (Figure 3.1) has the most straightfor-
ward electrode configuration but it suffers from internal mechanical reflections. Internal
mechanical reflections appear because each electrode (both electrodes connected to the
top bus and to the bottom bus) reflects incoming SAWs weakly. In a single electrode
IDT, the distance between each electrode is \g/2. SAWs reflected at electrode n will in-
terfere constructively with SAWs reflected by electrode n — 1, since it has propagated the
distance between these electrode twice resulting in a phase shift of 27. In this way, the
contribution from each electrode add in phase at the center frequency producing internal
mechanical reflections.

Another type of IDT with a simple electrode configuration, which does not suffer
from internal mechanical reflections, is the double electrode IDT [148] in Figure 3.2a.
Instead of two electrodes per unit cell, it has four: two connected to the upper live bus
and two connected to the bottom grounded bus. Consequently, the distance between
each electrode is A\g/4 and SAWs reflected by electrode n travels a distance Ag/2 further
than SAWs reflected by electrode n — 1. At center frequency, this results in a phase shift
of m and destructive interference between the contributions from the electrodes. Thus,
internal mechanical reflections can be neglected for double electrode IDTs close to center
frequency at the cost of twice smaller lithography than the single electrode IDT. By
ignoring internal mechanical reflections, the simplified response can be described by a
basic SAW circuit model.
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a) Port 3 b) ®

Port2|||l||||Port1 G, iB, ==C;
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—

Figure 3.2: a) Double electrode IDT with electrode overlap W and unit cell length A\g. Each
unit cell has four electrodes, which makes it possible to ignore internal mechanical reflections
(see text). b) The equivalent circuit of a double electrode IDT includes an acoustic conductance
Go(w), an acoustic susceptance B,(w) and an electrode capacitance Cr.

3.3.1 Circuit model

The circuit model described here is a simple SAW circuit model, assuming no mechanical
reflections and no loss, and it is valid for double electrode IDTs. It can also be used to
approximate single electrode IDTs with few unit cells. For a more detailed description,
the reader is referred to the appended Paper II and literature such as Refs. [2,3,107].

In the circuit model the IDT is approximated with an acoustic conductance G,(w),
an acoustic susceptance B,(w) (Hilbert transform of G,(w)) and a capacitance Cr (Fig-
ure 3.2b). The equivalent circuit has a total admittance Yipr(w) = Gu(w) + 7B (w) +
JwCr. These circuit elements can be calculated from the SAW theory in Section 3.2 as

. X 2
G, = 2|E(w)Aw)|*Ys ~ Gao [sz )] (3.10a)
sin(2X) —2X
Ba ~ GaOT (310b)
Cr ~ V2N,We,, (3.10¢)

where X = 7N, (w —wy)/wy for a driving frequency w close to wy. A(w) is evaluated from
Eq. (3.5) with x; at the center of the two live electrodes and the slowly varying F(w) is
approximated with a constant g = ¢,7K? with ¢, = 0.62 for double electrode IDTs [3].
From this the acoustic conductance at center frequency Goo = 4 - 227 foeso N W K2,

Using this model, we can calculate the elements of the three-port scattering matrix
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Figure 3.3: Three port scattering elements Si3 (blue), S11 (green) and Ss3 (red), calculated
from the circuit model for a double electrode IDT with 36 unit cells and 46 ym electrode overlap.

in Eq. (3.7) as

G -
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Yipr(w) + Y7,

Y, — YIDT(W)

S = - = 3.11
% Y7 + Yipr(w) (8-11c)

for a double electrode IDT with wavelength A\ at center frequency and hence a transducer
length of N,\g. The scattering parameters for a double electrode IDT with 36 number
of unit cells and an electrode overlap of 46 pm is shown in Figure 3.3. The electric/SAW
conversion (parameter Si3) is limited to a maximum of -3 dB, because IDTs have sym-
metric conversion into both acoustic ports. In a delay line geometry, this means that
only 50 % of the power propagates in the right direction towards the other IDT. Due to
reciprocity, the theoretical minimum insertion loss of a delay line with symmetric IDTs
is -6 dB.

The electric reflection (parameter Ss3) from any IDT is optimal when the IDT is
impedance matched to outside electronics. The impedance matching is roughly met by
designing the real part of 1/Yipr, i.e. Gao, to be 50 Q close to the frequency where
B, cancels Cr. Thence, there are a few design and substrate material parameters that
can be used to control the impedance matching. The design parameters can be limited
by the size of the substrate and the fabrication, i.e. the number of unit cells cannot
be too many and the electrode overlap cannot be too large. A material with a higher
electromechanical coupling and a higher effective dielectric constant requires fewer unit
cells, such as lithium niobate in comparison to gallium arsenide.

For a fixed number of unit cells the bandwidth can be approximated with 0.9 fo/N,, [2].
Accordingly, the bandwidth of the double electrode IDT in Figure 3.3 is 60 MHz, but the
transducer can emit and pick-up signal outside this band. In addition, the SAW emission
and pick-up is slightly wider in frequency than both the acoustic reflection (parameter
S11) and the electric reflection (Figure 3.3).
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In conclusion, to optimize an IDT the electrode configuration and the impedance
matching should be considered. The IDT should be designed such that the bandwidth is
sufficient for the given experiment. Therefore, the number of unit cells can be balanced
with the choice of the piezoelectric substrate for optimal electric/SAW conversion. Nev-
ertheless, symmetric IDTs are limited by the theoretical minimum insertion loss of -3 dB
which should be considered when designing the experiment.

3.4 Delay line: propagation between two interdigi-
tated transducers

Since interdigitated transducers are both emitters and receivers of SAWs, they are com-
monly configured in a delay line. The name comes from the use of delay lines in electric
circuits, where they delay the signal the amount of time it takes the five order of magni-
tude slower SAW to propagate. A delay line has two interdigitated transducers separated
a certain distance L on the piezoelectric substrate. If we assume that port 1 of both inter-
digitated transducers face into the delay line, i.e. towards each other, the electric signal
is converted into SAWs via the scattering element S3;. The SAWs propagate through
the delay line to the interdigitated transducer on the other side, where they are partly
converted back to electric signal via S7; and partly acoustically reflected back into the
delay line via S};. (S denotes the scattering matrix of one interdigitated transducer and
S’" denotes the other.)

The response of the delay line can be measured via the electric port of each interdig-
itated transducer. For two identical interdigitated transducers, the matrix elements of S
and S’ are identical. Since multiple transitions interfere, the measured electric reflection
follows

2m 1 7_]2ntkL SlleiijL
r = 533 + Z S 533 + 5131 (312)

= 52, e—i2kL
where kL is the phase the SAW picks up every time it propagates the delay line, n; is
the number of transits and the scattering elements are found from Eq. (3.7). The main
electric reflection includes no SAW transits and follows S33. For a multiple transiting
SAW the measured transmission follows

—jkL

t—ZS Snm1 3@k <

ny=1

SlSWa (3.13)

The main transmission of the delay line is the first transit, i.e. when the SAWs propagate
once through the delay line and n; = 1.
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Figure 3.4: Measured a) transmission and d) reflection in the frequency domain of a delay
line with two identical double electrode IDTs (IDT_1 in the appended Paper III). The inverse
Fourier transform of b) the transmission and e) the reflection into the time domain show peaks
separated in time. The separation in time correspond to the time delay between the electric
signals and SAWs transiting the delay line a certain number of times. Filtering certain peaks
and Fourier transforming back to the frequency domain, certain parts of the c) the transmission
and f) the reflection can be obtained.

3.4.1 Inverse Fourier filtering

Usually only the main acoustic reflection and main transmission is of interest. Thus, it is
useful to filter out the interference from multiple transiting SAWs and this can be done
using inverse Fourier filtering, which will be described in this section.

A signal can be converted from its original domain, which commonly is time, to a rep-
resentation in the frequency domain. This decomposition can be done using the Fourier
transform and the inverse (from frequency to time) can be done using the inverse Fourier
transform. Performing linear operations in the time domain have corresponding opera-
tions in the frequency domain, which might be easier to perform. Thus, it is sometimes
preferable to Fourier transform the signal from the time domain to the frequency domain,
and perform the operations in the frequency domain. After the desired operations are
performed, the result can be inverse Fourier transformed back to the time domain.

The procedure of inverse Fourier filtering is shown in Figure 3.4 for a simultaneous
measurement of reflection and transmission in the frequency domain of a delay line with
two identical double electrode IDTs (IDT_1 in the appended Paper III). The measured
reflection and transmission show interference effects (ripples) due to multiple transiting
SAWs (Figure 3.4a) and d)) and these appear as separate peaks in the inverse Fourier
transform into time (Figure 3.4b) and e¢)). In Figure 3.4b) the peaks correspond to
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the electric reflection (S33, blue) and SAWs transiting the delay line back and forth one
(green), two (red) or three times (black). Similarly the peaks in Figure 3.4e) correspond
to the electric crosstalk between the IDTs (blue), and SAWs transiting the delay line
back and forth one (green), two (red) or three times (black). The magnitude of the
peaks (normalized to the highest peak) represents the amount of that part of the signal
present in the original signal. By choosing certain peaks and Fourier filtering back to
the frequency domain, the information of that part of the signal can be obtained (see
Figure 3.4¢) and f)). For instance, the ripples in the reflection in Figure 3.4a) are removed
from the electric reflection in Figure 3.4¢), by filtering out the multiple transiting SAWs.
Similarly, the ripples in the transmission in Figure 3.4d) are removed from the main
transmission in Figure 3.4f), by filtering out the electric crosstalk and SAWs transiting
the delay line more than once.

3.5 Floating electrode unidirectional transducer

When SAWs are used to carry quantum information, it is important to have low losses
and efficient electric/SAW conversion. The conversion in the IDTs in Section 3.3 is
symmetric for both acoustic ports, and hence 50 % of the acoustic power is lost in the
wrong direction. In this section, we focus on directing the SAWs into one desired port to
improve the electric/SAW conversion.

Unlike the symmetric IDT, a unidirectional transducer (UDT) [3,111] can be opti-
mized to release most of its SAW energy in one preferred direction. This can be done by
maximizing the scattering element S;3 while minimizing So3 in Eq. (3.7) in Section 3.2.1.
UDTs have previously been studied for classical applications, such as low-loss SAW fil-
ters at room temperature [2,3]. Since they have complicated structures, a substantial
effort has been made in engineering low loss UDTs at gigahertz frequencies [112]. Various
types of UDTs have been tested for different piezoelectric substrates. On strong piezo-
electric materials, such as lithium niobate, the preferred UDT types utilize piezoelectric
reflections, because these reflections dominate over mechanical reflections.

Here we focus on one type of UDT utilizing piezoelectric reflections [149], which is
based on a floating electrode unidirectional transducer (FEUDT) [150] (Figure 3.5). It
consists of a periodic structure, where a unit cell has six electrodes with the same width
and electrode separation. Each unit cell has one electrode connected to the live upper
bus, one electrode connected to the lower grounded bus and four floating electrodes, two
of which are connected to each other. The design is such that electric/SAW conversion
is optimized for port 1 and minimized for port 2.
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Figure 3.5: A FEUDT with six electrodes in one unit cell. Each unit cell has a transduction
center xpc which is separate from its reflection center xrc. The preferred electric/SAW con-
version is towards the right [150], in port 1. The upper bus is connected to live electrodes, the
lower bus is grounded and two of the floating electrodes (gray) are connected to each other.
The length of one unit cell is A\g and the overlap of the electrodes is W. All electrodes have the
same finger width a, which is equal to the separation between them, and has a pitch p = 2a,
such that a = X\p/12.

The ratio between the power converted to port 1 and 2, defines the directivity of
the FEUDT. The directivity of each unit cell can be illustrated by a spatially separated
center of transduction xpc, where the SAWs are regarded to be generated, and a center
of reflection zrc, where the SAWs are regarded to be reflected. Both centers, shown in
Figure 3.5, can be found by the Coupling of Mode theory in the following section. The
spatial separation of these centers, results in constructively and destructively interfering
SAWs in the direction of port 1 and port 2, respectively.

3.5.1 Coupling of modes

To describe transducers that are more complicated than the double electrode IDT, such
as FEUDTs, internal mechanical reflections need to be considered. Here, this is done
with the coupling of modes (COM) theory [3,151-155], which involves coupling between
waves propagating in the same or opposite directions and a distributed transduction.
This method does not include bulk waves, diffraction nor beam steering. The resistivity
of the electrodes and buses are also ignored, which is an accurate assumption for our
superconducting circuits. In the derivation of the COM equations, it is also assumed
that reflection and transduction of the transducer can be treated separately and then
added. The current in the transducer is calculated for a shorted transducer (V' = 0)
for left and right propagating waves, and the contribution from the capacitance when
V # 0 is added to that solution. First COM will be described for a general periodic
transducer and then the COM parameters for a FEUDT will be found from a quasi-static
approximation.

Following Morgan [3], we consider left propagating waves with amplitude b(x), and
right propagating waves with amplitude c¢(z) (Figure 3.6). Using the wavenumber at
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Figure 3.6: SAW amplitudes b(x) and ¢(x) propagating towards the left and right, respectively,
in a transducer with N electrodes.

the center frequency ko, slowly varying amplitudes can be defined as B(z) = b(x)e /*o®
and C(x) = c(x)e?™® such that the power of the waves are |B(z)|?/2 and |C(z)?/2. A
periodic transducer can then be described with the differential equations:

L) (5 DER) ) e

di[(x) =2a"C(z) — 2aB(z) + jwCV, (3.14b)
where 0 = k — kg is the detuning from the wavenumber at the center frequency, k is a
reflection parameter per unit length, « is a transduction parameter per unit length and
() is the capacitance per unit length. Eq. (3.14a) described the change in a SAW over
a unit distance by combining reflected, transmitted and transduced waves. The solution
is the sum of the complementary solution for V' = 0 (shorted IDT), and the particular
solution for V' # 0. The matrix has eigenvalues +js, where s> = §% — |x|?, such that B(z)
and C(z) are proportional to e/**. At frequencies close to the center frequency |§] < |k,
s is imaginary and the complete solution to Eq. (3.14a) is

C(x) = hye ™" + hye?** + K,V (3.15a)
B(x) = hypre™?* + hapae’™® + K,V (3.15b)

hy and hsy are constants dependent on the boundary conditions;

pr=7j(0—9)/k (3.16a)
pa=7(0+3s)/k (3.16b)
K, = (a*k — jéa)/s? (3.16¢)
K, = (ak* + joa*)/s>. (3.16d)

Using the boundary conditions in Eq. (3.16) for the solution in Eq. (3.15), the elements
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in the P-matrix in Eq. (3.8) in Section 3.2.1 can be determined to be

—rk*sin(sNyAo)
P, = P 1
" s cos(sNpAo) + josin(sNpAg) (8.17a)
se—TkoNpo
P12 - P21 - (317b)

scos(sNpAg) + josin(sNyAg)
1 N\ —2jkoNpAo
py, = fsin(sNpAg)e ™ (3.17¢)

s cos(sNpAg) + jo sin(sN,Ao)
2a*sin(sNpyAg) — 25K (cos(sNpAg) — 1)

s cos(sNpAg) + josin(sNpAg)
—2asin(sNyAg) — 25K (cos(sNpyAg) — 1)
s cos(sNpAg) + josin(sNyAo)

Py = — K Py — Ko Pye?*v20 1 9(0* K| — aly) N\ + jwCiNyAo, (3.17f)
where N, is the length the transducer. The P-matrix can be converted into the S-matrix
using Eq. (3.9) in Section 3.2.1, and hence, by determining x, a and C) the scattering
parameters of the device can be described.

Py = —2P;3 =

(3.17d)

Piy = —2P3 = ¢ IFoNpho

(3.17e)

3.5.2 Quasi-static approximation to find COM parameters for
a FEUDT

The COM parameters for a FEUDT, can be determined following the quasi-static approx-
imation [152-154]. This is an easier approach than the comprehensive algebraic analysis
in Ref. [151]. It is a simplified version of Green’s function analysis, where the electrostatic
and acoustic contributions are separated. It is assumed that the only waves present are
non-leaky waves and that the velocity change caused by the mechanical and electrical
loading are negligible. Further, the transducer is initially assumed infinitely periodic
with constant electrode width and separation and each unit cell is evaluated separately.
Later, this is later extended to a transducer with a finite length neglecting edge-effects.

When a voltage is applied over a FEUDT with the length of one unit cell, a SAW is
emitted with a surface potential described in Section 3.3. In that section the superposition
of the response from one electrode in Eq. (3.4) was approximated as a constant, but
Fps] (k) varies slowly. However, in the quasi-static approximation F [pf] (k) is used
to calculate the COM capacitance, transduction and reflection parameter. For a more
detailed description see my Licentiate thesis [156] and for a full derivation see Ref. [154].

The capacitance per unit length can be found from evaluating the voltages and net
charges on each live electrode. These calculations are purely electrostatic and the sub-
strate is not required to be piezoelectric. For a FEUDT with six electrodes per unit cell
the capacitance per unit length is according to Ref. [154]

Be W

C pr—
W

(3.18)

Piezoelectricity is introduced to evaluate the transduction and reflection parameters.
The transduction parameter can be found while ignoring reflections. By calculating the
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waves that leave each unit cell, a reference point can be found where the waves generated
in both directions have the same amplitude and phase. This reference point is called the
transduction center (Figure 3.5) and it is used for obtaining the transduction parameter

A .
a= j)\—T\/?ge]komTc, (3.19)

0

where Ar is the effective transduction strength [154].

The reflection parameter is evaluated when all electrodes (including the floating elec-
trodes) are considered shorted. The floating electrodes are allowed to have nonzero volt-
ages while the total net charge on the floating electrodes is zero. The calculations to
obtain the voltages and the net charges is similar to the process of finding the capac-
itance per unit length. With the same argument as for the transduction, a reflection
center zgrc (Figure 3.5) is found and used for obtaining the reflection parameter

A )
K = j)\—OReQJkOxRC (3.20)

where Ap is the effective reflection strength [154].

From the three COM parameters (C}, a and &) the full P-matrix can be calculated
and hence the S-matrix for the FEUDT with six electrodes in one unit cell. The S-
parameters for a FEUDT with 160 unit cells and 46 pum electrode overlap is shown in
Figure 3.7. The maximum of Si3 is -0.5 dB at 2.303 GHz, but at this frequency the
ratio of Sy3 and Spz (directivity) is only 10 dB while the maximum directivity is 30 dB
at 2.309 GHz. Close to the maximum of Si3, both Si; and Ss33 are low, while S is
high. Reducing the acoustic reflection and maximizing the electric/SAW conversion in
a transducer maximizes the performance of the resulting delay line. In this respect, the
performance of the FEUDTS surpasses symmetric IDTs (Figure 3.3), for which S;3 never
exceeds -3 dB and the maximum of S5 coincides the maximum of Sy;.

As can be seen in Figure 3.8 the COM model predicts that the directivity increases
monotonically with number of unit cells. In order to achieve a directivity above 20 dB
and impedance matching to 50 €2, the FEUDTs require approximately 100 unit cells. In
Chapter 5 and the appended Paper III, we will see that this agrees well with our mea-
surements. The directivity is independent of electrode overlap but impedance matching
needs an electrode overlap larger than 25 pum.
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Figure 3.7: a) Scattering elements s13 (blue), sa3 (green) and s33 (red) for a FEUDT with 160
unit cells and 46 pm electrode overlap. Both the electric reflection and the maximum directivity
are offset the maximum transduction. b) Acoustic reflection scattering elements for both ports,
where sg9 (blue) is higher than s;; (green) and the dip in s1; coincides with the reflection dip
m S33.
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Figure 3.8: a) Maximum transmission versus number of unit cells N, for a FEUDTs with
different electrode overlaps W. At least 100 unit cells are needed to impedance match to 50 2.
b) Maximum directivity versus N, for FEUDTs. For a directivity above 20 dB, more than 100
unit cells are needed. The directivity does not depend on W.
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3.6 Artificial atom coupled to surface acoustic waves

SAWs were treated purely classically in the previous sections. In this section, we discuss
how SAWs are interacting with a superconducting artificial atom (described in Chap-
ter 2.2) and the interaction will be treated semi-classically following the appended Papers
I and II.

An artificial atom has discrete energy states spaced non-equidistantly. They are com-
monly used in superconducting circuits to explore fundamental phenomena in quantum
physics [8,125]. In these circuits, the transition frequencies between the energy states in
the artificial atoms are typically designed to be in the microwave range. In the appended
Papers I and II, the artificial atom in the superconducting circuit is not only interacting
with electromagnetic microwaves but is even more strongly coupled to propagating SAWs.

To design an artificial atom to couple to SAWs, the similarities between the IDT
electrode structure and the shunt capacitance used in transmons [37] can be exploited.
In this thesis we will use the term QDT (qubit coupled IDT) to describe the IDT used
as the capacitive part of the transmon. In the transmon (described in Chapter 2.2.2),
the large capacitance shunts a Superconducting Quantum Interference Device (SQUID)
described in Chapter 2.1.3. This SQUID is a superconducting loop interrupted with two
weak barriers, which separates the loop into two islands. One island is connected to an
electrode on the top bus of the QDT and the other island is connected to the bottom
grounded bus (Figure 3.9a).

a) Port 3 b) ?
Port 2 Port 1 Gag B ==C L
) -
0 — —
 ———]

Figure 3.9: a) A transmon coupled to SAW through a double electrode IDT as its shunt
capacitance. The top bus of the QDT is connected to one of the islands in the SQUID and
the bottom grounded bus is connected to the other island. b) Circuit model of an artificial
atom coupled to SAWs. The SQUID is treated as a tunable nonlinear inductor in parallel to
the equivalent circuit of the QDT in Figure 3.3b.

The artificial atom is treated as a two-level system, which is valid for energies low
enough to never excite the artificial atom beyond the first excited energy state. At these
levels, the artificial atom can be called a quantum-bit (qubit) coupling to SAWs.

The equivalent circuit of the transmon can be obtained treating the SQUID as a
tunable inductor and adding it in parallel to the equivalent circuit of the QDT described
in Section 3.3.1. The equivalent circuit of the transmon, illustrated in Figure 3.9b, has
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a total admittance of Yo(w) = Gog + jBag + jwC + 1/(jwL;), where Ly is the tunable
inductance described in Eq. (2.28). G4, and B,, describe the QDT structure and C' is
the total capacitance of the transmon. They can be calculated according to Eq. (3.10).

As described in Chapter 2.2.2, the transmon transition frequencies f,+1m(Pext) are
given by Eq. (2.38) where the Josephson energy is given by Eq. (2.27) and the charging
energy is described in Chapter 2.2.1 with the capacitance set by the QDT. In addition,
the transmon coupled to SAWSs has an acoustic resonance frequency; the center frequency
of the QDT, fqpr (see Chapter 3.2). While f,11m(®Pext) can be tuned by adjusting
Lj(®ext), fopr is defined by design of the QDT electrode structure. Consequently the
external magnetic flux can be used to tune the transition frequencies of the transmon in
and out of resonance with the center frequency of the QDT, and hence change how the
transmon to interacts with SAWs.

There are three main characteristics that are important to consider for the transmon
design: the anharmonicity, the coupling strength to the SAW and the coupling bandwidth.
The anharmonicity is a measure of the nonlinearity of the artificial atom and describes
how much the transition frequencies from the higher levels deviates from the fundamental
resonance frequency. Generally the anharmonicity for transmons is close to —F¢ (see
Eq. (2.37)), but when it is coupled to SAW it is also affected by a Lamb shift of the size
of =By, (w)/(2nC) originating from the QDT. For a drive close to the center frequency
of the QDT, the Lamb shift is very small since B, is close to zero (see Eq. (3.10)). This
Lamb shift is briefly discussed in the supplementary material of the appended Paper I
and in the appended Paper II, and is further explained in Refs. [96,147].

The anharmonicity needs to be bigger than the relaxation rate to facilitate treatment
of the transmon as a two-level system. The relaxation rate is the rate at which energy
stored in the transmon converts into SAWs by relaxation, dissipating power into the real
part of the admittance. It is set by the QDT’s coupling strength to SAWs and can be
expressed as
Go(w)

207’

Fac(w) = (321)

with G, and Cr from Eq. (3.10a,c). The maximum coupling for a certain energy transition
of the transmon (for instance the 0-1 energy transition) occurs at coinciding acoustic and
electric resonance. Then wqpr = wig = 27/+/L;Cr, where

o Ga()
- 207

Cac ~ 0.5 - wopTK°N, (3.22)

for a transmon with a double electrode QDT. The coupling bandwidth of the QDT can
be approximated as 0.9 fqpr/Np (same as for the double electrode IDT in Chapter 3.3.1).
If the coupling bandwidth is broad, the transmon can be excited using signals further
away from the center frequency. If the coupling bandwidth is narrow, the signals have
to be closer to resonance with the center frequency of the QDT to excite the transmon.
Note that the coupling is proportional to [V, while the anharmonicity and the coupling
bandwidth are inversely proportional to /V,,. This needs to be considered when a transmon
is designed for SAW experiments, such as in the appended Paper 1.
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3.6.1 Interaction with a propagating SAW field

A transmon coupling to a propagating SAW field can be described in a similar way as in
Chapter 2.3.3. We assume that the transmon can be treated as a two-level system (qubit)
since the anharmonicity is sufficient and the frequency (f, = 27w, ) of the interacting field
is close to the transition frequency (fio = 2mwi) between the two lowest energy levels of
the transmon. However, now the interacting field is a propagating SAW field produced
by applying a voltage over a classical IDT (described in Chapter 3.3) close to the IDT’s
center frequency and the transmission line corresponds to the surface of the piezoelectric
substrate.

By assuming that the propagating SAW field is reflected in a similar way as the
electromagnetic field in Chapter 2.3.3, the voltage reflection and transmission coefficients
of the qubit are obtained from Eq. (2.63) and Eq. (2.65), respectively. The relaxation
rate from state |1) to |0) of the qubit I'jg = I'se(w). The frequency dependence of the
acoustic relaxation rate follows Eq. (3.21) and the 0-1 decoherence rate 19 = I'1o/2 + T
for I'y as the 0-1 pure dephasing rate, which is described in Chapter 2.3.3.

Both the reflection and transmission coefficients depend on the average number of in-
coming phonons, which is more difficult to calculate than the average number of incoming
photons. The average number of incoming phonons (or photons) is proportional to the
power of the incoming field. The incoming SAW field is emitted by an IDT and unless the
electric/SAW conversion can be measured or calculated it is difficult to determine how
much of the power of the applied voltage is converted into SAW power and how much of
this reaches the transmon. Thus, the average number of phonons reaching the transmon
cannot easily be determined and €, = kv/P is used in Eq. (2.63) and Eq. (2.65) with k
as a proportional parameter to be fitted.

The reflected SAW field is detected by the classical IDT used to produce the incoming
SAW field and the transmitted SAW field can be detected by adding another classical IDT
on the opposite side of the transmon, see Figure 1a in the appended Paper IV. Assuming

that the two classical IDTs are identical, the reflection and transmission measured at the
IDTs are described by

r = 533 + 5123Sq11€_j2kL + @ (323&)
t = S%S0e " 4+ O, (3.23b)

where 5,11 is the reflected SAW field off the qubit described in Eq. (2.63) and S,12 is the
transmitted SAW field off the qubit described in Eq. (2.65). The phase kL that the SAWs
pick up while propagating the distance L between the qubit and an IDT is mentioned in
Chapter 3.4 and the scattering elements Ss3 and Si3 are found in Eq. (3.7). The electrical
reflection (S53) and multiple SAW transits (O) can be filtered out if the distance between
the two IDTs and the qubit is sufficiently large and if the bandwidth of the IDTs is wide
enough, as described in Chapter 3.4.1.

The qubit can also be excited electrically by using a capacitively coupled gate. Since
the qubit is designed to couple to SAWs, it will emit SAWs when relaxing if it is tuned
on resonance with wqpr. This emission can be measured using an IDT at a distance L
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from the qubit and it can be expressed as
tE = nglSlge*jkL, (324)

where Sy is the acoustic scattering element for emission from an electrically excited
qubit. The scattering elements of the qubit are power dependent and decrease for in-
creasing excitation power, thus the expressions the following are only valid for low enough
powers such that the artificial atom is far from saturation.

Sometimes it is not possible to filter multiple transits out, for instance if a single
electrode IDT is used to measure the emission off the qubit. Then its narrow bandwidth,
due to internal mechanical reflections, limits the frequency over which the measurement
can be performed. Let us assume one single electrode IDT at a distance L from the qubit
and that we apply a signal to emit SAWs with the IDT. Then the multiple transits in
Eq. (3.23a) cannot be filtered out and the measured reflection at the IDT is

St St Sqe 7

= Sag + 213 S11S eI = G 4 —
53 Sll ne=1 ( ot ) 53 1-— SllSqlle_]ZkL

(3.25)

where the summation is evaluated using the geometric series. Similarly, we can assume
that the qubit is electrically excited via the capacitively coupled gate. Then the signal
measured at the IDT is described by

Sgs1513€ L

tg = — 3.26
E=qC S11S,11e 92 ( )

A derivation of Sg1; and Sg3; can be found in the supplementary material of appended
Paper I for the coinciding acoustic and electric angular resonance frequency of the qubit
wqpT = Wio- Lo approximate S, from Eq. (2.63) using multiple SAW transits, we look
at the system when the qubit is excited by the IDT. The number of phonons converted
per second in the IDT from electrical power is Ny, = Py|S13]?/(hf) and the squared
Rabi frequency Q2 = 4N;,I',.. Since part of the phonons can be reflected by the qubit,
they can transit between the qubit and the IDT multiple times and the total number of
phonons reaching the qubit is approximately
i Rn Sl3 ?
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To approximate Sg31, the qubit is assumed driven via the electric gate and the squared
Rabi frequency Q% = 4N;,I',; with the electric coupling rate I'y; between the qubit and
the gate. The total number of phonons and photons reaching the qubit is approximately
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(3.28)
The Rabi frequency and number of incoming quanta is inserted into Eq. (2.63) for either
case (drive through IDT or gate), using I'jg = ', +T'¢ to obtain the scattering parameters
for the qubit when multiple transits cannot be filtered out.






Chapter

Experimental techniques

In order to perform the experiments, nanofabrication and precise measurements were
done. In the first section of this chapter, the key processes used in the fabrication of
the samples are described. The second section describes the measurement techniques,
where the samples are cooled down to cryogenic temperatures in a dilution cryostat and
measured at gigahertz frequencies.

4.1 Sample fabrication

All devices presented in this thesis were fabricated in the class 10-100 area of the MC2
Nanofabrication Laboratory at Chalmers University of Technology. They were SAW
devices designed with IDTs (see Chapter 3.3) or FEUDTs (see Chapter 3.5.2) and an
artificial atom (see Chapter 3.6) placed on a piezoelectric substrate. The piezoelec-
tric substrate was either gallium arsenide (GaAs-(100)-[011]) or black lithium niobate
(LiNbO3-YZ). An example of a device can be seen in Figure 4.1a). Regardless of the
transducer type used, single or double electrode IDTs, FEUDTs or QDTs embedded in
artificial atoms (Chapter 3), they were made with 27 nm thick aluminum, capped with
3 nm palladium (see blue overlay in Figure 4.1a)) and connected to 85 nm think gold
ground planes and electrodes (see brown overlay in Figure 4.1a)). The gold ground planes
had a sticking layer of 5 nm titanium and were capped with a 10 nm layer of palladium
for better contact. This resulted in a total pad thickness of 100 nm. The QDTs were in
addition connected to aluminum SQUIDs (see Figure 4.1b)), which were deposited in a
separate fabrication step using two-angle evaporation (see green overlay in Figure 4.1a))
and connected via the palladium layer on the transducers.

The fabrication techniques used are described briefly below, for more details the fab-
rication recipes can be found in Appendix A.

4.1.1 Photolithography for microscale features

In order to save processing time, photolithography was used to define features bigger
than approximately 1 pum, which in our devices were contact pads, ground planes and
alignment marks for later fabrication steps.

Prior to the photolithography, the cleaned substrate was coated with a bilayer of a
lift-off resist and a positive photoresist. The two layers of resist had different properties
and purposes; the top layer was used for patterning since it acquires sharp edges with high
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Figure 4.1: a) Image of part of a device using scanning electron microscopy with a magni-
fication of 1500 times. The brown overlay highlights the gold ground planes and electrodes.
The blue overlay highlights the aluminum transducers and connections and the green overlay
highlights the SQUID. b) Image of the SQUID, using scanning electron microscopy with 22
000 times magnification. The top island of the SQUID is connected via two QDT electrodes
to the top bus bar of the QDT and the bottom island is connected to ground. The ground
surrounds the SQUID and also serves as the grounded bottom bus bar of the QDT. ¢) Image
of two Josephson junctions in a SQUID and the connection of the SQUID to the ground plane.
The image is taken using 79 000 times magnification with scanning electron microscopy.
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resolution, while the bottom layer improved the lift-off because it dissolves isotropically
forming an undercut.

The photolithography was performed by first aligning the coated substrate carefully
with a chromium pattered photomask and then exposing it to ultraviolet light through
the photomask. The exposed coated substrate was immersed into a hydroxide solution for
development. During the development, the exposed resist was dissolved while the resist
that had been protected from the exposure by the photomask was left on the substrate.
In this way, the negative pattern of the photomask was transferred onto the resist on the
substrate.

After the development, the organic residues from the exposed resist were ashed away in
an oxygen plasma. The desired metal was then deposited on the pattered substrate in an
electron-beam evaporator with high vacuum. Finally, the remaining resist was dissolved
in a solvent, which lifted-off the metal on top of the resist and left the patterned metal.

For a better flexibility of the pattern, contact pads and ground planes were in some
cases written with a LASER writer instead of photolithography. In this process, a LASER
scans the resist-coated substrate in a similar way to the electron-beam that will be de-
scribed in the following section.

4.1.2 Electron-beam lithography for micro- and nanoscale fea-
tures

The smaller features of the devices, such as transducers and SQUIDs (Chapter 3.6), re-
quired higher resolution than possible with LASER and photolithography, necessitating
the use of electron-beam lithography. In electron-beam lithography, a focused beam of
electrons scans the substrate coated with electron-sensitive resist according to a pro-
grammable pattern. Since no mask is needed, the design is more flexible but the pat-
terning is much slower. Otherwise, the electron-beam lithography steps are similar to the
photolithography steps.

There are some difficulties associated with electron-beam lithography, including prox-
imity and charging errors. The proximity effect limits the achievable resolution and is
common when exposing narrow and dense patterns such as the transducers. The effect
occurs when electrons scatter from the exposed areas to regions in the proximity and
partially expose the unwanted areas. However, the proximity effect can be compensated
for by calculating the dose profile for the substrate, divide the pattern into a mesh grid
and distribute the doses according to the profile. This was done using the software
BEAMER™,

Charging errors are minor on conducting or semi-insulating substrates such as gallium
arsenide, but are usual on insulating substrates such as lithium niobate. On insulating
substrates, electrons are not conducted away when the electron-beam scans the substrate.
This leads to build up charge repelling beam electrons from the region, which can result
in a small offset and a distorted pattern. Therefore, a thin conducting resist layer was
used on top of the electron-sensitive resists on the lithium niobate substrates.
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4.1.3 Two-angle evaporation for superconducting quantum in-
terference devices

Some of the devices, those containing artificial atoms, went through additional fabrication
steps where the QDT was connected to a SQUID (see Figure 4.1b)). The SQUID was
made using electron-beam lithography to create a suspended resist (Dolan) bridge and a
technique called two-angle evaporation (shadow evaporation) [157].

This technique was used after all other structures such as ground planes and transduc-
ers had been made, and the sample had been coated once again with electron-beam resist,
patterned by electron-beam lithography and developed. The sample was mounted onto a
tilting stage in an electron-beam evaporator. First, the stage was tilted to a fixed angle
at which the bottom aluminum layer was evaporated. Second, the aluminum-covered
substrate was exposed to pure oxygen gas at a regulated pressure for a certain amount of
time, which formed a thin insulating barrier of amorphous aluminum oxide. Finally, after
the oxygen was pumped out, the top aluminum electrode was deposited at the opposite
angle. The metal was lifted-off, and the desired pattern was left on the substrate as
described in the previous sections.

The thicknesses of the deposited aluminum were chosen such that the top layer was
thicker and overlapped the bottom layer with the insulating barrier in between. In ad-
dition, one aluminum layer contacted the grounded part of the transducer and the other
layer contacted the live part (see Figure 4.1b,c) and Figure 5.1b in Chapter 5.1) such that
the SQUID was coupled in parallel with the transducer. This connection was possible
using the thin palladium layer on top of the aluminum electrodes in the QDT, which
prevented the formation of aluminum oxide.

4.2 Cryogenic measurements

The aluminum IDTs, FEUDTs and artificial atoms were superconducting below approx-
imately 1.4 K, but they were cooled down even further for the experiments. When
conducting experiments at the quantum level, it is necessary to cool down to cryogenic
temperatures and operate at microwave frequencies such that kgT < hf. Therefore the
sample in the appended Paper I and II, which was measured at a base temperature of
20 mK in a wet dilution cryostat, was operated at frequency of 4.8 GHz. The FEUDT
structure in the appended Paper III was more complicated and needed more electrodes
within one period, which reduced the size of the electrode width and made the fabrication
a lot more problematic. The problem was somewhat reduced by operating at 2.3 GHz.
For those measurements, we used a dry dilution cryostat to cool down to 10 mK. The
same dry dilution cryostat was used for measurements performed in Paper IV and V.
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4.2.1 Cooling techniques

The cooling process in both the wet and the dry dilution cryostat takes place in a mixing
chamber and is based on the phase separation occurring when a mixture of helium-3 (*He)
and helium-4 (*He) is cooled down to temperatures below 0.8 K. The two phases have
different concentrations of 3He; a He rich phase (concentrated phase) and a *He poor
phase (diluted phase). Since *He is lighter than *He, the concentrated phase accumulates
on top of the diluted phase. When 3He transits from the concentrated phase to the
diluted phase across the phase boundary, heat is absorbed and this provides cooling of
the mixing chamber.

As long as the concentration balance of 3He in the two phases is in non-equilibrium,
the 3He transits from the concentrated phase to the dilute phase and provides cooling.
This non-equilibrium is driven by pumping *He out of the dilute phase by distillation
in the still, which is connected to the diluted phase in the mixing chamber. The still
is heated and the 3He evaporates from the still whereas very little *He is evaporated.
This is due to the much larger vapor pressure of He than *He at the still temperature
(0.7 - 0.8 K).

The 3He in the concentrated phase needs to be replaced continuously. This is done by
pumping out the evaporated 3He from the still and returning it to the mixing chamber
via a set of heat exchangers. At the still, a flow impedance ensures a high enough *He
pressure for condensing. The cooling of the *He gas is done with different techniques in
the wet and the dry dilution cryostat.

In the wet dilution cryostat, the dilution unit is isolated from a surrounding *He bath
by an inner vacuum chamber (IVC). The surrounding *He bath is used to cool the *He
before it is re-condensed in a closed volume in the 1 K-pot. The boiling point of *He is
around 4 K at atmosphere and around 1.5 K when it is pumped, giving the 1 K-pot its
name. The cooling power of the 1 K-pot is controlled by evaporative cooling of the *He
bath funneled in from the “*He bath. The flow into the 1 K-pot is adjusted by a needle
valve and the evaporative cooling is achieved by pumping the *He.

After the liquid *He has been cooled by either one of the two techniques (this or the
one described below), the liquid *He is further cooled by heat exchangers at the different
temperature stages, before it reaches the concentrated phase in the mixing chamber.

In a dry dilution cryostat, the cooling of the *He gas is instead done with a pulse-tube
cryocooler. It consists of several parts, three heat exchangers, a re-generator, a thermally
isolated tube (pulse tube), a flow resistance and a buffer tank. A rotating valve oscillates
the pressure at the warm side of the re-generator by connecting the system alternatingly
to the high- or low-pressure side of a compressor. As a result, gas enters the system
via the heat exchangers and moves inside the re-generator and pulse tube, before it is
released again with a different temperature. When the gas moves inside the pulse tube, its
temperature is changed by changing the pressure. One of the heat exchangers (connecting
the re-generator to the pulse tube) is positioned at low temperature, where it absorbs
heat from the gas and this performs cooling. A more detailed description on how a pulse
tube cryocoler operates is described in Ref. [158].
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4.2.2 Measurement set-up

Before the nanofabricated samples were cooled down, they were mounted and wire-bonded
in a homemade sample box with SMA connectors (see Figure 4.2a). The sample boxes
were attached to a superconducting magnetic coil (see Figure 4.2b), which was connected
to superconducting wires using indium and mounted at the mixing chamber stage (see
Figure 4.2¢).

Figure 4.2: a) Sam-
ple box with a mounted
and wire-bonded device.
The ground planes were
wire-boned to the box,
while each IDT and the
gate was wire-boned to
the center pin of a
SMA cable. One side
of the transmon was
wire-boned to the box
for grounding. b) Six
sample boxes attached
to the superconducting
magnetic coil, which was
mounted at the mixing
chamber stage. Credit
for original photo: Ben
Schneider c¢) The su-
perconducting magnetic
coil was connected to su-
perconducting wires us-
ing indium. Credit for
original photo: Andreas
Bengtsson

The mixing chamber stage was kept at a temperature of either 20 mK in the wet
dilution cryostat or 10 mK in the dry dilution cryostat. The set-ups in both cryostats
were very similar and a typical set-up (for the dry dilution cryostat) is shown in Figure 4.3.
In this set-up two types of measurements were possible; reflection (via blue and green
lines) and transmission (via red and green lines).

The samples were measured via coaxial lines, which require careful design to not
conduct blackbody radiation from higher temperature stages to the samples. Therefore,
the coaxial lines have poor thermal conductivity and both the outer and inner conduc-
tors are thermalized at each temperature stage with an attenuator to reduce the noise
temperature.

In the reflection measurements the microwave signal was sent via an "input” line
(blue in Figure 4.3), reflected off the sample back to the same circulator, where the
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Reflection Transmission  Coil
input  Output input / Gate  DC
| AAm plifier
300 K
50-60 K
3dB 0dB 3dB LPF
3-4 K
6 dB 0dB 6 dB
Low noise
amplifier . .
07K Figure 4.3: Measurement set-up enabling re-
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Sample cryogenic low noise amplifier and then at room

temperature before reaching the measurement
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incoming and outgoing signals were separated. The outgoing signal went in the "output”
line (green) passed an isolator (actually a circulator working as an isolator) before it
was amplified with a cryogenic low noise amplifier positioned at 3-4 K. This circulator
was terminated with 50 €2 and worked as an isolator in order to absorb radiation noise
coming down from the amplifier line. The amplified signal was further amplified at room
temperature before it was measured.

In appended Paper I and II, the "gate” line (red in Figure 4.3) was used to excite the
qubit electrically. When the excited qubit relaxed, the emitted SAW propagated across
the substrate and could be detected by the IDT. At the IDT it was converted back to
electric signal, amplified and measured via the "output” line.

The "transmission input” line (red in Figure 4.3) was used for transmission mea-
surements of the delay lines in the appended Paper III. An electric signal sent via the
transmission line to one of the IDTs or FEUDTSs, where it was converted to SAWs. The
SAWs propagated through the delay line and were detected by the other IDT or FEUDT,
where they were converted back to electric signal, amplified and measured via the output
line (green).

In the appended Papers IV and V three sets of input/output connections via cir-
culators (previously described as the reflection input and output lines) were used; two
connected to an IDT on each side of the sample and one connected to a gate. Each input
line was filtered with a high pass filter of 1.9 GHz and a low pass filter of 3 GHz and each
output line was filtered with a high pass filter of 1.6 GHz and a low pass filter of 3 GHz
to remove noise outside the measurement frequency band.
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Most importantly, this setup made simultaneous reflection and transmission measure-
ments possible. A signal could be inputted to one of the IDTs and reflection measured
at this IDT while transmission was measured at the other IDT at the same time. This
set-up further enabled reflection to be measured at both sides and transmission to be
measured in both directions. In addition, the input/output lines connected to the gate
were used to address the qubit electrically. This type of measurement made it possible
to measure the qubit outside the narrow bandwidth of the IDTs, which enabled detection
of the maximum transition frequency of the qubit.



Chapter

Results

In this Chapter, the results of the appended papers are introduced. The interaction
between SAWs and an artificial atom demonstrated in the appended Papers I and II is
presented, motivating the need to improve the conversion between electric microwave
signals and SAWs for future quantum SAW experiments. The improvement of the elec-
tric/SAW conversion using unidirectional transducers in the appended Paper III is also
discussed.

The interaction between an artificial atom and SAWs is further investigated, depicting
the appended Papers IV and V. Electromagnetically induced transparency is shown in
the appended Paper V using the SAW field as probe and an electromagnetic field as
control. Using Autler-Townes splitting, the possibility to utilize the artificial atom as a
router of propagating phonons is demonstrated in the appended Paper IV.

5.1 Surface acoustic waves interacting with an artificial
atom

An artificial atom coupling to SAWs was demonstrated for the first time in the appended
Paper I. The theory and fabrication for the experiment is described more in depth in the
appended Paper II, which is a book chapter that also covers theoretical and experimental
work for SAW resonators at the quantum level. The SAW resonator work [86,87] was
done by the Leek Lab at the University of Oxford and will not be presented here.

The sample used in the appended Papers I and II (Figure 5.1) was measured at
a temperature of 20 mK. It has a single electrode IDT separated 100 um apart from
the artificial atom on the (100) surface of a polished gallium arsenide substrate with
propagation along the [011] direction of the crystal. The sender/receiver IDT has 125 unit
cells of single electrodes, a center frequency of 4.8066 GHz and an emission bandwidth of
about 1 MHz. The artificial atom is of the transmon type [37] described in Chapter 2.2.2
and 3.6. It uses a SQUID with a shunt capacitance made of a double electrode QDT
(Qubit coupled IDT) structure with 20 unit cells, which enables the artificial atom to
interact with SAWs. The top bus of the electrode structure is connected to one side of the
SQUID and the bottom bus is connected to the other island and to ground (Figure 5.1b).
The artificial atom has a maximum Josephson energy of 22.2 GHz, and a charging energy
and anharmonicity of 220 MHz. The QDT has a center frequency equal to that of the
IDT and a bandwidth of 250 MHz. Its coupling to SAWs (acoustic coupling) I',./27
is 38 MHz, while the transmon’s coupling to the electric gate is 0.75 MHz. The pure
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Figure 5.1: a) Optical micrograph of the sample discussed in the appended Paper I and II.
Electric signals were sent to or picked up by the single electrode IDT, shown to the left with
its upper and lower bus in lighter yellow and its electrodes in blue. The IDT converted the
signals into SAWs that propagated on the surface of the GaAs substrate (black) to the SAW
artificial atom, shown to the right. The artificial atom could also be excited electrically with a
gate, coming in from the top. b) Electron micrograph of the SQUID and its connection to the
transducer, which formed the artificial atom coupled to SAWs.

dephasing was estimated to be less than 10 % of the acoustic coupling. The acoustic
coupling of the artificial atom is almost six times smaller than its anharmonicity, which
made it possible to selectively address energy transitions both acoustically and electrically.
Thus, it appeared as a qubit.

The qubit was measured in three ways using the set-up described in Chapter 4: 1) via
SAW reflection of the qubit using the IDT for emission and pick-up, 2) via SAW detection
with the IDT after electric excitation of the qubit through the gate and 3) via two-tone
spectroscopy. In the two-tone spectroscopy, the acoustic reflection was measured with the
IDT while the qubit was irradiated with microwaves through the gate. Characterizing the
qubit in those three ways, its quantum interaction with SAW and its primary relaxation
into SAWs could be demonstrated.

The quantum interaction was highlighted by several different features. The first tran-
sition frequency of the qubit could be periodically tuned in and out of resonance with the
IDT by changing the magnetic flux through the SQUID loop. This is shown in Figure
2b in the appended Paper I and Figure 11 in the appended Paper II. On resonance, the
SAW beam emitted by the IDT was reflected back towards the IDT by the qubit. When
the qubit was off resonance, the SAW beam passed the qubit without being reflected.

Furthermore, the reflected SAW power from the qubit was nonlinear in the excitation
power (Figure 2f in the appended Paper I). When the incoming power, Py, /(hf) < T4,
the qubit reflected the SAWs coming from the IDT. As the power increased, the first
excited state of the qubit became more populated and the reflection coefficient of the
qubit decreased. At high powers, P;,/(hf) > T, the reflection coefficient tended to
Zero.

This type of saturation behavior was also found when the qubit was excited with
an electromagnetic signal applied to the capacitively coupled gate and when it relaxed,
it emitted SAWs that could be detected by IDT. The power dependence of the qubit
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transduction (blue dots) can be seen in Figure 5.2a, where the qubit transduction de-
creased nonlinearly with increasing power sent to the gate. At low powers, the power
dependence of both the qubit reflection and transduction agreed with the quantum model
taking the two lowest energy levels into account (red line in Figure 5.2a) described by
Eq. (3.26) in Chapter 3.6. This model also reproduced the reflected SAWs at higher
input power, however at these powers the transduction deviated from the model. The
deviation was captured by including six energy levels into the quantum model (green line
in Figure 5.2) [96,147].
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Figure 5.2: a) Qubit transduction from exciting it with the gate and detecting the emitted
SAWSs with the IDT versus applied power to the gate. The rate the qubit emits phonons is
limited by T'yc and when the power to the gate Pyate/(hf) > Iac the transduction tends to
zero. b) Transduction from the gate to the IDT versus applied power and qubit detuning. At
higher power, more than one photon from the gate could excited higher energy states at detuned
frequencies. Here six transitions are apparent.

The SAW emission from the qubit was also detected while detuning the resonance
frequency of the qubit by applying a magnetic flux though the SQUID loop. At low
powers, the qubit could only be excited at its 0-1 resonance frequency. However, at
higher power, several photons from the gate could together excite more energy states
at detuned frequencies. This is shown in Figure 5.2b, where up to six transitions are
visible. The transitions appear when the transition frequencies coincide with the driving
frequency, and arise from the same type of physics as when the qubit was excited with
SAWs from the IDT. The appearance of higher order energy transitions agree with the
full quantum model, and this is shown in Figure 3 in the appended Paper I for the first
three energy transitions.

All of the above features show that the first energy transition could be addressed
separately from transitions to higher energy states, meaning that the qubit could be
treated as a two-level system. In addition, the acoustic coupling rate agreed with the
quantum model estimate in Eq. (3.22) in Chapter 3.6 (also in the supplementary material
of the appended Paper I and in the appended Paper II). This highlights the quantum
interaction between the qubit and SAWSs, together with two-tone spectroscopy further
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explored in the appended Paper I. However, it is also important to demonstrate that
the interaction is indeed acoustic. Therefore, measurements in the time domain were
conducted.

Since the gate had a large bandwidth, it could be used to excite the qubit with both
short (25 ns in Figure 12 in the appended Paper II) and longer (1 us in Figure 4 in
the appended Paper I) pulses at electric and acoustic resonance. An immediate electric
crosstalk signal was measured at the IDT, due to capacitive coupling between the gate
and the IDT. 40 ns later, the SAWs emitted by the qubit reached the IDT. This agreed
well with the propagation distance and the SAW speed. The emitted SAWs were not
only picked up by the IDT, but also reflected back towards the qubit, where the SAWs
were reflected again. This echo signal traveled three times the distance of the first SAW
signal and was picked up by the IDT 80 ns later. For short pulses, three echoes spaced
80 ns apart could be observed. When longer pulses were used, the SAWs could either be
in phase with the electric crosstalk or out of phase. This led to an 80 ns long stepwise
increase or decrease of the measured signal. The measurements in the time domain prove
that the qubit primarily relaxes by emitting SAW phonons. As mentioned earlier the
coupling to the gate was much smaller.

5.1.1 Loss estimation of the transducer

The data from the three types of measurements were fitted using both the full quantum
model [96,147] summarized in the appended Paper II and the quantum model in Chap-
ter 3.6. These fits together with SAW reflection measurement when the qubit was detuned
(Figure 2a in Paper I), gave the scattering parameters in Table S1 in the supplementary
material of appended Paper I. The electric reflection parameter Sss' was estimated to
0.51 in amplitude units at the IDT center frequency, from direct measurements (using
the same notation as in Chapter 3.2.1). This means that 26 % of the input power was
electrically reflected by the IDT.

For the remaining scattering parameters, we assume that the acoustic ports of the
IDT are symmetric. Then the electric/SAW conversion parameters Si3 = S and the
acoustic reflection parameters Si; = S99 were estimated to a value of 0.28 and 0.55 in
amplitude units, respectively. Accordingly, 8 % of the electric signal was converted into
SAW in the desired direction and 30 % of the incoming SAW was acoustically reflected
by the IDT. Thus, the scattering matrix in Eq. (3.7) in Chapter 3.2.1 (see Figure 5.3)
was calculated to

30 S 8
8 8 26

where the element Si5 = S9; was not determined. The calculated sum over the last row
in Eq. (5.1)
Sis + Say + Szs = 0.42 (5.2)

"Different notation in the appended Paper I, where port 1 is the electric port, 2 is the acoustic port
facing into the delay line and 3 is the other acoustic port 7.e. S1; = S33 here.
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Electric power to IDT

533 Figure 5.3: Illustration of loss
in the single electrode IDT used
in the appended Papers I and II.
The electric power applied over
the IDT is partly electrically re-
flected (S33) and partly converted
to SAW via Si3 and Ss3. The

power that is not converted to
'Lost SAW nor electrically reflected is
assumed lost.

in squared amplitude units. If the power would be conserved, the sum of the squared
elements in each row of the scattering matrix is unity. This means that 58 % of the power
sent to the IDT was lost.

Both the high losses and the low bandwidth (1 MHz) are to some extent due to the
substrate material. Gallium arsenide is a weak piezoelectric substrate, which has a low
electric/SAW conversion and requires many unit cells to impedance match to outer elec-
tronics (usually with an impedance of 50 €2). The high number of unit cells reduces
the bandwidth of the IDT. An additional drawback of the IDT used in the appended
Papers I and II, is that it is a single electrode IDT. Single electrode IDTs suffer from
internal mechanical reflections, which narrows the bandwidth further. The low elec-
tric/SAW conversion is obvious from the measurements, where only 8 % was converted
in the desired direction. This is a problem when propagating SAWs are used for quan-
tum experiments. To facilitate quantum SAW experiments, the electric/SAW conversion
should be improved.

The conversion can be improved by changing the substrate to a stronger piezoelectric
material, such as lithium niobate. This also reduces the number of unit cells needed for
the impedance matching, and a double electrode IDT can be used which has a higher
bandwidth. However, all symmetric IDTs lose 50 % of the power theoretically, because
the signal is converted into both acoustic ports and only one port aims into the device
(towards the transmon). Therefore, it is interesting to investigate transducers that are
not emitting SAWs symmetrically.
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5.2 Improved conversion between electric signals and
surface acoustic waves

In appended Paper I and I only 8 % of the SAWs was detected by the pick-up transducer.
In order to increase the electric/SAW conversion, we investigated both unidirectional
transducers and IDTs on a stronger piezoelectric material in the appended Paper III.
The improved conversion efficiency by using a unidirectional transducer is the focus of
this section.

All samples in the appended Paper III are delay lines on black YZ lithium niobate
(LiNbO3), which has an about 70 times stronger electromechanical coupling coefficient
than the gallium arsenide substrate used in the appended Paper I and II. The delay lines
were measured at 2.3 GHz and 10 mK, and the results are summarized in Table 1 in the
appended Paper III. The delay lines consist of two transducers separated with an edge-
to-edge distance L of 500 pm (Figure 5.4a). The transducers are either unidirectional
transducers (UDTs) or double electrode interdigital transducers (IDTs). The UDTs have
110 (samples FEUDT_1-2) or 160 unit cells (samples FEUDT 3-4) in order to obtain
optimized directivity and impedance match to 50 €2, while the IDTs (Figure 5.4b) have
36 unit cells (samples IDT_1-3). Both transducer types have an electrode overlap W of
35 or 46 pm.

3 I Towards I 3

Figure 5.4: a) Optical micrograph of a delay line. Both transducers are either double electrode
IDTs or FEUDTSs. b) Electron micrograph of the top part of an IDT, where each unit cell has
two electrodes connected to the live upper bus and two electrodes connected to the grounded
bottom bus. ¢) Electron micrograph of the top part of one unit cell of a FEUDT [150]. Note
that the floating electrodes are brighter due to charging effects. The preferred electric/SAW
conversion is towards the right, in port 1. d) A Towards delay line, where port 1 faces inwards
and e) an Away delay line, where port 1 faces out from the device. One unit cell is illustrated,
where the upper bus is connected to live electrodes, the lower bus is grounded and two of the
floating electrodes (gray) are connected.
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The UDT design was selected from preliminary measurements of various types of
UDTs at 860 MHz and room temperature [149]. It is based on a floating electrode
unidirectional transducer (FEUDT) with six electrodes in one unit cell [150], seen in Fig-
ure 5.4c and described in Chapter 3.5.2. The design is such that electric/SAW conversion
is optimized for port 1 and minimized for port 2 (Figure 5.4d). For optimal transmission,
the FEUDTs were placed with port 1 facing into the delay line, i.e. port 1 of the two
FEUDTs were towards each other. This type of delay line is described as "Towards”. In
order to compare the transmission through port 1 with port 2, we also measured ”Away”
delay lines (Figure 5.4e) where port 1 of the FEUDTSs were facing out from the device.

The inverse Fourier filtered transmission and reflection (see Chapter 3.4.1) agreed
well with the models, see Figure 3 in the appended Paper III. The FEUDT delay lines
were in excellent agreement with the COM theory in Chapter 3.5.1, and the IDT delay
lines agreed well with the simple SAW circuit model described in Chapter 3.3.1. All
Towards delay lines showed higher transmission than the IDT delay lines (Table 1 in the
appended Paper I1I). For instance, FEUDT _3-4 had on average 4.7 dB higher transmission
than the IDT delay lines. Furthermore, all Towards delay lines exceeded the theoretical
-6 dB minimum insertion loss limiting delay lines with standard symmetric IDTs. The
transmission through the IDT delay lines was only -1.6+£0.2 dB lower than their -6 dB
theoretical limit. This implies that most of the total loss in the IDT delay lines was
caused by the IDT’s symmetric bi-directionality and only a small part was due to other
loss mechanisms.

The directionality of the FEUDTs was measured by comparing the transmission
through the Towards and the Away delay lines. A difference of 44 dB was observed
(Table 1 in the appended Paper I1T), which means a directivity of 22 dB per FEUDT and
that 99.4 % of the power goes in the desired direction.

Part of the power was not converted back to electric signal, but was acoustically
reflected back into the delay line by the transducer. These echo transits were Fourier
filtered and fitted with the same model used for the main transmission and reflection,
considering multiple acoustic reflections and a longer propagation distance as in Eq. (3.13)
and (3.12) in Chapter 3.4. The agreement between the fits (dashed lines) and the first
three transits (solid lines) in one FEUDT and one IDT delay line is shown in Figure 5.5a,b,
where the first transit is the main transmission. After every transit less power was
picked up, partly because it was converted into electric power and partly because it was
attenuated every time the SAW transited the delay line. Furthermore, the directivity of
the FEUDT i.e. the ratio of the transited SAWs in the Towards and Away delay lines
decreased for every transit (Figure 5.5¢). This can be explained using the scattering
parameters shown in Figure 3.7 in Chapter 3.5.1, where the acoustic reflection at port
2 is higher than at port 1 and hence a larger part of the SAWs are transiting multiple
times in the "Away” delay lines.
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Figure 5.5: Multiple transits in a) sample FEUDT_3 Towards delay line fitted with the COM
model and b) sample IDT_5 fitted with the SAW circuit model. The data is shown in solid
lines and the fits as dashed lines. The main transmission is the highest in magnitude and each
subsequent transit is smaller. All transits are fitted with the same center frequency, but with
different attenuation. c) Directivity of sample FEUDT_2: the ratio between the SAW transits
in the Towards and Away delay lines.

Table 5.1: The loss in maximum transmission (Maz T') is higher than the total loss (7Viot)
due to directive loss (7p) and propagation loss. The propagation loss was estimated from loss
due to viscous damping (7yis), beam steering (71s) and diffraction (yq4i) over the propagation
distance L + NpA. e is the loss that cannot be explained by yp nor yprop-

Delay lines L+ N\ | Max T Estimated loss [dB]

Type N,  W]pm] [pam] [dB] D Vvis Ybs Ydiff | Veot | Yue
FEUDT_1 110 35 665 -42 1-0.06 -0.17 -0.37 -0.61 |-1.2]-3.0
FEUDT 2 110 46 665 -3.7 |-0.06 -0.17 -0.28 -0.77|-1.3|-24
FEUDT.3 160 46 740 -3.2 |-0.06 -0.19 -0.31 -0.77|-1.3]-1.9
FEUDT 4 160 46 740 -2.8 |-0.06 -0.19 -0.31 -0.77|-1.3|-1.5

IDT 1 36 35 554 -7.8 -6 -0.14 -0.31 -0.61|-7.1]-0.7

IDT_2 36 35 554 -7.7 -6 -0.14 -0.31 -0.61|-7.1-0.6

IDT_3 36 46 554 -7.5 -6 -0.14 -0.23 -0.77|-71]-04

5.2.1 Loss estimation of delay lines

In total, -3.540.7 dB was lost during the main transmission in the Towards delay lines and
-7.6+0.2 dB in the IDT delay lines, shown in Table 5.1. Most of this loss can be explained
by the loss from conversion into the wrong acoustic port (directive loss) and propagation
loss. The directive loss (yp in Table 5.1) is the dominating loss in the IDT delay lines and
can account for -6 dB, but it can only account for -0.06 dB in the Towards delay lines.

The propagation loss is expected to be similar in FEUDT and IDT delay lines, since all
samples were fabricated simultaneously on the same wafer with a fixed transducer orien-
tation and edge-to-edge transducer separation. However, the SAWs travel further under-
neath the transducers and the distance between the center of the transducer (L + N,\) is
a better reference length. This distance is used to estimate the propagation 1oss (Yprop)s
which may include beam steering, diffraction and viscous damping [109, 110].
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The loss due to beam steering (7,s in Table 5.1) was estimated from the time the
SAWs have to propagate in order to lose -3 dB [110],

_ (a-1/v2w
BaaldB/s] = Fotan(0.1]6¢)/60])° (5:3)

for an alignment error of 0.1° and frequency f. For our system, we get B.gqg =~ 2 us by
using the slope of the power flow angle |91 /50| = —1.083 for LiNbO3 [109]. Assuming the
SAWs travel the distance L 4+ Ny, the loss due to beam steering is estimated to about
-0.3 dB.

The loss due to viscous damping was estimated from the attenuation coefficient, given
by
f AN
Yatt[dB/ps] = %ir(P)TOQ + s (1) <109> (5.4)
in air at room temperature [3]. The first term is due to air loading and the second is due
to viscous damping in the substrate. Here, only the second term is important because the
experiments were performed in vacuum and gas loading can be ignored. The calculated
loss due to viscous damping was a bit more than -0.1 dB, using a viscous damping factor
of 0.88 dB/(us GHz?) for LiNbOj at room temperature [110].

The diffraction loss (vqir) was linearly extrapolated from the results in Ref. [159]. It
was estimated to around -0.7 dB, which indicates that it dominates the propagation loss.

The total estimation of the propagation loss is around -1.2+0.1 dB for all delay lines.
Consequently, the propagation and directive loss cannot fully account for all loss in
the delay lines, leaving an unexplained loss (7, in Table 5.1) of -2.24+0.8 dB in the
FEUDT Towards delay lines and -0.540.2 dB in the IDT delay lines. This loss is higher
in the FEUDTs, probably because they have more unit cells. The loss per unit cell,
-0.007+0.003 dB, is the same for both types of transducers.

The unexplained loss can be due to transducer imperfections and conversion into
acoustic bulk waves. The loss due to transducer imperfections is much bigger at room
temperature, when the resistance of the transducers is finite. In experiments with su-
perconducting niobium FEUDTs at 3.5 K, the electrode resistance has been shown to
have much bigger effect on the insertion loss than other loss mechanism [114]. Since our
transducers were superconducting, this loss should be negligible.

Both the transducer imperfections and the conversion into bulk waves, affect the SAW
every time it interacts with the transducer. In order to address the unexplained loss, we
expand the three port scattering matrix in Eq. (3.7) in Chapter 3.2.1 to a four port
scattering matrix

Dot S11512513514 in
Dout _ 591522523524 5 (5.5)
V- S31532533534 [ | VT | '

(bLoss 541542543544 0

where the fourth port describes the loss in the transducer, i.e. S4; is the loss during
the acoustic reflection and Sy3 is the loss during the electric to SAW conversion. Both
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Sys3 and Sy; contribute to the unexplained loss (vy..). A schematic image over where the
losses occur when two transducers are placed in a delay line is shown on Figure 5.6. The
main transmission through the delay line suffers from electric reflection (S33) before the
electric signal is converted into SAWs. During the conversion, the power is lost to SAWs
propagating in the undesired direction (S3; = 27p from Table 5.1) and to conversion
loss (S43). The SAWs that propagate in the desired direction lose some power during
the propagation (7pwp) before they reach the other transducer. At the other transducer
most of the power is converted to electric signal (S3;), but a part is acoustically reflected
(S11), a small part is transmitted through the transducer (Ss;) and some is lost (Sy).
The acoustically reflected SAWs transit the delay line multiple times and every time Ypyop
increases with the number of transits and S,; increases with the number of interactions
with the transducers.

Electric power
to transducer

Transducer Transducer

jr—) SZl

f}xprop l

Su3 Sa1

Figure 5.6: Illustration of loss in a delay line with two FEUDTs. For IDTs, So3 is of the same
size as the signal through the delay line. When an electric signal is sent to a transducer, part of
the signal is electrically reflected (S33) and part of the signal is converted to SAWs both in the
direction through the delay line, and in the undesired direction (S23). A fraction of the signal
is lost during the conversion (Ss3). The SAW propagating through the delay line loses part of
the power (Vprop) before it reaches the other transducer. At the other transducer, the SAW is
acoustically reflected (S11), acoustically transmitted (S12) and converted to electric signal (Ss1).
During this, part of the signal is lost (S41). Both Sy3 and Sy contribute to the unexplained
loss (Yue), while Yprop can be theoretically estimated.

The loss during the main and multiple transits can be fitted (Figure 5.5) and the
fitted attenuation increases for every transit. This increase is linear in dB, which can be
seen in Figure 5.7 where it is fitted to the line

y(ne) = (Yorop + Sar)ne + Sas (5.6)

for n, number of transits. The y-intercept (Ss3) implies the loss during the conversion
from electric signal to SAWs. The slope of the lines (Vprop +S41) indicates the sum of the
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Figure 5.7: Attenuation of each tran- Table 5.2: Result of linear fits to the at-
sit in sample FEUDT 3 from COM fittings tenuation versus transit. The slope describes
versus the number of times the SAW has Yprop +S41, while the y-intercept implies the loss
transited the delay line. The attenuation Sy3. The value of the linear fit at the first transit

of each delay line was linearly fitted on a y(1), estimates the loss for the main transmis-
logarithmic y-scale. sion.

propagation loss during one transit (yp0p) and the loss during one acoustic reflection (Sy;).
The propagation loss is the total estimated loss due to diffraction, beam steering and
viscous damping. The scattering elements Ss3, So3, S31, S11 and Ss; does not contribute
here, because they are already included in both the SAW circuit model and the COM
model for fitting the transits. The result of the linear fits is shown in Table 5.2 for all
delay lines.

The slope of y(n;) therefore gives Yprop + Ss1 &~ —0.9£0.1 dB for all FEUDT delay
lines, which is close to the estimated propagation loss. The similar value of around -1.3 dB
for the IDT delay lines is also close to the estimated propagation loss, implying a very
small or no loss during the acoustic reflection. The y-intercept gives Sy3 ~ —1.5+0.7 dB
for FEUDT delay lines, whereas it is approximately -0.4 dB for IDT delay lines.

To sum up the losses, the biggest loss in the IDT delay lines is the directive loss,
as theoretically predicted, and the remaining loss is mainly propagation loss. For the
FEUDTs, the directive loss is minimal in the Towards delay lines, and the transmission
is high. Part of the loss in the transmission through the FEUDT delay line is lost during
the propagation and this loss is dominated by diffraction loss, which can be improved
with a bigger electrode overlap. However, the other part of the loss in the transmission
through all types of delay lines cannot be attributed to propagation loss. This loss occurs
every time the SAW interacts with the transducer, and scales with the number of unit
cells with the same amount for both transducer types. A possible source of this loss is
conversion into bulk waves.

The estimated propagation loss on LiNbOj is comparable to similar estimations for
GaAs, which was the substrate used in the appended Papers I and II. For a 500 ym long
delay line on GaAs the loss due to viscous damping would be around -0.2 dB, using Eq.
(5.4) with a viscous damping factor of 0.9 dB/us at room temperature [160]. Furthermore,
the loss due to beam steering can be estimated to a bit less than -0.2 dB in the same way
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as for LINbO3 with a power flow angle of -0.537 for GaAs [110]. The diffraction could
be estimated to -0.5 dB using a parabolic approximation [110]. In total, the propagation
loss for the same type of delay lines on LiNbOj3 and on GaAs would be similar, but
the loss during electric/SAW conversion is bigger on GaAs because it is a much weaker
piezoelectric material.

5.2.2 Possibilities for quantum experiments

The electric/SAW conversion efficiency was improved by the use of the stronger piezoelec-
tric substrate and by using FEUDTs in the Towards configuration instead of symmetric
double electrode IDTs. Their 4.7 dB higher transmission than the IDT delay lines is due
to the 22 dB directivity of each FEUDT. However, the directivity was achieved with a
certain number of unit cells, which results in a narrower bandwidth (Table 1 in the ap-
pended Paper I1T). This is useful for on-chip filtering but can be a limitation in quantum
SAW experiments.

In quantum SAW experiments, such as in the appended Paper I and II, the qubit
couples to SAW phonons using a transducer. This coupling is given by Eq. (3.22) in
Chapter 3.6. Since the number of unit cells of the qubit transducer has to be at least
one, the minimum acoustic coupling is approximately 100 MHz for a qubit on LiNbOj3 at
2.3 GHz. If the qubit coupling is bigger than the bandwidth of the pick-up transducer,
the qubit phonon emission will not activate all unit cells in the pick-up transducer. Thus,
there is a trade-off between bandwidth and directivity that needs to be optimized for a
given experiment.

The minimum coupling of a qubit on LiNbOj is larger than the bandwidth of both
the FEUDTs and the IDTs in the appended Paper 111, as it was for the SAW device in the
appended Papers I and II. In some quantum experiments, it could be desirable to have
a larger bandwidth of the pick-up transducer than the qubit coupling and at the same
time use the efficient electric/SAW conversion of the FEUDTs. Then the qubit coupling
needs to be decreased. This can be done by addressing the qubit transducer away from
its center frequency on one of the side lobes [96,147] or by inserting an insulating layer
between the qubit and the LiNbOj substrate [3].

Another solution to this trade-off between sufficient coupling versus anharmonicity of
the transmon and conversion efficiency of the IDTs, is to use a weak piezoelectric substrate
for optimal transmon parameters while either using a matching network for the IDTs or
to accept the mismatched impedance. In the latter case, the required bandwidth sets the
N, and the measurement requires better amplification at low temperature (preferably
parametric amplifiers) and/or more averaging while measuring. This solution is used
(without parametric amplifiers) in the appended Papers IV and V described in the next
section.
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5.3 Scattering properties of an artificial atom inter-
acting with SAWs

In order to investigate both reflection and transmission of an artificial atom interacting
with SAWs, the artificial atom can be placed between two IDTs. This was done in the
appended Papers IV and V, where a transmon qubit coupled to SAWs was positioned
asymmetrically between two IDTs on GaAs (see Figure la in the appended Paper 1V)
instead of next to one IDT as in the appended Paper I and II. Another difference is
that the IDTs, with a center frequency f; = 2.2641 GHz, were designed to have a larger
bandwidth at the expense of impedance matching. With 150 double electrodes instead
of the 450 needed for optimal conversion efficiency and impedance matching to 50 €2, the
IDTs had a bandwidth of 14 MHz. The QDT has 25 double electrodes, a bandwidth
of 80 MHz and the center frequency fo = fr. The QDT and the SQUID forming the
artificial atom of the transmon type yielded a maximum Josephson energy of 10.7 GHz,
a charging energy of 129 MHz and a maximum transition frequency fy; between the two
lowest energy levels of 3.19 GHz. Its maximum coupling to SAWs occurred at fo1 = fo
and was 21 MHz.

To be in the quantum regime, kT < hw, the experiment was conducted at a tem-
perature of 12 mK in a set-up described in Chapter 4 and shown in Figure 1b in the
appended Paper IV. Each IDT and the gate were connected to both an input line and
an output line via two circulators and filters. This enabled simultaneous reflection and
transmission measurements. It also enabled gate measurements, where the gate was used
to excite the transmon electrically and the emitted SAWs were measured at the two IDTs
or the electric reflection was measured at the gate. Using the gate, a larger frequency
span could be probed since the measurements are limited by the smallest bandwidth,
which for the gate measurements is the bandwidth of the circulators and this is much
wider than the bandwidth of the IDTs. Consequently, the gate measurement was used to
characterize the transmon and the IDTs were used to show that the transmon primarily
relaxed into SAWs when f; was tuned near fq.

The detuning fy1 — fo could be controlled in two ways; either by using an external
coil to produce a magnetic flux to tune the energy levels of the transmon over a wide
range or by applying a microwave tone to the gate at fi5 to drive the transmon such that
the energy levels |1( and |2( are Rabi dressed creating an Autler-Townes splitting. The
latter is described in Chapter 2.4.1 and can be seen in Figure 1d in the appended Paper
IV. In contrast to tuning the transmon with the external magnetic coil, the latter type of
control can be done very fast. Its detuning is limited, but sufficiently large to decouple
the transmission from the SAWs.

The strong control at fi5 causes an Autler-Townes splitting, shown in Figure 3a in
the appended Paper IV. This Figure illustrates two-tone spectroscopy, where a weak
continuous SAW signal is sent as a probe from IDT A at fy; at the same time as the control
signal is applied to the gate. Transmission is measured at IDT B while the transmon
is tuned with the external magnetic coil and the power of the control is increased. For
no or weak control power, the propagating SAWs are transmitted when the transmon’s
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fo1 is detuned. However, the transmission is blocked by the transmon when fy; is on
resonance with the frequency of the SAWs. For substantial control power the Autler-
Townes splitting of the energy levels |1) and |2) resulted in two transition frequencies
different from fy; and hence the transmon no longer blocked the SAWs at zero detuning
but at these two other frequencies. As the power of the control was increased, the
splitting gradually increased. At even higher control powers, several other features appear
and these are due to the combination of the increased Autler-Townes splitting and flux
detuning. These features can be seen in Figure 5.8, where both reflection and transmission
is shown.
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Figure 5.8: Acoustic a) reflection and b) transmission of weak SAWs at the center fre-
quency measured simultaneously while increasing the power of the control signal at fio (sent
via the gate) and sweeping the external magnetic coil to change the transition frequencies of
the transmon. At lower control powers both reflection and transmission shows an increasing
Autler-Townes splitting as in Figure 3a in the appended Paper IV, but at higher control powers
(above -95 dBm) more areas that are transparent appear.

The detuning using the Autler-Townes splitting was compared to the detuning using
the magnetic coil in Figure 2b in the appended Paper IV. For both ways of detuning the
transmon, SAWs were launched from IDT A and the SAWs reflected by transmon (R,
triangles) were measured at IDT A at the same time as the transmittance (T, circles) was
measured at IDT B (see Figure la in the appended Paper IV). When the transmon was
detuned from the frequency of the SAWs, the SAWs were transmitted without interacting
with the transmon. On resonance, the transmon interacted with the SAWs and partly
reflected the SAWs, which gave rise to a reduction in transmittance. This is results in
the dip in transmittance at zero detuning in Figure 2a in the appended Paper IV, where
the detuning is done using the magnetic coil. For increasing power applied to IDT A,
the transmon was gradually saturated and the transmittance approached unity while the
reflection approached zero. Both ways to detune the transmon show similar results and
these were fitted to the reflectance (R = |r|?) and transmittance (7' = [¢|?) as a function
of incoming SAW power P (described in Eq. (2.63) and (2.65) in Chapter 2.3.3) using
k=Q,/ VP and pure dephasing I'¢ as the only fit parameters. The fits are in good
agreements with the acoustic coupling of 21 MHz and gives an estimated pure dephasing
of 8 MHz. The pure dephasing limits the extinction in transmission at low SAW powers
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to 80 %, which is observed as the deviation from zero in transmission and the deviation
from 100 % in reflection at low powers.

The pure dephasing was much less in an early measurement of the same sample as
in the appended Papers IV and V. This is presented in Figure 5.9, where the extinction
in transmission is 96 % and the fit to both reflection and transmission gives a pure
dephasing of 2.6 MHz which less than 13 % of the acoustic coupling of 19 MHz. The
difference between the early result and the later results can be understood since it is about
half a year between the measurements. During this time the sample was recycled several
times to switch other set-ups nearby and as a consequence the magnetic environment
was changed. In addition, the sample aged and the normal resistance of the Josephson
junctions was slightly changed. These early results show that transmons on GaAs can
be designed to achieve sufficiently high extinction in transmission, which is promising for
fast control of propagating SAWs in the quantum regime.
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Figure 5.9: Observation of 96 % extinction in transmission (blue dots) of the same sample as
in the appended Papers IV and V. The fit (red line) to the transmission is used to normalize
the reflection (green triangles) versus power applied to IDT A and gives in a pure dephasing of
less than 13 % of the acoustic coupling I'y. = 19 MHz.

5.3.1 Fast control of propagating SAWs

For fast control of propagating SAWs, the applied control at the gate was pulsed pro-
ducing an Autler-Townes splitting while the pulse was turned ON. As previously, SAWs
propagating from IDT A were used as probe and the reflected SAWs were measured at
IDT A at the same time as the transmitted SAWs were measured at IDT B. The mag-
netic coil was fixed to keep the transmon fy; on resonance with the propagating SAWs.
When the pulse was OFF, the SAWs were mostly reflected by the transmon. Turning the
pulse ON; the transmon was no longer on resonance with the SAWs and the SAWs were
transmitted without interacting with the transmon. This can be seen in Figure 3a in the
appended Paper IV for simultaneous reflection (green) and transmission (blue) measured
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when a 400 ns pulse was applied to the gate as the control. This experiment demonstrates
the proof of principle of a phonon router, where phonons (propagating SAWs) were di-
rected by the transmon either towards IDT A by turning the control pulse ON or towards
IDT B by turning the control pulse OFF. The rise time of the router was about 40 ns
and the fall time was 160 ns. The rise time was limited by the bandwidth of the IDTs,
while the fall time was longer due to multiple transits between IDT B and the transmon.
It was also possible to route SAWs using shorter control pulses, shown in Figure 3c in the
appended Paper IV. Shorter control pulses than 60 ns resulted in a decreasing amplitude
of the measured transmitted SAW field due to the bandwidth of the IDTs.

Hitherto, continuous propagating SAW fields have been controlled. For more advanced
in-flight manipulation of SAWs, it will also be important to route SAW pulses and this
possibility is shown for simultaneous reflection and transmission measurement in Figure 4
in the appended Paper IV. A 100 ns SAW pulse was generated at IDT A and routed using
the external coil to tune the transmon fj; in and out of resonance with the frequency of
the SAW pulse. When the transmon was detuned (green) the SAW pulse was transmitted
without interacting with the transmon. On resonance, it was mostly reflected, but a small
part was transmitted even at low powers of the SAW pulse. The imperfect routing of
the SAW pulse in this experiment is mainly due to incoherent scattering, which is caused
by pure dephasing. However, even in absence of pure dephasing, the performance of the
router would still be limited by the relaxation time of the transmon (determined by the
inverse of the coupling to SAWSs) since full reflection can only be reached for pulse lengths
longer than the relaxation time.

5.3.2 Electromagnetically induced transparency using SAWs

Previously we discussed the Autler-Townes splitting where the strong oscillating con-
trol field changed the level structure of the transmon and therefore the reflected and
transmitted field changed. For lower powers of the control field, another effect called
Electromagnetically Induced Transparency (EIT) was observed in the appended Paper
V using the same sample and the same type of measurements as in the appended Paper
IV.

EIT is described in Chapter 2.4.1 and is in contrast to Autler-Townes splitting, based
on interference effects between the transitions of the three lowest energy levels in the
transmon [136, 141, 161]. These interference effects are possible in our sample because
of the transmon’s strong frequency dependence of the coupling strength to SAWs, see
Figure 5.10 (blue line). When the transition frequency between the two lowest energy
levels of the transmon, fy; (red), is on resonance with the center frequency fg of the
QDT structure, this transition of the transmon couples the strongest to SAWs. Due
to the negative anharmonicity approximately equal to the charging energy of 129 MHz,
the transition frequency between state |1) and [2), fio, is at a much weaker coupling
point (green). Thus, I'jg > I'y; where I';; denotes the relaxation rate from the state 4
to state j (expressed in Eq. (3.22) in Chapter 3.6). The direct transition between the
second excited state and the ground state is suppressed by parity conservation, and hence
relaxation from the second excited state to the ground state will be via relaxation to the



5.3 Scattering properties of an artificial atom interacting with SAWs 79

first excited state. In Figure 5.10 the 80 MHz bandwidth of the QDT is marked with a
light blue area.
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Figure 5.10: Acoustic coupling of the QDT structure (blue) has a maximum at fo. When fy;
(red) is close to fqg, fi2 is at frequency where the QDT has a much weaker acoustic coupling.
The light blue area marks the bandwidth of the QDT.

Traditionally for measurements of EIT, the probe is swept in frequency. However, in
our system the probe is limited by the narrow bandwidth of the IDTs. Thus, we instead
used another scheme where the frequency fo and amplitude of the control field was swept
while the frequency of the probing SAWs was fixed to f, = fo:. The control field was
applied, as previously, via the gate, only limited in the bandwidth by the circulators. For
low or no control power, the SAWs were reflected by the transmon as shown in Figure 2a
in the appended Paper V. As the power of the control was increased, a dip in reflection
appeared for fo ~ fio =~ 2.15 GHz. This dip in reflection is due to EIT, and it is shown
in Figure 2b in the appended Paper V. Figure 2b is a cross-section of Figure 2a (red line)
at the applied control power to the gate at room temperature of —53 dBm corresponding
to 6.1 MHz.

The conditions for realizing EIT are determined by the decoherence rates 1o and 7y,
which were extracted from two different types of measurements. The decoherence rate
10 Was obtained from analyzing the linewidth of the dip in SAW reflection that appears
without any applied control and by only sweeping the external magnetic coil such that fig
was tuned in and out of resonance with fo = f7. It was found to be 21 MHz and relates
through 19 = I'19/2 + I'y, which is different from ;9 &~ 18.5 found from the relaxation
rate I'gy = 21 MHz and the pure dephasing I'y, ~ 8 MHz in the appended Paper IV. The
different values can be due to aging of the sample and different environment at different
cool downs, previously shown in Figure 5.9.

Using the obtained 719, 720 could be found from analyzing the linewidth of the dip
at several applied control powers below the black line in Figure 2a in the appended
Paper V. The analysis of the linewidth for different control powers applied at room
temperature shows that the linewidth is linearly proportional to the control power, vg;r =
Y20+ 2% /710, see black data points Figure 3 in the appended Paper V. The red data points
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in Figure 3 shows (¢, which is the Rabi frequency given by the control power. From
the linear fit of yg;r (black line), 90 is the y-intercept and was extracted to a value
of 4.940.14 MHz. Thus, v190 > 720. ¢ as the function of applied control power was
extracted from the slope of the linear fit.

To discern EIT from Autler-Townes splitting under the given experimental conditions,
the theoretical criterion developed in Ref. [136] and described in Chapter 2.4 was used for
quantitative distinction. In our system this criterion is equivalent to Q¢ < y19 — Y20 for
Y10 > 7Y20. From the obtained 7o and 799, the threshold for )¢ is estimated to 16 MHz
corresponding to a control power of -45 dBm applied to the gate at room temperature
and -105 dBm applied to the gate at low temperature (see set-up in Figure 1b in the
appended Paper IV).

Around the threshold, a crossover from EIT to Autler-Townes splitting takes place.
The crossover is indicated with a black line in Figure 2a in the appended Paper V. The EIT
regime is below this line and the Autler-Townes regime is above it. Above the threshold,
in the Autler-Townes regime, the reflection coefficient can be described as two Lorenztians
at two different frequencies. The power used for Autler-Townes splitting the transmon
in the appended Paper IV is -20 dBm applied at room temperature corresponding to
Q¢ = 300 MHz. This is much larger than the anharmonicity and hence many transitions
coexist complicating the response as seen in Figure 5.8.

Below the threshold, the reflection coefficient in Eq. 2.74 can be described as two
Lorentzians with different signs, centered at the same frequency, which is the criteria for
EIT.

In Figure 1c in the appended Paper V, transmission is shown for three different control
powers; one in the Autler-Townes regime (red), one at the crossover (green) and one in the
EIT regime (blue). The transmission was measured while an external magnetic flux was
swept and both the probe and control frequency were kept constant. However, sweeping
the external magnetic flux tunes both fy; and fi2 and consequently both dw, and Ow,
were swept simultaneously (see Figure 1c in the appended Paper V).

The results are fitted to

T
t=1- 10 . (5.7)
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using 790 and J as the only fit parameters. This equation is obtained from Eq. (2.75) in
Chapter 2.4, assuming a constant transmon anharmonicity during the external magnetic
coil sweep, and this is accurate to the first order. Here § was introduced to account for
the slight asymmetry of the line shape in Figure 4 in the appended Paper V. If the probe
and control frequency is perfectly aligned with the anharmonicity, 6 = 0. Otherwise ¢
describes the residual control detuning when 4, = 0 such that dw. = dw, + d. From the
fits, a 0 of 4 MHz was obtained and 7,9 was extracted to a value of 4.5+ 0.6 MHz. The
obtained 7y is close to the 4.9 + 0.14 MHz obtained from the reflection measurement.



Chapter

Summary and outlook

In this thesis, we have studied propagating surface acoustic waves (SAWs) with the aim
for quantum applications. In order to conduct experiments at the quantum level, the
systems were cooled down to cryogenic temperatures and operated at microwave fre-
quencies. All devices were placed on a piezoelectric material, either gallium arsenide or
lithium niobate. The SAWs were generated and detected with periodic superconducting
electrode structures forming interdigital transducers (IDTs). We demonstrated how such
superconducting transducers can be unidirectional with high conversion efficiency and
large directivity. We also demonstrate how SAWs can interact with an artificial atom in
the quantum regime and how this can be used for applications or for studying physical
phenomena.

In the appended Paper I, we demonstrated the coupling between an artificial atom
and SAWs for the first time. The first energy transition of the artificial atom could be
addressed selectively and it could be tuned with magnetic flux. The acoustic reflection
was measured and found to have a nonlinear power dependence. Transitions between
higher energy levels were detected at elevated powers, and in addition, the relaxation
of the artificial atom was proven to be dominated by emission of SAWs. These features
highlights that the artificial atom coupled primarily to SAWs is of non-classical nature,
which was suggested in Refs. [162,163].

The theory, fabrication and future developments for the experiment was expanded on
in the appended Paper II, which is a chapter of the book Superconducting Devices in
Quantum Optics [164]. Part of the theory summarizes a quantum model of the artificial
atom coupling to a bosonic field at several separated points [96,147]. The book chapter
also includes theoretical and experimental work for SAW resonators at the quantum level,
which is work done by the Leeck Lab at the University of Oxford [86,87].

The results in the appended Papers I and II produce findings parallel to those in
quantum optics and are therefore perhaps best described as a new branch in quantum
acoustics; circuit quantum acoustodynamics. Circuit quantum acoustodynamics has a
promising future to explore new regimes not easily obtained in its optical analogue. Many
possible future developments were covered in the appended Paper 11, where the slow speed
of the SAWs and the coupling strength between SAWs and artificial atoms are the main
features.

The first future direction mentioned in the appended Paper II is in-flight manipulation
of quantum information. The proof of principle for this was showed in the appended
Paper IV, where an artificial atom was used to direct propagating SAWs in the quantum
regime, in two directions. Depending on if the artificial atom was tuned on resonance with
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the propagating SAWs, they were either reflected or transmitted. An 80 % extinction
was observed in the transmitted field and the router had a rise time of 40 ns. The
extinction of the transmitted SAW field in our device is lower than the extinction of
the transmitted electromagnetic field observed in the single photon router in Ref. [138].
The lower extinction in the transmitted SAW field is due to pure dephasing. In an
earlier measurement of the same sample, the magnetic environment was different and
the observed extinction of the transmitted SAW field was 96 %. This is comparable to
results achieved using electromagnetic fields [103,137,138]. Although the concept of the
router in the appended Paper IV showed a four times slower rise time than the router in
Ref. [138], the slow propagation speed of the SAWs might be more important for certain
operations.

A future development of the system in the appended Paper IV is to use two artificial
atoms with separate tunabilities. Then a SAW pulse could be trapped between the two
artificial atoms. For instance in the following way; the first artificial atom is detuned such
that the SAW pulse is transmitted towards the second artificial atom, where it is reflected.
Before it returns to the first artificial atom, this artificial atom is tuned into resonance
with the SAWs and the SAW pulse is trapped. Then the SAW pulse could controllably
be let out through either the first artificial atom or the second artificial atom. Since the
SAWs propagate slowly in comparison to electromagnetic waves, there is ample time to
tune the artificial atoms. Moreover, the spatial extent of a SAW phonon is much smaller
than the spatial extent of a microwave photon and the size of a typical device.

Since the artificial atoms in our devices couple to the slowly propagating SAWs using
transducers, the artificial atom naturally has the size of several wavelengths. In this sense,
the artificial atom is large in comparison to the SAW field and it has no longer a point like
interaction. A quantum theory for huge atoms can be found in Ref. [96] and a description
of it can be found in the appended Paper II. This theory was further developed in Ref. [9]
predicting non-exponential decay of giant atoms, which was experimentally verified in
Ref. [99]. The experiment and approach in Ref. [99] was one of the future directions
mentioned in the appended Paper II. Expanding on the theory of giant atoms coupled to
SAWs, Ref. [98] theoretically describes a system where multiple giant atoms are nested
inside each other and performs differently depending on how they are nested. Another
interesting development, utilizing the spatial extension of these types of artificial atoms
and the slow propagation of the SAWs, is to tune the artificial atom while the SAWs
propagates through it.

The fast control of the artificial atom interacting with SAWs in the appended Paper IV
was performed using Autler-Townes splitting of the first excited state. Using the same
device, Electromagnetically Induced Transparency (EIT) of the SAW field was demon-
strated in the appended Paper V. To distinguish EIT from Autler-Townes splitting, the
criterion in Ref. [136] was used to find the threshold between the two regimes. Both EIT
and Autler-Townes regimes were shown as well as the crossover between them. Although
EIT has been observed in atomic three-level systems [139,140], it has been troublesome
to properly show EIT in circuit quantum electrodynamic systems. This is due to the
difficulty in producing metastable states in these systems and what was thought to be
observations of EIT [137,138], were in fact observations of Autler-Townes splitting [136].
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The first proper demonstration of EIT in circuit electrodynamics was done by creating
an effective three-level system by combining an artificial atom and a three-dimensional
cavity system [141]. An analogue to induced transparency in optomechanical devices
has been demonstrated where light beams interact with a mechanical resonator using
radiation pressure coupling [142,143].

Our system in the appended Paper V is in contrast to the other circuit electrodynamic
systems, an open quantum system where the possibility to observe EIT is due to the
artificial atom’s highly frequency dependent coupling to SAWs. The highly frequency
dependent coupling can easily be used to suppress certain energy transitions and enhance
another by tuning the transition frequencies of the artificial atom relative to the center
frequency of the transducer coupling the artificial atom to SAWs. This should be possible
to use to create population inversion and single atom SAW lasing (similar to a LASER [21]
but with SAW instead of light), which are future directions mentioned in the appended
Paper II.

Strong coupling between artificial atoms and SAWs has been demonstrated in both
open systems, such as in the appended Paper I, and in cavity systems, such as Ref. [80—
82,84]. In Ref. [84], the strong coupling was used to create non-classical states and in
Ref. [165], it has been used for quantum state transfer.

Reaching ultra-strong coupling is of great interest in many fields [166], and is one
of the future directions mentioned in the appended Paper II. However, reaching the
ultrastrong coupling regime also complicates the ability to address certain transitions in
the artificial atom separately and many theoretical models describing quantum physics in
superconducting circuits rely on weak coupling approximations, for instance the theory
described in Chapter 2.3 in this thesis. These approximations cannot be used for systems
in the strong or ultrastrong coupling regime. Since the ultra-strong coupling regime
is reachable with SAW coupled artificial atoms, a theory for such a system has been
developed in Ref. [116] (see also Papers outside the scope of this thesis). This theory
focuses on the role of the IDT structure, which is a part of the artificial atom and enables
its coupling to SAWs. As a result of the large spatial extension of the IDT and slow
propagation of the SAWs, a strongly SAW coupled artificial atom can be regarded as
an atom-cavity-bath system, where the IDT acts as a cavity for the atom instead of an
antenna and the artificial atom forms its own cavity. The dynamics of the atom-cavity-
bath system is similar to other quantum systems with large time delays, such as the giant
atom previously discussed in this chapter.

The last future direction to mention from the appended Paper II is coupling SAWs to
optical photons, which was later theoretically described in Ref. [92]. Since the frequency
of the SAWs used in all appended Papers have been in the gigahertz range, the wavelength
of the SAWs are comparable to those of optical photons. This means that the frequency
of the SAWs is comparable to frequencies used in circuit quantum electrodynamics and
the wavelength is comparable to optical photons with a five order of magnitude higher
frequency. In addition to similar frequencies, many piezoelectric substrates used for SAWs
are transparent at optical frequencies and are used in optical applications. With proper
conversion methods, it should be possible to couple our systems based on SAWs to optical
photons, which propagate in optical fibers and preferred for transportation of quantum
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information over long distances.

The appended Papers I and II showed that SAWs can interact in the quantum regime
and the appended Papers IV and V further demonstrated how this interaction can be
controlled. The ability to control SAWs in the quantum regime suggest that SAWs can
be coupled to other quantum systems and that different quantum systems can be coupled
via SAWs, for instance to systems utilizing optical photons as described in the previous
paragraph. Many of these quantum systems are covered in The 2019 surface acoustic
waves roadmap [66], which also describes advances in SAW technology ranging from
investigations of fundamental quantum effects to applications in life science. Although
this thesis focuses on quantum effects, it is possible that advances in different areas can
be utilized or connect technologies in other field. The work in this thesis is in a way
interdisciplinary, where we combine advances in fields such as superconducting circuit
quantum electrodynamics and classical SAW technology.

One future possibility of particular interest for this thesis is how to generate and
detect a single quantum of propagating sound (phonon). Such quantum states have
been demonstrated in a SAW resonator [84] and a bulk acoustic wave resonator [88].
However, in both these systems, a phonon is localized in a mode of the resonator and
not a propagating phonon. The detection of a single propagating phonon and such
other future quantum SAW experiments requires highly efficient electric/SAW conversion,
which we have sought to address by reducing the primary source of loss in superconducting
transducers.

An improved conversion between electric signals and SAWs was found in the appended
Paper III, where the SAW beam propagated between two floating electrode unidirec-
tional transducers (FEUDTSs) [112] in a delay line geometry placed on the strong piezo-
electric material lithium niobate. The FEUDTSs directed 99.4 % of power into the delay
line, which means that less than a percent of power was lost in the undesired direction.
This should be compared to the minimum theoretical loss of 50 % for a symmetric IDT.
The improved conversion efficiency is useful for studying quantum physics with SAWs,
but there is a trade-off between bandwidth and directivity that needs to be optimized
for a given experiment. A later work presents similar results using a distributed acoustic
reflective transducer (DART), also aiming for usage of quantum SAW devices [115]. Both
DARTs and FEUDTs have been investigated in various configurations for classical SAW
devices, indicating that they have advantages on different types of substrates [3].

In addition to the reported directivity and improved conversion efficiency, appended
Paper IIT and Chapter 5.2.1 in this thesis also covers a detailed investigation of losses.
By systematically studying these loss mechanisms, the losses can be minimized. Low loss
is desirable in any kind of quantum information application [66], such as generating and
detecting single phonons or processing quantum information.

It should be possible to generate single phonons by exciting an artificial atom and
letting it relax by emitting a SAW phonon in a Fock state. In order to prove the quan-
tumness of the emitted sound, one would need to measure its second order correlation
function or the Wigner function of the propagation field. To measure the second order
correlation function, the bandwidth of the detecting transducer should be larger than
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the coupling of the artificial atom generating the phonon. The minimum coupling of an
artificial atom on lithium niobate can be estimated to about 100 MHz and this is larger
than the bandwidth of the FEUDTs. Either the coupling of the artificial atom needs to
be decreased or the number of unit cells of the pick-up transducer needs to be reduced
at the cost of directivity and electric/SAW conversion. To keep the high electric/SAW
conversion efficiency, the coupling of the artificial atom can be decreased by addressing
its shunting transducer away from the center frequency at one of the side lobes of the
response function [96,147]. Alternatively, one could place the artificial atom on a weaker
piezoelectric substrate (as in the appended Papers I and II) or insert an insulating layer
between the artificial atom and the piezoelectric substrate [3]. The reduction of coupling
can be relaxed if the detecting transducers have less number of unit cells and instead the
signal can be amplified with parametric amplifiers [167]. This combination could make a
single SAW quantum distinguishable taking us towards measurements of quantum sound.






Appendix

Cleanroom process

All samples were fabricated in the MC2 Nanofabrication Laboratory following the clean-
room process presented in this Appendix. The recipe includes the specific details for
fabrication of delay lines and artificial atoms on LiNbOg, but is similar for GaAs sub-
strates. For GaAs the exposure time in the photolithography, the dose in the LASER
writing and the electron-beam lithography and the development times are different, and
the GaAs wafer was cleaved instead of diced.

1. Cleaning the wafer

1165 Remover 60 — 70°C, 10 min
Ultrasonic bath 100%, 1 min

IPA bath Circulation 2 min

QDR bath Rinse and blow dry with N,

2. Photolithography to define alignment and chip marks

Stripping plasma 250 W, 40 sccm O, 10 min
Pre-bake in oven 170°C, 2 min
Spin lift-off resist LOR3B 6000 rpm, 1 min, t,. =2 s (t &~ 300 nm)
Softbake in oven 170°C, 10 min
Spin photoresist S1813 4000 rpm, 1 min, t,,, =2 s (t ~ 1.3 um)
Softbake on hotplate 110°C, 2 min
Expose pattern MAG6 mask aligner, Low-vac mode, P .. =
0.4 bar, 6 W/cm?, t,,, = 10 s
Develop in MF319 90 s
QDR bath Rinse and blow dry with Ns
3. Electron beam evaporation of metals in Lesker PVD225
Ashing in O,-plasma 50 W, 10 s
E-beam evaporation P, < 10 "mbar

Sticking layer (Ti), 5 nm , 0.1 nm/s
Contact layer (Au), 85 nm, 0.1-0.2 nm/s
Stopping layer (Pd), 10 nm, 0.1 nm/s

Lift-off in 1165 Remover 60 — 70°C, overnight

IPA bath 2 min

QDR bath Rinse and blow dry with Ny



Cleanroom process

4. Dicing of wafer into quarters from backside

Pre-bake in oven

Spin protective resist S1813
Softbake on hotplate

Align to photolithography marks
Cuts through substrate (backside)
Strip resist in 1165 Remover

110°C, 2 min

4000 rpm, 1 min, t,..
110°C, 2 min

with backside alignment

Dice the wafer into quartes

60 — 70°C, 10 min, sonicate 3 min

Rinse in IPA and blow dry with Ny (x 2
times)

=2s (t & 1.3 ym)

5. Electron beam lithography for transducers

Ashing in O,-plasma
Pre-bake on hotplate
Spin lift-off resist MMA /cop EL2
Softbake on hotplate

Spin e-beam resist ZEP 520A(1:2) in

Anisol

Softbake on hotplate

Spin E-spacer 3007
Softbake on hotplate
Expose JEOL JBX-9300FS

Remove E-spacer
Develop top resist

Develop bottom resist

50 W, 10 s

170°C, 3 min

2000 rpm, t,.. = 2 s for 1 min (t ~ 36 nm)
170°C, 5 min

3000 rpm, t,. =28, 1 min (t ~ 80 nm)

170°C, 5 min

2000 rpm t,.. = 5 s, 1 min
130°C, 2 min

100kV, 2nA,

Nominal dose: 152 uC/cm? LiNbO3,
44 proximity corrected doses.
QDR, blow dry with Ny
N-Amyl-Acetate, 60 sec
Blow dry with No
MIKBK:IPA 1:1, 30 sec
Blow dry with Ny

6. Electron beam evaporation of metals in Lesker PVD225

Ashing in O,-plasma
E-beam evaporation

Lift-off in 1165 Remover
IPA bath
H->O bath

50 W, 10 s

P, < 10" "mbar

Contact layer (Al), 27 nm, 0.1 nm/s
Stopping layer (Pd), 3 nm, 0.1 nm/s
60 — 70°C, overnight

2 min

Rinse and blow dry with Nj
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7. LASER writer for contact pads and ground planes

Stripping plasma

Pre-bake on hotplate

Spin protective resist MMA /cop EL2
Softbake on hotplate

Spin lift-off resist LOR3A

Softbake on hotplate

Spin photoresist S1813

Softbake on hotplate

Expose

Develop

Remove copolymer

250 W, 40 sccm O, 1 min

170°C, 3 min

2000 rpm, t,.. = 2 s for 1 min (t ~ 36 nm)
170°C, 5 min

6000 rpm, 1 min, t,. =2 s (t &~ 250 nm)
170°C, 5 min

4000 rpm, 1 min, t,,, =2 s (t ~ 1.3 um)
110°C, 2 min

MF319, 75 sec

Rinse and blow dry with Ns
H5O:IPA 1:4, 30 sec

Rinse and blow dry with Ny
Dip in new HyO:IPA 1:4
Rinse and blow dry with Ns

8. Electron beam evaporation of metals in Lesker PVD225

Ashing in Os-plasma
E-beam evaporation

Lift-off in 1165 Remover
IPA bath

50 W, 10 s

P, < 10~ "mbar

Sticking layer (Ti), 5 nm , 0.1 nm/s
Contact layer (Au), 85 nm, 0.1-0.2 nm/s
Stopping layer (Pd), 10 nm, 0.1 nm/s

60 — 70°C, overnight

2 min

Rinse in IPA, water and blow dry with Ns

9. Electron beam lithography to define SQUIDs

Ozone

Pre-bake on hotplate

Spin lift-off resist MMA EL10
Softbake on hotplate

Spin e-beam resist AR-P6200.13 1:2
in Anisol

Softbake on hotplate

Spin E-spacer 300Z

Softbake on hotplate

Expose JEOL JBX-9300FS

Remove E-spacer

10 min

180°C, 3 min

2000 rpm, t,.. = 2 s for 1 min (t ~ 500 nm)
180°C, 5 min

2000 rpm, t,.. = 2 s, 1 min (t ~ 100 nm)

180°C, 5 min

2000 rpm t,.. = 5 s, 1 min

130°C, 2 min

100kV, 2nA,

Nominal dose: 240 1C/cm? LiNbO3,
11 proximity corrected doses.

QDR, blow dry with Ny
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Cleanroom process

10a. Dicing of wafer from backside for devices with SQUIDs

Align to marks
Cuts through substrate (backside)

with backside alignment
Dice the quarters into chips

10b. Dicing of wafer from backside for devices without SQUIDs

11.

Pre-bake in oven

Spin protective resist S1813
Softbake on hotplate

Align to marks

Cuts through substrate (backside)
Strip resist in 1165 Remover

110°C, 2 min

4000 rpm, 1 min, t,.. =2 s (t = 1.3 um)
110°C, 2 min

with backside alignment

Dice the quarters into chips

60 — 70°C, t ~ 10 min

Rinse in IPA, water and blow dry with Ny
(x 2 times)

Two-angle evaporation of SQUIDs in Plassys

Develop top resist

Develop bottom resist
Ashing in oxygen plasma
Electron beam evaporation
Bottom layer of Al
Dynamic oxidation

Top layer of Al

Lift-off in 1165 Remover

n-amyl acetate, 90 s

H5O:1IPA 1:4, 6 min

50 W, 10 s

P, <2 x 1077 mbar

40 nm, 5A /s, o = 15°

P,. = 0,17 mbar, t,, = 10 min

60 nm, 5A /s, o = —15°

60 — 70°C, overnight

Rinse in IPA, water and blow dry with Ny
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