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Bioprocesses based on (ligno-)cellulosic biomass are highly prone to batch-to-batch

variations. Varying raw material compositions and enzyme activities hamper the

prediction of process yields, economic feasibility and environmental impacts. Commonly,

these performance indicators are averaged over several experiments to select suitable

process designs. The variabilities in performance indicators resulting from variable

process inputs are often neglected, causing a risk for faulty performance predictions

and poor process design choices during scale-up. In this paper, a multi-scale variability

analysis framework is presented that quantifies the effects of process input variations on

performance indicators. Using the framework, a kinetic model describing simultaneous

saccharification and ethanol fermentation was integrated with a flowsheet process

model, techno-economic analysis and life cycle assessment in order to evaluate a wheat

straw-based ethanol biorefinery. Hydrolytic activities reported in the literature for the

enzyme cocktail Cellic® CTec2, ranging from 62 to 266 FPU·mL−1, were used as inputs

to the multi-scale model to compare the variability in performance indicators under batch

and multi-feed operation for simultaneous saccharification and fermentation. Bioprocess

simulations were stopped at ethanol productivities≤0.1 g·L−1·h−1. The resulting spreads

in process times, hydrolysis yields, and fermentation yields were incorporated into

flowsheet, techno-economic and life cycle scales. At median enzymatic activities the

payback time was 7%, equal to 0.6 years, shorter under multi-feed conditions. All other

performance indicators showed insignificant differences. However, batch operation is

simpler to control and well-established in industry. Thus, an analysis at median conditions

might favor batch conditions despite the disadvantage in payback time. Contrary to

median conditions, analyzing the input variability favored multi-feed operation due to

a lower variability in all performance indicators. Variabilities in performance indicators

were at least 50% lower under multi-feed operation. Counteracting the variability in

enzymatic activities by adjusting the amount of added enzyme instead resulted in
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higher uncertainties in environmental impacts. The results show that the robustness

of performance indicators against input variations must be considered during process

development. Based on the multi-scale variability analysis process designs can be

selected which deliver more precise performance indicators at multiple system levels.

Keywords: multi-scale model, variability analysis, biorefinery, bioethanol, uncertainty analysis, techno-economic

analysis, life cycle assessment, system analysis

INTRODUCTION

Ethanol derived from lignocellulosic biomass is regarded to
be a sustainable replacement of fossil fuels in the transport
sector. Compared to gasoline, bioethanol has the potential to
significantly reduce greenhouse gas emissions (Muñoz et al.,
2014) and provide energy security (Uría-Martínez et al., 2018).
Lignocellulosic ethanol production utilizes agricultural and
forestry waste, amongst others wheat straw (Erdei et al., 2013;
Westman et al., 2017), corn (Öhgren et al., 2006; Uppugundla
et al., 2014), and wood (Wang et al., 2014).

The utilization of lignocellulosic materials and hydrolytic
enzymes poses several challenges at different system scales, e.g.,
the optimal choice of products, seasonal availability of raw
materials with their inherent compositional variation (Collins
et al., 2014), and the inhibitory action of pretreated raw materials
on fermentation (Horváth et al., 2003; Bellido et al., 2011).
During process development, variations in raw material types
and compositions or enzymatic activities can influence decisions
on the process design. In simultaneous saccharification and
fermentation (SSF) processes for example, the hydrolysis rate,
with which polysaccharides are broken down into fermentable
sugars, is typically the overall rate limiting step. Changes in
enzymatic activities result in different saccharification yields
and rates which determine the amount of sugars that can
undergo ethanol fermentation, with subsequent impacts on
techno-economic analysis (TEA) and life cycle assessment (LCA)
performance indicators. Thereby, uncertainties in process inputs
can result in process designs that eventually fail to meet set
production and cost targets.

TEAs and LCAs commonly incorporate uncertainties in
performance indicators based on rough estimates of increasing
or decreasing performance (Olofsson et al., 2017). Very few
studies have based their uncertainty estimates on laboratory data
(Vicari et al., 2012). Still, these studies investigate the impacts of
uncertainties on single system level. However, data presented in
these studies indicate that changes in process inputs affect process
indicators at multiple system levels. Changing the amount of
added enzyme will for example influence hydrolysis yields.
Moreover, the energy-intense off-site production of hydrolytic
enzymes, especially the concentration and purification of the
enzyme product which is typically driven by fossil energy,
contributes significantly to the climate impact of the overall

Abbreviations:AD, Anaerobic digestion; EP, Eutrophication potential; FPU, Filter
paper units; IRR, Internal rate of return; LCA, Life cycle assessment; LHV,
Lower heating value; PBT, Payback time; SSF, Simultaneous Saccharification and
Fermentation; TEA, Techno-Economic Analysis; WIS, Water Insoluble Solids.

ethanol production process (MacLean and Spatari, 2009; Janssen
et al., 2014, 2016). Hence, changing the amount of added
enzyme will affect both the bioprocess and the LCA as increased
hydrolysis yields will likely result in improved ethanol yields
while the climate impact might also increase. In this example,
a single level analysis will not enable prediction of the multi-
level, diverging outcomes of the overall process. It is therefore
necessary to assess the impacts of the variability in process inputs
on all important performance indicators across multiple system
scales at once.

For a systematic analysis of variations across system scales,
multi-scale models are inevitable. Multi-scale models integrate
several models at different scales and allow precise descriptions
and analyses of each scale by collaborating experts. Multiscale
models have been established in various disciplines, e.g., in fluid
phase and wastewater treatment research (Deen et al., 2004;
Xavier et al., 2007; Ofiteru et al., 2014), metabolic engineering
(Dada and Mendes, 2011; Bogart and Myers, 2016), and biomass
pretreatment (Hosseini and Shah, 2009). Zhuang and Herrgård
(2015) proposed a biorefinery multi-scale model to describe the
impacts different microbial strains, products and raw materials
have on process economics and environmental impacts by
connecting dynamic flux balance analysis to TEA and LCA.
The authors used the model to guide strain development from
an economic and environmental perspective in early process
development stages. However, a systematic assessment of the
effects of process input variations across system scales in early
process development stages is still missing in the field of
lignocellulosic biorefineries.

In this study, we developed a multi-scale variability analysis
framework which integrates bioprocess, flowsheet, TEA and
LCA scales. The framework was developed with the objective
to systematically assess the effects of input variations on
the performance indicators of a wheat straw-based ethanol
biorefinery. A previously published bioprocess model describing
simultaneous saccharification and fermentation to ethanol
(Wang et al., 2016) was integrated with flowsheet, TEA and LCA
models to form a multi-scale model describing the biorefinery.
The validity of the simulated results at bioprocess scale was
analyzed by local sensitivity and uncertainty analyses. In a
case study the variability in reported hydrolytic, specifically
cellulolytic, enzymatic activities was propagated through the
multi-scale model to compare two alternative modes of
operation, batch and multi-feed. With the help of the multi-scale
model the effects of the input variability on the performance
indicators were determined and compared between the two
modes of operation, and the mode most robust against the input
variations was identified.
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SYSTEM DESCRIPTION

The developed multi-scale variability analysis framework covers
a multi-scale model describing a wheat straw-based ethanol
biorefinery. The biorefinery was assumed to be situated in the
south of Sweden. Wheat is cultivated and harvested (Figure 1).
It was assumed that wheat straw is available at an average
distance of 45 km from the biorefinery plant. The straw is
transported to the biorefinery and pretreated byH2SO4-catalyzed
steam explosion. The resulting slurry is pH-adjusted with NaOH
and separated by a filter press into a solid fraction and a
liquid fraction, referred to as hydrolysate. The hydrolysate is
added to molasses medium used in the on-site propagation
of Saccharomyces cerevisiae to adapt the yeast cells to the
lignocellulose-derived inhibitory compounds. The yeast and the
solid fraction are added to the simultaneous saccharification
and fermentation (SSF) process in which hydrolytic enzymes
depolymerize polysaccharides into fermentable sugars. The
sugars are taken up by the yeast which convert them into
ethanol. After the SSF, ethanol is purified from the bioreactor
content through distillation and molecular sieves. The residual
slurry is filtered, and the solids are burned in a boiler to
generate process steam. Electricity is produced from the excess
steam. The process has a net surplus of produced electricity.
The liquid fraction of the distillation residues is mixed with
residual streams from pretreatment and propagation and sent
to anaerobic digestion (AD) to produce biogas from remaining
sugar and protein sources. After AD, the liquid is sent to a
waste water treatment plant including aerobic bio-oxidation and
filtration. Solid residues from AD are dewatered and sent to
the boiler for steam production. A detailed description of the
modeled biorefinery can be found in section The Flowsheet
Model. In the LCA model, upstream activities include the
production of H2SO4 for pretreatment, NaOH for pH adjustment
after pretreatment, glucose as carbon source in yeast propagation,
hydrolytic enzymes for the SSF, non-ionic surfactant used in
waste water treatment, and all fuel and electricity requirements.
The three products of the biorefinery system are ethanol, biogas
and electricity.

METHODS

The Multi-Scale Variability Analysis
Framework
The multi-scale variability analysis framework was developed
with the objective to quantify the variation of performance
indicators in response to varying process inputs. The framework
consists of three phases: (1) The collection of variable process
input data, (2) the use of these data in a multi-scale model, and
(3) a statistical analysis of the resulting variability in performance
indicators (Figure 2).

Within the framework, variable process inputs are defined
based on laboratory measurement or literature data. These data
can either be direct inputs to the developed multi-scale model,
or, in case of a sufficiently large dataset, serve as basis for fitting
distributions to be used in Monte-Carlo simulations.

The established multi-scale model simulates a wheat
straw-based ethanol biorefinery. A macro-kinetic bioprocess

model was connected to flowsheet, TEA and LCA models.
The multi-scale model is characterized as a serial-integrated,
scale-connecting multi-scale model (Yang and Marquardt,
2009). The data collected in phase (1) are inputs to a bioprocess
model covering simultaneous saccharification and ethanol
fermentation. The differential equation system of the bioprocess
model is solved with the ode15s solver for stiff problems in
MATLAB R2016b (The MathWorks Inc., Nattick, USA). The
resulting spreads in the bioprocess model outputs hydrolysis
yield, fermentation yield and process time are, after a statistical
analysis, automatically stored in a .xlsx-file using a component
object model. To ensure a feasible number of simulations at
flowsheet scale, the 5th, 25th, 50th, 75th, and 95th percentile of
each bioprocess model output are automatically retrieved and
used as inputs to flowsheet simulations in SuperPro Designer
(Intelligen Inc., Scotch Plains, USA). Iterations over the varying
inputs are run through an MS Excel-based dashboard. The
flowsheet model solves the plant-wide mass and energy balances.
The economic performance of each iteration of the biorefinery
is determined using the TEA model as defined in SuperPro
Designer. Relevant flows and emission data are exported to a
.csv-file and transferred to the LCA software openLCA version
1.7 (Ciroth, 2007). To enable a feasible amount of simulations,
variabilities in the LCA input data were restricted to the 5th, 50th,
and 95th percentiles. At LCA scale the environmental impacts
of the produced ethanol are assessed from the cultivation and
harvesting of the wheat straw to the gate of the biorefinery
(cradle-to-gate). The performance indicators analyzed in this
study can be found in Table 1.

The Multi-Scale Model
The Bioprocess Model
A macro-kinetic model was used to describe the bioprocess. The
model was developed and validated by Wang et al. (2016) to
simulate batch and multi-feed SSF processes based on steam
pretreated wheat straw at 5–15 filter paper units (FPU)·g−1

WIS
and 0.02 gCells·g

−1
WIS at maximally 13% water insoluble solids

(WIS). Multi-feed SSF processes enable efficient mixing and
high cell viabilities as solids and cells are added at discrete
times with sufficient liquefaction in between. Due to the solid
additions and their subsequent hydrolysis, the cumulative WIS
is higher than the 13% maximum operating WIS. In the case
study the simulated multi-feed process conditions resembled
the experimental conditions of a demo plant run at an enzyme
activity of 9.3 FPU·g−1

WIS, a cell load of 0.02 gCells·g
−1
WIS and a final

cumulative WIS of 21.85%, with cell additions at 0, 12, 24, 48,
and 72 h and solid additions at 0, 4, 12, 24, 48, and 72 h (Wang
et al., 2016, Figure 6). Batch processes were simulated at identical
relative cell and enzymatic activity loadings, but at 13% finalWIS,
all of which was added initially. The total added enzyme activity
was relative to the final cumulative WIS of the process.

The bioprocess model covers the progress of the
concentrations of solids, cellulose, xylan, adsorbed hydrolytic
enzymes, glucose, xylose, ethanol, cells and the volume in the SSF
process. A boundary condition was added to the model to avoid
further enzyme adsorption after reaching equilibrium state.
Multi-feed SSF processes were modeled as repeated, piece-wise
batch processes.
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FIGURE 1 | The wheat straw-based ethanol biorefinery system. Wheat straw is cultivated, harvested and transported to the factory. The pretreatment of wheat straw

is followed by filtration. The hydrolysate is used for cell propagation while the solid phase is added together with the propagated cells into the bioreactor in which the

hydrolysis of the solids into monosaccharides and fermentation to ethanol take place. CO2 is extracted from the exhaust gas of all bioreactors. After fermentation the

bioreactor content is sent to distillation columns and molecular sieves to reach ethanol concentrations ≥ 99%. The remainder of the first distillation column is filtered.

The liquid fraction undergoes AD, aerobic bio-oxidation and filtration while the solids are burned together with the solid leftovers after AD in a boiler, generating steam

for pretreatment. The excess steam is used in a backpressure turbine to produce power. The biorefinery products are ethanol, biogas, and electricity.

Uncertainty and sensitivity analysis of bioprocess model
Uncertainty and sensitivity analyses were performed based on the
methods described by Sin et al. (Sin et al., 2009; Sin and Gernaey,
2016). The uncertainty analysis comprised the following steps:

(1) Process and model definition
The process was defined to be a 96 h SSF batch process
under previously described conditions. The model structure
was represented by:

dx(t)

dt
= f (x(t), t, θ); y(t)= g(x(t)); x(t0)= x0 (1)

where x(t) ∈ R
n are the state variables, t ∈ [t0 tend] is the

process time, θ ∈ R
n the model parameters, and y(t) ∈ R

n

the model outputs.
(2) Uncertainty definition

The input uncertainties for the estimated parameters k,
kG, γ , kad, and KiEtOH were defined based on published

confidence intervals (Table 2). As the parameters k, kG,
KiEtOH , and γ were log-transformed before parameter
estimation, they were as well log-transformed before
sampling from the input domain. Based on experience,
uncorrelated uniform distributions with a low uncertainty of
± 10% for YEtOH and a medium one of ± 25% for KS, qG,
α, and β around the mean parameter value were assumed
(Table 2).

(3) Sampling from uncertainty input domain
For each of the 10 parameters, 1,000 probabilistic samples

were taken generating pseudo-random numbers from the
specified normal and uniform distributions.

(4) Propagation of uncertainties through Monte-
Carlo simulations

The parameter uncertainties were propagated through
the bioprocess model, obtaining 1,000 simulation results for
each simulated state variable and time point.
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FIGURE 2 | Schematic description of multi-scale variability analysis

framework. First, data on the variability of a process input are collected in

laboratories or through literature search. The data can be used as direct inputs

to the multi-scale model. If enough datapoints are collected, a distribution can

be fitted to the data. Samples from the distribution are then inputs to the

multi-scale model, following the Monte-Carlo approach. In step 2 the collected

data are inputs to the multi-scale model which consists of a bioprocess model

in MATLAB, a flowsheet model and TEA in SuperPro Designer, and an LCA in

openLCA. The different models are connected via .xlsx- and .csv-files. The

resulting variabilities in performance indicators are analyzed statistically in a

third step.

(5) Statistical analysis of simulation results
The obtained cumulative distribution functions

were analyzed with respect to their mean, 5 and 95%
confidence intervals.

Local sensitivity analysis was performed using the finite
difference method, specifically the central difference between
backward and forward perturbations, to analyze the effect of
a change in each parameter θi on the model output yj(t)
under the same process conditions as for the uncertainty
analysis. The relative sensitivity function rsi,j (Equation 2)
was computed by multiplying the first order derivative of
yj with regards to θi with the ratio of scaling factors sci
and scj.

TABLE 1 | Analyzed performance indicators.

Scale Performance indicator Unit

Bioprocess Final process time [h]

Final ethanol concentration [g·L−1]

Cellulose hydrolysis yield [kgReleased glucose·kg
−1
Cellulose ]

Fermentation yield [kgEtOH·kg
−1
WIS]

Flowsheet/TEA Ethyl alcohol production [MW]

Methane production [MWLHV ]

Net electricity production [MW]

Size of SSF reactors [m3]

Total equipment cost [MEUR]

Pretreatment [MEUR]

Bioreactor [MEUR]

Product upgrading [MEUR]

Waste water treatment plant [MEUR]

Utilities [MEUR]

Total operating cost [MEUR·year−1]

Revenues [MEUR·year−1]

Internal rate of return [%]

Payback time [year]

LCA Climate impact [kgCO2eq·L
−1
EtOH]

Eutrophication potential [kgPO4eq·L
−1
EtOH]

The table lists all performance indicators analyzed in the case study with the help of the

multi-scale model.

rsi,j(t)=
∂yj(t)

∂θi

sci

scj
(2)

To assess the importance of each parameter on the variance in
model outputs, parameters were ranked as proposed by Sin and
Gernaey (2016) according to the δmsqr measure (Equation 3)
which summarizes the influence of each parameter θi on a model
output yj over process time.

δ
msqr
i,j =

√

√

√

√

1

N

N
∑

i=1

rs2i,j (3)

The Flowsheet Model
The flowsheet model was developed in SuperPro Designer with
the objective to assess the preliminary design in early process
development of a typical wheat straw-based biorefinery with
ethanol, biogas and electricity as products. Variations of process
inputs were analyzed at a fixed flowrate of wheat straw into
the process. The flowrate was determined by setting the ethanol
output to 100,000 m3 per year for a 96 hmulti-feed process under
conditions described in 3.2.1. The flowsheet model was fitted
to data obtained from lab- (1–2.5 L), pilot-, and demo scale (10
m3) experiments and to the bioprocess model outputs: hydrolysis
yield, ethanol yield, and process time.

The flowsheet starts with a one-step steam explosion
pretreatment. Wheat straw is first heated by recycled flash steam
followed by an addition of 0.2% H2SO4 and pretreatment at
188◦C for 7min. The pretreatment temperature is reached by
direct steam injection with steam at 12.3 bar. After pretreatment
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TABLE 2 | Model parameter values with published confidence intervals or assumed parameter limits.

Parameters Parameter value Confidence interval/Parameter

limits

Distribution Parameter description

k 0.016 [0.009, 0.03]a Lognormal Hydrolysis rate constant

KG 6.13 [2.7, 13.8]a Lognormal Glucose inhibition constant on cellulose hydrolysis

KiEtOH 16.6 [14.4, 19.1]b Lognormal Ethanol inhibition constant on cellulose hydrolysis

γ 0.028 [0.01, 0.08]a Lognormal Proportionality constant between cellulose and xylan hydrolysis

kad 0.27 [0.03, 0.5]a Normal Adsorption rate constant

KS 0.01 [0.0075, 0.0125] Uniform Saturation constant of glucose uptake

qG 1.6 [1.2, 2] Uniform Specific glucose uptake rate

YEtOH 0.42 [0.378, 0.462] Uniform Ethanol yield on glucose

α 0.026 [0.0195, 0.0325] Uniform Pre-exponential factor on ethanol-induced cell death rate

β 0.0037 [0.0028, 0.0046] Uniform Exponential factor on ethanol-induced cell death rate

aWang et al. (2016), bWang et al. (2014).

In case of assumed parameters values, the specified intervals are the limits of a uniform distribution for Monte-Carlo simulations.

one flash drum lowers the pressure. Thereby, water and a fraction
of the volatile compounds generated during pretreatment, mainly
furfural and acetic acid, are removed. The flash steam was
assumed to be recycled to the pre-steaming reactor, thus
reducing energy and water demands. The pretreatment and the
concentrations of total organic carbon, total sulfur and furfural
in the flash steam were based on experiments conducted in
the Biorefinery Demo Plant at RISE Processum (Örnsköldsvik,
Sweden) (Fornell et al., 2016).

The slurry resulting from pretreatment is cooled and
separated in a filter press into a solid fraction and a
hydrolysate. The hydrolysate with a total (soluble) solids
concentration of 85 g·L−1 is sent to the SSF bioreactors, the
yeast propagation and AD. The solid fraction with a total
solids concentration of 440 g·L−1 (WIS: 385 g·L−1) is sent
to the SSF bioreactor. The solid fraction is diluted to a WIS
concentration resulting in the same final ethanol concentrations
and yields (based on the solid fraction after pretreatment
and filtration) as in the bioprocess model. The WIS contents
differ between the bioprocess and flowsheet model due to
additional reactions and literature estimates included in the
flowsheet model for the SSF description in order to close the
mass balances.

The yeast propagation is designed as a series of five
propagation reactors, and two parallel trains (Humbird et al.,
2011). The carbon sources for yeast propagation consist
of 50% molasses (containing sucrose, modeled as glucose)
and 50% hydrolysate (containing glucose and xylose).
The stoichiometries for glucose and xylose conversion
were experimentally determined and 100% conversion
was assumed:

1 kg Glucose+ 0.6 kgO2 → 0.6 kg CO2 + 0.68 kg H2O (4)

+ 0.3 kg Biomass+ 0.02 kg Ethanol

1 kg Xylose+ 0.7 kg O2 → 0.7 kg CO2 + 0.78 kg H2O (5)

+ 0.2 kg Biomass+ 0.02 kg Ethanol

After cell propagation the yeast cells are separated
by centrifugation.

To start the SSF, hydrolytic enzymes and propagated yeast cells
are added to the solids in the SSF bioreactor. The SSF reactor
system was designed as a set of 12 parallel reactors (Humbird
et al., 2011). The stoichiometries of the SSF reactions are based
on moles except for the conversion of cellulose to glucose.
The conversion yields from cellulose to glucose and glucose to
ethanol varies based on the outputs from the bioprocess model
(Appendix 1), while other yields did not change. The reactions
defined in SuperPro Designer are the following:

Cellulose+H2O →Glucose Varying conversion (6)

Glucose →2CO2 + 2Ethanol Varying conversion (7)

Glucose →2Glycerol 0.74% based on glucose (8)

Xylose →Xylitol 14%based on xylose (9)

3Xylose →5Glycerol 20.2%based on xylose (10)

The hydrolysis of galactan, mannan, and arabinan is excluded
from the model due to their low content in the solids added
to the SSF. The flowsheet model excludes xylose to ethanol
conversion based on experimental data and in accordance with
the bioprocess model.

In the distillation sequence three heat-integrated columns are
used. The first two columns are parallel strippers. The crude
ethanol from the strippers is purified in a rectification column
to near azeotropic concentrations while the bottom slurry is
separated in a filter press into solids mainly consisting of lignin
and a filtrate. To minimize potential fouling in the strippers,
the highest pressure is applied to the rectification column. After
distillation the crude ethanol at >90% purity is dehydrated in a
set of molecular sieves. The molecular sieves and the filter press
are designed according to Humbird et al. (2011).

The modeled biorefinery has its own waste water treatment.
The filtrate from the strippers, the centrifuge water from yeast
propagation, and excess hydrolysate are mixed and cooled to
32◦C. In subsequent AD organic compounds are converted
to CH4. Conversions are simulated based on chemical oxygen
demands according to reference literature values (Barta et al.,
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2010; Humbird et al., 2011; Petersson, 2012). The waste water
from AD is treated by aerobic bio-oxidation and filtration to
decrease the concentration of relevant substances to acceptable
levels before being released to the recipient.

The solids from the AD are centrifuged and combined with
the solids from the filtration of the stripper bottoms. These
solids are sent to the steam boiler which produces steam at 90
bar and 470◦C with an excess oxygen input of 10% and overall
heat losses of 5%. The boiler was designed based on reference
literature (Humbird et al., 2011; Fornell and Berntsson, 2012;
Fornell et al., 2012). The blow-down of boiler feed water was set
to 5% of the total steam production. The 90 bar pressure steam
is sent to a backpressure turbine with steam extractions at 12.3
bar for the pretreatment reactor and 4.5 bar for other process
demands, e.g., distillation and preheating, and a condensing tail
with an exhaust pressure of 0.1 bar. The cold utility in the
process is based on the cooling demand as calculated by SuperPro
Designer. A cooling tower is used for the cooling water system.
The cooling water system is designed based on information found
in Perry’s Chemical Engineers’ Handbook (Humbird et al., 2011;
Ahmetović et al., 2014).

The heat exchangers in the process simulation model were
integrated based on a pinch analysis. The analysis is an important
part of the assessment since the energy integration might affect
both TEA and LCA. The heat exchanger network was designed
in order to be well-integrated and practically feasible, and the
different heat exchangers needed were designed and included
in the simulation model. In this heat exchanger network the
distillation section is internally integrated, i.e., the distillation
bottoms are used to preheat the column feeds. The 4.5 bar
steam condensate in the boiler section is heat exchanged with
the makeup boiler water and the condensate from the turbine
while the flash steam from pretreatment is directly recycled in
that section.

The flowsheet modeling software SuperPro Designer includes
the capacity to conduct TEAs based on data and information
generated by the performed flowsheet simulations. Different
costs for design and operation of a lignocellulosic ethanol
biorefinery were manually adjusted in the software, and a
TEA was performed in order to study the propagation of
variability from the bioprocess model to the flowsheet model
and TEA. Since the focus of this TEA was to assess the effect
of variations in input data to the bioprocess model on the
economic performance, no statistical analysis of the input data
specific for the TEA (e.g., costs for raw material and market price
of products) was performed. In the TEA the yearly revenues,
operating cost, internal rate of return (IRR), and payback time
(PBT) were calculated. All equipment cost correlations, operating
costs, and product values (including references), and model
inputs and outputs are presented in Appendix 1.

The Life Cycle Assessment
The LCA was defined as a cradle-to-gate system, from the
cultivation of wheat (to obtain the wheat straw) until the gate
of the ethanol biorefinery (Figure 3). The functional unit in this
LCA was the amount of ethanol produced from a fixed input of
wheat straw into the biorefinery. This functional unit was chosen

because the primary function of the analyzed system was to
produce bioethanol and not to process wheat straw. Furthermore,
the biorefinery flowsheet model was simulated with a fixed input
of wheat straw. The LCA results are, however, given per liter of
ethanol produced.

The LCA was carried out using an attributional approach
(Baumann and Tillman, 2004) since the focus of this study
lay on the variability of process inputs and parameters in the
production process, and its impact on the LCA results. The
life cycle impact assessment was conducted using the CML
characterizationmethod (Gorrée et al., 2002). The climate impact
and eutrophication potential (EP) were used as impact categories
for the evaluation of the system. These two impact categories
were chosen since a reduction of fossil-based fuel use is the main
goal of biofuel production, and fertilizer and nutrients are used in
the production of straw-based ethanol, respectively. The need for
allocation of the environmental burden of the system to the main
product (ethanol) and its by-products (biogas and electricity)
was avoided, thanks to the available data and information, and
sufficient detail from the process flowsheet model that was used
to define the LCA model.

The LCA model was implemented and run in openLCA
version 1.7 for batch and multi-feed processes at variable process
times, with median inventory values, and with 5 and 95%
confidence interval inventory values for the different process
flows (both foreground and background) that were part of the
model. These values, except for those for the cultivation and
harvesting of the wheat straw and the straw preparation, were
delivered by the process simulations done in SuperPro Designer.
The following choices were made for modeling the wheat
cultivation and harvesting, straw preparation, and enzymes and
chemicals needed in the process:

1. Cultivation and harvesting were modeled using the inventory
data for wheat production compiled by Röös, Sundberg, and
Hansson (Röös et al., 2011). It was assumed that 15% of the
harvested wheat straw was lost due to its transportation and
preparation for the pretreatment.

2. In the straw preparation to cut the straw in sufficiently
small chips, 3.6·10−3 kWhelectricity·kg−1 of wheat straw was
needed. Electricity use was modeled with the ecoinvent
process “market for electricity, medium voltage” for Sweden
(Frischknecht et al., 2007).

3. Enzyme production was modeled using inventory data
compiled by Liptow et al. (2013) andwas assumed to take place
in Kalundborg, Denmark.

4. Use of NaOH, H2SO4, glucose and non-ionic surfactant were
modeled with the ecoinvent processes “market for sodium
hydroxide, without water, in 50% solution state,” “market for
sulfuric acid,” “glucose production,” and “market for non-ionic
surfactant,” respectively (Althaus et al., 2007).

Case Study—Impact of Variable Enzymatic
Activities of Cellic® CTec2
Lignocellulosic bioprocesses rely on saccharification to obtain
monosaccharides for the microbial conversion into desired
products. Therefore, SSF process development focuses both
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FIGURE 3 | System boundaries of the life cycle assessment. The dashed lines indicate processes and flows that are outside of the scope of this study.

on hydrolysability and fermentability of pretreated materials.
This case study has the objective to analyze with the help of
the developed multi-scale variability analysis framework, how
robust performance indicators of a projected wheat straw-based
biorefinery are against variations in enzymatic activities under
batch and multi-feed operation. The case study specifically
reflects conditions at early process development stages to
illustrate the use of the multiscale variability analysis as a help
for stakeholders to decide on projected process designs given the
reliability of the performance indicators.

Phase 1: Data Collection
The Cellic R© CTec2 enzyme cocktail (Novozymes A/S, Denmark)
has been widely used in research. Hence, many publications
report enzymatic activity measurements for Cellic R© CTec2,
allowing for a systematic assessment of enzymatic variability
from literature data. To obtain an unbiased selection of
publications, a literature search with the search terms “Cellic,”
“CTec2,” and “CTec 2” was performed in SciFinder (CAS
Chemical Abstracts Service, Columbus, USA) on 2018-01-23.
The results (Appendix 1) were statistically analyzed as described
in Appendix 2 and a final dataset for the variability analysis
was retrieved.

Phase 2: Application of Multi-Scale Model
The impact of the variability in enzymatic activities on the choice
of process design based on metrics obtained from the multi-
scale model was evaluated for batch and multi-feed SSF processes
under previously described conditions at variable process times.
Two scenarios were simulated:

(1) The variability in enzymatic activities was unknown a
priori and a fixed amount of Cellic R© CTec2 was added
to the reactor. The scenario was simulated for batch

and multi-feed operation. The scenario reflects a single
activity measurement which is then used as input for
several experiments with one or several batches of the
enzyme cocktail.

(2) The variability in enzymatic activity was known a priori.
To compensate for the variability in generated products, the
amount of added Cellic R© CTec2 was adjusted to reach the
same enzymatic activity in the reactor. This scenario was
simulated for multi-feed operation at all system levels and
for batch processes at TEA level. The scenario reflects the
unbiased measurement of enzymatic activities before each
laboratory experiment.

For simulations of scenario (1) the dataset on the variability in
enzymatic activities was directly used as input to the bioprocess
model. For scenario (2), the amount of enzyme to be added to
reach the nominal activity was calculated and used as input to the
simulations. The total volume was balanced by modulating the
addition of process water.

Phase 3: Statistical Analysis
Basic statistical entities including mean, and 5th, 25th, 50th,
75th, and 95th percentiles were determined for all performance
indicators at bioprocess, flowsheet and TEA scales. At the LCA
scale, the 5th, 50th, and 95th percentiles were determined for all
performance indicators.

RESULTS AND DISCUSSION

Uncertainty and Sensitivity Analysis of the
Bioprocess Model
The developed multi-scale model relies on a serial connection
of models at different scales. To assess the validity of the
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bioprocess model under the chosen process conditions prior
to its integration into the multi-scale model, an uncertainty
and sensitivity analysis was performed on a 96 h batch process.
Hydrolytic enzymes were simulated to adsorb to the solids,
leading to cellulose and xylan degradation and a release of glucose
and xylose. As glucose uptake was limited by themaximal glucose
uptake rate of the yeast cells, glucose accumulated (Figure 4).
Eventually, the hydrolysis rate decreased due to glucose feed-back
inhibition and depletion of available substrate, after which an
equilibrium between glucose release and uptake was established,
reflected in glucose concentrations close to 0 g·L−1. According to
the model, the yeast cells converted the released glucose directly
into ethanol. When both the solid cellulose and the dissolved
glucose were depleted, the ethanol production stopped due to a
lack of substrate.

In the first 40 h, uncertainties in model parameter estimates
led to a spread in glucose concentrations of up to 26 g·L−1

(Figure 4). The large spread indicates that the bioprocess
model has difficulties to precisely predict the shift in the
overall rate limiting step from fermentation to hydrolysis.
Limitations in glucose uptake and ethanol conversion capacities
result in glucose accumulation, whereas a limited hydrolysis
capacity results in low glucose concentrations. Accordingly,
sensitivity analysis showed that glucose concentrations were
most influenced by the hydrolysis rate constant k, the glucose
uptake rate qG, and the cell death rate α (Figure 5). Increases
in qG led to lower glucose concentrations, thereby relieving
feed-back inhibition of hydrolysis. In contrast, increases in
k or α caused glucose accumulation because the glucose
consumption rate became the overall limiting step. Under
glucose-limited conditions after 40 h, the influence of qG and
k declined.

Final ethanol concentrations were mainly influenced by the
ethanol yield on glucose, YEtOH . Ultimately, variations in final
ethanol concentrations would only stem from YEtOH if operating
the process infinitely long time. The other model parameters
affected the dynamic changes in ethanol concentrations. The
parameter-related uncertainty was low when stopping the
process at ethanol productivities lower than 0.1 g·L−1·h−1.

Case Study: The Impact of Variable
Enzymatic Activities on Performance
Indicators of an Ethanol Biorefinery
The Reported Variability in the Enzymatic Activity of

Cellic® CTec2
A literature search on the enzymatic activity of Cellic R© CTec2
resulted in 476 hits. Forty nine hits contained measurements
of the protein content, and 81 presented the cellulose
hydrolysis activity expressed in FPU·mL−1. Because the protein
content had a higher standard deviation of 72 mg·mL−1

around a mean of 150 mg·mL−1, and the lower number of
hits, the cellulose hydrolysis activity was used as a direct
measure for enzymatic activity. After statistical analysis 70
hits representing the variability in the enzymatic activity
of Cellic R© CTec2 remained. The average activity was 146
FPU·mL−1, the median activity 139 FPU·mL−1, and the

standard deviation was 41 FPU·mL−1. The distribution of
enzymatic activities was negatively skewed, reflected in a
maximum activity of 266 FPU·mL−1 vs. a minimum of
62 FPU·mL−1.

The high spread in measured activities is very problematic
during process development at laboratory scale and scale-
up. Commonly, the amount of added enzyme is stated as
hydrolytic activity relative to the WIS, total solid or cellulose
content to enable comparisons of experiments across scales and
laboratories. Failures to measure enzymatic activities accurately
and precisely could therefore lead to suboptimal process designs
and the exclusion of better process alternatives.

The collected enzyme activity data include both measurement
variability and the actual enzyme product variability. It is likely
that measurement variability contributes more to the overall
variability, as the FPU assay has been reported to be difficult to
reproduce (Dashtban et al., 2010).

Scenario 1: Fixed Addition of Enzymatic Cocktail

With Unknown Activity
In the first case study scenario batch and multi-feed operations
were analyzed under the assumption that actual enzymatic
activities were unknown. Thus, in simulations a fixed amount of
enzyme, calculated from the median activity, was added to the
bioreactors, resulting in variations in the actual added enzymatic
activity per WIS.

Bioprocess model
Variations in enzymatic activities had no effect on final ethanol
concentrations when running batch processes for 10,000 h.
Instead, the variability affected the time it took to reach the final
ethanol concentrations. These findings are in agreement with
uncertainty analysis and confirm that variation or improvements
in enzymatic activities affect process dynamics but not final titers.
To further investigate these dynamic effects a stop criterion was
applied. The stop criterion resulted in a spread in final process
times from 31.6 h (5th percentile) to 46.2 h (95th percentile) at
a median of 36.6 h. Ethanol concentrations ranged from 23.6 to
25.4 g·L−1 (Figure 6).

Variations in process times were highly dependent on
the inoculum size. Large inocula led to immediate glucose
consumption. Therefore, hydrolysis became rate-limiting and
variations in hydrolysis rates had a direct effect on the
process time. With small inocula instead, glucose accumulated
as the hydrolysis rate exceeded the fermentative capacity of
the cells. Hence, these conditions minimized process time
variations at the expense of overall longer process times.
Given the high model uncertainty around the shift between
hydrolysis and fermentation as rate-limiting steps, the predictive
quality of the model would need improvements to infer
exact inoculum sizes to restrict process time variations under
batch operation.

Under multi-feed operation, frequent solid additions resulted
in an accumulated solid load of 21.85% WIS, 68% higher than
under batch operation. In the simulations, the higher solid
loadings led on average to 2.6 times longer process times than
in the batch operation (5th percentile: 89.7 h; 50th percentile:
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FIGURE 4 | Uncertainty in the modeled solids (A), adsorbed enzyme (B), glucose (C) and ethanol (D) concentrations for a 96 h SSF batch process. The uncertainty in

model parameters, evaluated in 1,000 Monte-Carlo simulations, lead to a high spread in glucose concentration in the first 40 h of the bioprocess due to a shifting

balance between hydrolysis and fermentation. The dashed lines indicate the 5 to 95% confidence intervals in each set of 1,000 results.

FIGURE 5 | Relative sensitivities of the modeled solids (A), adsorbed enzyme (B), glucose (C) and ethanol (D) concentrations toward changes in their four most

influential model parameters. The overall influence of parameters on each output was computed using the δmsqr measure for a 96 h batch process. Overall, the

hydrolysis rate k and the glucose uptake rate qG influenced the model most, especially during the first 40 h of the process.

95.1 h; 95th percentile: 102.7 h) and final ethanol concentrations
between 41.9 and 43.6 g·L−1. The spread in final process times
relative to the median was 65% lower than in batch operation.

The standard deviation in final ethanol concentrations and the
variation in the ethanol yield [gEtOH·g

−1
WIS] decreased compared

to batch operation.
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FIGURE 6 | Impact of variability in enzymatic activities on solids (A), adsorbed enzyme (B), glucose (C) and ethanol (D) concentrations in batch process. Final ethanol

concentrations were not affected by the variable input. Instead, the variability in enzymatic activities affected the time to completely deplete glucose and thereby the

final process time. When applying a process stop criterion at ethanol productivities ≤ 0.1 g·L−1, the final process time varied between 31.6 h (5th percentile) and

46.2 h (95th percentile).

The simulations indicate that the multi-feed operation could
be further improved. As Figure 7 shows, ethanol concentrations
stabilized after each solids and cell addition while maintaining
enough cell viability for ethanol production, indicating cellulose
depletion. With the proposed stop criterion and online ethanol
measurements, feeding events could be triggered, thereby
achieving a higher productivity while decreasing the process
time. However, as feeding events would be triggered by
decrements in fermentation rates caused by decreasing hydrolysis
rates due to cellulose depletion, the hydrolysis rate would
ultimately be the overall rate limiting step. Hence, such
an adaptive strategy might be highly susceptible to varying
enzymatic activities.

The performance indicator most affected by varying
enzymatic activities at bioprocess scale was the final process
time. Hydrolysis and fermentation yields showed low variation.
Therefore, the variation in final process times was integrated
into higher system scales. Batch and multi-feed operations were
analyzed when 5, 25, 50, 75, and 95% of all bioprocesses were
stopped according to the stop criterion.

Flowsheet model and techno-economic analysis
Variation in enzymatic activities affected ethanol, methane and
electricity production in the biorefinery under batch and multi-
feed operation. At median enzymatic activities and median
process times approximately 72 MWLHV (LHV = lower heating
value) of the main product ethanol were produced in both
modes of operation. However, at median final process times,
the variability in produced ethanol was 65% higher under batch
than under multi-feed conditions (Figure 8). The difference
in variabilities decreased with increasing final process times

as maximum final ethanol concentrations were reached even
at lower enzymatic activities. Under batch operation, ethanol
production ranged from 70 to 74 MWLHV across the analyzed
process times at median enzymatic activities, under multi-feed
operation from 71 to 73 MWLHV.

At median final process times and nominal enzyme activity
approximately 42 MWLHV of methane were produced in
AD under batch and multi-feed operation. The AD process
seemed to be nearly independent of the variation in enzymatic
activities. The small variations in the range of 1–3% of the
solids content sent to AD, caused by different hydrolysis and
fermentation yields, were smaller than the variations inherent
in model calculations. To investigate these differences, a more
detailed model would be required. The low variability in biogas
production can on the one hand be attributed to the constant
flow of hydrolysate from pretreatment to AD, in all cases
corresponding to >50% of the total feed, which is independent
of the hydrolysis efficiency. On the other hand, differences in the
hydrolysis efficiency affected ethanol production rather than AD
as >90% of the sugars released during hydrolysis were converted
to ethanol. Therefore, the feed from the distillation columns to
AD varied only by a few percent under all investigated conditions.

Electric power generation, however, was affected by enzymatic
variabilities to the same extent as ethanol production, suggesting
that there is a counterbalance between ethanol production
and electric power generation via the left-over cellulose that
instead can be burnt for steam generation. This hypothesis was
substantiated by the observation that the minimum enzymatic
activity caused the highest electric power generation in both
process configurations. In short, lower hydrolysis yields increased
the amounts of solids (cellulose) remaining after SSF and thereby
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FIGURE 7 | Impact of variability in enzymatic activities on solids (A), adsorbed enzyme (B), glucose (C) and ethanol (D) concentrations in multi-feed process. At solid

additions ethanol was diluted and increased afterwards due to cellulose hydrolysis and fermentation. The final process time ranged from 89.7 h (5th percentile) to

102.7 h (95th percentile). Final ethanol concentrations varied by 2%.

the amount of fuel sent to the boiler. Accordingly, less electricity
was produced at longer process times as more cellulose was
hydrolyzed and subsequently converted into ethanol.

The amount of electricity produced from steam generated in
the boiler was higher under multi-feed operation (Figure 8). The
underlying reasons for the lower electricity production under
batch operation were the higher flow rates and the substantially
lower final ethanol concentrations after SSF. The lower ethanol
concentrations in batch processes increased the steam demand
for distillation, thereby lowering the capacity in the steam turbine
for electricity production.

With the assumptions made in the TEA, the variability in
enzymatic activities caused no significant changes (<2%) in the
equipment costs under both modes of operation. However, the
costs for the bioreactors varied by 20% across the different
process times under batch and by 8% under multi-feed operation
(Figure 9A). The lower variation in bioreactor costs under multi-
feed operation was a result of the lower variation in final
bioprocess times. The cost for the SSF bioreactors accounted
for 10% of the total equipment cost in multi-feed processes.
Due to longer residence times in response to higher cumulative
WIS content, the bioreactor equipment costs were higher in
multi-feed processes, whereas the equipment costs for product
upgrading and waste water treatment were lower due to
decreased flow rates in response to the higher cumulative
WIS contents.

Contrary to the equipment and operating costs which were
almost constant under all investigated conditions given the
assumptions made in the TEA model, the yearly revenues
were significantly affected by variations in enzymatic activities

(Figure 9B). The responses to the variation followed the same
trend as the ethanol production, with higher variances caused
under batch operation. As ethanol production increased across
process times, the yearly revenues increased. The median
yearly revenues of 79.3 MEUR·year−1 under batch and 80
MEUR·year−1 under multi-feed operation differed only by
0.7 MEUR·year−1. Since the economic results followed the
trend of produced ethanol, the data indicate that ethanol
production affects the economic profitability of the biorefinery
system the most even though increased ethanol production is
counterbalanced by reduced electricity production and, under
batch operation, by increased equipment cost.

The variance in the internal rate of return (IRR) was at median
process times 56% higher under batch operation (Figure 9C),
and in the payback time (PBT) 81% higher (Figure 9D).
Furthermore, the median IRR was lower under batch operation,
leading to 7% longer median PBT. Across process times the
IRRs increased, following the trend in ethanol production, and
the payback times decreased. The TEA results indicate that
the TEA performance indicators are more robust under multi-
feed operation against variations in enzymatic activities. Taking
the IRR and PBT into account, the multi-feed process was
economically more favorable than batch operation.

In order to draw conclusions regarding the economic
feasibility of batch and multi-feed operation, more detailed
assessments are required. These assessments include the
scheduling of the bioreactor system including yeast propagation
and SSF, and different utilizations of excess hydrolysate after
pretreatment. For example, sending the hydrolysate to the SSF
and yeast propagation bioreactors instead of the biogas plant
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FIGURE 8 | Median product generation and variability in products. Under

batch conditions less power and more methane are produced due to a less

complete cellulose conversion compared to multi-feed conditions. The

variability in generated products as response to variance in enzymatic activities

is larger under batch conditions. The least affected product is methane.

Longer process times reduce the variability as more processes at different

hydrolysis efficiency reach full conversion of cellulose to ethanol. The triangles

indicate the minimum enzymatic activity, box limits 25th and 75th percentiles,

and error bar limits the 95th and 5th percentiles in enzymatic activities. The left

axis relates to the median values under investigated conditions, the right axes

to the variability expressed as percentage of the median.

directly might affect both the TEA results and the sensitivity to
variations in process parameters.

Life cycle assessment
At median enzyme activities and median process times the
climate impact under batch operation was equal to that of
the multi-feed operation (0.869 and 0.864 kgCO2eq·L

−1
EtOH,

respectively). However, as observed for the economic
measures, the variation under batch operation was 70% higher
(Figure 10A). The climate impact decreased with increasing
final process times due to higher ethanol yields relating to a
more complete raw material utilization. The contribution of
enzyme production to the climate impact was stable at 43%
for all investigated cases as the same amount of enzyme was
added. The EP followed the same trends as the climate impact
(Appendix 1). As these findings also follow the trends for the
ethanol production, it supports the hypothesis that the variability

in climate impact is directly related to the variability in produced
ethanol as a response to variances in enzymatic activities.

Summary of scenario 1
Scenario 1 shows that multi-scale variability analysis can have a
strong influence on the process design of projected biorefineries.
Considering only the mean or median values for enzymatic
activity, batch and multi-feed operations have the same yearly
revenues. Although performance indicators such as the IRR
and PBT indicate slight advantages of multi-feed operations,
process designers might tend more toward choosing batch
operation due to its wide application and simpler operability and
controllability, contrary tomulti-feed operation. However, multi-
scale variability analysis shows that under multi-feed operation,
all performance indicators are more robust against variations in
enzymatic activities. Therefore, performance indicators retrieved
from multi-feed experiments at laboratory and demo plant scale
are more reliable when coping with variations in hydrolysis
rates. Variations in hydrolysis rates could also stem from
variations in the amount of added enzyme due to the high
viscosity of enzyme preparations. The analyzed scenario shows
that the developed multi-scale variability analysis framework
can pinpoint bottlenecks in the process which are not robust
against input variations. In contrast to an analysis at median
conditions, the framework delivers a measure of the reliability
in performance indicators and provides stakeholders with
valuable information on how to proceed in process development.
Compared to Vicari et al. (2012), the framework not only
considers the lower uncertainties in yields but also takes the
process dynamics into account. Specifically, the spread in
process times at bioprocess scale is transformed in a spread
in yearly material flows at flowsheet, TEA and LCA scales.
The performed analysis shows that this spread in process times
affects performance indicators at higher system scales more than
variabilities in hydrolysis or fermentation yields.

Another advantage of the variability analysis approach shown
by scenario 1 is the consistent evaluation of variability effects on
all system levels. Thereby, process dynamics of the biorefinery
can be reflected in greater detail and be introduced to non-
dynamic models at flowsheet, TEA and LCA levels. Furthermore,
the variabilities derived frommeasurement data could potentially
be used as inputs to uncertainty and sensitivity analysis at
the TEA and LCA levels. The variabilities could improve
assumptions on step changes or distributions in input variables
and flowsheet model or LCA parameters, and their dynamic
effects on the bioethanol plant.

Scenario 2: Varying Addition of Enzyme Cocktail With

Unknown Activity
The second scenario covered an a priori knowledge of the
actual enzyme activity and adjustment of the added amount of
enzyme to reach the target activity of 9.3 FPU·g−1

WIS under multi-
feed operation. Since the amount of added enzyme changed,
the same activity was added to the bioreactors, resulting in
identical final ethanol concentrations and process times for all
simulations. The differences in the added amount of enzyme
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FIGURE 9 | Impact of variability in enzymatic activity on techno-economic parameters under batch and multi-feed conditions. The variability in enzymatic activities had

no effect on equipment cost (A). Batch and multi-feed conditions affected the cost for the bioreaction, product upgrading and waste water treatment section. The

yearly revenues were significantly influenced by the variability in enzymatic activities, with a higher variability under batch conditions (B). The variability in yearly

revenues propagated to the IRR (C) and PBT (D). The triangles indicate the minimum enzymatic activity, box limits 25th and 75th percentiles, and error bar limits the

95th and 5th percentiles in enzymatic activities. The left axis relates to the median values under investigated conditions, the right axes to the variability expressed as

percentage of the median.

resulted in differing process costs, emissions and resources
related to enzyme production.

Under the assumptions made in this case study, for multi-
feed operation a constant addition of enzyme (scenario 1)
would be preferable over adjusting the amount of added enzyme
to varying activities (scenario 2). Variations in the enzyme
prices due to changed amounts of added volume would have
a larger effect on the process economics (scenario 2) than the
variation in process performance (scenario 1). Under batch
conditions adjusting the amount of added enzyme to varying
activities (scenario 2) would be preferable except for process
times longer than 46.2 h (95th percentile). In the case of
longer process times the variation in process performance is
decreased in scenario 1 to an extent that the variation in enzyme
prices due to varying amounts of added enzyme (scenario 2)
is higher.

The climate impact was significantly affected by changes in the
added enzyme volume. Contrary to the situation in scenario 1,
the contribution of the enzymes on the climate impact and EP
varied in scenario 2 for multi-feed operation. The contribution
of enzyme addition to the climate impact ranged from 33 to 54%,
and to the EP from 20 to 37%. The high contribution of enzymes
produced off-site to the climate impact is in agreement with
other LCA studies on second generation bioethanol production
(Janssen et al., 2014, 2016; Olofsson et al., 2017). Moreover,
the variability in climate impact was 588% higher in scenario 2
compared to scenario 1 (Figure 10B).

For batch operation scenario 2 seems favorable due to
a high stability in generated products and techno-economic
parameters. However, the improvements in process robustness
are counterbalanced by the increased variability in climate
impact. For multi-feed operation both the techno-economic
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FIGURE 10 | Variation in climate impact as response to variation in enzymatic activities. In scenario 1 the variability in enzymatic activities affects the global warming

potential significantly more under batch than under multi-feed conditions as response to changing saccharification efficiency (A). Changing the amount of added

enzyme as response to variation in enzymatic activities (scenario 2) results in a spread between the 5th and 95th percentile of 39% around the median for the

multi-feed process running 95.1 h (B), almost six times higher than in scenario 1. The error bar limits indicate the 95th and 5th percentiles in enzymatic activities. The

left axis relates to the median values under investigated conditions, the right axes to the variability expressed as percentage of the median.

parameters and the climate impact show higher variation in
scenario 2 compared to scenario 1, favoring the addition of
a defined amount of enzyme regardless of varying activities.
This indicates that there might be potential for aligning
environmental and economic goals with design strategies for
ethanol-based biorefineries, if the process is designed to be
robust against variations in performance. In case of a process
sensitive to variations in process inputs, such as the batch
process in this study, the environmental and economic goals will
be contradictive.

CONCLUSIONS

A multi-scale variability analysis framework was developed to
quantify variances in performance indicators resulting from
process input variations. The framework was applied to evaluate
a wheat straw-based ethanol biorefinery. An application to
different raw materials and products requires the integration
of other validated bioprocess models into the framework.
With the existing serial structure, new models can be easily
integrated at bioprocess scale. Therefore, the framework could
also be extended to compare the predictions based on different
models describing the same bioprocess at different system scales.
Another extension to the developed framework could include the
analysis of one or more process inputs different to the enzymatic
activity. Therefore, the model structure at flowsheet scale might
need adjustments to call the necessary variables from bioprocess
scale. Furthermore, future work should aim to directly link the

different model environments to reduce the complexity in data
transfer and remove potential error sources.

In the presented multi-scale variability analysis framework
input variations were propagated through a multi-scale model
describing a wheat straw-based biorefinery. Thereby, the
robustness of performance indicators against these variations
could be quantified at multiple system scales for different process
operations and designs.

Case study scenario 1 illustrated that analyses of median or
average process inputs lead to different conclusions than using
the full variability in process inputs. The developed framework
enables the assessment of the reliability of performance indicators
whereas an analysis at median levels provides single values
without an uncertainty estimate. The results of scenario 1 showed
that performance indicators are more reliable under multi-feed
than under batch operation. Furthermore, the analysis revealed
that only a specific group of performance indicators is affected
by variations in enzymatic activities. While equipment and
operating costs remained almost constant, the yearly revenues,
for example, were significantly affected within this analysis.

A key advantage over single-scale assessments is the
integration of process dynamics into static TEA and LCAmodels.
Until now, uncertainty and variability assessments at TEA scale
were restricted to changes in yields or rawmaterial compositions.
As the uncertainty analysis of the bioprocess model showed,
the variation in process times is higher than the variation in
hydrolysis and fermentation yields, unless a large part of the
cellulose remains unconverted, which in any case would result
in a non-viable process. The results of case study scenario 1
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illustrated that process time evaluation is key to predict process
designs with favorable economics and environmental impact
as time-dependent trends can be identified. Furthermore, the
multi-scale approach allows for the inclusion of multiple criteria
for process evaluation. As such, multi-scale variability analysis
could be used for multi-objective optimization under variable
process inputs.

The uncertainty estimates of performance indicators
are very important in a biorefinery context as process
development is confronted with multiple design choices
under varying process inputs, e.g., varying raw material
compositions, supply chains or process portfolios. The
framework developed in this study offers a methodology
for performing such investigations.
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