
On-the-fly conformance testing of safety PLC code using QuickCheck

Downloaded from: https://research.chalmers.se, 2024-03-13 09:48 UTC

Citation for the original published paper (version of record):
Khan, A., Thonnessen, D., Fabian, M. (2019). On-the-fly conformance testing of safety PLC code
using QuickCheck. IEEE International Conference on Industrial Informatics (INDIN), 2019-July:
419-424. http://dx.doi.org/10.1109/INDIN41052.2019.8972277

N.B. When citing this work, cite the original published paper.

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

This document was downloaded from http://research.chalmers.se, where it is available in accordance with the IEEE PSPB
Operations Manual, amended 19 Nov. 2010, Sec, 8.1.9. (http://www.ieee.org/documents/opsmanual.pdf).

(article starts on next page)



On-the-fly conformance testing of safety PLC code
using QuickCheck

Adnan Khan∗, David Thönnessen†, Martin Fabian∗
∗ Department of Electrical Engineering

Chalmers University of Technology, Göteborg, Sweden
Email: {adnan.khan, fabian}@chalmers.se
† Informatik 11 – Embedded Software

RWTH Aachen University, Aachen, Germany
Email: thoennessen@embedded.rwth-aachen.de

Abstract—In this paper, an approach based on the IOCOS
testing relation to test safety PLC code using the tool QuickCheck
is presented. Testing and validation of the safety PLC code is
typically carried out on a physical system using checklists. These
checklists are developed by engineers using system specification.
However, due to the manual nature of checklist generation and
execution, certain test cases can be overlooked and can lead
to human accidents. The presented approach allows on-the-fly
generation and execution of test cases, which expands the scope
of testing by including test cases unconceived during checklist
generation. Furthermore, it is demonstrated how the errors in
the safety PLC code are uncovered based on the IOCOS testing
relation.

Index Terms—Safety, PLC, Input-Output Conformance,
Model-Based Testing, Discrete Event Systems

I. INTRODUCTION

Manufacturing and production systems typically consist of
many automated machines and robots, which operate in a coor-
dinated manner to achieve a desired task. This coordination is
governed by PLCs (Programmable Logic Controllers), which
are prone to errors due to manual programming practices. The
PLC code can be classified into two categories, one is related
to the nominal aspects of the manufacturing system, e.g. on/off
operation of a motor, etc. The second category is related to
the safety aspects of the system, such as emergency stop.

In an industrial setting, the nominal PLC code and the safety
PLC code are typically implemented on separate PLCs. The
nominal code is implemented on a standard PLC, while the
safety code is implemented on a safety PLC. The differences
between the two types of PLCs in terms of programming are
negligible, but there are some special functions and features in
the safety PLC, which are provided to accommodate different
safety devices.

After the implementation of the PLC code, testing is carried
out to check if the control code conforms to the specification
or not. To test the nominal code, a concept called virtual
commissioning [1]–[5] is currently being used by many com-
panies. With virtual commissioning, testing of the nominal

This work has been carried out at the Wingquist Laboratory VINN
Excellence Centre within the Production Area of Advance at Chalmers. It
has been supported by ITEA3 Vinnova ENTOC (ref 2016-02716), and VR
SyTeC (ref 2016-06204).

code is carried out by testing code on a simulation model of
the physical system.

The safety code, on the other hand, is typically tested
on the physical system using checklists, which are manually
generated from verbal descriptions of test cases based on
natural language. Thus, these can be interpreted in a variety
of ways. Furthermore, the tests are performed manually on
the physical system, and the validation is carried out visually.
This procedure of visual validation, depending on the size
and complexity of the system, can take days and sometimes
weeks [6]. Also, the test cases taken into account in the check-
lists depend on the experience of the tester, any unconceived
testing scenario may pose a threat to human life.

The safety logic implemented for manufacturing systems
takes control of a physical system in the case of an event,
which is typically discrete in nature, e.g. breaking a light
curtain, etc. This discrete event driven behavior of the safety
logic can be modeled as discrete event systems [7]. Discrete
event systems evolve with respect to the occurring events and
occupy at each instant of time a particular state where certain
conditions are valid. There are several formal approaches [7]
to implement, analyze, and test discrete event systems.

Model-based testing [8] is one of the formal approaches. It
tests a model of an implementation by subjecting it to a series
of tests to find errors in it with respect to a given specification.
These tests are based on specifications that the implementation
should conform to in order to pass the executed test. If the
implementation fails the executed test, and upon inspection
the specification is found to be correct then the implementation
needs to be amended. The model-based testing techniques can
be broadly classified into two categories:

• Offline model-based testing
• Online model-based testing

In offline testing, the test cases are generated beforehand
(offline) and are executed manually on the implementation.
While in online-testing, which is also known as on-the-fly
testing, the test cases are generated based on the result of
previously executed tests. The assessment of the tests, i.e. if
the executed test passed or failed, is decided by an oracle. The
oracle is an abstract entity that is considered to contain all the



information necessary to determine whether the implementa-
tion conforms or not to the specification.

A formalized version of model-based testing called input-
output conformance (IOCO) testing was proposed by [9].
For IOCO, the model of an implementation is scrutinized
with respect to a specification. If the implementation fails to
conform to the specified behaviour then it requires amendment.
In the IOCO testing relation, the pass or fail criteria is assessed
based on the outputs emitted by the implementation. If other
than the specified outputs are emitted, then the implementation
is not IOCO with respect to the specification. The conformance
relation using IOCO is established solely by checking the
emitted outputs and does not have any requirement on the
inputs.

The input-output conformance simulation relation (IOCOS)
proposed by [10] is a stronger relation than IOCO. In addition
to IOCO, the IOCOS relation also requires that the imple-
mentation accepts a superset of the inputs specified by the
specification.

QuickCheck [11] is a Haskell based tool, where system
properties are described by Haskell functions, and testing is
carried out automatically using user-defined test case genera-
tors. QuickCheck has a distinctive attribute called shrinking,
which in the case of failed executed test cases reduces the
initial set of test cases to find the reason of non-conformance
of the implementation with respect to the specification. The
literature does not, to the best of the author’s knowledge,
include on-the-fly conformance testing of safety PLC code
based on IOCOS using QuickCheck.

A. Contribution

This paper describes an on-the-fly conformance testing ap-
proach for safety PLC code. The presented approach is based
on the input-output conformance simulation relation (IO-
COS) using the tool QuickCheck. In the proposed approach,
QuickCheck initiates test cases by triggering sequences of
randomized events in the safety PLC code. After the initiation
of the test cases in the safety PLC code, the related inputs
and outputs are compared to the specified inputs and outputs
to uncover faults based on the IOCOS relation. The oracle
is created using the specification in Structured Text and is
running on the same PLC, which will transmit the results of
the executed tests back to QuickCheck.

B. Outline

This paper is structured as follows. In Section II, a brief
overview regarding current industrial practice of safety PLC
code testing is given. Section III introduces the IOCO testing
relation and the IOCOS simulation relation in the context of
model-based testing. In Section IV, an overview of the pro-
posed approach is detailed, with an implementation example.
Section V concludes the paper with future work directions.

II. INDUSTRIAL SAFETY LOGIC TESTING

When a project is conceived, initially its requirement
specification is finalized. These specifications contain details

regarding equipment (electrical and mechanical) planned to
be installed. In addition to the equipment details, the safety
aspects are also taken into consideration while finalizing the
requirements.

After finalizing the requirement specification, the project is
typically outsourced to a contractor. It is now the contractor’s
responsibility to correctly build the system according to the
agreed specification. In current industrial settings, project
outsourcing is a common practice among manufacturing com-
panies. The outsourcing on the one hand reduces workload
from the company’s staff, and on the other hand helps in
achieving the desired goal at a reduced cost. But as the
product is not being developed in house, it puts more stringent
requirements on safety testing with respect to the specification.

The final product testing is typically carried out at the
contractor’s site. Commonly, an engineer from the manufac-
turing company with a sound experience in safety testing
is assigned to perform this task. This procedure of testing
is called factory acceptance testing [12]. During the factory
acceptance testing phase, the assigned engineer spends several
days at the contractor’s facility to confirm that the product
conforms with the agreed specification.

This conformance relation is tested using manually gen-
erated checklists, which are basically series of manual steps
applied to trigger the safety logic. These steps typically include
pressing certain buttons, e.g. emergency stops, breaking light
curtains, etc., while the nominal operation is ongoing. After
triggering these events, the engineer observes the behaviour
of the manufacturing system and then compares it with the
behaviour specified in the checklist. If the exhibited behaviour
of the system conforms to the specified behaviour then the
executed test is a pass, otherwise it is not.

The scope of the current practice to test the safety code
is limited to the checklists. Due to the manual nature of the
checklist generation, it is probable that the engineer might not
be able to conceive all possible scenarios to test. Hence, some
low probability high-risk scenarios not covered in the checklist
may still pose a danger to human life.

III. CONFORMANCE TESTING

A conformance testing approach proposed by [9] is based
on an input-output conformance (IOCO) relation. In this ap-
proach, the implementation is tested by executing all possible
traces in a specification. After the execution of each trace on
the implementation, the outputs emitted by the implementation
are compared with the outputs emitted by the specification.
The implementation is said to be IOCO only if the im-
plementation emits a subset of the specified outputs. If the
implementation emits other than the specified outputs then it
is non-IOCO and it has to be amended.

To give the formal definition of IOCO, consider two disjoint
sets of input actions I and output actions O. The output actions
are the actions initiated by the system under test and are
expressed with an exclamation mark, such as !a ∈ O. The
input actions are commands to the system and are expressed
with a question mark such as a? ∈ I . Now, we consider



a labelled transition system in this section to elaborate the
concept of IOCO and give the formal definition.

Definition 1: An I/O labelled transition system comprising
inputs and outputs is a 4-tuple 〈S, s0, L,→〉 where:
• S is a non-empty set of states;
• s0 ∈ S is the initial state;
• L is a countable set of labels. These represent observable

actions of a system i.e. L = I ∪ O where I and O are
as above. Consider also a quiescence symbol δ 6∈ L, and
define the sets Lδ = L ∪ {δ} and Oδ = O ∪ {δ};

• →⊆ S × Lδ × S is a transition relation such that, p a−→q
implies 〈p, a, q〉 ∈→ and p a−→ for a ∈ Lδ , if there exists
q ∈ S such that p a−→q. Similarly, p6 a−→, for a ∈ Lδ , if
there exist no q such that p a−→q. In addition, only coherent
quiescent systems are allowed so → should also satisfy
the following:

– if p δ−→p′, then p = p′ i.e. a quiescent transition is
always reflexive.

– if p6 !o−→ for all !o ∈ O, then p δ−→p, i.e. a state with no
outputs is quiescent.

– if p !o−→ for some !o ∈ O, then p 6 δ−→, i.e. a state with
some output is not quiescent.

Furthermore, a trace t is a finite sequence of symbols of Lδ i.e.
t ∈ L∗δ , including the empty trace ε. When the the transition
relation is restricted to be a function, and thus for p a−→q and
p
a−→q′ it holds that q = q′, the resulting LTS is said to be

deterministic.
Additional definitions needed to express the IOCO relation

in Definition 6 are as follows.
Definition 2: The set of traces from a state p in an LTS is

traces(p) = {t ∈ L∗δ | p
t−→}. (1)

For an LTS A = 〈S, s0, L,→〉, its set of traces are the ones
defined from its initial state

traces(A) = traces(s0). (2)

Definition 3: The set of states reached after a trace t from
a state p is

after(p, t) = {p′ ∈ S | p t−→ p′}. (3)

For an LTS A = 〈S, s0, L,→〉, the set of states reached after
a trace t is

after(A, t) = {p′ ∈ S | s0
t−→ p′}. (4)

For a deterministic LTS, after(·, ·) always returns a single-
ton set. Then we write after(p, t) = p′.

Definition 4: The set of outputs from a state p is

outs(p) = {!x ∈ Oδ | p
!x−→}. (5)

Definition 5: The set of inputs for a state p is

ins(p) = {x? ∈ I | p x?−→}. (6)

The formal definition of the IOCO testing relation [10] can
now be stated.

Definition 6: For two deterministic LTSs G and S with equal
sets of labels, G is said to be IOCO with respect to S if

∀t ∈ traces(S) : outs(after(G, t)) ⊆ outs(after(S, t)) (7)

The formal IOCO definition (Def. 6) is interpreted as an
implementation G conforms to a specification S, if for all
the traces in the specification the outputs possible from the
state reached by the implementation after a trace form a
subset of the possible output events from the state reached by
the specification after the same trace. Whenever this subset
relation between the respective sets of output events exist,
the implementation is said to be IOCO with respect to the
specification, for that particular trace. If the implementation
is IOCO with respect to the specification for all the traces
defined by the specification, then the implementation is said
to be IOCO with respect to the whole specification.

In this paper, we have taken the modified definition of
IOCO given by [10], which relaxes the original assumption of
the implementation being input enabled [9]. In addition, the
original version of IOCO considers suspension traces, which
are the traces containing quiescent behavior (states without
any output). But the modified definition takes all the traces
into account, because the quiescent behavior is included in
the modified definition by introducing a special symbol for it.

According to the formal definition of IOCO, as long as the
implementation emits a subset of the specified outputs, it is
considered IOCO. But the authors of [10] pointed out a short-
coming in this conformance relation, i.e. the implementation
can be IOCO even if it is empty or partially implemented;
meaning that some inputs are not implemented but are speci-
fied in the specification.

To counter these issues, the authors of [10] proposed a
stronger relation called input-output conformance simulation
(IOCOS). The IOCOS relation puts, in addition to IOCO, a
requirement on the implementation that it must conform to
at least one of the specified input behaviours, as formally
defined in Def. 7. In addition to the IOCO requirements on
the implementation having a subset of the specified outputs,
IOCOS requires the implementation also to have a super-set
of the specified inputs.

The formal definition of the IOCOS simulation relation can
now be given.

Definition 7: For two deterministic LTSs G and S with equal
sets of labels, G is said to be IOCOS with respect to S if in
addition to (7), it also holds that

∀t ∈ traces(S) : ins(after(S, t)) ⊆ ins(after(G, t)) (8)

The formal IOCOS definition (Def. 7) states that the im-
plementation G conforms to a specification S, if for all the
traces in the specification the inputs possible from the state
reached by the implementation after a trace form a super-set
of the possible input events from the state reached by the
specification after the same trace. If this super-set relation
between the respective sets of inputs and the subset relation
expressed in definition (Def. 6) exist, the implementation is
IOCOS with respect to the specification for the executed



Fig. 1. Emergency shutdown specification and modular implementations

trace. If the implementation is IOCOS with respect to the
specification for all the traces defined by the specification,
then the implementation is said to be IOCOS with respect to
the whole specification.

The IOCOS definition (Def. 7) can be compared to the
input-output interpretation of the supervisory control theory
proposed by [13], where the supervisor and the plant interact
in a symmetric loop so that outputs from the plant are inputs
to the supervisor, and outputs from the supervisor are inputs
to the plant. The input-output interpretation requires the plant
inputs from the supervisor to be accepted by the plant, thus
the inputs of the plant should be a super-set of the outputs
from the supervisor. Similarly, the outputs generated by the
plant are required to be accepted by the supervisor so that
the generated outputs of the plant are a subset of the inputs
of the supervisor. This latter property, which coincides with
IOCO, is called controllability [13], [14]. The authors of [15]
on the other hand, proposed the idea of a plant as an event
generator (both inputs and outputs). According to [15], one
can only control the plant by enabling or disabling controllable
events (inputs). [13] re-interprets the original theory proposed
by [15], where they considered the input events as commands
given to the system to which only output events occurs.

IV. USE CASE

For the proposed approach, the testing is carried out on
safety PLC code of a real plant. From the perspective of
conformance testing, the safety code is the implementation
that undergoes testing with respect to the specification. The
safety code is created using function block diagrams, while the
oracle is implemented based on the specification in Structured
Text in the same PLC. After the execution of each test case

generated by QuickCheck, the PLC sends the test result, which
simply means pass or fail, back to QuickCheck. Based on the
test results received, QuickCheck generates new test cases on-
the-fly, which are executed on the safety code.

In the proposed use case, the safety code and the specifica-
tion do not share events, but Boolean signal values. The subset
relation between the events is interpreted with Boolean signal
values as False is a subset of both False and True, while True
is a subset of only True. Hence, if the specified output is False
and the implementation output is True then the conformance
relation fails as the implementation output is not a subset of
the specification output.

A. Safety PLC code

The safety code is implemented in a modular manner for
each safety critical event as shown in Fig.1 for each machine
in the plant. There are three machines operating in the plant:
• Laser (G1)
• Motor (G2)
• Robot (G3)
These machines remain operational under normal circum-

stances and their operation is only affected if a safety critical
event occur. For the given use case, the safety critical events
are:
• Emergency shut-down
• Opening the back-door ports
• Opening the front-door ports
• Opening the operator-door
The emergency shut-down event is activated via six different

input signals. Five of these input signals are push-buttons
located at different locations within the plant, while one signal
comes from the robot control system. According to the safety
specification, if the emergency shutdown is triggered via any
of these six signals, the nominal operation should be put on
halt i.e. the robot, laser, and the motor shall be powered off
and require reset to resume nominal operation. Among the
three machines, the robot and the laser should stop instantly
in case of emergency stop, while the motor shall be stopped
100 milliseconds later.

The safety logic associated to the back-door ports is trig-
gered via two signals. When any of these two signal ports are
opened or if the signals coming at the ports fail, the safety
logic should deactivate all three machines. Compared to the
emergency shutdown logic, the back-door logic deactivates the
laser and the robot with a delay of 300 milliseconds, while the
motor is stopped after a delay of 600 milliseconds.

For the front-door ports, the safety logic gets triggered via
two signals in the same manner as for the back-door ports.
The safety code, in case of this event should stop the robot
after 300 milliseconds and the remaining two machines should
get deactivated after 600 milliseconds. The laser and the motor
can remain operational during maintenance as long as the input
signal keyswitch is true.

Finally, opening of the operator door should affect only
the robot via two signals similar to the back-door and front



door ports. The robot in this case should be stopped because
the human operator needs to supply some raw material to it.
During this situation, the laser and the motor should remain
operational.

B. Test Case Generator

The generator presented in the following serves to generate
test cases, more details regarding the implementation are
available in [16]. It uses a software testing library called
QuickCheck to first come up with randomized test cases and
then help to simplify failed test cases in order to support the
tester with debugging [11]. The generator requires some ele-
mentary information about the system to test. This information
consists of two parts and has to be defined by the tester.

The first part is a set of events E triggering one sensor
of the system each. It is focused on sensors that supervise the
system for hazardous behavior or giving an operator the ability
to shut down the system in case of an emergency. Triggering is
further partitioned into so-called negative and positive events,
given as En and Ep with E = En ∪ Ep. Negative events are
the set of events that are meant to shut down the system or
parts of it, for example pressing a specific emergency button.
Positive events are the set of events with inverted semantics,
they allow the system to recover. For every negative event
ni ∈ En there is a positive event pi ∈ Ep. There are functions
p : En → Ep and n : Ep → En mapping events of each set to
the other. When referring to either a positive or negative event
the notation ei ∈ E is used. The corresponding positive event
for the previously given example of pressing an emergency
button might be to release the button. Nevertheless, the tester
has to define this plant-specific behavior. It has to be noted that
a positive event is not required to set the system into operation
again, this is implementation-specific and does not have to be
taken into account by the test case generator.

The second part consists of a range of durations of events.
The range DR := [dmin, dmax] is given by the tester and the
generator is free to choose a duration di ∈ DR for each
event. Every event ei, positive or negative, is combined with
a duration di ∈ DR. A duration can be understood as a pause
between two events. It describes the amount of time reserved
for executing an event. Another event cannot be executed
before the duration of the preceding event has elapsed. A
duration of zero milliseconds has the semantics of two events
happening at the same time. To allow the generator to come
up with reasonable event durations, the tester has to specify
the desired range of durations, given by the minimum and
maximum duration. In order to keep the time consumption of
executing test cases low, it is recommended to not choose high
maximum durations. The tester has to ensure that no system
behavior is masked by too low maximum durations.

Using these inputs, the generator returns a
test case consisting of an event sequence S :=
{(e1, d1), (e2, d2), . . . , (en, dn)} with n ∈ N≥0. An event
ei is executed at time ti =

∑i−1
j=0 dj , which is the sum of

the durations of all preceding events.Events are chosen by
picking one of all available events with an evenly distributed

TABLE I
EXEMPLARY GENERATED EVENT SEQUENCE.

i ei di
1 EMERGENCY LEFT PRESS 0ms
2 DOOR OPERATOR OPEN 1886ms
3 EMERGENCY LEFT RELEASE 396ms
4 DOOR BACK OPEN 0ms
5 DOOR OPERATOR CLOSE 170ms

Fig. 2. Missing input event for robot

probability pi = n−1 with n being the number of events. It is
not considered whether a door was already opened or not. For
example, closing an already closed door has no effect. The
duration of events is estimated by a randomized calculation
rule. With 50% probability a duration di of dmin is chosen.
With the remaining 50% probability a duration di ∈ DR is
chosen. This choice is done evenly distributed over the whole
range.

An example event sequence of five events with a duration
range DR := [0ms, 2000ms] is given in Table I. The given
sequence first triggers to press an emergency button ‘LEFT’.
0ms later, meaning at the same time, the door ‘OPERATOR’
is opened. The just pressed emergency button is released after
further 1886 milliseconds and so on.

In the implementation of the testing environment, an initial
event sequence size of 50 events is chosen. After executing
a test case, the result is propagated to the tester as passed
or failed. QuickCheck offers a feature called shrinking which
tries to simplify a failed test case to a less complex one. The
presented generator makes use of this and basically works as
follows. If a test case passed, another test case is executed as
there is no shrinking necessary. If a test case failed, shrinking
tries to reduce the number of events by choosing different
subsets of the failed event sequence. The choice of subsets is
implemented in QuickCheck and not part of this work. If the
number of events is greater than one, but cannot be reduced
further without having the test case pass, then shrinking tries
to omit single events ei by adding their duration di to the
preceding event ei−1 such that d′i−1 = di−1 + di. If all
combinations are exhausted, shrinking tries to reduce the
duration of each event, but only one per try, to dmin. In case
this makes the test case pass again, the duration is gradually
increased. The shrinking process is finished when there are no
options left to reduce the complexity of the test case without
having it pass.



C. Testing

The tests executed by QuickCheck either pass or fail using
the specifications as the basis. For each safety critical input
event e.g. Emergency shutdown, there are associated output
events modelled e.g. motor shutdown, laser shutdown,
robot shutdown, as shown in Fig.1, which get updated in the
safety code. These updated output values, after the execution
of each test, are compared with the specified output values. For
the safety code to be IOCOS with respect to the specification,
each input event in the specification should be implemented
in the safety code, and the updated output values of the safety
code after the execution of the test must be a subset of the
specified values.

All executed tests but one were IOCOS with respect to
the specification. The failure occurred when the input event
Emergency shutdown was triggered. Upon manual inspec-
tion, it was found that the safety code fulfills the IOCOS
requirement for the outputs as it emitted a subset of the
specified outputs. However, the input Emergency shutdown
was not found in the robot function block of the safety
code. Due to this, the IOCOS requirements related to inputs
expressed in definition (Def. 7) was not fulfilled. To make the
safety code IOCOS, the missing input was added in the safety
code, see Fig.2.

During testing a randomized test sequence generated by
QuickCheck also caused a failure, which upon inspection was
found to be IOCOS. However, the failure occurred due to
a discrepancy between the oracle and the safety code. The
triggered sequence of events that caused the failure were
Emergency shutdown, back door port, and deactivation
of the Emergency shutdown. In this sequence, when the
Emergency shutdown event was triggered, the robot and the
laser stopped instantly, while the motor stopped with a delay
of 100 milliseconds, which is correct safety behaviour per
specification for this event. The occurrence of the second event
back door port immediately after Emergency shutdown
did not affect the status of the machines as they were
stopped already. However, when the Emergency shutdown
event was deactivated in the presence of the back door port
event, all machines became operational for some time. This
so, because the timers associated with the back door port
event were not elapsed while the Emergency shutdown was
deactivated. Consequently, the system state was set to run
until the timers elapsed. This failure is due to momentary
activation of machines, which could lead to human accident
in real industrial setting.

This test case appears to be difficult to conceive manually
while preparing a checklist. Also, the IOCOS formalism is
found to be not detailed enough to express timed behaviour
associated with inputs and outputs. Therefore, in order to test
the safety PLC code, the IOCOS relation requires modifica-
tion.

V. CONCLUSION

In this paper, an on-the fly conformance testing approach
to test safety PLC code using QuickCheck is presented. The

proposed approach is applied on safety PLC code of a real
plant to demonstrate the IOCOS relation. The results of the
testing highlighted the advantages of using on-the-fly test
generation and execution via QuickCheck. Furthermore, the
limitations of IOCOS for testing the safety PLC code is
highlighted. The IOCOS requires the implementation to have
a subset of the outputs and a super-set of the specified inputs,
while the IOCO relation only requires the implementation to
have a subset of the specified outputs. Therefore, this subset
requirement for both inputs and outputs has revealed that
neither IOCO nor IOCOS relation is suitable for safety code
testing, because for safety each specified input and output must
be implemented. Otherwise, due to the subset relation, some
safety behaviour can go untested, which can lead to human
accidents. In addition, it is shown that the current IOCOS
relation is not detailed enough to capture timing discrepancies.
In future work, the IOCOS relation will be examined and
modified for safety.

REFERENCES

[1] Z. Liu, C. Diedrich, and N. Suchold, Virtual Commissioning of Auto-
mated Systems. INTECH Open Access Publisher, 2012.

[2] M. Dahl, K. Bengtsson, P. Bergagård, M. Fabian, and P. Falkman,
“Integrated virtual preparation and commissioning: supporting formal
methods during automation systems development,” IFAC-PapersOnLine,
vol. 49, no. 12, pp. 1939–1944, 2016.

[3] P. Hoffmann, R. Schumann, T. M. Maksoud, and G. C. Premier, “Virtual
commissioning of manufacturing systems a review and new approaches
for simplification.” in 24th European Conference on Modelling and
Simulation (ECMS 2010), 2010, pp. 175–181.

[4] A. Jain, D. Vera, and R. Harrison, “Virtual commissioning of modular
automation systems,” IFAC Proceedings Volumes, vol. 43, no. 4, pp.
72–77, 2010.

[5] C. G. Lee and S. C. Park, “Survey on the virtual commissioning of man-
ufacturing systems,” Journal of Computational Design and Engineering,
vol. 1, no. 3, pp. 213–222, 2014.

[6] L. Fransén, National Electric Vehicle Sweden, Manufacturing Engineer,
Private conversation, 30 March 2016.

[7] C. Cassandras and S. Lafortune, Introduction to Discrete Event Systems,
ser. SpringerLink Engineering. Springer US, 2009.

[8] M. Utting and B. Legeard, Practical Model-Based Testing: A Tools
Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2007.

[9] G. Tretmans, “Test generation with inputs, outputs and repetitive quies-
cence, 1996,” URL http://doc. utwente. nl/65463, vol. 46, 1996.

[10] C. Gregorio-Rodrı́guez, L. Llana, and R. Martı́nez-Torres, “Input-output
conformance simulation (iocos) for model based testing,” in Formal
Techniques for Distributed Systems. Springer, 2013, pp. 114–129.

[11] K. Claessen and J. Hughes, “Quickcheck: a lightweight tool for random
testing of haskell programs,” Acm sigplan notices, vol. 46, no. 4, pp.
53–64, 2011.

[12] A. Rudqvist, GKN aerospace, System Owner Robotics, Simulation and
OLP, E-mail conversation, 09 April 2018.

[13] S. Balemi, “Control of discrete event systems: theory and applica-
tion,” Ph.D. dissertation, Swiss Federal Institute of Technology, Zürich,
Switzerland, 1992.

[14] T. Jéron, H. Marchand, V. Rusu, and V. Tschaen, “Ensuring the con-
formance of reactive discrete-event systems using supervisory control,”
in 42nd IEEE International Conference on Decision and Control (IEEE
Cat. No. 03CH37475), vol. 3. IEEE, 2003, pp. 2692–2697.

[15] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete event processes,” SIAM Journal on Control and Optimization,
vol. 25, no. 1, pp. 206–230, 1987.

[16] D. Thönnessen, N. Smallbone, M. Fabian, and S. Kowalewski, “Testing
Safety PLCs Using QuickCheck,” in 2019 IEEE 15th International
Conference on Automation Science and Engineering (CASE). IEEE,
2019, handed in.


