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Central to proteopathies and leading to most age-related neurodegenerative

disorders is a failure in protein quality control (PQC). To harness the toxi-

city of misfolded and damaged disease proteins, such proteins are either

refolded, degraded by temporal PQC, or sequestered by spatial PQC into

specific, organelle-associated, compartments within the cell. Here, we dis-

cuss the impact of vesicle trafficking pathways in general, and syntaxin 5 in

particular, as key players in spatial PQC directing misfolded proteins to

the surface of vacuole and mitochondria, which facilitates their clearance

and detoxification. Since boosting vesicle trafficking genetically can posi-

tively impact on spatial PQC and make cells less sensitive to misfolded dis-

ease proteins, we speculate that regulators of such trafficking might serve

as therapeutic targets for age-related neurological disorders.

Preface

Neurodegenerative diseases affect millions of people

worldwide. A hallmark of many such diseases is the

formation of misfolded proteins accumulating in

aggregates and oligomers leading to cellular toxicity

and proteostatic failure [1-3]. A vast amount of evi-

dence links vesicle trafficking to such protein

aggregation and protein toxicity in different neurode-

generative diseases. For example, in amyotrophic lat-

eral sclerosis (ALS)—a multifactorial disorder—
aberrant endoplasmic reticulum (ER)–Golgi trafficking

has been linked to several cellular defects, including

protein misfolding and aggregation, stress within the
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ER, and mitochondrial dysfunction [4]. Moreover, in

ALS, as in other neurodegenerative diseases, including

Parkinson’s (PD), Alzheimer’s (AD), Huntington’s

(HD), prion diseases, and spinal muscular atrophy, the

continuous Golgi ribbon of a specific group of neurons

is broken into fragmented and isolated elements at

very early stages before clinical and other pathological

symptoms become evident [5]. This defect in Golgi

organization appears to be due to aberrant intracellu-

lar transport linked to alterations in the levels of pro-

teins regulating transport between the ER and the

Golgi, such as the t-SNARE protein syntaxin 5 [5,6].

Syntaxin 5 deficiency also leads to enhanced sensitivity

toward the misfolded PD protein a-synuclein [7]. It is

well established that deficits in ER-to-Golgi antero-

grade axonal transport contribute to the pathology of

AD, HD, and ALS [8,9] but it is not clear whether

such axonal transport defects are the cause or conse-

quence of the formation of disease aggregates [8-11].

Thus, the impact of Golgi organization and protein

trafficking between the ER and the Golgi with respect

to neurodegenerative diseases and protein aggregation

is far from clear and insights into this area can provide

inroads to novel therapeutic targets aimed at mitigat-

ing the effects of protein misfolding.

In this perspective, recent data employing yeast as

model system for studying how cells cope with protein

misfolding and aggregation [7] indicate that defects in

trafficking make cells particularly sensitive to mutated,

aggregation-prone, disease proteins. This is suggested

to be due to such trafficking pathways being an inte-

gral part of the cell’s protein quality control (PQC),

especially the control of sequestering misfolded pro-

teins into specific, organelle-associated, spatial com-

partments within the cell. In addition, we propose that

such trafficking pathways, rather than primary mem-

bers, such as chaperones and proteases, of PQC might

become bottlenecks during aging.

A brief overview of temporal and
spatial protein quality control

Protein homeostasis (proteostasis) refers to a set of

highly complex and interlinked processes that ensures

the level, conformational stability, and subcellular

localization of proteins in the cell [12,13]. The mainte-

nance of protein homeostasis is absolutely vital for cel-

lular function, growth, reproduction, and longevity.

Therefore, cells across the evolutionary tree have

evolved systems of temporal and spatial PQC to main-

tain a functional proteome [7,12-18]. The molecular

chaperones of temporal PQC govern the proper fold-

ing of newly synthesized polypeptides, refolding of

misfolded proteins, and degrading, with the help of

proteases, the proteins that cannot be refolded

[3,16,19-22]. Correct folding of the nascent peptides is

vital for their function and prevents them from unde-

sired interactions in the crowded environment of the

cell [13,23]. This process depends on Hsp70 and

cochaperones of the Hsp40 family targeting Hsp70 to

its polypeptide substrate, promoted by nucleotide

exchange factors (Sse1/Sse2, Fes1, and Snl1) [13,21,24-

27]. If aggregating, the misfolded proteins can, in some

organisms, first be pulled out from the aggregates by

proteins of the Hsp100 family (such as Hsp104 disag-

gregase in yeast), which make them accessible to

Hsp70/Hsp40s for refolding [21,28,29]. If the proteins

are not refolded and rescued by the chaperone machin-

ery, they can be either tagged by ubiquitin chain and

recognized by 26S proteasome for degradation by

ubiquitin–proteasome system (UPS) [30], packed in

vesicles for exocytosis [31,32], or transported to the

vacuole/lysosome by autophagy [33]. Autophagy has

also been identified as the major degradation pathway

for many aggregation-prone proteins that are associ-

ated with neurodegenerative disorders [34].

Another system of protein homeostasis, spatial

PQC, acts in parallel to temporal PQC and deposits

the misfolded proteins into specific deposition sites or

compartments [16,35-41]. In yeast, misfolded proteins

in the cytoplasm first accumulate at multiple sites

called CytoQs, also known as Q-bodies or stress foci,

which requires the small heat shock protein (sHsp)

Hsp42 [41,42]. Further on, CytoQs coalesce into larger

deposition sites commonly referred to as inclusions.

These inclusions are localized to at least three distinct

sites known as the juxtanuclear and/or nuclear-internal

quality control site (JUNQ/INQ); the peripheral, vac-

uole-associated insoluble protein deposit (IPOD); and

a site adjacent to mitochondria [3,37,41,43-48]. Differ-

ent sorting mechanisms seem to play a role in the sort-

ing of the misfolded protein to each specific site.

Ubiquitination has been shown to be important in

sequestering aggregates into JUNQ/INQ sites for pro-

teasome-dependent degradation [37]. However, some

substrates can be sequestered to these sites even in the

absence of such modification [44]. Although the addi-

tional factors directing INQ/JUNQ to their sites are

not completely elucidated, some players such as

Hsp104, Hsp70/Hsp40, and Hsp42 are among the ones

identified by candidate approaches [16,37,46]. The vac-

uole-associated IPOD [37] seems to be the deposition

site for both amyloid and amorphous aggregates in

yeast [37,41], and Hsp104, Hsp42, myosin motor pro-

tein Myo2, and the myosin-dependent vacuole adaptor

protein Vac17 are required for deposition of the
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substrates into this site [16,21,37,41,44,49]. How aggre-

gates are recruited to the surface of mitochondria is

not clear but this also depends on Myo2 in addition to

proteins creating contact sites between the vacuole and

mitochondria [7]. A number of evidences indicate that

this association of aggregates with mitochondria is

beneficial for aggregate clearance [7,45,46]. Spatial

sequestration of unfolded, misfolded, and damaged

proteins into discrete inclusions also facilitates the

asymmetrical distribution of such proteins during cell

division, allowing an old progenitor cell to produce an

immaculate daughter cell harboring a rejuvenated,

damage-free proteome [50-56].

Another interesting possibility for clearing itself of

aggregates could be the cellular export of such aggre-

gates by extracellular vehicles (EVs) such as exosomes

or ectosomes, which formation depends on local

microdomains assembled in endocytic membranes for

exosomes and on the plasma membrane for ectosomes

[57]. EVs have been shown to contain both protein

aggregates and organelles and are recognized as cellu-

lar systems for discarding unwanted components, pos-

sibly aggregates, and, primarily, a powerful means for

intercellular communication [57]. However, in AD and

ALS, neurodegenerative effects were found to actually

depend on the transfer of molecules, including miR-

NAs, gangliosides, and proteins, by EVs from healthy

cells, suggesting that EVs in these diseases are a bur-

den rather than a blessing [57]. Yeasts, including Sac-

charomyces cerevisiae, are able to form exosomes, and

several studies suggest that their release to the extracel-

lular space requires elements of the conventional post-

Golgi secretory pathway. It is presently not known

whether yeast can rid itself of aggregates through such

export of exosomes and whether the effects of ER-to-

Golgi and trans-Golgi trafficking (see below) on pro-

tein inclusion formation are, in part, dependent on

exosome formation [58].

Vesicle trafficking pathways, a brief
overview

Recent data from yeast suggest that spatial deposition

of misfolded proteins formed in the cytosol depends,

apart from different kinds of chaperones, on ER-to-

Golgi vesicle trafficking, multisubunit tethering pro-

teins, and membrane fusion proteins [7,49,59]. There-

fore, we briefly describe here the trafficking pathways

implicated in such deposition of misfolded proteins

into organelle-associated aggregates and some key pro-

teins involved in this process (Fig. 1).

Proteins translocated at the ER during protein syn-

thesis [60] must be targeted to the correct organelle/

location for their proper modification, function, or

degradation [61]. Vesicle trafficking processes ensure

that such proteins are not only delivered to their cor-

rect subcellular compartment but also that specific

protein concentrations in the various subcellular com-

partments are properly maintained [61]. Following syn-

thesis at ER, proteins are transported to the Golgi

through a forward (anterograde) transport. Membrane

trafficking between the ER and the Golgi is bidirec-

tional (Fig. 1) in which a carrier forms on the donor

organelle and then tethers to and fuses with the target

organelle. This cargo transport requires budding,

movement, tethering, as well as uncoating and fusion

of coat protein complex II (COPII) involved in antero-

grade trafficking and COPI (retrograde) carriers with

their respective compartments (Fig. 1) [62,63]. The

COPII complex consists of the secretion-associated

RAS-related 1 (Sar1) GTPase and the two subcom-

plexes Sec23–Sec24 and Sec13–Sec31 [64]. Sar1 is acti-

vated by guanine nucleotide exchange factor Sec12

and through interaction with Sec23 recruits Sec23–
Sec24 heterodimers [65,66]. Following direct interac-

tion of Sar1-Sec23 with Sec31, the Sec13-Sec31 hetero-

dimers recruit to the existing complex and form the

COPII coat [67].

Coat protein complex I, on the other hand, oper-

ates in retrieval from the Golgi to the ER, in intra-

Golgi transport (Fig. 1) [68-71], and maintains ER-

and Golgi-resident chaperones and enzymes in their

proper intracellular location. Several reports have also

highlighted a role for COPI in endosomal transport

and function [72-79]. COPI coat proteins localize to

Golgi or ER–Golgi intermediate compartment mem-

branes through the action of Arf1, which is a small

GTPase related to Sar1 and a heptamer called coato-

mer [79]. The coatomer consists of two subcomplexes

composed of Ret1, Sec27, and Sec28 as a trimeric

assembly and Sec26, Sec21, Ret2, and Ret3 as the

second subcomplex [79]. Fusion of membrane and

vesicles along the vesicle trafficking pathway are

mediated by a family of proteins called soluble N-

ethylmaleimide-sensitive factor attachment protein

receptors (SNARE) proteins. SNARE proteins can be

classified into v-SNAREs that are associated with the

vesicle and t-SNAREs that are associated with the

target compartments. Interaction of v-SNAREs and

t-SNAREs on the two opposing membranes leads to

docking of the vesicle with the target compartment.

Finally, the SNARE complex is disassembled, the

released v-SNARE is recycled to the donor compart-

ment by retrograde transport, and the t-SNARE sub-

units are reorganized for the next docking and fusion

events [80,81].
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The cis-Golgi t-SNARE syntaxin 5 (Sed5 in yeast) is

a phosphoprotein, and the conserved membrane-proxi-

mal protein kinase A (PKA) consensus site (serine-

317) in the Sed5 appears to regulate ER–Golgi trans-

port, as well as Golgi morphology. A Sed5 phosphory-

lation and dephosphorylation cycle seems to be

required for normal t-SNARE function, affects vesicle

trafficking, and arranges Golgi ordering and dispersal

[7,82]. Sed5 plays a key role in protein transport from

the ER to the Golgi through a SNARE complex with

Sec22, Bet1, and Bos1 [83,84] as well as intra-Golgi

transport through other SNAREs such as Sft1, Ykt6,

Gos1, and Vti1 to mediate intra-Golgi and endosome-

to-Golgi transport [85]. In addition, the conserved oli-

gomeric Golgi (COG) complex, a vesicle tethering

complex, interacts and colocalizes with Sed5 in the

SNARE complexes and enhances intra-Golgi SNARE

complex stability as well as mobility [86].

Following exit from Golgi, proteins are then either

sorted into secretory (SEC) vesicles and secreted or

targeted to the cell surface, or through two different

pathways, transported from Golgi to the vacuole. The

CPY pathway takes the protein via late endosomes

(LE) and multivesicular bodies (MVB) to the vacuole.

The ALP pathway, on the other hand, targets the vac-

uolar-destined proteins to the vacuole from the late

Golgi bypassing the endosomal network [87,88].

Tethering events from Golgi and plasma membrane to

early endosomes is mediated by the class C core vac-

uole/endosome tethering (CORVET) complex (Fig. 1),

consisting of Vps3, Vps11, Vps18, Vps16, Vps8, as well

as the Sec1/Munc18 family protein Vps33 interacting

with Rab5-positive membranes. The homotypic fusion

and vacuole protein sorting (HOPS) complex, on the

other hand (Fig. 1), acts downstream of CORVET,

fusing LE with vacuoles. The HOPS complex consists

of the core proteins Vps11, Vps16, and Vps18, the

Ypt7/Rab7 interacting subunits Vps39 and Vps41, as

well as the Vps33 [89].

Routing misfolded proteins of the
cytosol to specific sites through
vesicle trafficking

Recent data, using yeast as a model, demonstrate that

misfolded proteins formed in the cytosol, similar to

proteins translocated at the ER, depend on the systems

described above for their deposition at aggregation

sites close at the vacuole and mitochondria [7,49,59].

Specifically, Hsp104-associated aggregate fusion and

inclusion body formation upon heat stress and aging

require vesicle trafficking from the ER to the Golgi

(COPII-dependent), vesicle exit from Golgi to endo-

somes, tethering of vesicles to the vacuole (HOPS/

CORVET-dependent), vacuole–mitochondrial contact

sites (vacuole and mitochondria patch/Vps13-

Fig. 1. Schematic representation of vesicle

trafficking pathways and components

involved in IPOD inclusion body formation

and clearance. Thick arrows indicate the

directional flow of processes, whereas thin

green arrows indicate positive regulation of

a process and thin red T-lines indicate

negative regulation of a process. The red

color surrounding MVB, endosomal

vesicles, and the vacuole indicate the

presence of the signaling lipid

phosphatidylinositol-3,5-bisphosphate, the

product of the Fab1 kinase.
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dependent), and the myosin motor protein Myo2, via

its functions linked to the actin cytoskeleton [7,49].

Intriguingly, the t-SNARE syntaxin, Sed5, and the

the conserved oligomeric Golgi complex (COG com-

plex), known to stabilize the Sed5 complex [86], are

key players in this deposition of misfolded proteins at

the surface of vacuoles and mitochondria and Sed5

overproduction; otherwise, wild-type cells are actually

boosting inclusion formation and disaggregation sug-

gesting that Sed5 is a bottleneck component of cytoso-

lic PQC [7].

In view of the fact that elements of protein aggre-

gates have been shown to be RNA-binding proteins

with the presence of low complexity domains that are

prone to self-assemble and form aggregates commonly

known as stress granules (SG) [90,91], it is possible

that the Sed5-dependent aggregates described in this

perspective are indeed SGs and/or share features with

such granules. However, the aggregates and inclusions

described herein as relying on Sed5 for their formation

and localization at the vacuole and mitochondria do

not appear to be similar to SG since reporters of SG

(FUS) do not colocalize with these inclusions. This

does not rule out that SGs and misfolded proteins

colocalize early during proteostatic stress and are sub-

sequently partitioned to different compartments in the

cell. Also, it is not known whether local liquid phase

separation occurs at the surface of vacuoles and mito-

chondria upon a temperature shift from 30 to 38°C,
which could explain why misfolded proteins accumu-

late at such sites. If so, it would have to be hypothe-

sized that phase separation relies on a t-SNARE

protein required for ER-to-Golgi trafficking, which

seems unlikely. Moreover, although Sed5 plays an

important role in autophagy by regulating the forma-

tion of Atg9-containing vesicles necessary for

autophagosome formation in the Golgi [92,93], the

role of Sed5 in the formation and clearance of aggre-

gates does not appear to be linked to the canonical

autophagy pathway in yeast [7,92]. Nevertheless, while

the clearance of aggregates in wild-type yeast cells to a

large extent relied on active 26S proteasomes, Sed5-

overproducing cells instead relied on the activity of

serine peptidases, presumably vacuolar peptidases,

including the vacuolar peptidase Pep4 [7]. These results

raise the question of how vesicle trafficking routes

bring misfolded proteins of the cytosol to the vicinity

of these organelles, and if so, how misfolded and

aggregated proteins enter the vacuole?

One possible explanation is that components of the

PQC systems interact directly with vesicles. Indeed, it

has been shown that Hsp104 is associated with compo-

nents of the surface of COPII vesicles [49] and its

movement is regulated by Sed5, and its phosphorylation

[7], in a manner consistent with Hsp104 being associ-

ated with COPII vesicles and anterograde trafficking

(Fig. 1). Hsp104 being a resident protein on the surface

of COPII vesicles may thus recruit misfolded and aggre-

gating proteins to such vesicles and hitchhike to the sur-

face of vacuoles: the IPOD deposition site [37]. In

support of this notion, Sed5, known to cluster in foci

on COP vesicles and Golgi [94,95], is transiently colo-

calizing during heat stress with Hsp104-associated

aggregates suggesting that at least some misfolded/ag-

gregated proteins are associated directly with the ER–
Golgi COPII-dependent trafficking system. Hsp104-as-

sociated aggregates also colocalize transiently with the

trans-Golgi network and endosomal Vps1 prior to their

deposition at the surface of the vacuole [96]. Consis-

tently, Hsp104 interacts physically with Vps1 and Vps1

is required for the formation of IPOD inclusions [49].

How aggregates are finally translocated to the surface

of mitochondria is not clear but inclusions detected at

later time points during heat stress displayed extensive

colocalization with both Vps39 and Vps13, proteins

involved in creating contact sites between the vacuole

and the mitochondria [7,97,98].

Another, mutually inclusive, explanation for how

misfolded proteins are directed toward the vacuole and

mitochondria is that partly unfolded proteins are

recruited, in a nonspecific fashion, to vesicles by

hydrophobic interactions with endomembrane lipids.

In addition, it is possible that the lipid environment at

specific patches on organelles and vesicles is especially

prone to interact with misfolded proteins and in this

way provide a site for the accumulation and aggrega-

tion of such aberrant proteins. However, since

Hsp104, Hsp70s, Hsp40s, and sHsps are required for

proper deposition of inclusions, including IPODs

[17,99,100], lipid environments alone, without interac-

tion with PQC components, do not appear to be suffi-

cient for sequestration of misfolded protein at discrete

quality control sites. The sorting of aggregates toward

mitochondria appears physiologically relevant as

aggregates associated with this organelle are cleared

out faster than aggregates that are not [7]. One possi-

ble explanation might be that sites at the proximity of

mitochondria are enriched in ATP [101] and disaggre-

gating, refolding, and degrading damaged proteins are

highly ATP-consuming processes. Another possible

explanation for why the vacuole–mitochondria contact

sites seem to play an important role as aggregate desti-

nation and clearance [7] might be that the lipid and

metabolite composition of these contact sites serve as

chemical chaperones, like lipid droplets [102], acceler-

ating clearance of aggregates.

5072 The FEBS Journal 287 (2020) 5068–5079 ª 2020 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

Vesicle trafficking and protein quality control D. Ahmadpour et al.



Despite advanced and detailed knowledge about the

vesicle trafficking pathways, little is known about how

the levels and activities of these pathways involved in

protein inclusion formation are regulated genetically

and by environmental cues or stress. However, it is

known that the nutrient-sensing PKA pathway is

involved in the regulation of some t-SNAREs, which

confer exo- and endocytic transport in yeast. Consider-

ing that Sed5 is a phosphoprotein that harbors a

highly conserved PKA phosphorylation site proximal

to its transmembrane domain [82], it is very much pos-

sible that the PKA pathway is also important for

phosphorylation of Sed5 and COPII anterograde traf-

ficking. Therefore, it is expected that PKA, and nutri-

ent, signaling also affects formation of aggregates and

inclusions, which have been shown to be the case

[103,104]. In addition, the target of rapamycin (TOR)

signaling pathway is negatively regulating trafficking

from cis-Golgi to the vacuole ([105], Fig. 1) suggesting

that high TOR activity and low TOR activity would

result in a decrease and increased inclusion formation,

respectively. Indeed, genetic screens of aggregate and

inclusion formation have indicated that there is such a

relationship between TOR activity and inclusion for-

mation [7,49]. Another regulator of trafficking of vesi-

cles toward the vacuole is Fab1, a 1-

phosphatidylinositol-3-phosphate 5-kinase that gener-

ates the phosphatidylinositol (3,5)P2, which resides on

MVBs, LE, and vacuoles, is involved in vacuolar sort-

ing, and required for proper localization of CORVET

and HOPS ([106-108], Fig. 1). Consistently, Fab1, and

other components of the Fab1 complex, is required for

proper formation of IPOD inclusions [7] and their

asymmetric inheritance during cytokinesis [49]. Fab1

levels are elevated during stress, for example, salt stress

[109] but less is known about how this kinase is regu-

lated under proteostatic stress. HOPS-dependent

fusion of vesicles to the vacuole depends also on the

F-actin and the myosin motor protein Myo2 ([110-

112], Fig. 1), and a reduced activity in either of these

components drastically reduces the cell’s ability to

form IPOD inclusions [7,49,113]. As the trafficking

pathways described appear to be part of a spatial PQC

system, it would be interesting to elucidate to what

extent their regulation is coordinated with canonical

stress responses elicited by proteostatic stress, such as

the Hsf1- and Msn2/4-dependent stress responses.

Implication of vesicle trafficking in
age-related proteopathies

Defects in vesicle trafficking are known to make

organisms more susceptible to many misfolded disease

proteins, and an early effect of carrying a disease pro-

tein implicated in age-related neurodegenerative dis-

ease is defective in intracellular trafficking [4-7,114].

We propose that this phenomenon is the result of traf-

ficking being an integral part of spatial PQC aimed at

harnessing the potential toxicity of misfolded and

aggregating proteins. It has been shown that mutations

in the early endocytotic pathway render yeast and

mammalian cells sensitive to polyQ-expanded hunt-

ingtin aggregation [115] and soluble misfolded hunt-

ingtin interacts with proteins functioning in trafficking

events [116]. Likewise, the Parkinson disease protein a-
synuclein interacts with lipid rafts on endocytotic vesi-

cles [117,118] and a genetic screen identified increased

a-synuclein aggregate load in yeast mutants displaying

reduced endocytic trafficking [117]. In AD, amyloid

precursor protein causes defects in endocytosis-depen-

dent processes [119] and abnormal endosomes are an

early sign of AD pathology, preceding the appearance

of aggregated proteins [120].

It has also been shown that endocytosis in various

systems declines during ‘normal’ aging [121,122], and

defects in vesicle trafficking have been linked to an

age-related decline in neuronal activity. However, it is

not clear whether such defects in trafficking are the

cause of neurodegeneration or another diagnostic

marker of aging. In yeast, endocytic trafficking mark-

edly slows down during replicative aging, and miti-

gating such a decline genetically prolongs lifespan

and counteracts the buildup of protein aggregates

[49]. In the worm Caenorhabditis elegans, it has been

shown that synaptic vesicles moving in the antero-

grade direction are decreased in some motor neurons

upon aging and that this correlates with impaired

synaptic transmission [123]. In long-lived daf-2 and

eat-2 mutant worms, a prolonged maintenance of

trafficking is associated with the lifespan extension

seen in these mutant animals, implicating the insulin-

like signaling pathway in the regulation of vesicle,

and mitochondrial, motility during aging [123]. Stud-

ies using mouse as a model have likewise showed that

axonal transport undergoes an age-dependent decline,

for example, an age-dependent reduction in the trans-

port of the Golgi-derived nicotinamide mononu-

cleotide adenylyltransferase 2 vesicles already from 3

to 6 months of age in both the central nerve system

and the peripheral nervous system [124]. Moreover,

recent work has demonstrated that the biogenesis of

the autophagosome decreases in cultured dorsal root

ganglia neurons from aged mice [125]. It has also

been shown that oxidatively damaged proteins accu-

mulate within endosomes isolated from aged mice

[126] and there is a general decline in endocytosis in
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neurons of both mice and rats isolated from aged

individuals [127].

Thus, there is a clear association between axonal

vesicle transport, aging, and the maintenance of neu-

ronal health, but it is not completely understood how

transport mechanistically affects PQC and neuronal

function in aging animals. We speculate that defects in

vesicle trafficking may represent a causal event occur-

ring early in life, which sets off a damaging cascade,

including failures in spatial PQC, leading to late-onset

neuronal dysfunction and, perhaps, aging itself. If true,

drugs affecting endocytic activity could possibly be

used in therapeutic approaches to such age-related

proteopathies. In this context, it is interesting that the

overproduction of one single protein, Sed5, can boost

inclusion formation, disaggregation, and resistance to

a neurological disease protein a-synuclein of the PD

[7], indicating that this t-SNARE protein is a limiting

factor, at least in yeast, in spatial PQC. Moreover, a

phosphorylated mimetic mutant of Sed5, favoring

anterograde COPII trafficking, is increasing resistance

to a-synuclein on its own suggesting that boosting ER-

to-Golgi anterograde trafficking may be an effective

means of increasing resistance against neurological dis-

ease proteins [7] and that inhibiting a syntaxin 5 phos-

phatase may constitute a therapeutic means to do so.

This appears relevant also in light of studies showing

that components involved in COP-dependent transport

are associated with increased AD risk [128] and pro-

tecting yeast cells against human disease proteins asso-

ciated with proteopathies [59].

Conclusion

In conclusion, the t-SNARE syntaxin, Sed5, plays a

role in directing misfolded proteins to the surface of

vacuoles and mitochondria and is doing so by control-

ling ER-to-Golgi COPII-dependent anterograde traf-

ficking. COPII components and the disaggregase

Hsp104 interact physically suggesting that vesicles of

the trafficking pathway may serve as platforms on

which misfolded and aggregated proteins can hitchhike

toward specific deposition sites, including the surface

of vacuoles and mitochondria. The deposition of

aggregates at the surface of mitochondria speeds up

their clearance from the cell, and this deposition relies

on proteins known to make contact sites between vac-

uoles and mitochondria. Deficiency in endocytosis,

and vesicle trafficking in general, renders cells more

sensitive to damaged proteins, including neurological

disease proteins while boosting ER-to-Golgi trafficking

mitigates the toxicity of some such disease proteins,

indicating that COPII anterograde trafficking might be

an interesting target for therapeutic intervention of

age-related proteopathies as the activity and fidelity of

such trafficking pathways are known to decline during

aging.
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