Solute transport and reaction in porous electrodes at high Schmidt numbers
Artikel i vetenskaplig tidskrift, 2020

We present lattice Boltzmann pore-scale numerical simulations of solute transport and reaction in porous electrodes at a high Schmidt number, Sc=10^2. The three-dimensional geometry of real materials is reconstructed via X-ray computed tomography. We apply a volume-averaging upscaling procedure to characterise the microstructural terms contributing to the homogenised description of the macroscopic advection–reaction–dispersion equation. We firstly focus our analysis on its asymptotic solution, while varying the rate of reaction. The results confirm the presence of two working states of the electrodes: a reaction-limited regime, governed by advective transport, and a mass-transfer-limited regime, where dispersive mechanisms play a pivotal role. For all materials, these regimes depend on a single parameter, the product of the Damköhler number and a microstructural aspect ratio. The macroscopic dispersion is determined by the spatial correlation between solute concentration and flow velocity at the pore scale. This mechanism sustains reaction in the mass-transfer-limited regime due to the spatial rearrangement of the solute transport from low-velocity to high-velocity pores. We then compare the results of pre-asymptotic transport with a macroscopic model based on effective dispersion parameters. Interestingly, the model correctly represents the transport at short characteristic times. At longer times, high reaction rates mitigate the mechanisms of heterogeneous solute transport. In the mass-transfer-limited regime, the significant yet homogeneous dispersion can thus be modelled via an effective dispersion. Finally, we formulate guidelines for the design of porous electrodes based on the microstructural aspect ratio.

Författare

Dario Maggiolo

Chalmers, Mekanik och maritima vetenskaper, Strömningslära

Francesco Picano

Università di Padova

Filippo Zanini

Università di Padova

Simone Carmignato

Università di Padova

Massimo Guarnieri

Università di Padova

Srdjan Sasic

Chalmers, Mekanik och maritima vetenskaper, Strömningslära

Henrik Ström

Chalmers, Mekanik och maritima vetenskaper, Strömningslära

Journal of Fluid Mechanics

0022-1120 (ISSN) 1469-7645 (eISSN)

Vol. 896 A13

Drivkrafter

Hållbar utveckling

Innovation och entreprenörskap

Ämneskategorier

Energiteknik

Strömningsmekanik och akustik

Styrkeområden

Energi

Materialvetenskap

Fundament

Grundläggande vetenskaper

Infrastruktur

C3SE (Chalmers Centre for Computational Science and Engineering)

DOI

10.1017/jfm.2020.344

Mer information

Senast uppdaterat

2020-05-29