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A B S T R A C T

Overtaking cyclists is challenging for drivers because it requires a well-timed, safe interaction between the
driver, the cyclist, and the oncoming traffic. Previous research has investigated this manoeuvre in different
experimental environments, including naturalistic driving, naturalistic cycling, and simulator studies. These
studies highlight the significance of oncoming traffic—but did not extensively examine the influence of the
cyclist’s position within the lane.

In this study, we performed a test-track experiment to investigate how oncoming traffic and position of the
cyclist within the lane influence overtaking. Participants overtook a robot cyclist, which was controlled to ride in
two different lateral positions within the lane. At the same time, an oncoming robot vehicle was controlled to
meet the participant’s vehicle with either 6 or 9 s time-to-collision. The order of scenarios was randomised over
participants. We analysed safety metrics for the four different overtaking phases, reflecting drivers’ safety
margins to rear-end, head-on, and side-swipe collisions, in order to investigate the two binary factors: 1) time
gap between ego vehicle and oncoming vehicle, and 2) cyclist lateral position. Finally, the effects of these two
factors on the safety metrics and the overtaking strategy (either flying or accelerative depending on whether the
overtaking happened before or after the oncoming vehicle had passed) were analysed.

The results showed that, both when the cyclist rode closer to the centre of the lane and when the time gap to
the oncoming vehicle was shorter, safety margins for all potential collisions decreased. Under these conditions,
drivers—particularly female drivers—preferred accelerative over flying manoeuvres. Bayesian statistics mod-
elled these results to inform the development of active safety systems that can support drivers in safely over-
taking cyclists.

1. Introduction

Cycling is growing in popularity, due at least partly to its significant
mobility and health benefits (de Hartog et al., 2010; Dozza et al., 2017;
Pucher and Dijkstra, 2003) and the increasing market penetration of
electric bicycles (Haustein and Møller, 2016; Wang et al., 2017).
However, the risk of fatalities or severe injuries in crashes between
cyclists and motorised vehicles is a big concern, especially on rural
roads where dedicated cycle lanes are often absent and impact speeds
are generally high (European Road Safety Observatory, 2018a; World
Health Organization, 2018). The most common vehicle-to-cyclist crash
scenario in crash databases involves a cyclist crossing in front of the
vehicle; however, overtaking (or general longitudinal) scenarios

account for more severe injuries/fatalities, due to the high impact speed
in rear-end collisions (Isaksson-Hellman and Werneke, 2017; Op den
Camp et al., 2017). Poor timing during braking or steering away as a
driver approaches a cyclist from behind can result in a rear-end colli-
sion (Kovaceva et al., 2019). Further, a too small lateral distance can
cause the cyclist to lose balance and fall, due to aerodynamic pressure
changes or even direct contact. Side-swipe collisions (Wood et al.,
2009) can also occur if the driver steers back too early.

Active safety systems can assist the driver during overtaking
(Hegeman et al., 2009), and help avoid rear-end crashes, for instance by
applying autonomous emergency braking (AEB) or issuing forward
collision warning (FCW) (European Road Safety Observatory, 2018b).
In fact, since 2018, AEB and FCW systems have been rated by the
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European new car assessment program (Euro NCAP) for collision
avoidance with cyclists, including scenarios for longitudinal collisions
(Euro NCAP, 2019; Op den Camp et al., 2017). Ultimately, however, the
systems’ effectiveness depends on driver acceptance (Eichelberger and
McCartt, 2016; Lubbe and Rosén, 2014). Brännström et al. (2013)
proposed including driver behaviour models in active safety systems to
ensure that early interventions/warnings would be accepted by drivers.
Adapting to the framework of drivers’ comfort zone (Ljung Aust and
Engström, 2011), Ljung Aust and Dombrovski (2013) have suggested
that the systems warn/intervene only when a driver has exceeded the
comfort zone boundary. This study modelled drivers’ comfort zone
during overtaking to inform the design of active safety systems that can
support drivers in safely overtaking cyclists.

Overtaking is a challenging task (Polus and Tomecki, 1987; Portouli
et al., 2012), particularly since the driver’s comfort zone is dependent
on other road users (Gibson and Crooks, 1938). In the cyclist overtaking
scenario, the cyclist and the oncoming traffic (when present) are the
relevant road users. The lateral position of the cyclist within the lane
has been identified as an important parameter (Op den Camp et al.,
2017), although the extent to which this parameter influences the
overall overtaking manoeuvre has not been studied in detail. Similarly,
oncoming traffic is known to significantly influence driver behaviour,
decreasing the vehicle’s lateral distance from the cyclist (Bianchi
Piccinini et al., 2018; Dozza et al., 2016; Kovaceva et al., 2019).
However, the timing—in contrast to the mere presence or absence—of
oncoming traffic has only been investigated in simulator studies by
Bianchi Piccinini et al. (2018) and Farah et al. (2019). Those studies
have shown that with shorter time gaps of the oncoming traffic, drivers
tended to abort the overtaking attempt, or—if they overtook the cyclist
anyway—left smaller safety margins to the cyclist (Bianchi Piccinini
et al., 2018). Farah et al. (2019) used the same dataset to model the
driver’s decision whether to overtake or not, and the lateral comfort
distance to the cyclist, with mixed-effect models. Nonetheless, simu-
lator studies are known to have lower ecological validity than other
environments like test tracks, especially in non-critical situations
(Bianchi Piccinini et al., 2018; Farah et al., 2019), and do not preserve
kinematic cues (Boda et al., 2018).

In this paper, we present a test-track study that investigated how 1)
the cyclist’s lane position and 2) the timing of the oncoming traffic
influenced the risk of rear-end, head-on, and side-swipe collisions
during an overtaking manoeuvre. The results from this study were
modelled to offer a statistical description of driver comfort zone to be
integrated in active safety systems.

2. Material and methods

2.1. Participants

Twenty-three employees from Autoliv and Veoneer were recruited
as participants. There were two main criteria: 1) having a valid driver
licence and 2) driving more than three times per week. The data from
two participants were excluded from the analysis because of technical
issues during the experiment. Three more participants were excluded
because they reported that driving conditions did not feel natural. In
particular, the three participants stated that the test-track environment
did not feel realistic compared to a real road or that they felt stressed
because they felt observed. Only the data and demographics from the
remaining 18 participants are presented in this paper.

Before the experiment, all participants signed a consent form. The
consent form and the protocol for this study were reviewed by the local
ethical board in Göteborg, Sweden (Dn:600−17). The participants were
25–54 years old (average 42.9, standard deviation (SD)=8.9), had held
a driver’s licence for 24.7 years on average (SD=9.1), and drove an
average annual mileage of 14,900 km (SD=10,200). Participants (of
whom 28 % were female) drove on average 12 times per week (SD=6).
All participants agreed to the usage of their data for analysis.

2.2. Test-track setup

Data collection took place in April 2018 at the Vårgårda airfield, an
outdoor test-track facility in Vårgårda, Sweden. A Volvo S60 (Fig. 1,
panel a) with automatic transmission and a speed limiter was the ego
vehicle driven by participants. A dummy cyclist mounted on a high-
speed platform (HSP; Fig. 1, panel a) represented a cyclist travelling in
a straight line. The HSP was accelerated at 0.82m/s2 to 20 km/h. A
balloon vehicle (Fig. 1, panel b) representing the oncoming vehicle was
accelerated at 1.00m/s2 to 40 km/h (its maximum speed). The HSP and
the balloon vehicle were triggered when the ego vehicle passed a
photocell; their trajectories were controlled through a communication
server called CHRONOS (Bjelkeflo et al., 2018). High-precision real-
time kinematic GPS data loggers were mounted on the ego vehicle, the
HSP, and the oncoming vehicle. They recorded two-dimensional posi-
tion data (within 0.02m accuracy), speed (within 0.1 km/h accuracy)
and heading angle (within 0.1° accuracy). Additionally, the controller
area network (CAN) recorded the ego vehicle’s steering wheel angle,
brake and gas pedal states (in per cent: 100 % at full pedal depression),
and turn indicator state (Boolean: on/off). Data from all three vehicles,
sampled at 100 Hz, were synchronised in post-processing using the GPS
reference time.

The participants overtook the cyclist in six separate trials, set up
with variations of two independent variables: 1) time gap (between ego
vehicle and oncoming vehicle) and 2) cyclist overlap as a measure of
lateral position. Cyclist overlap is, per Euro NCAP testing conditions
(Euro NCAP, 2019), defined as the ratio of the lateral position of the
cyclist (with respect to the ego vehicle’s line of travel) and the ego
vehicle’s width. Participants were instructed to keep the vehicle speed
at 70 km/h, a speed that was compatible with the Euro NCAP test
protocol. A speed limiter was activated at the beginning of each trial to
keep the approaching speed as constant as possible; it was deactivated
at 12 s time-to-collision (TTC) to the cyclist throughout all trials. The
time gap variable was defined as the TTC to the oncoming vehicle when
the ego vehicle reached a TTC of 2 s to the cyclist (Fig. 2). The intended
time gap was either 6 s, 9 s, or none (oncoming vehicle absent). These

Fig. 1. The test-track experiment at Vårgårda airfield: The ego vehicle is ap-
proaching the cyclist dummy, mounted on a high-speed platform (panel a).
Panel b shows the balloon vehicle used as an oncoming vehicle. A video of the
trial is available: https://youtu.be/AixQ189hMi4.
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time gaps were chosen in accordance with Bianchi Piccinini et al.
(2018). The intended overlap value, achieved by controlling the lateral
position of the cyclist in the lane, was either 0 % or 50 %, according to
the Euro NCAP test protocol (Euro NCAP, 2019). At the time when the
experimental protocol was designed, 0 % overlap was still in the Euro
NCAP test protocol, however, it has been replaced by 25 % (Euro NCAP,
2019). Permutation of the levels of the two variables resulted in six
different trials, with the order randomised for each participant.

Before the experiment, each participant was given a description of
the study and instructions by the test leader. After two test drives to get
comfortable with the ego vehicle and the speed, the participants began
the six trials. Participants were instructed to drive in the right lane and
could overtake the cyclist if they wanted to. After each trial, the par-
ticipants were asked to rate the discomfort felt while overtaking the
cyclist: ‘On a scale from 1 to 7, where 1 is no discomfort and 7 is maximal
discomfort, how did it feel to overtake the bike?’

Despite the plan to achieve a vehicle overlap of either 0 % or 50 %,
the actual overlap values resulted in the medians -30 % and 16 %, re-
ferred to hereafter as no overlap and overlap, respectively (Fig. 2). This
difference occurred because drivers did not stay in the middle of the
lane as expected; instead, they positioned themselves on the left side of
the lane (Fig. 2), probably because the cyclist influenced their safety
margin, resulting in a field of safe travel (Gibson and Crooks, 1938)
shifted toward the left side. Like the overlaps, the actual time gaps also
differed from those planned. The recorded time gaps were centred
around the medians 7 s and 10 s instead of the intended 6 s and 9 s,
respectively. This difference may have been due to insufficient accuracy
in the control of the oncoming vehicle or the drivers’ deviation from the
instructed speed. We will refer to these recorded time gaps as short and
long, respectively (Fig. 2). Four trials were removed from the analysis
because the timing of the oncoming vehicle was disturbed by strong
wind. Overall, 68 trials were analysed. When oncoming traffic was
present drivers performed both flying (without speed reduction) and
accelerative manoeuvres (reducing speed to let oncoming traffic pass
before overtaking). Otherwise, drivers always performed flying man-
oeuvres. In this paper, we focused our analysis on trials with oncoming
traffic to be able to 1) compare flying and accelerative manoeuvres and
2) determine the extent to which the time gap to oncoming traffic and
the overlap with the cyclist influenced driver manoeuvring.

2.3. Classification of overtaking phases and strategies

In accordance with previous studies (Bianchi Piccinini et al., 2018;
Dozza et al., 2016; Kovaceva et al., 2019), the overtaking manoeuvre
was divided into four phases: 1) approaching, 2) steering away, 3) pas-
sing, and 4) returning (Fig. 3). The approaching phase started when the
ego vehicle was 200m away from the starting position of the cyclist.

The steering away phase started when the steering wheel angle last fell
below -0.5 degrees (negative sign indicates anti-clockwise) before the
steering wheel angle reached the negative peak amplitude of the final
steering adjustment. The passing phase started when the lateral dis-
tance to the cyclist reached 0.2m less than its maximum. The start of
the returning phase was set to the last time that the lateral distance
between the ego vehicle and the cyclist was 0.2 m smaller than its
maximum. The end of the returning phase was set to the first time that
the lateral distance was 0.2m greater than its minimum.

The manoeuvre strategies were divided into flying (i.e. returning
phase initiated before the oncoming vehicle passed or when the on-
coming vehicle was absent) or accelerative (i.e. steering away phase
initiated after decelerating to the cyclist’s speed and letting the on-
coming vehicle pass). Accelerative manoeuvres are defined as such in
the literature (Dozza et al., 2016; Feng et al., 2018; Matson and Forbes,
1938), because, after slowing down to the cyclist’s speed, the driver has
to increase speed to perform the overtaking (which makes the man-
oeuvre differ from a simple following manoeuvre). For accelerative
manoeuvres, the time of brake onset was set to the time after the start of
the approaching phase when the brake pedal signal first exceeded 0.1 %
deflection.

2.4. Safety metrics definitions

Four different crash risks were considered for the analysis, each
addressing a different safety metric (see Fig. 3): 1) rear-end collision
with the cyclist in the approaching phase, associated with the safety
metric TTCcyc (TTC to the cyclist); 2) side-swipe collision with the cyclist
in the passing phase; safety metric minimum lateral clearance (MLC); 3)
head-on collision with the oncoming vehicle at the start of the returning
phase (exists already in the passing phase but is highest at the end of it);
safety metric TTC to the oncoming vehicle (TTConc); and 4) side-swipe
collision with the cyclist during the returning phase; safety metric
minimum distance returning (MDR). Table 1 summarises the definitions
of the safety metrics.

2.5. Bayesian regression models

We used Bayesian regression models to analyse the data and to draw
quantitative conclusions (i.e., modelling safety metrics and determining
the choice for overtaking strategy). Bayesian modelling is suitable be-
cause it can deal with different statistical distributions and estimate
uncertainty in model parameters. In contrast to traditional frequentist
methods, it provides access to the full posterior distribution of each
parameter, contributing to the credibility of the results (Bürkner, 2017;
Hoff et al., 2006; Kruschke, 2014).

Using the R Project’s software package brms, version 2.8.0 (Bürkner,

Fig. 2. The test-track setup included two levels of cyclist lat-
eral position (planned values 0 %, 50 % overlap within vehicle
width), and two different time gaps with the oncoming vehicle
(6 s and 9 s time-to-collision, TTC), calculated from the posi-
tion of the ego vehicle when the TTC to the rear of the cyclist
was 2 s. The values in parentheses represent the actual mea-
sured values. The shaded ego vehicle marks the actual position
by participants.

Fig. 3. Phases of a flying overtaking manoeuvre and related
safety metrics: (1) Time-to-collision (TTC) to the cyclist at the
beginning of the steering away phase, (2) Minimum lateral
clearance (MLC) in the passing phase, (3) TTC to the on-
coming vehicle, and (4) Minimum distance returning (MDR),
measured as minimum Euclidean distance between the rec-
tangular bounding boxes of ego vehicle and cyclist. An ac-
celerative manoeuvre would look similar with the difference
that the oncoming vehicle has already passed and that TTC to
the cyclist is determined at brake onset.
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2017), Bayesian regression models with linear predictors were fitted to
each of the safety metrics for each overtaking strategy as well as to the
overtaking strategy choice itself. We chose log-normal distributions to
model the safety metrics and a Bernoulli distribution to model the
choice of strategy (flying or accelerative). Models were fitted with eight
Markov chain Monte-Carlo (MCMC) chains, each containing 10,000
iterations. The first 5000 were used for warm-up by the MCMC algo-
rithm and discarded after that. The number of iterations was chosen to
be sufficiently large to guarantee convergence of the MCMC chains
according to plots of their traces, and an Rhat value close to 1 (Bürkner,
2017). We used weakly informative default priors (Bürkner, 2018),
following the practice of Williams et al. (2018). Models were initially
set up to contain the cyclist lateral position/time gap interaction (re-
ferred to as full models). Driver identity (ID) was included as a group-
level effect to account for inter-participant differences (Bürkner, 2017).
Simplified models without the interaction were then compared to the
full models using leave-one-out cross-validation (LOOCV)—or 10-fold
cross-validation (where LOOCV failed), adapting the work of Vehtari
et al. (2017). The best fit in terms of expected predictive accuracy was
chosen. The differences between the model responses for the two levels
of each factor (time gap or cyclist lateral position) were calculated
using posterior predictive distributions. These differences, or contrasts,
offer a way to determine the effect size and significance of a factor in a
model: the 95 % highest-density interval (HDI) can be compared to a
use-case-specific region of practical equivalence, typically centred
around zero (Kruschke, 2018).

2.5.1. Model for overtaking strategy
The decision to perform a flying overtaking manoeuvre was mod-

elled with a Bernoulli distribution. The response variable OT represents
whether a manoeuvre strategy is flying ( =OT 1) or accelerative
( =OT 0). Since the dataset contained multiple events from same drivers,
the driver identity (ID) was included as a group-level effect (Bürkner,
2018). The i th response of OT is modelled to be sampled from a Ber-
noulli distribution:

pOT Bernoulli( ),i i (1)

where pi is the predictor of the model, representing the probability that
a random variable takes the value 1, i.e. the manoeuvre strategy is
flying. The predictor is modelled by a linear combination of population-
and group-level effects via a logit transformation:

= = +X Z u

u I

p
p

p
N

logit( ) log(
1

) ,

(0, ),

i
i

i
i iOT, OT,ID, OT,ID

OT,ID OT,ID
2 (2)

where is the vector of population-level parameters and XOT the cor-
responding design matrix. The vector contains the parameters to be
fitted, and is for the full model with the interaction defined as:

= [ ] .T
0 clp tg clp*tg (3)

In Eq. (3), 0 is the intercept of the model, clp and tg are the para-
meters for the factors cyclist lateral position and time gap, respectively.

The * operator marks the interaction between those factors. Each row i
of the design matrix, X iOT, is accordingly defined as:

=X X X X X[1 ],i i i i iOT, clp, tg, clp, tg, (4)

where X iclp, is the cyclist lateral position (0 = no overlap, 1 = overlap)
and X itg, the time gap (0 = short, 1 = long).

In Eq. (2), Z iOT,ID, and uOT,ID represent the group-level effect of each
driver (identity ‘ID’) on the intercept of the predictor. uOT,ID is sampled
from a zero-centred, multivariate, normal distribution with covariance

IOT,ID
2 . Z iOT,ID, is the i th row of the corresponding design matrix ZOT,ID.

2.5.2. Models for safety metrics
Let the safety metrics be summarised with SM:

=SM {TTC , MLC, TTC , MDR}.cyc onc (5)

The safety metrics models were separated for flying and accelerative
manoeuvres. For flying manoeuvres, TTCcyc is the TTC at the beginning
of the steering away phase, while for accelerative manoeuvres it is the
TTC at brake onset. Since the oncoming vehicle had already passed for
accelerative manoeuvres, the model for TTConc only exists for flying
manoeuvres.

Since the safety metrics value distributions were positively skewed,
a log-normal distribution was chosen to model each of the metrics. In
Eq. (2), the model for the i th response variable SMi is shown:

µSM Lognormal ( , ).i iSM, SM (6)

where µ iSM, is the log-normal mean of the model, the (linear) predictor.
SM is the standard deviation of the log-normal distribution and as-
sumed constant over all responses. The resulting predictor is:

= +X Z u u Iµ N, (0, ).i i i SMSM, SM, SM,ID, SM,ID ,ID SM,ID
2 (7)

In Eq. (7), is the vector of population-level parameters, as defined in
Eq. (4), and X iSM, is the corresponding design matrix. Z iSM,ID, and uSM,ID
describe the group-level effect of the driver identity, as in Eq. (2).

3. Results

3.1. Overtaking strategy

Flying overtaking manoeuvres were more prevalent than accel-
erative manoeuvres overall (41 vs 27 observations overall; see Table 2),
especially for long time gaps (31 vs 4). For short time gaps, accelerative
manoeuvres were more common (23 vs 10). Female participants were
more likely to perform accelerative manoeuvres than flying ones (11 vs
9) compared to male participants (16 vs 32). Higher discomfort was
generally perceived 1) during accelerative overtaking compared to
flying and 2) during flying overtaking with overlaps and short time
gaps. Therefore, discomfort increased with criticality; however, this
specific result was not further modelled in this study.

The lateral clearances indicate that drivers decided which man-
oeuvre strategy to follow when they were still far from the cyclist:
Figure 4 (panels a and b) shows that the average clearance profiles for

Table 1
Summary of safety metrics, including the associated crash risk in the specific overtaking phase, as well as the definition.

Overtaking phase Crash risk Safety
metric

Definition

Approaching Rear-end collision with cyclist TTCcyc Time-to-collision (TTC) to cyclist at moment of action, i.e. at brake onset (accelerative
manoeuvres) or at end of approaching phase (flying manoeuvres)

Passing Side-swipe collision with cyclist while passing MLC Minimum lateral clearance during passing phase, measured as lateral distance between
the bounding boxes of ego vehicle and cyclist

Passing Head-on collision with oncoming vehicle (highest
risk just before returning phase start)

TTConc TTC to the oncoming vehicle at the end of the passing phase (when the risk of head-on
collision is highest)

Returning Side-swipe collision with cyclist while returning MDR Minimum Euclidean distance between the bounding boxes of ego vehicle and cyclist
during the returning phase
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flying and accelerative manoeuvres diverged when drivers were closer
than 80m from the cyclist. The speed profiles indicate that, with no
overlap (panel c), the speed reduction was initiated later (120m vs
200m) than with overlap (panel d). With no overlap and the long time
gap, drivers kept larger clearances when passing (panel a). In flying-
manoeuvre trials with the overlap and the short time gap, the standard
deviation of lateral clearance and speed is large, due perhaps to their
rarity or to large behavioural differences across drivers. For accelerative
manoeuvres, drivers tended to shift slightly back into their lane just
before initiating the steering away phase; this behaviour is clearly
visible in panels a and b.

The simplified Bayesian regression model for the strategy decision
(i.e. without the interaction between cyclist lateral position and time
gap) was equivalent (within standard error) to the full model in terms
of predictive accuracy. The 10-fold cross-validation revealed that the

full model’s expected log posterior density (Vehtari et al., 2017) was
10.76 higher than that of the simplified model; however, the standard
error of this estimation was 10.18. Table 3 summarises the posterior
distributions of the parameters of the simplified model, i.e. without
the cyclist lateral position/time gap interaction, with the estimate
(median) and the 95 % HDI. The full model is reported in Table A1 in
Appendix A.

The contrasts in the (simplified) model response for the factors cy-
clist lateral position and time gap were estimated to be −0.12 (median)
with [−0.41, −0.03] 95 % HDI and −0.88 (median) with [−1.00,
−0.55] 95 % HDI, respectively. Contrasts from the data, estimated as
the differences between the medians of each outcome of the factors,
were −0.21 and −0.58 for overlap and time gap, respectively. These
values lie within the 95 % HDI of the corresponding model responses,
supporting the fit of the models.

Table 2
Number of trials (N) and gender distribution (female, f; male, m) for each type of scenario (i.e., cyclist lateral position no overlap vs overlap and time gap short vs
long), the overtaking manoeuvres performed in each scenario (flying/accelerative), and the self-reported discomfort scores. Mean and standard deviation are
reported for the discomfort scores.

Cyclist lateral position No overlap Overlap

Time gap Short Long Short Long

Gender distribution Flying (N) (1 f, 6m) (4 f, 13m) (0 f, 3m) (4 f, 10m)
Accelerative (N) (4 f, 5m) (1 f, 0 m) (5 f, 9m) (1 f, 2 m)

Discomfort score Flying; mean (std) 2.4 (0.8) 2.1 (1.2) 3.7 (1.5) 2.2 (1.4)
Accelerative; mean (std) 2.9 (1.8) 3.0 (0.0) 2.6 (1.6) 3.0 (1.0)

Fig. 4. Mean profiles (lines) and 95 % confidence intervals (shaded areas) over longitudinal displacement (distance from ego vehicle front bumper to cyclist rear
wheel), grouped by manoeuvre strategy (flying/accelerative) and time gap (short/long). Small and large gaps are shown separately for flying manoeuvres; accel-
erative manoeuvres include both time gaps. Panels (a) and (b) show the lateral clearance between the cyclist and ego vehicle bounding boxes with no overlap and
with overlap, respectively. Panels (c) and (d) show the ego vehicle speed with no overlap and with overlap, respectively.
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3.2. Safety metrics

All safety metrics generally decreased with overlap and short time
gap (Fig. 5), except MDR, which increased with overlap (Fig. 5 panel d).

Table 4 reports the parameter estimates (medians) and 95 % HDIs of
the simplified models, i.e. without the cyclist lateral position/time gap
interaction. The LOOCV method confirmed that the simplified models
were equivalent to (within standard error) or better fits than the full
models (positive change in expected log posterior density, Table 4). The
full models are reported in Table A2 in Appendix A.

Contrasts in the data, determined by the differences between the
median values for each factor outcome, were within the 95 % HDI of
the corresponding (simplified) models, supporting the fit of the models
(Tab. 5). For flying manoeuvres, MLC was lower with overlap compared
to no overlap: the whole 95 % HDI is below zero (with a similar trend
for accelerative manoeuvres). Furthermore, for flying manoeuvres, the
shorter the time gap, the more critical the MLC and TTConc. The 95 %
HDIs of the contrasts for MDR and TTCcyc contained neither fully

positive nor fully negative values and therefore did not indicate any
significant results.

4. Discussion

4.1. Driver behaviour

Flying manoeuvres, in the presence of an overlap with the cyclist
and a short time gap to the oncoming traffic, were the most critical
and—according to the participants—uncomfortable. Understandably,
the accelerative overtaking manoeuvre was preferred over the flying
overtaking manoeuvre in those conditions. Female driver’s overtaking
behaviour appeared to be more safety-conscious as they preferred ac-
celerative manoeuvres even when male drivers still felt comfortable
performing flying manoeuvres, as previously reported by Kovaceva
et al. (2019). Other studies have shown that male drivers have a higher
risk-taking propensity than female drivers (Harris et al., 2006). The
Bayesian models revealed that time gap impacted strategy more than
cyclist lateral position. The interaction with the oncoming vehicle is
predominant from the passing phase onwards; the driver has to re-
concile the risk for a head-on collision with the oncoming vehicle
(greatest at the beginning of the returning phase) and a rear-end or
side-swipe collision with the cyclist. In accelerative manoeuvres, the
shift to the right within the lane that the overtaking vehicle makes
before starting to overtake may be a signal to the oncoming traffic that
the driver has seen it and will decelerate. Similar behaviour, observed
in vehicle-to-vehicle overtaking manoeuvres, has been interpreted as
communicating intent in the context of an interaction (Portouli et al.,
2012). This behaviour may be important for the design of active safety
systems and driver monitoring systems (Morando et al., 2020), because
if the system can properly interpret the driver’s intent, it can provide
timely accurate and acceptable warnings/interventions, as suggested by
Morris et al. (2011). An alternative interpretation of the shift to the

Fig. 5. Boxplot diagrams of safety metrics with respect to manoeuvre strategy (flying/accelerative) and factor (cyclist lateral position (lat. pos.)/time gap). Panel a):
Time-to-collision (TTC) to cyclist, at steer away moment for flying and at brake onset for accelerative manoeuvres. Panel b): Minimum lateral clearance (MLC) in the
passing phase. Panel c): TTC to oncoming vehicle at the end of the passing phase (flying manoeuvres only). Panel d): Minimum distance returning (MDR) in returning
phase. The notches show the± 1.58/√N interquartile range (IQR) and the median (thick horizontal line) indicates the number of observations (N). The vertical lines
indicate± 1.5 IQR from the upper/lower hinges, and the ‘+’-signs represent outliers.

Table 3
Overtaking strategy model parameter distributions, summarised with median
and upper and lower bounds of highest-density interval (u-95 % HDI and l-95 %
HDI, respectively), reported for the simplified model (without the interaction).
The parameters of the predictor are denoted by 0 (intercept), clp (cyclist lat-
eral position), tg (time gap) and clp*tg (interaction between cyclist lateral po-
sition and time gap). OT,ID is the standard deviation of the group-level effect of
driver identity (ID).

Parameter 0 clp tg OT,ID

Median 9.62 −3.62 −11.42 6.03
u-95 % HDI 18.74 −0.68 −3.18 12.43
l-95 % HDI 2.51 −7.04 −22.4 1.11
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right before overtaking is that the driver increases the lateral distance
to the oncoming vehicle to increase her comfort zone and reduce the
risk of a head-on collision (Gibson and Crooks, 1938).

The safety metrics were generally dependent on both factors (time
gap and cyclist lateral position), and decreased as the criticality of the
situation increased. The TTCcyc was not significantly influenced by ei-
ther factor, suggesting that in the approaching phase the interaction
between driver and cyclist has more influence on driver behaviour than
the interaction between driver and oncoming traffic—possibly because
at this point the driver’s main concern is to avoid a rear-end collision
with the cyclist. The finding that MLC was lower with an overlap is in
line with previous studies (Savolainen et al., 2013; Walker, 2007). Since
an oncoming vehicle was present both with and without overlap, this
finding can be explained as risk compensation because an oncoming
vehicle is an additional risk to be handled by the driver (Wilde, 1982).
With overlap, drivers reduce lateral clearance to the cyclist to reduce
the risk of a head-on collision (which increases when they cross into the
left lane). Note that drivers were not instructed to prefer the safety of
one certain road user over the safety of the other. Analogously, the
decrease in MLC consequent to the decreased time gap (for flying
manoeuvres) may be explained by risk compensation: drivers compro-
mise the safety margin to the cyclist with the increased head-on crash
risk. This result also confirms previous findings from the simulator

study conducted by Bianchi Piccinini et al. (2018), who reported a
decrease in lateral clearance with a reduced time gap to the oncoming
traffic. The decrease in TTConc (about 2 s) with a decrease in time gap at
the start of the return phase suggests that the actual time gaps were able
to capture a change in driver behaviour associated with the risk of a
head-on collision. MDR was found to be lowest in the short-time-gap
trials but largest in the overlap trials; drivers might be more aware of
cyclists who are farther into their lane, and thus might return to the
lane more carefully.

4.2. Active safety

A high percentile of the HDI of the predicted response from a
Bayesian model (e.g. 95 %) can serve as a reference for active safety
systems (Morando et al., 2020), quantifying drivers’ comfort zone
during overtaking. Once the measured value of a safety metric during
driving lies outside of the 95 % HDI (specifically below the lower bound
of the interval), we assume that the driver has exceeded the comfort
zone and a warning or intervention from the system may, therefore, be
acceptable. The derived posterior distributions of the model parameters
from the Bayesian model can become prior distributions for future
studies and can also be incorporated as driver comfort into the systems’
threat assessment. A model capable of dynamic updates for individual

Table 4
Summary of estimated parameter values for each safety metric model. The medians and lower and upper limits of the 95 % highest-density intervals (HDI) are
reported for the simplified model (without the interaction). Leave-one-out cross-validation reports the difference in expected log posterior density (ΔELPD), and the
standard error (SE) in parentheses, for the comparison between the full and simplified models. A positive sign in ΔELPD indicates an improvement in predictive
accuracy due to removing the interaction (included in the full model). The parameters of the predictor are denoted by 0 (intercept), clp (cyclist lateral position), tg

(time gap), and clp*tg (cyclist lateral position/time gap interaction). SM,ID is the standard deviation of the group-level effect of driver identity (ID) on the predictor,
and SM is the standard deviation parameter of the log-normal distribution of the safety metric.

Strategy Safety metric ΔELPD (SE) Parameter 0 clp tg SM,ID SM

Flying TTCcyc −0.85 (2.52) Median 1.52 0.08 −0.01 0.15 0.27
u-95 % HDI 1.67 0.26 0.20 0.27 0.35
l-95 % HDI 1.37 −0.10 −0.22 0.00 0.20

MLC −1.43 (2.84) Median 0.85 −0.19 −0.16 0.16 0.18
u-95 % HDI 0.96 −0.07 −0.02 0.27 0.23
l-95 % HDI 0.73 −0.31 −0.30 0.05 0.13

TTConc 3.56 (1.74) Median 1.88 −0.09 −0.51 0.09 0.13
u-95 % HDI 1.96 −0.01 −0.40 0.15 0.17
l-95 % HDI 1.81 −0.17 −0.61 0.00 0.09

MDR −0.24 (2.15) Median 1.63 0.19 −0.23 0.75 0.33
u-95 % HDI 2.02 0.40 0.04 1.08 0.44
l-95 % HDI 1.23 −0.05 −0.50 0.46 0.24

Accelerative TTCcyc 8.08 (7.96) Median 1.73 0.18 0.09 0.28 0.25
u-95 % HDI 2.15 0.40 0.44 0.49 0.37
l-95 % HDI 1.32 −0.04 −0.28 0.08 0.15

MLC 9.68 (9.03) Median 0.78 −0.11 0.00 0.15 0.12
u-95 % HDI 0.97 0.00 0.16 0.27 0.19
l-95 % HDI 0.59 −0.22 −0.16 0.02 0.07

MDR 10.15 (8.87) Median 1.30 0.33 0.42 0.63 0.46
u-95 % HDI 2.02 0.76 1.03 1.08 0.72
l-95 % HDI 0.54 −0.10 −0.20 0.20 0.25

Table 5
Contrasts from posterior prediction of safety metrics models, including the differences between the medians for each condition in the data (labelled Data), the median
differences from the model predictions (labelled Median), and the lower and upper 95 % highest-density intervals (l-95 % HDI and u-95 % HDI, respectively).

Strategy Safety metric Cyclist lateral position (overlap – no overlap) Time gap (short – long)

Data Median l-95 % HDI u-95 % HDI Data Median l-95 % HDI u-95 % HDI

Flying TTCcyc [s] −0.26 0.42 −0.82 1.66 0.32 −0.15 −1.51 1.29
MLC [m] −0.37 −0.36 −0.69 −0.02 −0.09 −0.28 −0.65 0.11
TTConc [s] −0.21 −0.22 −0.89 0.46 −2.46 −2.49 −3.10 −1.81
MDR [m] 2.39 1.15 −0.58 3.30 −2.94 −1.31 −3.38 0.56

Accelerative TTCcyc [s] 3.28 1.17 −1.00 3.26 −2.78 0.56 −3.03 3.34
MLC [m] −0.25 −0.22 −0.57 0.08 0.08 0.04 −0.40 0.46
MDR [m] 0.15 2.11 −2.29 7.01 3.62 2.42 −3.17 7.56
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drivers (for instance, after an overtaking manoeuvre) could further
improve active safety. A model that can determine which overtaking
strategy (accelerative/flying) a driver will prefer might enable the
safety system to predict the likelihood that the driver will abort an
overtaking manoeuvre (accelerative instead of flying), as proposed by
Farah et al. (2019). If the model shows that the manoeuvre is likely to
be aborted, but the driver does not abort, FCW and AEB systems (or a
pre-brake system) may assist the driver, avoiding a rear-end collision
with the cyclist.

The Euro NCAP test protocol (longitudinal collision scenario with
25 % overlap) specifies an activation threshold for FCW of 1.7 s TTCcyc
in order to award any rating points (Euro NCAP, 2019). The partici-
pants in our study would probably have accepted this threshold, be-
cause the median values for TTC for steering away/brake onset were
well above 1.7 s: mean TTCcyc was 7.52 s (SD=2.50, min=3.68) for
accelerative and 4.92 s (SD=1.44, min=2.53) for flying manoeuvres.

The Bayesian models from this study may support automated
driving features by providing reference values for comfortable man-
oeuvres. However, it should be noted that automated vehicles might
need to manoeuvre more conservatively compared to humans to be
accepted (Abe et al., 2018; Farah et al., 2019). To meet this need, our
models could be scaled to the most conservative human drivers within
the data sample. This practice would be a better alternative than simply
reducing safety margins threshold.

4.3. Limitations and future work

The data in this study were collected on an airfield test track, where
a straight-road overtaking scenario was created with robots and pre-
cisely repeated for each participant. Participants were recruited from
two companies which produce safety systems; however, the partici-
pants were not involved in system development or design. On the
contrary, they came from the finance and production department to
minimise possible biases. The test-track setup is therefore limited in a
way that naturalistic driving studies are not; nevertheless, test-track
data still provide higher ecological validity than previous overtaking
studies based on simulator data. The use of a dummy cyclist ignores the
possible impact of cyclist appearance on overall driver behaviour, an
effect reported by Lahrmann et al. (2018) and Walker (2007). However,
the dummy’s appearance from behind was very similar to a human rider
on a real bicycle with legs moving and remained the same across the
entire experiment—so there was no reason to believe that the trends
across conditions were based on the cyclist’s appearance alone. The
oncoming balloon vehicle may have lacked realism as some participants
noted that it did not have the headlights on (which is a legal require-
ment on Swedish rural roads). Some participant also mentioned that it
was difficult to know if the vehicle was moving or stationary. However,
our results show that participants still interacted with the oncoming
vehicle (representing a threat to them), in a similar way as previously
observed in naturalistic studies.

As a further limitation, the discomfort scores should be interpreted
with caution, as the scale of discomfort used in this study has not yet
been validated.

Future research should also investigate cyclist comfort, to compare
the cyclist’s comfort zone with that of the driver during an overtaking
manoeuvre. For instance, in a naturalistic cycling study, the cyclist
could flag whether an overtaking felt comfortable or not. This in-
formation could lead to ‘fair’ safety systems that maximise safety for all
road users, while considering both driver and cyclist acceptance. Due to
the limited sample size and to allow a descriptive analysis of the
overtaking manoeuvre, the analyses considered the factors time gap
and cyclist lateral position as binary. However, because these are both
actually continuous measures, future studies should collect larger da-
tasets or explore other modelling approaches to treat these factors as

continuous. A time-series prediction of driver behaviour during over-
taking, including driver input actions such as braking, accelerating and
steering, should also be developed. Safety systems incorporating more
comprehensive models of driver-cyclist interactions could better sup-
port the driver and further reduce crash risk during overtaking. The
models could also enable automated vehicles to behave more like
human-driven vehicles.

5. Conclusions

Our results show that drivers’ strategy in overtaking manoeuvres
(flying or accelerative) is related to gender, the time gap between the
ego and the oncoming vehicle, and the lateral position of the cyclist
during the approach. The time gap to the oncoming vehicle was found
to influence the strategy choice to a larger extent than the cyclist’s
lateral position. Safety metrics during the entire manoeuvre decreased
when the time gap was short, or the cyclist rode farther left in the lane;
this was not surprising, as cyclist safety is most endangered under these
conditions. Drivers appeared to compromise head-on crash risk (with
the oncoming traffic) with side-swipe crash risk (with the cyclist), il-
lustrating the need for active safety systems which can support the
driver before and during the whole overtaking manoeuvre. The models
presented in this paper can be used to further develop driver monitoring
systems and improve acceptance of active safety systems interventions
to ensure safe and comfortable overtaking manoeuvres.
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(intercept), clp (cyclist lateral position), tg (time gap), and clp*tg (cyclist lateral position/time gap interaction). SM,ID is the standard deviation of the group-level
effect of driver identity (ID) on the predictor, and SM is the standard deviation parameter of the log-normal distribution of the safety metric.

Strategy Safety metric Parameter 0 clp tg clp*tg SM,ID SM

Flying TTCcyc Median 1.55 0.02 −0.14 0.35 0.18 0.25
u-95 % HDI 1.70 0.20 0.11 0.77 0.32 0.33
l-95 % HDI 1.39 −0.16 −0.38 −0.06 0.02 0.18

MLC Median 0.87 −0.25 −0.26 0.31 0.15 0.17
u-95 % HDI 0.98 −0.13 −0.10 0.60 0.26 0.22
l-95 % HDI 0.76 −0.38 −0.42 0.03 0.04 0.12

TTConc Median 1.88 −0.09 −0.50 −0.01 0.08 0.13
u-95 % HDI 1.96 0.01 −0.37 0.20 0.15 0.17
l-95 % HDI 1.81 −0.18 −0.63 −0.23 0.00 0.09

MDR Median 1.60 0.26 −0.10 −0.39 0.77 0.31
u-95 % HDI 2.00 0.50 0.21 0.15 1.10 0.42
l-95 % HDI 1.19 0.04 −0.41 −0.92 0.48 0.22

Accelerative TTCcyc Median 1.98 −0.13 −0.18 0.35 0.26 0.26
u-95 % HDI 2.64 0.49 0.43 1.03 0.47 0.39
l-95 % HDI 1.37 −0.78 −0.85 −0.32 0.05 0.15

MLC Median 0.88 −0.23 −0.10 0.14 0.15 0.12
u-95 % HDI 1.17 0.09 0.20 0.47 0.27 0.19
l-95 % HDI 0.59 −0.53 −0.38 −0.19 0.02 0.06

MDR Median 1.14 0.51 0.60 −0.22 0.59 0.50
u-95 % HDI 2.31 1.81 1.82 1.10 1.04 0.79
l-95 % HDI −0.10 −0.73 −0.62 −1.60 0.11 0.27

Table A1
Overtaking strategy model parameter distributions, summarised with median and upper and lower bounds of highest-density interval (u-95 % HDI and L-95 % HDI,
respectively). Reported is the full model, i.e. including the interaction between cyclist lateral position and time gap. The parameters of the predictor are denoted by 0
(intercept), clp (cyclist lateral position), tg (time gap) and clp*tg (interaction between cyclist lateral position and time gap). OT,ID is the standard deviation of the
group-level effect of driver identity (ID).

Parameter 0 clp tg clp*tg OT,ID

Median 14.24 −7.22 −17.25 3.39 8.07
u-95 % HDI 31.26 1.09 −2.77 15.5 17.77
l-95 % HDI 2.14 −19.69 −38.9 −5.78 1.44
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