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SUMMARY

Increase in computational power during recent years contributed to a significant de-
velopment in numerical methods in mechanics. There are many methods developed
that address various complex problems, yet modelling of initiation and propagation
of failure in thin-walled structures requires further development. Among numerous
challenges involved, one main complexity is to capture the behaviour of the material
at the failure process zone, where the underlying micro-structure governs the macro-
scopic process. Accounting for all details in a model will increase the computational
cost, which thereby requires finding a balance between the level of details and the
cost incurred. The research in the present thesis aims at developing a framework ca-
pable of analysing ductile fracture in terms of initiation and propagation of cracks,
which is applicable to thin-walled steel structures subjected to high strain rates. Of
particular importance is to address the application to large scale structures for which
capturing the accurate response of the structure calls for an efficient numerical pro-
cedure.

First, a method is developed to analyse and predict the crack propagation in
thin-walled structures subjected to large plastic deformation under high strain rate
loading. In order to represent crack propagation independent of the finite element
discretisation, the extended finite element method (XFEM) based on a 7-parameter
shell formulation with extensible directors is employed. For the temporal discreti-
sation, as typically used in high speed events and high strain rates, an explicit time
integration is used which is observed to be prone to generate unphysical oscillations
upon crack propagation. To remedy this problem, two possible solutions are pro-
posed. To verify and validate the proposed model, various numerical examples are
presented. It is shown that the results correlate well with the experiments.

Second, to capture the fine scale nature of the ductile fracture process, a new
XFEM based enrichment of the displacement field is proposed that allows for a crack
tip and/or kink to be represented within an element. It concerns refining the crack
tip element locally yet retaining the macroscale node connectivity unchanged. This
in turn results in a better representation of the discontinuous kinematics, however,
unlike regular mesh refinement, this requires no change to the macroscale solution
procedure. To show the accuracy of the proposed method, a number of examples
are presented. It is shown that the proposed method enhances the analyses of the
ductile fracture of the thin-walled large scale structures under high strain rates.

Third, in line with the previous developments, a new Phantom node based ap-
proach for analyses of the ductile fracture of thin-walled large scale structures is pro-
posed. It concerns subscale refinement of the elements through which the crack
progresses. As compared to the XFEM approach, the Phantom node method is more

xi
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efficient implementation-wise and computationally. It allows for a detailed repre-
sentation of the crack tip and kink, which leads to a more smooth progression of the
crack. The proposed approach is applicable to both low and high order elements
of different types. In order to show the accuracy of the new approach a number of
examples are presented and compared to the conventional approach.

Finally, a new approach to analyse ductile failure of thin-walled structures based
on the continuum damage theory is developed. For this, a Johnson-Cook visco-
plasticity formulation coupled to continuum damage is developed, whereby the to-
tal response is obtained from a damage enhanced effective visco-plastic material
model. Production of the fracture area is governed by a rate dependent damage evo-
lution law, where the damage-visco-plasticity coupling is realised via the inelastic
damage driving dissipation. In addition, a local damage enhanced model (without
damage gradient terms) is used, which contributes to the computational efficiency. A
number of examples are presented to investigate the accuracy of the proposed model
and it is shown that the model provides good convergence properties.

xii
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SAMENVATTING

De toename in computer rekensnelheid gedurende de afgelopen jaren heeft signi-
ficant bijgedragen aan de ontwikkeling van nieuwe numerieke methodes in de me-
chanica. Er zijn vele technieken ontwikkeld die verschillende complexe problemen
aanpakken, echter vereist het modelleren van initiatie en voortplanting van breuk
mechanismen in dunwandige constructies verdere ontwikkeling. Een specifieke uit-
daging is het beschrijven van het materiaalgedrag rondom de breuk, waar de onder-
liggende micro structuur van het materiaal het macroscopisch proces bepaalt. Het
meenemen van alle details in het rekenmodel leidt tot een noemenswaardige toe-
name in de berekeningsgrootte en dus zal er hier een goede afweging tussen reken-
snelheid en nauwkeurigheid gevonden moeten worden. Het doel van dit onderzoek
is om een methode te ontwikkelen die ertoe in staat is om in dunwandige construc-
ties, onderworpen aan hoge reksnelheden, de initiatie en uitbreiding van taaie breu-
ken te analyseren. Het is van belang dat de methode worden toegepast op grootscha-
lige constructies, omdat een efficiente numerieke procedure hier gewenst is voor het
bepalen van een nauwkeurige respons van de constructie zelf.

Als eerste is er een methode ontwikkeld om scheurgroei te analyseren in dun-
wandige constructies die grote plastische deformaties ondergaan en met hoge rek-
snelheden belast worden. Om de scheur uitbreiding onafhankelijk van de eindige
elementen discretisatie te kunnen representeren, is de extended finite element me-
thod (XFEM) gebruikt. Deze methode is gebaseerd op een 7-parameter schaal for-
mulering en neemt de verandering van de schaal directors mee. Voor de tijdsdiscre-
tisatie is een expliciete tijdsintegratie toegepast, die niet-fysische oscillaties teweeg
brengt tijdens het groeien van de scheur. Als remedie voor dit probleem zijn er twee
oplossingen voorgesteld. Een aantal numerieke voorbeelden zijn gepresenteerd om
het voorgestelde model te verifieren en valideren. Deze voorbeelden bewijzen dat de
resultaten overeenkomen met de experimenten.

Ten tweede is een nieuwe verfijning van het verplaatsingsveld voorgesteld om
het taaie breukproces dat zich op kleine schaal afspeelt mee te nemen in het model.
Deze verfijning is gebaseerd op XFEM en laat het toe om de tip van de scheur en de
scheur richting weer te geven in een enkel element. Hiermee kan de scheur lokaal
verfijnd worden, terwijl de connectiviteit van de knopen op de macroschaal onver-
anderd blijft. Dit zorgt er dan weer voor dat de discontinue kinematica beter beschre-
ven wordt terwijl er, in tegenstelling tot reguliere mesh verfijning, geen verandering
nodig is in de oplossingsprocedure op de macroschaal. Opnieuw zijn er een aantal
voorbeelden opgenomen om de nauwkeurigheid van deze methode te laten zien. De
voorbeelden laten zien dat de voorgestelde methode inderdaad de analyse van het
ductiel falen van dunwandige constructies belast met hoge reksnelheden verbetert.

xiii
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In lijn met de eerdere ontwikkelingen is als derde een nieuwe techniek voor-
gesteld om het ductiel falen in grootschalige dunwandige constructies te analyse-
ren. Deze aanpak is gebaseerd op een Phantom node, waar de elementen waarin de
scheur groeit, verfijnd worden. Vergeleken met de XFEM methode is de Phantom
node aanpak efficienter qua berekeningen, maar ook in de implementie ervan. Een
gedetailleerde weergave van de tip van de scheur is hier mogelijk, wat zorgt voor een
geleidelijke groei van de scheur. De voorgestelde methode is toepasbaar voor ver-
schillende typen elementen van zowel lage en hogere orde. Om de nauwkeurigheid
van deze nieuwe aanpak weer te geven zijn er een aantal voorbeelden gepresenteerd
en zijn er vergelijkingen gemaakt met de conventionele aanpak.

Als laatste is er een nieuwe methode ontwikkeld om het ductiel falen van dun-
wandige constructies te analyseren. Deze methode gebruikt een Johnson-Cook visco-
plastische formulering die dan gekoppeld is aan continuum schade theorie. De to-
tale respons wordt hier verkregen door een, met schade verrijkt, visco-plastisch ma-
teriaal model. De productie van nieuw scheur oppervlak wordt bepaald door een
snelheidsafhankelijke schade evolutie wet, waar koppeling tussen schade en visco-
plasticiteit is gerealiseerd via een inelastische schade gedreven dissipatie. Ook is er
een lokaal schade verrijkt model (zonder afgeleide schade termen) gebruikt, wat bij-
draagt aan de efficientie van het model. Een aantal voorbeelden zijn uitgewerkt om
de nauwkeurigheid van het voorgestelde model te onderzoeken en de resultaten la-
ten goede convergentie eigenschappen zien.

xiv
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1
INTRODUCTION

1.1. MOTIVATION AND BACKGROUND
Increasing computational power during the last years has led to a huge advance in
numerical modelling. Many methods has been developed to address many inter-
esting subjects. Yet, there are many others that need to be explored, among which
dynamic ductile fracture in thin-walled structures is of significance in the current
study. Thin-walled structures are widely used for various civilian and defense appli-
cations such as maritime and off-shore structures, aircraft fuselage, vehicles and ship
hulls just to name a few. These applications call for an increase in the efficiency as
well as the safety of the structures. Therefore, it is desired to employ better materials
and to improve the design of the structures so that they can withstand these loads to
a certain degree.

Of particular interest here is to investigate the behaviour of the large-scale thin-
walled structures under impact and high-strain rate loads. Due to high cost of exper-
imental approaches, numerical simulations of dynamic ductile fracture are of great
interest. Therefore, a numerical tool that represents a physically-based description
of the material and its failure process will allow a realistic simulation at a fraction of
the cost incurred in experiments. For that, the numerical tool should predict crack
initiation and propagation, its path, as well as the stress states in the vicinity of the
failure process zone. One challenge to address is to specify the behaviour of the ma-
terial at the failure process zone based on the underlying microstructure that governs
the macroscopic process. Although accounting for such details in developing a rep-
resentative modelling framework is necessary, it will add to the complexity and the
computational cost. Hence, finding a balance between the level of details included
in the model and the computational cost of that is of significance.

This work is intended to investigate the process of dynamic ductile failure in or-
der to provide a tool for numerical simulations. Employing such a tool can improve
the design of thin-walled structures to make them withstand high strain rate loads.

1
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For that, advanced numerical methods are employed to develop an efficient numer-
ical tool that provides an accurate response for the structures at a reasonable cost.

1.2. OBJECTIVE OF THE RESEARCH
This research aims at investigating the dynamic ductile fracture process. Given that,
an accurate and efficient modelling approach that can predict and represent failure
and its progressive process in terms of its initiation and progression in thin-walled
structures is addressed. Considering the main application of this development, that
is large-scale thin-walled structures, finding a balance between the level of details
accounted for and the computational cost incurred is of significance. The research
questions addressed to accomplish the aforementioned goal are as follows:

• How to develop an accurate and representative simulation method to investi-
gate dynamic ductile fracture at low cost ?

• Which are the different modelling approaches to consider ?

• How to model dynamic ductile fracture in large-scale thin-walled structures ?

• How to predict the onset and progression of dynamic ductile fracture ?

1.3. DYNAMIC DUCTILE FRACTURE
Ductile fracture refers to the fracture process during which the material at the pro-
cess zone undergoes large plastic deformation which eventually leads to formation
of fracture surfaces. Formation of these surfaces is a function of the underlying mi-
croscopic fracture mechanisms and the localisation of deformation eventually (e.g.
necking formation) leading to the fracture.

In general, once material suffers plastic deformation, the reduced cross-section
of the material results in an increase in the stress. At the same time, the plastic hard-
ening effect increases the stress the material can bear. In case the reduction in the
cross-section of the material cannot be compensated by the strain hardening effect
it leads to formation of a neck. Necking in its early stages is governed by the slip of
atoms. Once plastic deformation becomes large enough, voids, if not pre-existing,
start to nucleate at the material defects. Further plastic deformation leads to an in-
crease in the stress triaxiality which makes the material susceptible to void growth.
Once voids are large enough they coalesce and form microcracks. These microcracks
eventually lead to macrocracks and cause the material to fail, cf. Figure 1.1 [1].

Dynamic ductile fracture is a fracture for which the role of inertia cannot be ig-
nored. In general, it concerns a structure loaded at high rates. As a consequence of
that, the evolution of the process zone and the stress field at high progression speeds
is influenced by the inertial resistance of the material at the crack tip [2].
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Figure 1.1: Evolution of ductile failure from the void nucleation to the fracture. Image reproduced from [3].
Printed with permission.

1.4. DIFFERENT SHELL FORMULATIONS
Shell structures due to their lightweight character are among the most efficient load-
carrying structures have ever existed. The increasing complexity of the shell struc-
tures necessitated employing a reliable an accurate shell formulation to perform nu-
merical simulations. Although there are plenty of different shell formulations avail-
able, many of them fail for certain classes of problems while some formulations per-
form perfectly.

In case of classical shell theories, it is noted that change in the thickness is dis-
regarded. Two examples of classical shell theory are Kirchhoff-Love and Mindlin-
Reissner. One main deficiency of the Kirchhoff-Love theory is its straight and nor-
mal to mid-surface representation of the cross section of the shell. This limitation
together with inextensibility of the director leads to an incompatibility in represen-
tation of the shear deformation through the thickness of the shell. Alternatively,
Mindlin-Reissner theory allows for an improved representation of the shear defor-
mation given that it does not require the cross section of the shell to remain normal to
the mid-surface of the shell, yet it lacks representation of the thickness strain. There-
fore to address lack of thickness strain in these theories assumption of plane stress
through the thickness of the shell is required. However, application of non-linear
constitutive laws to represent large strains and plasticity makes a plane stress as-
sumption more complicated to consider. Therefore, to employ a three-dimensional
constitutive law, representing the transverse normal strain in the shell formulation is
a necessity [4, 5].

In recent years, solid-shell formulations have been extensively investigated. Us-
ing an extensible director they allow for three-dimensional stress state representa-
tion, yet they suffer from thickness-locking effect. This deficiency is shown to be
resolved in [6, 7] using the Enhanced Assumed Strain method.

In the current work the shell formulation employed is in line with the develop-
ments in [8, 9]. It is a 7-parameter shell formulation which incorporates a second
order expansion along the director field to prevent the Poisson locking effect caused
by the incompatible representation of the thickness strain.
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1.5. APPROACHES TO MODELLING OF DYNAMIC DUCTILE FRAC-
TURE

The displacement discontinuity incurred during the failure process makes it a com-
plicated phenomenon to model using traditional finite element methods. This is due
to the fact that most of the traditional approaches depend on the evolution of the
continuous state variables within a finite discretised domain to specify the response.
Therefore, modelling of the failure process requires a more detailed approach.

Modelling of dynamic ductile failure is generally categorised under two approaches,
namely continuum and discrete methodologies. Continuum methods provide a vol-
ume representation of the degradation where there is no discontinuity in the dis-
placement field under consideration. These methods are similar to constitutive mod-
els in which failure is specified in terms of a damage variable in each integration
point of the discretised domain. Continuum damage models are typically phenomeno-
logical models which represent the degradation process taking place at the micro-
level scale governed by a set of state variables specified at the macro-level scale,
cf. [10–15]. Apart from the simplicity of the continuum damage models in terms of
their implementation, one main advantage of these models is their progressive dam-
age representation unlike approaches as mesh deletion which results in an abrupt
unloading of the failure zone. This characteristic makes continuum damage mod-
els an interesting choice to model non-catastrophic loss of strength in structures.
However, continuum damage models are prone to strain localisation and lack of re-
liability. Once the stiffness at an integration point decreases to nearly zero, mesh
distortion may increase to an unacceptable value. This problem can be avoided us-
ing complementary approaches such as mesh deletion, mesh adaptivity schemes,
and non-local damage models [16–19]. More details on continuum damage mod-
elling can be found in chapter 5 where a damage enhanced effective material model
is presented.

Alternatively, discrete methods allow for presence of discontinuities in the dis-
placement field which in turn prevents excessive mesh distortion as in the contin-
uum methods. These methods represent the process zone on a surface via remesh-
ing or employing additional kinematics to represent the discontinuity. The onset and
direction of this surface/crack is described using various criteria available, cf. 1.5.2.
Discrete methods usually represent the degradation at the process zone using co-
hesive zone methods. Cohesive theory assumes that material adhesion in front of
the crack tip decreases progressively which results in a lower traction along the crack
surface. This traction eventually decreases to zero once the crack opening reaches
a certain limit which results in an irreversible energy loss [20, 21]. Xu and Needle-
man [22] employed Cohesive zone elements by inserting them between all elements
assuming a traction-separation law. However, it resulted in introduction of spurious
compliance to the finite element model. Camacho and Ortiz [23] improved it later
by utilising an adaptive insertion of the cohesive zone elements. In this approach,
connectivity between all elements is as in the regular finite element method until
traction along an element boundary exceeds the critical limit, at which connectiv-
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ity is modified and a cohesive element is inserted between the elements along the
boundary. One main drawback for this method is its mesh dependency in describing
the crack direction which can be improved by employing remeshing techniques. In
order to represent the discontinuity in the displacement field independent of the dis-
cretisation of the domain, the extended finite element method (XFEM), cf. [24, 25],
and phantom node method, cf. [26–29] are extensively employed in the current work,
cf. Chapter 2, 3, and 4. The XFEM and phantom node method employ enriched
nodes and overlapping elements respectively to describe the crack independent of
the mesh alignment. Therefore, they require no significant mesh refinement which
is of high significance from the computational point of view.

1.5.1. MATERIAL MODELLING

A reliable simulation of thin-walled shell structures requires employing a proper ma-
terial modelling framework to describe the development of the visco-plastic response
of the structure at high loading rates. In the current research, in order to represent
the material behaviour in a computationally efficient, yet accurate way, it is opted to
employ a hypoelastic-inelastic framework. A downside to employ hypoelastic-plastic
models is that they suffer from lack of energy conservation in a closed deformation
cycle. However, the discrepancy in conservation of the energy is found to be negli-
gible provided that the elastic strains remain small compared to the plastic strains
[30].

In line with the developments in [31], the constitutive law used in this work is
formulated in rate form employing the objective Green-Naghdi stress rate to account
for finite deformation. Considering the application of the current work, it is of sig-
nificance to account for temperature variation, strain rate, and isotropic hardening
of the material. For that, the phenomenological model of Johnson and Cook [32] is
incorporated in the hypoelastic-plastic model used. This is further discussed in the
chapters 2, 3, 4, and 5 of the thesis.

1.5.2. DIFFERENT PHASES OF THE FRACTURE MODELLING APPROACH

EMPLOYED IN THE CURRENT WORK

To elaborate on the approach employed in this study, an overview of the different
phases a material point undergoes during failure is provided in the following. There
are three phases that are considered in the current modelling framework, elastic
deformation, elasto-plastic with non-localised deformation, and localised deforma-
tion, cf. Figure 1.2. During the first phase, i.e. elastic deformation, the material
remains elastic and the deformation induced is reversible. Loading the material be-
yond the yield point, plastic deformation starts which is irreversible. Obviously, to
represent the response of a structure during this phase employing a reliable shell
formulation as well as an accurate constitutive material model is a necessity. Ac-
counting for the significant plastic deformation and large deformation incurred dur-
ing this phase is of high importance for such a material model. The transition to the
third phase is preceeded by the onset of strain localisation, which refers to the point
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Figure 1.2: Different phases of failure process of a material point

at which the material starts to lose its load carrying capacity. Upon occurrence of
this, the deformation starts to localise in a narrow band which forms the failure zone
and eventually the material loses its integrity. Finding the onset of strain localisation
is a necessity in the model to capture a reliable result. For that there are numerous
criteria [33–36] such as loss of ellipticity, maximum energy release rate, maximum
tensile principal strain, Johnson and Cook failure criterion, and maximum principal
stress. The criteria employed in the current study are the maximum principal stress
criterion, for predicting onset and orientation of the cohesive zone, and the Johnson
and Cook fracture criterion, to predict onset of damage initiation.

The third phase, i.e. localised deformation and softening/damage, concerns the
early degradation of the material until it reaches complete degradation in the failure
zone. Undergoing this phase corresponds to total loss of material integrity and load
carrying capacity in the material. To represent the excessive deformation that occurs
during this phase special consideration is required. In the current study, describ-
ing the material behaviour during this phase is carried out using continuum damage
modelling and discrete modelling schemes. The continuum damage model utilised
herein is extensively explained in chapter 5. For the discrete modelling method, the
XFEM and phantom node methods are utilised to represent the strong discontinu-
ity in the displacement field. In line with that, in order to capture the behaviour of
the material across the discontinuity at the process zone, and to describe the resist-
ing forces of the material, the Cohesive zone method is used. To elaborate on these
methods, in the following a brief description of the XFEM, phantom node method,
and the Cohesive zone method are presented.
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Figure 1.3: Failure process zone

INTERFACE CONSTITUTIVE MODEL

Following the pioneering work of Dugdale [20] cohesive zone models have been widely
used in failure process modelling. Unlike the linear elastic fracture mechanics which
regards the failure process zone to be confined to the crack tip, in cohesive zone the-
ory a process zone is assumed to be present at the vicinity of the crack tip. In cohe-
sive zone theory, various degradation processes such as the initiation, nucleation of
voids and coalescence of these voids to form micro-cracks, which eventually leads to
macro-cracks is accounted for along the cohesive zone, cf. Figure 1.3.

In order to represent the cohesive zone, various constitutive models in terms of
a traction-separation law have been proposed. In these models, tractions represent
the resisting force across the crack prior to the fracture as a function of the crack
opening. Depending on the application, there are different parameters, e.g. fracture
energy and tensile strength, and also various traction-separation laws, e.g. linear,
bilinear, exponential, etc. as in Figure 1.4, that can employed, cf. [23, 37–39].
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Figure 1.4: Examples of cohesive zone models a) bilinear cohesive zone and b) exponential cohesive zone.

Given the application of the current work, failure of thin-walled structure un-
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N

Figure 1.5: Kinematical representation of the discontinuity

der impact loading, the influence of high strain-rates during the failure process may
not be neglected, as observed by Ravi-Chandar and Knauss [40]. Therefore, a rate-
dependent cohesive zone model in line with the development by Fagerström and
Larsson [41, 42] where a damage viscoplastic model represents the traction across
the crack is employed.

A BRIEF SUMMARY ON THE EXTENDED FINITE ELEMENT METHOD (XFEM) AND THE

PHANTOM NODE APPROACH

In the finite element application to failure modelling, one way to kinematically rep-
resent cracks is to directly introduce discontinuities in the displacement field. To
maintain accuracy and mesh independence of the discontinuous approximation,
two special formulations are considered in the thesis.

The first approach to address this problem is the extended finite element method,
where additional enrichments are used together with the standard shape functions
to treat the non-smooth character present in the solution field. These additional
enrichments are realised by emplying the partition of unity concept [43] such that
the approximations for the discontinuous part of the domain can be improved. As a
result of that, the approximation of a functionϕ[X] is enhanced as:

ϕ=ϕc [X, t ]+HS [S[X]]d [X, t ] (1.1)

ϕh = ∑
I∈Ntot

N IϕI
c +

∑
J∈Nenr

N J HS d J (1.2)

where the shape functions N I and N J are employed to approximate the continuous,
ϕc , and discontinuous, d , part of the approximation field. To define the enrichment
function which is typically a step-function, HS is described as a function of level set,
S, to represent the discontinuity, cf. Figure 1.5.

The second approach that is considered to treat the discontinuity in the solution
field is the phantom node method [26, 27]. In this approach, overlapping elements
are employed where the connectivity of the elements is updated to capture the dis-
continuity in the solution field. Once a discontinuity is predicted from the failure

8
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Figure 1.6: Representation of the strong discontinuity using the phantom node method. The cracked
element domain is considered as an overlapping of two elements with ΩA and ΩB referring to the active
part of each element. Image reproduced from [29]. Printed with permission

criterion, the element domain is divided into two parts and the nodes associated
with each part of the element are doubled. Therefore, there are two overlapping el-
ements on top of each other, where for each element there exists an active domain
and a phantom domain, as shown in Figure 1.6.

In order to introduce the discontinuity in the cracked element domain, finite el-
ement nodal force integration is performed only on the active part of the domain
of each element. It is shown that the phantom node method provides the same
kinematical representation as the XFEM does, cf. [27]; however, the phantom node
method is easier to implement [28]. An additional advantage of the use of the phan-
tom node method for dynamics simulations is the possibility to employ the standard
row sum procedure to obtain the proper lumped mass matrix.
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2
DYNAMIC CRACK PROPAGATION IN

ELASTOPLASTIC THIN-WALLED

STRUCTURES: MODELLING AND

VALIDATION

In this chapter, a method to analyse and predict crack propagation in thin-walled
structures subjected to large plastic deformations when loaded at high strain rates –
such as impact and/or blast – has been proposed. To represent the crack propagation
independently of the finite element discretisation, an eXtended Finite Element Method
(XFEM) based shell formulation has been employed. More precisely, an underlying
7-parameter shell model formulation with extensible directors has been extended by
locally introducing an additional displacement field, representing the displacement
discontinuity independently of the mesh. Of special concern in this contribution has
been to find a proper balance between, level of detail and accuracy when representing
the physics of the problem and, on the other hand, computational efficiency and ro-
bustness. To promote computational efficiency, an explicit time step scheme has been
employed, which however has been discovered to generate unphysical oscillations in
the response upon crack propagation. Therefore, special focus has been placed to in-
vestigate these oscillations as well as to find proper remedies. The chapter is concluded
with three numerical examples to verify and validate the proposed model.

This chapter was integrally extracted from [1].
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2.1. INTRODUCTION
The aim of this contribution is to build a foundation for a more detailed analysis of
ductile fracture of thin-walled steel structures loaded at high strain rates. Of partic-
ular interest are applications to large scale structures, such as ship panels, off-shore
structures etc., for which an adequate modelling and an efficient numerical proce-
dure to handle ductile localised failure are essential ingredients to obtain results at
reasonable computational effort.

So far there have been a large number of researches conducted on the modelling
of dynamic crack propagation to improve the computational efficiency of the stan-
dard finite element method, requiring advanced remeshing and projection proce-
dures of the state variables due to crack growth. As a first step, localised failure was
analysed through inter–element techniques in which cohesive zone elements were
placed along the edges of the continuum elements. In their pioneering work, Xu
and Needleman [2] proposed a method where all continuum elements are separated
from the beginning, their coupling being governed simply by cohesive zone elements
placed along the element edges. This rendered a very flexible approach in terms of
representing arbitrary crack growth, which however unfortunately introduces spu-
rious compliance to the resulting finite element model. To alleviate this problem,
Camacho and Oritz [3] improved the method by employing successive introduction
of the cohesive zone elements only between continuum elements where a certain
fracture criterion is met. Still, the orientation of the crack propagation in both ap-
proaches is susceptible to inaccuracy due to its mesh dependency. To address the
aforementioned difficulties, the eXtended Finite Element Method (XFEM) was devel-
oped by Belytschko and Black [4] and Moës et al. [5] based on the partition of unity
method by Melenk and Babuška [6] which allows for arbitrary crack growth with-
out remeshing by including an additional approximation field to represent the dis-
placement discontinuity. In order to extend the application of XFEM to quasi-brittle
materials, Wells and Sluys [7] utilised cohesive crack models in the XFEM method
considering crack propagation to be element-wise. Representation of crack tip lo-
cation was then improved by Moës and Belytschko [8] and Zi and Belytschko [9] to
include crack tip inside the element. To promote computational efficiency in dy-
namic crack propagation, Menouillard et al. [10, 11] suggested simple mass lumping
schemes for explicit time integration of the governing equations which increase the
stable time step. Furthermore, they also investigated instability issues arising dur-
ing crack propagation which will be discussed in the current chapter as well. In the
current chapter however, we will resort to the consistent mass matrix in the imple-
mentation, since lumped mass schemes in combination with XFEM discontinuity
enrichments have previously proven to render unrealistic behaviour under certain
circumstances, cf. e.g. the work by Remmers et al. [12] in which it was shown that
unphysical tractions may be transmitted across traction free XFEM discontinuity sur-
faces if a lumped mass scheme is employed for the temporal integration.

An alternative method to XFEM, capable of representing mesh-independent crack
propagation, has also been proposed by Hansbo and Hansbo [13] in which, instead
of enriching the approximation space with additional discontinuous degrees of free-
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dom, it replaces the cracked element with two overlapping elements by employing
so called Phantom nodes. The kinematical representation has later on been proved
to be identical to XFEM by Song et al. [14], yet computationally easier to implement
as it has also been noted by Rabczuk et al. [15].

In the particular case of thin-walled structures, different methods of crack rep-
resentation including through the thickness fracture have been investigated in var-
ious studies. Areias and Belytschko [16] utilised a shell element based on Mindlin-
Reissner theory, where they made use of an enhanced assumed strain formulation to
deal with the locking occurring for thin shells. A Kirchhoff-Love based shell element
is also employed by Areias et al. [17]. However, a drawback of the Kirchhoff-Love
theory is its incapability in representing the shear deformation. Recently, a geomet-
rically nonlinear continuum based shell element has been exploited by Ahmed et
al. [18] which is based on the solid-like shell theory developed by Parisch [19]. An
advantage of this model is its capability to avoid the Poisson locking effect when ap-
plied in thin shells. In this contribution, the shell formulation adopted is in line with
the developments by Larsson et al. [20] based on the shell formulation proposed by
Bischoff and Ramm [21], wherein a second order expansion in the director field is
utilised. This results for the underlying continuous shell in a 7-parameter displace-
ment formulation that circumvents Poisson locking effect induced by incompatible
representation of thickness strains due to bending. In order to represent through-
the-thickness fracture with an arbitrary crack path, the shifted version of the XFEM,
cf. e.g. Reference [9] has been employed, combined with the cohesive zone con-
cept [22, 23] to model the material degradation of the fracture process zone.

A quite common approach described in the literature to address the modelling of
dynamic ductile fracture is by means of non-local damage elastoplastic continuum
models – either purely phenomenological models in the spirit of e.g. Kachanov [24]
and Lemaitre [25] or based on assumptions of the micromechanical response of the
material following e.g. Gurson [26] and Tvergaard and Needleman [27]. In this way,
the entire stress-strain relation can be modelled in a unified framework, including
the progressive damage evolution until final fracture. The drawback of this approach
is that results from continuum damage models are predictive only if the mesh is suf-
ficiently refined having several elements across the damage zone [28]. This requires
adaptive mesh refinement to avoid a heavily dense mesh in the entire domain, cf.
e.g. Patzak and Jirasek [29]. In addition, in its original form, a continuum damage
based approach does not allow for a discrete representation of a crack, which, on
the one hand, may cause numerical difficulties related to excessive element distor-
tion (before reaching the fully damaged state) and, on the other hand, it precludes
the modelling of e.g. crack closure. Remedies for the latter, by means of combin-
ing the damage modelling with an explicit representation of a crack which is intro-
duced at a ’critical’ damaged state (defined differently in the different contributions),
have been proposed in the literature - either by employing XFEM kinematics, cf. e.g.
Wells et al. [30] and Seabra et al. [31], or by remeshing, cf. e.g. Mediavilla et al. [32].
However, the requirement of a locally refined mesh in the vicinity of the localisation
zone remains. To promote computational efficiency, methods have been proposed
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by e.g. Areias and Belytschko [33] and Cazes et al. [34] in which continuum based
damage modelling is combined with surface based ’damage modelling. In both of
these contributions, a local damage elastoplastic model to describe the diffuse ma-
terial degradation before localisation is combined with a cohesive zone model to rep-
resent the localised deformation response up until final rupture. In both approaches,
the switch from continuum damage modelling to cohesive modelling is made based
on the criterion of loss of material stability. Furthermore, the cohesive zone model
is adapted to accurately represent the remaining energy dissipation, thus avoiding
any pathological mesh dependency but still allowing for a reasonably coarse spa-
tial discretisation. Even though the aforementioned papers include promising re-
sults, it should be remarked that the application is in both papers limited to mode
I fracture. Furthermore, as observed by Ravi-Chandar and Knauss [35], nucleation,
growth and coalescence of microcracks requires sufficient time to create a macroc-
rack in front of the crack tip. Consequently, the interaction between the microstruc-
tural response and the formation of macro–cracks is related to the time interval over
which the fracture process takes place. This is accounted for herein by employing
a damage–viscoplastic cohesive zone model based on the developments in [36, 37]
by Fagerström and Larsson in which rate-dependency has been included to model
this interaction. As the material model of the continuously deforming part of the do-
main, a hypoelastic-inelastic framework is utilised in which the phenomenological
model proposed by Johnson and Cook [38] is employed.

The chapter is organised as follows. In Section 2.2, the kinematics of the shell for-
mulation as well as the representation of the discontinuity using XFEM is described.
In Section 2.3, the weak form of the momentum balance is presented, where empha-
sis is placed on stress resultants of the internal work. In Section 2.4, we discuss the
material model for the continuously deforming part of the domain as well as the on-
set criterion for localisation followed by description of the cohesive zone model. In
Section 2.5, methods to alleviate numerical instabilities are summarised. In Section
2.6, numerical results and their comparison with experiments are provided. Finally,
the chapter is concluded with closing discussion.

2.2. DISCONTINUOUS SHELL KINEMATICS

In this chapter, we extend the developments presented in [20] to account for plastic
deformations prior to fracture. In the previous paper, the underlying shell formula-
tion – based on a classical Heaviside enrichment of the displacement field, e.g. in
the spirit of [39], to account for strong displacement discontinuities – was described
in detail. Herein, a slight modification of the kinematical representation is made in
the sense that the ’shifted version’ of the Heaviside function is utilised to introduce
the strong discontinuity, with the benefit of avoiding so-called blending elements.
Therefore, to introduce the adopted kinematics and to clarify the differences from
Reference [20], a short overview of the kinematical representation is given in the sub-
sections below.
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2.2.1. INITIAL SHELL GEOMETRY AND CONVECTED COORDINATES
As a staring point, the initial configuration B0 of the shell is considered parame-
terised in terms of convected coordinates (ξ1,ξ2,ξ) as

B0 =
{

X :=Φ0[ξ1,ξ2,ξ] = Φ̄[ξ1,ξ2]+ξM[ξ1,ξ2]

with [ξ1,ξ2] ∈ A and ξ ∈ h0
2 [−1,1]

}
(2.1)

where the mappingΦ0[ξ1,ξ2,ξ] maps the inertial Cartesian frame into the reference
configuration, cf. Figure 2.1. In Eq (2.1), the mappingΦ0 is defined by the midsurface
placement Φ̄[ξ1,ξ2] and the outward unit normal vector field M (with |M| = 1). The
coordinate ξ is associated with this direction and h0 is the initial thickness of the
shell.

B0 , 0

M

B ,F

E2 2

1E1

E3
E E3

Inertial Cartesian frame

[ 1, 2] , M[ 1, 2]

Reference configuration

c[ 1, 2] , mc[ 1, 2]

Current configuration

h0

1G1

2G2
m 1

1g1
2g2

0

B0 B

m0

n0

B
d[ 1, 2] , md[ 1, 2]

NS

D0 D0 D D

nS

Figure 2.1: Mappings of shell model defining undeformed and deformed shell configurations relative to
inertial Cartesian frame

It is remarked that

dX = (
Gα⊗Gα

) ·dX+M⊗M ·dX =
= Gα[ξ1,ξ2,ξ]dξα+M[ξ1,ξ2]dξ (2.2)

whereby the co-variant basis vectors are defined by

Gα =Φ,α+ξM,α, α= 1,2 and G3 = G3 = M (2.3)

where •,α denotes the derivative with respect to ξα. In addition, in Eq. (2.2) it was
used that the contra-variant basis vectors Gi are associated with the co-variant vec-
tors Gi in the normal way, i.e. Gi ⊗Gi = 1, leading to

G j =GijG
i , G j =G ijGi with Gij = Gi ·G j and G ij = (

Gij
)−1 (2.4)

Finally, the infinitesimal volume element dB0 of the reference configuration is
formulated in the convected coordinates as

dB0 = b0dξ1dξ2dξ with b0 = (G1 ×G2) ·G3 (2.5)
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2.2.2. CURRENT SHELL GEOMETRY BASED ON DISCONTINUOUS KINE-
MATICS

The current (deformed) geometry is in the current formulation described by the de-
formation map ϕ[X] ∈ B , additively composed of the continuous placement field
ϕc ∈ B and the (local) discontinuous displacement field ϕd ∈ D , parameterised in
the convective coordinates (ξ1,ξ2,ξ) as

x :=ϕc [X[ξ1,ξ2,ξ], t ]+ϕd [X[ξ1,ξ2,ξ], t ] whereϕd ≡ 0 ∀X ∈ B0 \ D0 (2.6)

where, in accordance with standard XFEM methodology, ϕd is defined locally in the
vicinity of a crack, i.e. for X ∈ D0 as shown in Figure 2.1. Furthermore, following Ref-
erence [20], the through-the-thickness fracture representation is invoked in the shell
formulation in terms of strong discontinuities in both the midsurface placements
and the director fields using XFEM-kinematics. In particular, the specification of the
current configuration corresponds to expansions along the director fields as defined
by {

ϕc [ξ1,ξ2,ξ] = ϕ̄c [ξ1,ξ2]+ξmc [ξ1,ξ2]+ 1
2ξ

2mcγ[ξ1,ξ2]

ϕd [ξ1,ξ2,ξ] = ϕ̄d [ξ1,ξ2]+ξmd [ξ1,ξ2]
(2.7)

where it should be remarked that the continuous placement ϕc corresponds to a
second order Taylor series expansion in the director mc , thereby describing inhomo-
geneous thickness deformation effects of the shell. In particular, the pathological
Poisson locking effect is avoided in this fashion. In contrast, for simplicity and effi-
ciency, only a first order expansion is used for the discontinuous partϕd .

For the finite element approximation, the continuous part of the mapping is ap-
proximated by standard C 0 (quadratic) shape functions N I [ξ1,ξ2] as

ϕc =
∑

I∈Ntot

N I [ξ1,ξ2]

(
ϕ̄I +ξmI

c

(
1+ 1

2
ξ

∑
J∈Ntot

N J [ξ1,ξ2]γJ

))
(2.8)

where Ntot is the total set of nodes in B0 and ϕ̄I , mI
c and γJ are the corresponding

degrees of freedom.
For the local discontinuous enrichment, the ’shifted’ form of the Heaviside func-

tion is utilised to realise the strong discontinuity. Hence, if we in analogy with e.g. Zi
and Belytschko [9] let Nenr denote the set of enriched nodes, associated only with the
particular elements intersected by a segment of the crack, the discontinuous part of
the mapping can be written as

ϕd = ∑
I∈Nenr

N I [ξ1,ξ2]ψI [ξ1,ξ2]
(
ϕ̄I

d +ξmI
d

)
(2.9)

whereψI are the shifted enrichment functions (associated with each node I ) defined
as

ψI [ξ1,ξ2] = H [S[ξ1,ξ2]]−H [ξI
1,ξI

2] (2.10)
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and where ϕ̄I
d and mI

d are the degrees of freedom representing the discontinuous
parts of the midsurface displacement and director field respectively. As to the ar-
gument of the Heaviside function, the level-set function S[ξ1,ξ2] defined on D0 (in
whichϕd 6= 0) is considered monotonic such that

S[ξ1,ξ2] < 0 ifΦ[ξ1,ξ2] ∈ D−
0

S[ξ1,ξ2] = 0 ifΦ[ξ1,ξ2] ∈ ΓS

S[ξ1,ξ2] > 0 ifΦ[ξ1,ξ2] ∈ D+
0

(2.11)

with the additional requirement
∂S

∂X
= NS (2.12)

where D0 is considered subdivided into a minus side D−
0 and a plus side D+

0 by the
discontinuity line ΓS with the corresponding normal vector NS , as shown in Figure
2.1. Please note that the level-set function S has the convected midsurface coor-
dinates as arguments, thereby restricting the current formulation to through-the-
thickness shell fracture. Furthermore, it is remarked that the enriched reference vol-
ume D0 is here defined only by the finite elements intersected by a crack (or a cohe-
sive segment) since the enrichment functions in Eq. (2.10) are defined such that the
discontinuous enrichment vanishes at the (corner) nodes, which is an improvement
of the formulation in [20] in the sense that blending elements – elements partially
enriched but without any internal displacement jump – are avoided. For complete-
ness, we also note that the displacement jump d̃ over ΓS is, with due consideration
to the shifted enrichment function in the current formulation, defined along the dis-
continuity line as

d̃ =ϕ+−ϕ− =ϕ+
c + ∑

I∈D−
0

N I (
ϕ̄I

d +ξmI
d

)−
ϕ−

c + ∑
J∈D+

0

−N J
(
ϕ̄J

d +ξmJ
d

)
= {
ϕ+

c =ϕ−
c

}= ∑
K∈D0

N K (
ϕ̄K

d +ξmK
d

)=ϕd = ϕ̄d +ξmd .

(2.13)

To identify the deformation gradient, a relative motion dx of the non-linear place-
mentϕ is considered as

dx =
(
ϕ̄c,α+mc,α

(
ξ+ 1

2
γξ2

)
+ 1

2
γ,αξ

2mc + (ϕ̄d ,α+md ,αξ)

)
dξα+

+ (
mc (1+γξ)+md

)
dξ+δS (ϕ̄d +ξmd )sαdξα (2.14)

whereby the deformation gradient is defined as consisting of one bulk part F and one
interface part Fd as

dx = (F+δS Fd ) ·dX with F = gci ⊗Gi , i = 1,2,3 and Fd = gdα⊗Gα, α= 1,2 (2.15)

where a Dirac-delta discontinuity δS Fd occurs along the discontinuity line ΓS . This
is defined as ∫

B0

δS •dB0 =
∫
ΓS

∫ h0/2

−h0/2
• dξ dΓ0 (2.16)
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for any quantity •. In Eq. (2.15), the spatial co-variant basis vectors are identified
from Eq. (2.14) as

gci =
{
ϕ̄c,i +mc,i

(
ξ+γ 1

2 (ξ)2)+mcγ,i
1
2 (ξ)2 + (ϕ̄d ,i +md ,iξ), i = 1,2

mc
(
1+γξ)+md , i = 3

(2.17)

gdα = (
ϕ̄d +ξmd

)
sα , α= 1,2 (2.18)

where sα = (∂S/∂ξα) = NS ·Gα. It should be remarked that the terms (ϕ̄d ,i +md ,iξ)
(for i = 1,2) and md (for i = 3) only give non-zero contributions to gci inside the
subdomain D0.

2.3. BALANCE EQUATIONS
In this section, we establish the momentum balance of the shell considering the weak
continuum representation of the shell applied to the shell kinematics introduced
above. We thereby highlight the – in relation to Reference [20] – modified formula-
tion in stress resultants emanating from the shell kinematics and the internal work,
formulated in the symmetric second Piola Kirchhoff stress tensor S.

To arrive at the current stress resultant formulation, we start from the basic weak
form of the momentum balance in terms of contributions from inertia G ine, internal
work G int and external work Gext as

Find: [ϕ̄c ,mc ,γ,ϕ̄d ,md ]

G ine[ ¨̄ϕc ,m̈c , γ̈, ¨̄ϕd ,m̈d ;δϕ̄c ,δmc ,δγ,δϕ̄d ,δmd ]+
G int[ϕ̄c ,mc ,γ,ϕ̄d ,md ;δϕ̄c ,δmc ,δγ,δϕ̄d ,δmd ]−

Gext[δϕ̄c ,δmc ,δγ,δϕ̄d ,δmd ] = 0 ∀ δϕ̄c ,δmc ,δγ,δϕ̄d ,δmd

(2.19)

where the inertia and the internal and external virtual work contributions are written
as

G ine =
∫

B0

ρ0
(
δϕc +δϕd

) · (ϕ̈c + ϕ̈d

)
dB0, (2.20)

G int =
∫

B0

(
δFt ·F

)
: SdB0 +

∫
ΓS

∫ h0/2

−h0/2

(
δϕ̄d +ξδmd

) · t1 dξ dΓ0 (2.21)

Gext =
∫

B0

ρ0
(
δϕc +δϕd

) ·bdB0 +
∫
∂B0

(
δϕc +δϕd

) · t̄1dS0 (2.22)

and where b is the body force per unit volume, t̄1 = Pt ·N is the prescribed nominal
traction vector on the outer boundary ∂B0, t1 is the nominal traction vector of the
cohesive zone defined by t1 = Pt ·NS and Pt = F ·S is the first Piola Kirchhoff stress
tensor, cf. also Figure 2.1.

To obtain the explicit form of each term in Eq. (2.19), we introduce the displace-
ment vector n̂t = [ϕ̄c ,mc ,γ,ϕ̄d ,md ] and start by concluding that the inertia part is
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given by

G ine =
∫

B0

ρ0
(
δϕc +δϕd

) · (ϕ̈c + ϕ̈d

)
dB0 =

∫
Ω0

ρ0δn̂t (M̂ ¨̂n+M̂con)ω0 dξ1dξ2 (2.23)

where the consistent mass matrix M̂ and the convective mass force M̂con per unit
area were derived in [20], cf. Appendix A.2 for details with respect to the modified
discontinuity enrichment. In order to arrive at Eq. (2.23), a change of the integration
domain from B0 (3D) to Ω0 (2D) was made via the ratio j0[ξ] = b0/ω0 defining the
relation between area and volumetric measures of the shell defined as

dB0 = j0dξdΩ0 with dΩ0 =ω0dξ1dξ2 and ω0 = |Φ,1 ×Φ,2| (2.24)

Furthermore, when limiting the perpendicular forces to external pressure – in
view of the Cauchy traction t = −pn on the deformed surface Ω – the external work
Gext can be written as

Gext =
∫
Γ0

(
δϕ̄c ·n0 +δmc ·m̃0 +δγms

)
dΓ0 +

∫
Γ0∩∂D0

(δϕ̄d ·n0 +δmd ·m0)dΓ0

−
∫
Ω

p
(
δϕ̄c +δϕ̄d

) ·gc1 ×gc2dξ1dξ2

(2.25)

where p = p (t ,ξ1,ξ2) is the external pressure, n is the spatial normal of the deformed
midsurface Ω and n0, m̃0, ms and m0 are stress resultants with respect to the pre-
scribed traction acting on the outer boundary, cf. Appendix A.1.

Finally, we note that the ’internal work’ can be written as

G int =
∫
Ω0

δn̂t
c N̂cω0dξ1dξ2 +

∫
Ω0

δn̂t
d N̂dω0dξ1dξ2 +

∫
ΓS

δn̂t
cohN̂cohdΓ0 (2.26)

where the shell deformation and stress resultant vectors have been introduced as

δn̂t
c =

[
δϕ̄c,α,δmc,α,δmc ,δγ,α,δγ

]
, δn̂t

d = [
δϕ̄d ,α,δmd ,α,δmd

]
, δn̂t

coh = [
δϕ̄d ,δmd

]
N̂

t
c =

[
Nα,Mα,T, Mα

s ,Ts
]

, N̂
t
d = [

Nα
d ,Mα

d ,Td
]

, N̂
t
coh = [nS ,mS ]

involving the membrane, bending, shear/thickness stretch stress resultants Nα, Mα,
T, Nα

d , Mα
d , Td (the three latter being conjugated with the discontinuous displace-

ment variables), higher order stress resultants Mα
s , Ts as well as cohesive stress resul-

tants nS and mS , cf. Appendix A.1 for the explicit expressions. Finally, by substituting
the displacement field into the weak form we are given the equation of motion as

M a = f ext −M con −bint −bcoh (2.27)

where bint, bcoh and f ext denote internal, cohesive and external forces respectively.
Finally, M con is the convective mass force involving contributions of the first order
time derivatives of the displacement field in the inertia term of the virtual work as in
Reference [20].
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2.4. MATERIAL MODELLING
As stated in the introduction, the current modelling framework is intended for the
analysis of large thin-walled structures experiencing localised failure at high strain
rates. Consequently, a crucial issue is to balance modelling detail against computa-
tional cost. As described above, this issue is partially approached by developing/adopting
an XFEM based discontinuous shell formulation for our thin-walled structure. This
is in contrast to the corresponding much more computationally expensive 3D solid
modelling combined with remeshing. In addition, given the current areas of applica-
tion of the ductile fracturing processes, the following set of key requirements on the
constitutive modelling are considered:

• The occurrence of significant plastic deformations prior to localisation and
failure must be considered. Consequently, a model for the non-localised de-
formation response must include inelastic deformations and be valid at large
continuous deformations.

• Given the area of application in terms of impact and blast loading, a wide
range of applications in terms of strain rate and temperature must be han-
dled. Thus, viscoplastic and thermal softening effects must be included in the
pre-localised stage of the modelling. Furthermore, as will be shown in the fi-
nal example, in order to obtain realistic results in terms of crack speed, rate-
dependence is also of importance in the modelling of the localised failure.

• Possible failure modes pertinent to the progressive localised failure must be
handled in a consistent manner in the context of shell analysis to avoid patho-
logical mesh dependence of the energy dissipated. This means to properly en-
hance the shell modelling with discontinuous modes involving e.g. discontin-
uous mid-surface and director fields. In relation to this, the proper cohesive
zone model must be adopted.

In the current chapter, all the material degradation is assumed to be concentrated
in the localised zone. Consequently, the modelling of the material degradation and
the associated energy dissipation is confined to a damage-plasticity cohesive zone
model, whereby any diffuse damage evolution is disregarded. The energy dissipa-
tion due to localised deformation is thus treated separately from the dissipation due
to regular (non-localised) plastic deformation. In this way, no energy coupling proce-
dure is required between the continuum model and the cohesive zone model, mean-
ing that, in general, no restrictions exist on the mode of deformation, provided that a
mixed-mode cohesive zone model is utilised. As a result, a simplified but computa-
tionally efficient approach is obtained (no mesh refinement is necessary) consisting
of three idealised stages:

• pre-localised (continuous) deformation represented by an elastoplastic mate-
rial continuum model without damage.

• onset of localisation (criterion)
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• post-localised deformation represented by a cohesive zone model

The adopted modelling is described in the separate subsections below. A final re-
mark is that, as can be seen below, thermal softening is included in the modelling
of the continuously deforming material. However, this is in the current stage only of
theoretical interest since the thermal field itself is disregarded.

2.4.1. MODELLING OF PRE-LOCALISED DEFORMATION RESPONSE
For computational efficiency reasons, a hypoelastic-inelastic framework based on
the Green-Naghdi stress rate is employed to provide a framework for finite deforma-
tion analysis. Hence, following e.g. Ljustina et al. [40], the constitutive relation is
formulated on rate form in terms of a relation between the Green-Naghdi rate of the
Kirchhoff stress tensor

τ̂= τ̇−ω ·τ+τ ·ω, ω= ṘRt (2.28)

and the elastic part of the spatial velocity gradient l̄ as

τ̂=E : l̄, l̄ = l− lp − lth (2.29)

where E is the elastic fourth order tensor, l = ϕ̇⊗∇x is the total spatial velocity gra-
dient, and where lp and lth = αθ̇1 are the plastic and thermal contributions respec-
tively. Due to the restriction to elastic and plastic isotropy in this chapter, it is suffi-
cient to assume that the plastic spin is zero. Thereby, we can consider the inelastic
portion of the spatial velocity gradient lp in the framework of Perzyna visco-plasticity
as

lp
def.= λf with f = 3

2

τdev

τe
(2.30)

where τdev is the deviatoric part of the Kirchhoff stress tensor, τe is the effective von
Mises stress thereof andλ≥ 0 is the plastic multiplier, determined based on the over-
stress function η[Φ] in the quasi static yield functionΦ [τ,ki ...] (where ki are internal
hardening variables), cf. below.

Furthermore, the elastic material operator in Eq. (2.29) is taken as the constant
isotropic spatial material tensor so that

E= 2GIdev +K 1⊗1 with Idev = Is ym − 1

3
1⊗1 (2.31)

where Is ym is the fourth order unit symmetric projection tensor with the property
that d = ls ym = Is ym : l, where d is the rate of deformation tensor. Moreover, G and K
are the elastic constants pertinent to shear and volumetric response, respectively.

To represent the elastoplastic response of the bulk material at full integrity, the
phenomenological model proposed by Johnson and Cook [38] is utilised. This model
is most commonly presented in terms of a "rate dependent yield function" F , invok-
ing also effects of isotropic non-linear hardening and thermal softening, as

F = τe −
(

A+B
(
ε

p
e
)n)(

1+C < ln

[
ε̇

p
e

ε̇0

]
>

)(
1− θ̂m)

(2.32)

25



544248-L-bw-Mostifizadeh544248-L-bw-Mostifizadeh544248-L-bw-Mostifizadeh544248-L-bw-Mostifizadeh
Processed on: 2-6-2020Processed on: 2-6-2020Processed on: 2-6-2020Processed on: 2-6-2020 PDF page: 40PDF page: 40PDF page: 40PDF page: 40

where εp
e is the equivalent accumulated plastic strain characterising the rate-independent

strain hardening part, ε̇p
e = λ is the effective plastic strain rate, and θ̂ is the so-called

homologous temperature defined as

θ̂ =


0 θ < θtr ans

θ−θtr ans

θmel t −θtr ans
θtr ans < θ < θmel t

1 θ > θmel t

(2.33)

where θtr ans is the transition temperature for the temperature dependence and θmel t

is the melting temperature of the material.
Clearly, the material parameters A, B and n represents the rate-independent strain

hardening, whereas C and ε̇0 defines the strain-rate dependence and θtr ans and m
the dependency of temperature on the plastic evolution. As to the parameter ε̇0,
we note that it evidently has a strong influence on the rate sensitivity – it behaves
like a relaxation time parameter. Also, in order to avoid an unphysical response,
the original model has been adapted by application of the Macaulay bracket < • >,
to experience a cut–off in the rate dependency. Hence, for ε̇p

e < ε̇0 the model re-
sponse becomes completely rate independent. In fact, without the proposed "cut–
off" the model exhibits numerical instabilities under certain conditions, cf. Ljustina
et al. [40].

Given the current framework, in accordance to the flow rule for the inelastic por-
tion of the spatial velocity gradient lp in Eq. (2.30), we conclude that the Johnson-
Cook model can be reformulated asλ= ε̇0 exp

[
<Φ>

C
(
1−θ̂m

)
(A+Bkn )

]
 λ> 0 if λ

ε̇0
≥ 1

Φ≤ 0, λ≥ 0, λΦ= 0  λ> 0 if λ
ε̇0

< 1
(2.34)

where it is noted that, for the current model, the single isotropic hardening parame-
ter k corresponds to εp

e leading to the following form of the quasi-static yield function
Φ

Φ= τe −
(

A+Bkn)(
1− θ̂m)

(2.35)

TRANSFORMATION OF STRESS COMPONENTS

As can be seen in Appendix A.1, the stress resultants involve contra-variant compo-
nents of the second Piola Kirchhoff stress tensor, denoted Sij in contrast to Cartesian
components Sij. In [20], this was treated by formulating the hyperelastic constitutive
equations directly in the co-variant frame, which however is not trivial in the case
of finite elastoplasticity. Instead, the procedure in this chapter is to handle the inte-
gration of the constitutive equations in the Cartesian frame, followed by a transfor-
mation of the Cartesian stress tensor components into contra-variant components,
with due consideration of the standard relation between the Kirchhoff stress tensor
τ and the second Piola Kirchhoff stress tensor

S = F−1 ·τ ·F−t . (2.36)
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To be explicit, the coordinate transformation is given by

Skl =
(
Gk ·Ei

)
Si j

(
E j ·Gl

)
(2.37)

where Ei are the Cartesian basis vectors and Gk the contra-variant basis vectors given
by Eq (2.4).

2.4.2. ONSET OF LOCALISATION

To determine the onset of localisation, i.e. activation of the cohesive zone, we limit
ourselves in this chapter to mode I applications whereby the onset and direction of
propagation is determined by the maximum principal stress criterion evaluated for
the most critical integration layer through the thickness. Currently, four integration
points are used through the thickness of the shell, whereby the principal stress cri-
terion is evaluated for the averaged stress state of each of these ’layers’, and propa-
gation is predicted whenever a critical state (principal stress exceeds cohesive failure
stress) is reached in any of these. It should be remarked that this localisation criterion
is simple and purely phenomenological, yet sufficient for the mode I applications
considered in the current chapter. However, to obtain a more general approach, the
parts describing the pre-localised stage of deformation (including the detection of
transition into localised deformation) needs to be further developed.

2.4.3. MODELLING OF POST-LOCALISED FAILURE RESPONSE - COHE-
SIVE ZONE MODEL

From Appendix A.1, it is clear that the cohesive stress resultants are formulated di-
rectly in the Cartesian frame. Thus, no transformation of the nominal traction com-
ponents is necessary. Consequently, any standard formulation can be utilised in
which the nominal traction t1 is directly related to the spatial discontinuity d̃. To
account for rate-dependency also in the localised response, a rate-dependent cohe-
sive zone model developed by Fagerström and Larsson [37] is employed in the cur-
rent work. In this model, the degradation of the stress traction across the fracture
interface is described by a damage - (visco)plasticity model in terms of an effective
traction vector t̂1 and a damage variable 0 ≤α≤ 1 as

t1 = (1−α) t̂1 (2.38)

Furthermore, to ensure material frame indifference, the effective nominal traction t̂1

is related to the effective Mandel stress traction Q̂ = (1−α)T ·NS (on the minus side
of the crack) as

t̂1 = F−t
(−) · Q̂ (2.39)

based on the general relation between the first Piola Kirchhoff stress tensor and the
Mandel stress tensor T

T = Ft ·Pt . (2.40)
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Based on the definition of a material jump J, associated with the spatial discontinuity,
as

J = F−1
(−) · d̃ (2.41)

the traction - displacement relation can be formulated as

Q̂ = K · (J− Jp ) = K · Je . (2.42)

Furthermore, whenever a cohesive segment is introduced, the loading/unloading
condition for the considered segment is determined based on the (quasi-static) load-
ing function Fqs

Fqs =σ f

( 〈Q̂n〉
σ f

)2

+σ f

(
Q̂t

γ̂σ f

)2

−σ f (2.43)

where Q̂n = Q̂ ·NS and Q̂t =
∣∣(1−NS ⊗NS ) · Q̂

∣∣ are the normal and tangential compo-
nents of Q̂ respectively, σ f is the failure stress in simple tension and γ̂ is the ratio
between the failure stress in simple shear and simple tension. It is emphasised that
the shear component is the magnitude of the tangential part of the traction along the
discontinuity surface, thereby including both mode II and mode III shear deforma-
tions.

The discontinuity evolution is expressed in the inelastic portion J̇p , where the
loading function defines the flow rule as

J̇p = λd

1−αH (2.44)

where

H = ∂Fqs

∂Q̂
= 2

〈Q̂n〉
σ f

en +2
Q̂t

γ̂2σ f
et (2.45)

In Eq. (2.44), a ’plastic’ multiplier λd is introduced, which in the rate-independent
case is controlled by the Karush-Kuhn-Tucker conditions

Fqs ≤ 0, λd > 0, λd Fqs = 0. (2.46)

To invoke the rate dependence, these conditions are relaxed and the plastic evolution
is formulated in an ’over-stress’ manner, in analogy to e.g Perzyna. [41], as

λd = 1

c∗

( 〈Fqs〉
σ f

)1/m 1

|H| (2.47)

where c∗ and m are two material constants determining the viscous fracture be-
haviour. Hence, the evolution of the plastic jump is given by

J̇p = 1

c∗

( 〈Fqs〉
σ f

)1/m H

|H| (2.48)
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which in the simplest case of a relation between the plastic multiplierλd and the rate
of damage α̇ according to

α̇= 1

s(1−α)
λd (2.49)

is linearly related to the amount of damage evolution as

J̇p = sα̇H (2.50)

where s is a damage parameter which may be used for calibrating the model. As
shown in e.g. [37], in the case of mode I fracture, s takes the form

s =
G I

f

σ f
(2.51)

where G I
f is the corresponding mode I fracture energy.

2.5. IMPLEMENTATION ASPECTS
This section is intended to address the issue arising from kinematical inconsistency
amid activation of a new cohesive zone due to nonconforming stress state during ini-
tiation of localisation. It also explores the presence and remedy for unwanted (non-
physical) stress wave induced by a sudden discontinuity in the internal forces upon
introduction of a new crack segment, which may lead to instability in the solution
during the crack propagation. To tackle these issues two approaches are investigated
herein which are of computational significance.

2.5.1. SHIFTED COHESIVE ZONE
To obtain a consistent transition from a continuous to a discontinuous state in ex-
plicit time integration, the crack interface should be exposed to the same stress state
as before the initiation of localisation. However, upon onset of localisation (enrich-
ment) the interface opening is still zero. Consequently, in order to provide a smooth
and consistent transition from a continuous to a discontinuous element, the trac-
tion value at the integration points along the crack path should be computed such
that the initial traction in the cohesive zone corresponds to the stress state prior to
the discontinuous enrichment. To overcome the aforementioned difficulty, the idea
proposed by Hille et al. [42] is resorted to, whereby a shift is added to the crack inter-
face opening.

To clarify, the algorithm for this method is to compute the shift based on the initial
stiffness of the cohesive interface K, normal vector to the crack segment NS , and the
Mandel stress T at the integration point along the crack interface once the cohesive
crack segment is to be inserted

J0 = 1

K
T ·NS . (2.52)
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Figure 2.2: Sketch to visualise the effect of adding a shift to the cohesive zone opening

Having the shift computed at the onset of the localisation, it is added to the material
jump J̄(t), wherein the material jump has been determined by XFEM kinematics as a
result of additional degrees of freedom to represent the discontinuity. This summa-
tion is then to be utilised as the argument for the cohesive zone model as

J(t ) = J̄(t )+ J0. (2.53)

Furthermore, to ensure that the stress state in the bulk material in the vicinity
of the crack does not exceed the maximum traction in the cohesive zone, such that
the crack insertion will be acceptably smooth, the failure stress in the localisation
criterion, σl , is assigned to be 90% of the ultimate tensile stress, σ f . Thereby, pro-
vided that the time step employed is sufficiently small, implying that stress variation
during the crack insertion is limited, the stress will never exceed the maximum load-
ing point of the cohesive zone model. Consequently, the bulk stress state across the
crack will be maintained.

Another feature of the shifted cohesive zone is that it offsets the discrepancy
in dissipated energy. As it is depicted in Figure 2.2, the area below the traction-
separation law is not completely accounted for by fracture energy, G f , and it is just
the area below the descending part which represents the dissipation. Despite the
fact that the initial stiffness is comparatively very high such that the area below the
ascending part is more or less insignificant, this still will introduce a discrepancy in
the dissipated energy. Clearly, adding the shift to the cohesive opening, more consis-
tent energy balance will be experienced and the aforementioned issue will be settled.

2.5.2. CORRECTION FORCE
Insertion of any new crack segment is accompanied by addition of new degrees of
freedom to the solution field with initially zero values. It should be remarked that, by
adopting the current temporal discretisation and integration technique, whenever a
new crack segment is inserted in the discretisation of the domain, the continuity in
time of this space discretisation is not ensured. Physically, the crack propagates with
a finite velocity, whereas in the numerical simulation, the crack propagation speed
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will be implicitly governed by the time step size because the crack is propagated seg-
ment by segment whenever a propagation criterion is satisfied. Consequently, be-
cause of the influence of preexisting internal, external and cohesive forces, the cur-
rent procedure induces an abrupt change in the internal forces corresponding to the
newly enriched degrees of freedom as the crack propagates.This discontinuity in the
internal forces of newly enriched degrees of freedom and their associated accelera-
tions will lead to an unphysical stress wave and should be avoided.

To circumvent this issue herein, the method proposed by Menouillard and Be-
lytschko [43] is exploited, whereby a correction force is added to the balance equa-
tion in order to smoothen any abrupt change in the newly enriched degrees of free-
dom during the transition from the continuous element to the discontinuous cracked
element. Consequently, the pre-existing forces are invoked gradually within a short
time interval. To clarify, the procedure is to compute the influence of the internal
force bint

tact
, cohesive force bcoh

tact
, external force f ext

tact
, and convective mass force M con

tact
,

for the new degrees of freedom to be enriched once the localisation criterion is met
at tact . Thereafter, the correction force may be defined as

f cor r = M con
tact

+bint
tact

+bcoh
tact

− f ext
tact

(2.54)

where the definition of all terms used above and also details of the explicit time inte-
gration scheme in terms of the central difference method employed in this develop-
ment are provided in [20].
This correction force is to be added to the balance equation with opposite sign right
after activation of newly enriched degrees of freedom, such that it follows a decaying
pattern within a short time interval

an =−M−1(M con
n +bint

n +bcoh
n − f ext

n − f cor r ·C decay
n ) (2.55)

where C decay
n may have any pattern, e.g. linear or nonlinear, provided that it de-

creases from one to zero so that the effect of the corresponding correction force van-
ish by the end of its activation interval,M tcor r .

In the implementation herein, the decaying pattern is provided using a nonlin-
ear function, cf. Figure 2.3, that smoothen the abrupt change in the newly enriched
degrees of freedom for limited yet sufficient number of time steps

C decay
n =

{
0 tn > tact+M tcor r

1
2 (cos( tn−tact

Mtcor r
)π+1) tact < tn < tact+M tcor r

(2.56)

Utilising the aforementioned method, the abrupt change in the acceleration field,
an , will be mitigated and the response enjoys reasonable smoothness. A practical
application of this method is shown in the second numerical example in the current
chapter.

2.6. NUMERICAL EXAMPLES
In this section, three different examples are presented in order to verify the accuracy
and robustness of the model as well as its implementation. In the first example, im-
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Figure 2.3: Time variation of the correction force

pact loading of a rectangular plate, the accuracy of the shell formulation is validated.
The second example, tearing of a plate by out-of-plane loading, is to investigate the
implementation of the crack propagation scheme and stability of the responses. Fi-
nally, the third example concerns blast loading of a cylindrical barrel and its purpose
is to examine the speed of the crack propagation and the influence of rate depen-
dencies involved in the bulk material model as well as in the cohesive zone model.
The simulations are performed using a 6-node triangular element mesh, with 6 inte-
gration points per element in-plane, and 4 integration points through the thickness.
The in-plane integration scheme is as utilised in the 2D plane strain case cf. [37], in-
cluding sub-triangulation and integration over each sub-triangle of the elements cut
by a crack, where 6 integration points are necessary to integrate the mass matrix in
each sub-triangle exactly.

2.6.1. IMPACT LOADING OF RECTANGULAR PLATE

To verify and validate the continuum response of the shell formulation presented in
this chapter, an impact loading test on a simply supported square plate cf. Figure 2.4,
is analysed which has already been studied by Belytschko et al. [44] and later by
Tabiei and Tanov [45].

The 10 × 10in2 plate with thickness 0.5in is loaded by a constant pressure of
300 psi applied instantly at the beginning of the analysis. In order to investigate
both hypo-elastic inelastic and elastic responses, two material models are imple-
mented, and the following material parameters are used in analyses of both models:
the Young’s modulus and the Poisson’s ratio are E = 107 psi and ν = 0.3 respectively,
and the density is ρ0 = 2.588 ·10−4 lbf·s2/in4. To make the hypo-elastoplastic model
in accordance with the elastic-perfectly plastic model used by Tabiei and Tanov, the
influence of the rate dependency and material hardening are omitted.

Exploiting the symmetry of the problem, only a quarter of the plate is modelled.
To investigate the sensitivity of the results with respect to spatial discretisation, both
a coarse and a fine mesh consisting of 50 and 200 elements are examined. To make
the comparison with previously reported results complete, we note that the results
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Figure 2.4: The geometry and boundary conditions for impact loading of a square plate.

presented by Tabiei and Tomov [45] and Belytschko et al. [44] are obtained using a
spatial discretisation in terms of quadrilateral elements of size 1.25×1.25 in.2.

Figure 2.5: Discretisations used in the analysis of the simply supported square plate - a quarter of the
domain with coarse and fine mesh
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Since no crack is involved, only continuous degrees of freedom are activated. The
time step ∆t used for hyper-elastic material in the computations is 10−7 s. The same
time step is also used for hypo-elastoplastic material considering the fact that un-
loading may occur at any moment e.g. amid numerical noise and instability cf. [46].
Note that Tabiei’s equation predicts increase in the critical time step with the shell
thickness. This effect was also observed in our simulations. The total number of time
steps is 12000, for a 1.2 ms long dynamic simulation. Fig. 2.5-2.6 show the structured
mesh used in the simulations and the midpoint displacement history. The obtained
result matches the one by Tabiei and Tanov [45] quite satisfactory, in terms of both
amplitude and vibration period.

0 0.2 0.4 0.6 0.8 1 1.2

x 10
−3

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Time (sec)

D
ef

le
ct

io
n

 (
in

.)

 

 

Elastic−Coarse Mesh

Perfectly Plastic−Coarse Mesh

Elastic−Fine Mesh

Perfectly Plastic−Fine Mesh

Elastic−Tabiei and Tanov
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Figure 2.6: Midpoint displacement history for the square plate where the coloured solid and dashed-lines
represent the current simulated response and the square and circular markers denote the results reported
by Tabiei and Tanov [45] .

2.6.2. TEARING OF A PLATE BY OUT-OF-PLANE LOADING
This numerical example is based on the experiments by Muscat-Fenech et al. [47],
and deals with a pre-notched elastic-inelastic plate of dimension 203×203mm2 and
thickness of 0.8mm where, in the present case, the length of the initial crack is a0 =
40mm. This experiment has previously also been analysed numerically by Areias and
Belytschko [16] with good accuracy, hence it is considered as a good benchmark for
the current model. The material parameters are E = 210GPa, ν= 0.3, G f = 250 kJ/m2,
and the same value as ultimate tensile stress 306 MPa is used for maximum cohesive
traction σ f . The plate is acted on by a quasi-static transverse loading at the tip of the
notch located on the free edge, cf. Figure 2.7. To be consistent with the experiment,
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Figure 2.7: The geometry and boundary condition of the plate acted on by out-of-plane loading.

the rate independent part of the Eq. (2.32) is utilised and the hardening parameters
are calibrated against the model in [16]

F = τe −
(

A+B
(
ε

p
e
)n)

(2.57)

where A = 175MPa, B = 767MPa, and n = 0.6722.
Owing to the fact that the effect of inertia is accounted for herein, the applied

transverse load is replaced by a constant velocity of 20m/s such that it resembles
the experiment. This test is intended to investigate the implementation of the crack
propagation for both predefined and non-predefined crack path, where, in the for-
mer case, cohesive segments are activated along the entire crack path prior to the
application of the load. In order to avoid any unphysical instability and guarantee
smoothness of the response, the stabilising techniques, i.e. adding correction force
to the new discontinuous degrees of freedom as well as shift to the crack interface
opening, discussed in the previous section are utilised. The domain is meshed with
502 six-node triangular elements with a densification of the mesh along the crack
path to promote a smoother propagation. This is similar to the discretisation pro-
cedure utilised in [16] where, however, quadrilateral elements were utilised in the
discretisation.

To compare the result obtained with the experiment, force versus displacement
at the mid-point of the cracked edge of the plate is stored and plotted in Figure 2.9.
As it is seen in Figure 2.9a, despite the oscillatory response obtained in the current
dynamic analysis – caused by reflecting stress wave – good agreement between the
simulated and experimentally observed force-deflection curve is obtained, provided
that the stabilisation features are activated. In Figure 2.9b, the response where no sta-
bilising technique has been employed is shown. For the case where new segments
are inserted sequentially whenever the propagation criterion is met, one may note
that noise amplitude reaches 62 N which is not negligible, even though computa-
tionally reasonable refinement is furnished. It should be remarked that employing a
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Figure 2.8: Undeformed (left) and deformed mesh (right) for out-of-plane loading of plate - different
colours represent different displacements

more coarse mesh in the vicinity of the crack would lead to an extreme increase in the
observed noise. Applying the aforementioned stabilising techniques the response in
Figure 2.9d is obtained, and clearly, the noise amplitude is reduced by 90% which is
a significant improvement compared to the non-stabilised response in Figure 2.9c.
To conclude, the result corresponds to the experiment, as well as the result achieved
in the case of predefined crack path. It should be emphasised that these oscillations
has not been as pronounced in the case of in-plane loading of the plate. It is also
observed that, by adding the stabilisation measures, the current approach is also ap-
plicable where extreme refinement of the mesh is not feasible, i.e. analyses of large
structures, which proves its significance.

2.6.3. BLAST LOADING OF A CYLINDRICAL BARREL

To investigate the accuracy of the proposed method in the case of dynamic ductile
crack propagation, a dynamic fracture test on a pressurised barrel is chosen for com-
parison. The aim is primarily to highlight the influence of the rate dependencies
included in the bulk material model and cohesive zone model. This example is also
intended to emphasise the importance of involving plasticity in the bulk material
where plastic deformation is dominant, e.g. impact analysis, to achieve more rea-
sonable results. It is advocated by the experiments reported by Ravi-Chandar and
Knauss [35] that as crack propagates, microcracks located in front of the crack tip in-
teract and create macrocracks. This process of nucleation and coalescence between
microcracks and the time period over which this occurs is accounted for herein by
including rate dependency in the cohesive zone model, cf. above. In Reference [20]
this example has already been discussed in detail, therefore only the most significant
details are repeated herein.
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EXPERIMENT DESCRIPTION

In this example, the dynamic crack propagation behaviour incurred by an internal
blast explosion in a barrel is to be investigated. The barrel is made of 1 mm thick
aluminum 2024-T3, with dimensions 1.2 m by 1 m (diameter x height). To trigger
crack propagation, a 56 mm long pre-notch was cut in the middle of the barrel, along
the vertical direction. The notch is taped off, in order to pressurise the barrel without
any outflow. Once the desired pressure level was reached, 2 bar, the explosive was
detonated. Figure 2.10 shows a sketch of the barrel. Sketches of a simplified pressure-
time history and the measured pressure-time history at the bottom of the barrel are
shown in Figure 2.11.

SIMULATION

Because of symmetry, only one half of the barrel has been modelled.To allow for a
comparison with the results previously reported in Reference [20], the same spatial
discretisation has been employed in this example. Consequently, the finite element
mesh consists of 310 six-node triangular elements with total number of 8476 degrees
of freedom, cf. Figure 2.12. It should be remarked that, for a full validation of the
proposed approach, a mesh convergence study would be valuable. However, since
the main intention of the current example is to perform a relative comparison with
results obtained without accounting for plasticity in the bulk material, such mesh
convergence study is left for future developments.

The simulation was done in two stages, pressurisation and explosive detonation.
The first stage, pressurisation, is done using an implicit static analysis as in [20] as-
suming that plastic strains during this stage are negligible and thereby, only elastic
deformations need to be considered in this stage of the analysis. The pressure load is
applied on the entire inner surface of the barrel statically by means of a ramp func-
tion, cf. Figure 2.11. The second stage, explosive detonation, is performed employing
an explicit dynamic analysis with time step of ∆t = 10−8 s.

The mechanical properties of Al2024-T3 used in the analyses are, Young’s mod-
ulus E = 73 GPa, Poisson’s ratio ν= 0.3, and density ρ0 = 2780 Kg/m3. The JC-model
parameters are A = 369 MPa, B =684 MPa, C = 8.3 ·10−3, m = 1 , n = .73 and ε̇0 = 1
which are obtained from Reference [48]. Values for the static fracture toughness
G f = 67 ·103 N/m, and the static cohesive strengthσ f = 775 MPa are both taken from
Reference [49]. The visco-plastic material parameters c∗ and m have been varied, cf.
Figure 2.13, in order to match the crack speed observed in the experiments. As it is
observed in Figure 2.13, in which the crack speed vs. crack length is illustrated for
all analysed combinations of viscous parameters, it is clearly possible to significantly
control the crack speed in the simulations by choosing the right viscous parameters
in order to match the experiments. Thereby, the validity of the method exploited
herein is proven to be acceptable, and, in comparison to the previous paper [20], we
are now able to obtain more realistic results by including plasticity in the bulk mate-
rial model.
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Figure 2.9: Tearing of the plate: a) load-deflection curve for predefined path, b) response with no correc-
tion force and shift in the cohesive zone, c) comparison of the results with and without the correction force
and shift in the cohesive zone and d) response with correction force.
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Figure 2.10: Geometry and boundary conditions for the barrel.
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Figure 2.11: Simplified pressure history (left) and measured pressure history at the bottom of the barrel
(right).
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a) b)

Figure 2.12: a) Initial undeformed mesh of analysed pressurised barrel and b) deformed contour plots of
blast loaded barrel after approximately 7 ms.
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2.7. CONCLUDING REMARKS

In order to capture the response of thin-walled structures when exposed to impact
loading inducing large plastic strains, a hypoelastic-inelastic material model was em-
ployed. We also incorporated the Johnson and Cook phenomenological model to ac-
count for temperature and plastic strain rate dependencies which has been proved
to be essential in dynamic high rate loadings, e.g. explosive load.

To represent the shell kinematics, a shell formulation with extensible directors
and second order inhomogeneous thickness deformation has been employed. The
advantage of this formulation over traditional shell models such as Kirchhoff-Love
and Mindlin-Reissner is its capability of describing thickness stretch as well as shear
deformations, eliminating the transverse shear locking effect. The configuration of
the shell is described by 7 parameters representing the continuous deformation field
while for discontinuous field it was 6 parameters describing it to avoid any further
complexity. To include the through-the-thickness discontinuity in the solution field,
a shifted version of XFEM was utilised, in which the resisting force of the process
zone is governed by a damage-viscoplastic cohesive zone model.

Different examples were performed to validate the shell model, and verify the
influence of the rate dependencies included in the bulk material model as well as
in the cohesive zone model. All simulations were carried out using 6-node triangle
elements with quadratic interpolation in order to mitigate the in-plane shear lock-
ing. In the first example, impact loading of plate, our shell formulation was validated
against both the elastic and perfect plastic materials, and the results were in com-
plete agreement with the benchmark. For the out-of-plane loading of plate, there
were instabilities incurred by initialisation of the newly enriched degrees of freedom
in XFEM. To cope with that, two methods were investigated which were proved es-
sential to avoid instabilities occurring in conjunction with explicit temporal integra-
tion of the dynamic response. It was also noted that, although both methods im-
proved the results, the influence of adding correction force was determined to be
much more pronounced than adding shift to the cohesive zone argument. It is also
worth mentioning that the extent of the aforementioned instabilities was observed
to be influenced by the loading condition. This is due to the fact that the instabilities
were negligible in the in-plane loading case. In the final example, it was observed
that the crack propagation speed can be limited by the rate dependency involved in
the cohesive zone model as it was expected.
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3
XFEM BASED ELEMENT

SUBSCALE REFINEMENT FOR

DETAILED REPRESENTATION OF

CRACK PROPAGATION IN LARGE

SCALE ANALYSES

In the present contribution, we address the delicate balance between computational
efficiency and level of detailing at the modelling of ductile fracture in thin-walled
structures. To represent the fine scale nature of the ductile process, we propose a new
XFEM based enrichment of the displacement field to allow for cracks tips that end or
kink within an element. The idea is to refine the crack tip element locally in a way such
that the macroscale node connectivity is unaltered. This allows for a better representa-
tion of the discontinuous kinematics without affecting the macroscale solution proce-
dure, which would be a direct consequence of a regular mesh refinement. The method
is first presented in a general 3D setting and thereafter it is specialised to shell theory
for the modelling of crack propagation in thin-walled structures. This chapter is con-
cluded by a number of representative examples showing the accuracy of the method.
We conclude that the ideas proposed in this chapter enhance the current methodol-
ogy for the analysis of ductile fracture of thin-walled large scale structures under high
strain rates.

This chapter was integrally extracted from [1].
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3.1. INTRODUCTION
When performing finite element analyses of large scale structures under impact and/or
blast loading, e.g. aircraft fuselage or off-shore structures, consideration of the proper
balance between the level of detailing in the model and the computational cost for
the dynamic ductile fracture analysis has to be taken. A natural choice is thereby
to model these structures by using shell theory. Still, when dealing with really large
structures, the possibility to furnish sufficient refinement in the mesh, so that an ac-
curate analysis of the dynamic ductile fracture process can be guaranteed, is an issue.
Even when adopting a shell modelling approach based on the eXtended Finite Ele-
ment Method (XFEM), cf. e.g. References [2–4], it may be too expensive to accommo-
date the required degree of refinement in the mesh due to the non-linearity involved.
Given this perspective, we have identified a need to develop a method capable of rep-
resenting the crack propagation sufficiently accurate and smooth, without requiring
heavily refined meshes.

A method to describe crack tips inside elements within an XFEM framework was
proposed already by Zi and Belytschko [5] in 2003, although they did not explain
how to conserve a potential element-internal kink of the element upon further crack
propagation. A more recent approach, similar to what is proposed herein, is the
VNXFEM recently published by Kumar et al. [6]. Their method, just as the one we
propose, is based on an element-local mesh refinement in order to describe tips
and kinks by inserting what they denote as virtual nodes. These locally refined (tip
and kink) elements are then connected to the surrounding mesh by specially de-
signed transition elements. The VNXFEM is an interesting approach but it requires
some modifications of the common XFEM procedures by requiring these specially
designed transition elements.

In this chapter, we propose a method which fits in a regular ’macroscopic’ XFEM
framework, such that any detailing of the crack representation (including crack tips
or kinks inside the macroscopic elements) is encapsulated in these elements of the
original computational domain. Thereby, we can avoid remeshing, as suggested by
Fries et al. [7], or non-local enrichments of the approximation as when introducing
crack tip branch functions, cf. e.g. Belytschko and Black [8]. Thus, the method is free
from any modifications on the macroscale. To be specific, we propose a new refine-
ment for a tip element in XFEM that is capable of representing a crack kink or a tip
inside elements of different order of approximation, without introducing modifica-
tions on the macroscale.

The current work is thus focusing on the enhancement of the XFEM method to
handle the fracture progression in a flexible way, where the crack tip advancement
is allowed to occur not only segment wise from one element edge to the next one,
e.g. Wells and Sluys [9]. The method is quite general and can in principle handle
several kinks inside a macroscopic element, provided that conformity with the sur-
rounding macroscopic mesh is preserved. However, in the examples shown in this
chapter we restrict to one kink inside a macroscopic element in order to simplify the
implementation.

In addition to the representation of crack kinks inside the element, the method
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we propose also allows for a smoother crack propagation scheme since in general
shorter crack segments may be inserted – on the refined subscale – compared to the
typical element-wise propagation. As discussed by Menouilliard et al. [10], the in-
sertion of finite crack tip segments of significant length may lead to significant os-
cillations in the dynamic fracture response depending on the loading case. For that
purpose, and to mimic more of a continuous crack growth, they proposed to use a
force-correction method to stabilise the response, which was also adopted with suc-
cess in one of our previous papers [11]. Interestingly though, it has been found that
the oscillatory behaviour is reduced upon mesh refinement [12]. Thus, we argue that
the proposed method will be more in accordance with the physics of crack propa-
gation, thereby also yielding a more stable simulation response, without requiring
a high degree of mesh refinement. We finally note that a variant of the proposed
method can in principle also be employed for the so-called Phantom node method
initially proposed by Hansbo and Hansbo [13], which is an alternative method to
XFEM, capable of representing mesh-independent crack propagation.

The outline of this chapter is as follows: In Section 3.2, the kinematics of the stan-
dard 3D continuum including the macroscopic discontinuity representation using
XFEM is described. Here, also the basic concepts of the subscale element crack tip
refinement are outlined. The resulting FE–equations are derived and the consequent
explicit time integration solution procedure is described involving the typical out–
condensing of element internal degrees of freedom. In Section 3.3, the discussion
made in Section 3.2 is specialised to a seven parameter shell element formulation as
described in References [4, 11]; the shell formulation is in line with the developments
by Larsson et al. [4] and Bischoff and Ramm [14]. In particular, the weak form of the
momentum balance is presented, where emphasis is placed on stress resultants of
the internal work. We also present the consequent FE–equations and some further
remarks on the solution procedure due to the shell context are made. In Section
3.4, a couple of numerical results and their behaviour as compared to the standard
XFEM formulation are discussed, where it is shown that the concept yields an accu-
rate kinematical representation of kinks and crack tips within an element. Finally,
this chapter is concluded with some closing remarks where we stress that the pro-
posed subscale refined XFEM based shell element allows for an increased detailing
of the crack path, without having to resort to mesh refinement on the structural scale.

3.2. SUBSCALE REFINEMENT OF DISCONTINUITY FIELD - 3D
FORMULATION

In this section, we outline the crack tip element subscale approximation, where, in
addition to the macroscopic FE approximations of the continuous and discontinu-
ous displacement fields, a subscale local refinement is introduced ’macro-element-
wise’ to allow for a better representation of the discontinuous kinematics. For gen-
erality and to simplify the developments of this chapter, the proposed approach is
presented in the current section for the general 3D case. Thereafter, it is specialised
to the application of interest in terms of thin-walled shell structures in Section 3.3.
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Figure 3.1: Continuous progression of crack tip with the speed W evolving in B0.

3.2.1. CONTINUUM REPRESENTATION OF DISPLACEMENT DISCONTINU-
ITY

To set the stage, we first start by stating the continuum (non-discretised) framework
for large deformations including displacement discontinuities according to XFEM,
presented earlier in several papers, cf. the early work by Wells et al. [15]. Conse-
quently, the total deformation mapϕ is considered to be partitioned into a continu-
ous and a discontinuous field as

ϕ=ϕc +ϕd . (3.1)

As usual, ϕd is a displacement field defined only locally within a region D0 in the
vicinity of the crack, where D0 is decomposed into D−

0 and D+
0 by the internal dis-

continuity surface ΓS with corresponding surface normal NS , cf. Figure 3.1. We note
that D0 is evolving with time in the material due to the crack propagation. Further-
more,ϕd is discontinuous across the discontinuity surface ΓS so that

ϕd =ϕ−
d +HS [S[X]]

(
ϕ+

d −ϕ−
d

)
(3.2)

where we introduced the level set function S[X] defining the positioning of the dis-
continuity surface by S[X] = 0 and where HS is the discontinuity enrichment function
in terms of the classical Heaviside function.

As a consequence of the construction of the discontinuity field ϕd , the gradient
thereof has the properties

ϕd ⊗∇X =


ϕ−

d ⊗∇X ∀X ∈ D−
0 \ΓS

ϕ+
d ⊗∇X ∀X ∈ D+

0 \ΓS

δS
(
ϕ+

d −ϕ−
d

)⊗NS ∀X ∈ ΓS

(3.3)

where δS is the Dirac-delta function, defined for any quantity • as∫
B0

δs •dV =
∫
ΓS

•dA . (3.4)
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Consequently, the deformation gradient takes the form

F = Fb +δS Fd (3.5)

where Fb and Fd are the bulk part and the interface part respectively, defined as:

Fb =


ϕc ⊗∇X ∀X ∈ B0 \ D0

ϕc ⊗∇X +ϕ−
d ⊗∇X ∀X ∈ D−

0 \ΓS

ϕc ⊗∇X +ϕ+
d ⊗∇X ∀X ∈ D+

0 \ΓS

(3.6)

Fd = (
ϕ+

d −ϕ−
d

)⊗NS = JϕdK⊗NS ∀X ∈ ΓS (3.7)

where we also introduced the jump in the discontinuous field JϕdK.
Given the kinematical representation of the displacement discontinuity, the weak

form of the momentum balance (assuming zero body forces) now becomes, cf. e.g.
Reference [16]

Find: [ϕc ,ϕd ]∫
B0

ρ0
(
δϕc +δϕd

) · (ϕ̈c + ϕ̈d

)
dV =∫

∂B0

(
δϕc +δϕd

) · t̄1dA−
∫

B0

δFb
t : Pt dV+

∫
ΓS

δFd : Pt︸ ︷︷ ︸
Jδϕd K·t1

dA, ∀ δϕc ,δϕd
(3.8)

where Pt is the first Piola Kirchhoff stress tensor and where t̄1 = Pt ·N and t1 = Pt ·NS

are the prescribed nominal traction vector on the boundary ∂B0 and the resulting
(continuous) traction along the discontinuity surface ΓS respectively.

3.2.2. SPATIAL DISCRETISATION INCLUDING SUBSCALE REFINEMENT
To obtain a method that does not influence the spatial discretisation of the domain
of interest on the macroscopic (structural) scale, we propose a subscale local refine-
ment of the continuous and discontinuous fields. In order to avoid introduction of
new nodes in the macroscale mesh, still having the possibility to represent kinks and
crack tips within one (or several) macroscopic element, a local model reduction tech-
nique is employed. Furthermore, despite the fact that internal crack tips were treated
already in the pioneering work by Belytschko and Black [8], we require the method
to be free of any non-local enrichments in order to avoid unnecessary complexities
in the modelling and implementation.

Hence, we consider the crack tip (or kink) element as refined in terms of ’sub-
elements’, for a more detailed representation of the crack kinematics. In the sim-
plest case where one kink is present within the macro element, cf. Figure 3.2, it is
partitioned into the three sub-elements associated with shape functions ψi with lo-
cal support within a subdomain of the macroscopic crack tip element. These shape
functions are utilised for the interpolation of the continuous and discontinuous fields
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Figure 3.2: 6-noded element with quadratic interpolation for the continuous ϕc and discontinuous field
ϕd enhanced with internal degrees of freedom for ϕS

c and ϕS
d

. The element allows for the successive
advancement of the crack tip by the successive activation of boundary nodes (black squares) and internal
nodes (white circles).

associated with the subscale nodes. In this context, the continuous and discontinu-
ous contribution associated with the internal nodes can be interpreted as a subscale
domain on which a local refinement is carried out to achieve a more accurate repre-
sentation for the discontinuity.

In this subsection, we will discuss the spatial discretisation of the most general
case for which all approximations are active. Consequently, we start by introducing
the shifted enrichment function, cf. e.g. Reference [5],

H̃S [X,X j ] = HS [X]−HS [X j ] (3.9)

where X j denotes the reference coordinates of node j , in order to obtain the finite
element approximation of the deformation map on the element level as

ϕh,e = ∑
i∈I
ψi ϕ̂M ,i

c + ∑
j∈J

ψ j ϕ̂
s, j
c︸ ︷︷ ︸

ϕh,e
c

+ ∑
k∈K

H̃S [X,Xk ]ψkϕ̂M ,k
d +∑

l∈L
H̃S [X,Xl ]ψl ϕ̂s,l

d︸ ︷︷ ︸
ϕh,e

d

. (3.10)

In Eq. (3.10), referring to Figure 3.2, I is the set of boundary or macroscopic, M, nodes
of the crack tip element, K ⊂ I is the set of boundary nodes enriched with discontin-
uous degrees of freedom (black squares), J is the set of internal or subscale, s, nodes
and L ⊂ J is the set of internal nodes enriched with discontinuous degrees of free-
dom (white circles). In fact, the current FE-approximation results in a hidden local
mesh refinement, where additional internal degrees of freedom are utilised for the
interpolation. In this way, both a crack tip and crack kink within an element can be
represented. Based on the current approximation in Eq. (3.10), we also note that the
FE approximation of the bulk and interface parts of the deformation gradient can be
written as
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Fh,e
b = ∑

i∈I
ϕ̂M ,i

c ⊗∇Xψ
i + ∑

j∈J
ϕ̂

s, j
c ⊗∇Xψ

j + ∑
k∈K

H̃S [X]ϕ̂M ,k
d ⊗∇Xψ

k

+ ∑
l∈L

H̃S [X]ϕ̂s,l
d ⊗∇Xψ

l (3.11)

δS Fh,e
d = δSJϕh,e

d K⊗NS = δS

( ∑
k∈K

ψkϕ̂M ,k
d +∑

l∈L
ψl ϕ̂s,l

d

)
⊗NS . (3.12)

Adopting Voight matrix notation (•̂), we now introduce the matrix representation
of Eqs. (3.10)-(3.12) so that

ϕh,e = ψ̂ϕ̂M ,e
c +ψ̂ϕ̂s,e

c +ψ̂H̃S
ϕ̂M ,e

d +ψ̂H̃S
ϕ̂s,e

d (3.13)

F̂h,e
b = B̂ϕ̂M ,e

c + B̂ϕ̂s,e
c + B̂H̃S

ϕ̂M ,e
d + B̂H̃S

ϕ̂s,e
d (3.14)

Jϕh,e
d K = ψ̂H̃S

ϕ̂M ,e
d +ψ̂H̃S

ϕ̂s,e
d . (3.15)

In Eq. (3.13), we introduced ψ̂ and ψ̂H̃S
as the standard non-enriched and enriched

shape function matrices (HS [X,X j ]ψ j ) respectively. Furthermore, in Eq. (3.14), B̂
and B̂H̃S

was introduced as the standard shape function derivative matrix associ-

ated with the non-enriched and enriched nodes. Subscript H̃S implies multiplication
of the derivatives with the enrichment function H̃S . Consequently, using Galerkin’s
method, we obtain the corresponding virtual displacement fields according to

δϕh,e = ψ̂δϕ̂M ,e
c +ψ̂δϕ̂s,e

c +ψ̂H̃S
δϕ̂M ,e

d +ψ̂H̃S
δϕ̂s,e

d (3.16)

δF̂h,e
b = B̂δϕ̂M ,e

c + B̂δϕ̂s,e
c + B̂H̃S

δϕ̂M ,e
d + B̂H̃S

δϕ̂s,e
d (3.17)

Jδϕh,e
d K = ψ̂H̃S

δϕ̂M ,e
d +ψ̂H̃S

δϕ̂s,e
d . (3.18)

By inserting the FE approximation above into Eq. (3.8), we arrive at the discretised
weak form of the momentum balance

Me
cc Me

cd Me
ccs

Me
cds

Me
dc Me

dd Me
dcs

Me
dds

Me
cs c Me

cs d Me
cs cs

Me
cs ds

Me
ds c Me

ds d Me
ds cs

Me
ds ds




âM ,e
c

âM ,e
d

âs,e
c

âs,e
d

=


fe,ext

c − fe,i nt
c

fe,ext
d − fe,i nt

d + fe,coh
d

−fe,i nt
cs

−fe,i nt
ds

+ fe,coh
ds

 (3.19)

where

âM ,e
c = ∂2ϕ̂M ,e

c

∂t 2 , âM ,e
d =

∂2ϕ̂M ,e
d

∂t 2 , âs,e
c = ∂2ϕ̂s,e

c

∂t 2 , âs,e
d =

∂2ϕ̂s,e
d

∂t 2 (3.20)

Please refer to Appendix B.1 for details of individual terms in Eq. (3.19).
Since the support for the subscale node vanishes along the macroscopic crack tip

element edges – leading to fe,ext
ds

= 0 and fe,ext
cs

= 0 – the subscale degrees of freedom
can be implicitly solved for in terms of the macroscopic ones. By that, unnecessary
introduction of additional degrees of freedom is avoided on the structural scale. As
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a first step, if we let M denote the macroscopic degrees of freedom and s denote the
subscale degrees of freedom, Eq. (3.19) can be re-written as

[
Me

M M Me
M s

Me
sM Me

ss

][
âe

M
âe

s

]
=

[
fe,ext

M − fe,i nt
M + fe,coh

M
−fe,i nt

s + fe,coh
s

]
(3.21)

with

Me
M M =

[
Me

cc Me
cd

Me
dc Me

dd

]
(3.22)

Me
M s = (

Me
sM

)t =
[

Me
ccs

Me
cds

Me
dcs

Me
dds

]
(3.23)

Me
ss =

[
Me

cs cs
Me

cs ds

Me
ds cs

Me
ds ds

]
(3.24)

âe
M =

[
âe

c
âe

d

]
(3.25)

âe
s =

[
âe

cs

âe
ds

]
(3.26)

fe,ext
M =

[
fe,ext

c

fe,ext
d

]
(3.27)

fe,i nt
M =

[
fe,i nt

c

fe,i nt
d

]
(3.28)

fe,coh
M =

[
0

fe,coh
d

]
(3.29)

fe,i nt
s =

[
fe,i nt

cs

fe,i nt
ds

]
(3.30)

fe,coh
s =

[
0

fe,coh
ds

]
. (3.31)

3.2.3. TEMPORAL DISCRETISATION AND MODEL REDUCTION

With the application of our methodology in mind (blast or impact loaded thin-walled
structures), we employ an explicit time integration scheme in terms of the central dif-
ference method with variable time step size. Thus, for time step n+1 at t = n+1t , the
accelerations (with respect to both the continuous and discontinuous macroscopic
degrees of freedom) are obtained from

n+1M n+1â = n+1f (3.32)
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where the mass matrix and the unbalance force vector, obtained by assembling the
element contributions

M =
NEL

A
e=1

Me
M (3.33)

f =
NEL

A
e=1

(
fe,ext

M − f̄e,i nt
M

)
, (3.34)

in the general case are functions of the velocities at time t = n+1/2t and the displace-
ments and the reference (crack) geometry at time t = n+1t . We would like to empha-
sise that we refrain from using a lumped mass matrix scheme in this contribution,
although this generally provides a faster solution algorithm. The reason is that previ-
ous work by Remmers et al. [17] has shown that a lumped mass matrix time integra-
tion scheme together with XFEM may lead to transfer of stress wave across traction-
free discontinuities. Thereby to avoid the aforementioned problem, in Eq. (3.33), Me

M
was introduced as the condensed consistent element mass matrix. Furthermore, in
Eq. (3.34), f̄e,i nt

M was introduced as the condensed internal force vector. These two
are the result from a dynamical condensation of the discretised momentum balance
of the crack tip element, cf. Eq. (3.21), according to

Me
M âe

M = fe,ext
M − f̄e,i nt

M (3.35)

with

Me
M = Me

M M −Me
M s Me

ss
−1Me

sM (3.36)

f̄e,i nt
M = fe,i nt

M − fe,coh
M −Me

M s Me
ss
−1

(
fe,i nt

s − fe,coh
s

)
(3.37)

which has been obtained by eliminating the subscale degrees of freedom through

âe
s = Me

ss
−1

(
−Me

sM âe
M − fe,i nt

s + fe,coh
s

)
. (3.38)

As stated above, this elimination is possible due to the fact that the support for
the subscale degrees of freedom vanishes along the edges of the crack tip element.
Consequently, only macroscopic degrees of freedom of the enriched 6 noded ele-
ment in Figure 3.2 are solved for on the macroscopic level, where, in this case, the
cohesive (or process zone forces) are embedded into the modified internal forces,
cf. Eq. (3.37). From Eq. (3.32) we directly obtain the updated continuous and dis-
continuous macroscopic accelerations, whereby also the associated velocities and
displacements can be updated.

As for the subscale degrees of freedom, these can be interpreted as internal vari-
ables of the crack tip element and consequently be updated on the element level.
Naturally, in time step n+1t , the velocity degrees of freedom n+1/2vs (at t = n+1/2t =
n+1t + n t

2 ) and the displacement degrees of freedom n+1us associated with the inter-
nal subscale nodes are needed to compute the updated mass and unbalance force
contributions. These can be directly obtained (on the element level) from the corre-
sponding accelerations

n âe
s = n Me

ss
−1

(
−n Me

sM
n âe

M − n fe,i nt
s + n fe,coh

s

)
(3.39)

55



544248-L-bw-Mostifizadeh544248-L-bw-Mostifizadeh544248-L-bw-Mostifizadeh544248-L-bw-Mostifizadeh
Processed on: 2-6-2020Processed on: 2-6-2020Processed on: 2-6-2020Processed on: 2-6-2020 PDF page: 70PDF page: 70PDF page: 70PDF page: 70

as

n+1/2ve
s = n−1/2ve

s +
(n+1/2t −n−1/2 t

) n âe
s (3.40)

n+1ue
s = n ue

s +
(n+1t −n t

)n+1/2
ve

s (3.41)

where n Me
ss
−1,n Me

sM ,n fe,i nt
s and n fe,coh

s are taken from the previous time step.
It should be remarked that, by adopting the current temporal discretisation and

integration technique, whenever a new crack segment is inserted in the discretisa-
tion of the domain, the continuity in time of this space discretisation is not ensured.
Physically, the crack propagates with a finite velocity, whereas in the numerical sim-
ulation the crack propagation speed will be implicitly governed by the time step size
since the crack is propagated segment by segment whenever a propagation criterion
is satisfied. Consequently, when a new segment is inserted, the new degrees of free-
dom are injected with a zero initialisation leading to the release of a stress wave em-
anating from the crack tip. In [11], this was discovered to have a significant effect on
the structural response. As a remedy, a force-correction method, initially proposed
by Menouilliard et al. [10] was employed therein with good results. In the method we
propose here, a correction force is introduced in a similar fashion which takes into
account the fraction ratio of the crack tip element which is cut by the crack, making
the new degrees of freedom continuous in time.

3.3. SUBSCALE ENRICHMENT OF DISCONTINUITY FIELD - SHELL

FORMULATION
As mentioned in the introduction, the current method is intended to be applied to
ductile crack propagation in thin-walled (shell) structures loaded at high strain rates,
extending the developments in [11] to allow for not only crack segments through the
entire shell elements (edge to edge). Consequently, the specialisation of the pro-
posed method to a seven parameter shell element formulation is presented in this
section.

3.3.1. INITIAL SHELL GEOMETRY AND CONVECTED COORDINATES
For completeness, let us first repeat the basics of the discontinuous shell element
concept, as it was introduced in [4] and later modified in [11]. Referring to Figure 3.3,
the initial configuration B0 of the shell is considered parameterised in terms of con-
vected coordinates (ξ1,ξ2,ξ) as

B0 =
{

X :=Φ0[ξ1,ξ2,ξ] = Φ̄[ξ1,ξ2]+ξMΦ[ξ1,ξ2]

with [ξ1,ξ2] ∈ A and ξ ∈ h0
2 [−1,1]

}
(3.42)

where the mapping Φ0[ξ1,ξ2,ξ] maps the inertial Cartesian frame into the current
configuration and where the mapping Φ0 is defined by the midsurface placement
Φ̄[ξ1,ξ2] and the outward unit normal vector field MΦ (with |MΦ| = 1), as shown in
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Figure 3.3: Mappings of 7-parameter shell model defining undeformed and deformed shell configurations
relative to the inertial Cartesian frame.

Figure 3.3. The coordinate ξ is associated with the direction of MΦ and h0 is the initial
thickness of the shell. The pertinent co-variant basis vectors are defined by

Gα =Φ,α+ξMΦ,α, α= 1,2 and G3 = G3 = MΦ. (3.43)

where •,α denotes the derivative with respect to ξα. Furthermore, we note that the
co-variant vectors Gi are associated with the contra-variant basis vectors Gi in the
normal way, i.e. Gi ⊗Gi = 1, leading to

G j =GijG
i , G j =G ijGi with Gij = Gi ·G j and G ij = (

Gij
)−1 . (3.44)

Finally, the infinitesimal volume element dB0 of the reference configuration is
formulated in the convected coordinates as

dB0 = b0dξ1dξ2dξ with b0 = (G1 ×G2) ·G3 . (3.45)

3.3.2. CURRENT SHELL GEOMETRY BASED ON DISCONTINUOUS KINE-
MATICS

In analogy with the 3D representation presented in Section 3.2, the current (deformed)
geometry is described by the deformation mapϕ[X] ∈ B , additively composed of the
continuous displacement field ϕc ∈ B and the (local) discontinuous displacement
fieldϕd ∈ D , parameterised in the convective coordinates (ξ1,ξ2,ξ) as:

x :=ϕc [X[ξ1,ξ2,ξ], t ]+ϕd [X[ξ1,ξ2,ξ], t ] whereϕd ≡ 0 ∀X ∈ B0 \ D0 (3.46)

where (again)ϕd exhibits the general structure

ϕd =ϕ−
d +HS [S[X]]

(
ϕ+

d −ϕ−
d

)
. (3.47)

Furthermore, following the development in Reference [4], we allow for a through-
the-thickness fracture by assuming S[X] → S[ξ1,ξ2]. As to the shell kinematics, the
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representation of the current configuration is made in terms of strong discontinuities
in both the midsurface placements and the director fields using XFEM-kinematics
formulated as{

ϕc [ξ1,ξ2,ξ] = ϕ̄c [ξ1,ξ2]+ξmc [ξ1,ξ2]+ 1
2ξ

2mcγ[ξ1,ξ2]

ϕd [ξ1,ξ2,ξ] = ϕ̄d [ξ1,ξ2]+ξmd [ξ1,ξ2]
(3.48)

where it should be remarked that the continuous placement ϕc corresponds to a
second order Taylor series expansion in the director mc , thereby describing inhomo-
geneous thickness deformation effects of the shell, cf. Figure 3.3. In particular, the
pathological Poisson locking effect is avoided in this fashion. In contrast, for compu-
tational efficiency only a first order expansion is used for the discontinuous partϕd ,
thereby assuming that the discontinuity in the second order inhomogeneity strain is
negligible. Furthermore, in [11], it was shown that the deformation gradient takes on
the form

F = Fb +δS Fd with Fb = gbm ⊗Gm and Fd = gdα⊗Gα (3.49)

in terms of the spatial co-variant basis vectors

gm =ϕ⊗∇ξm
= gbm

+ δS gdα . (3.50)

3.3.3. WEAK FORM OF MOMENTUM BALANCE
In this section we establish the weak form of the momentum balance of the shell.
To simplify the discussion, we will not distinguish between the regions in which the
enrichments are active or not. Instead, we will focus on the case where all approxi-
mation fields are active.

To arrive at a stress resultant formulation, we start from the basic weak form of
the momentum balance in Eq. (3.8) applied to the current shell kinematics intro-
duced in Eq. (3.48) which yields

Find: [ϕ̄c ,mc ,γ,ϕ̄d ,md ]

G ine[ ¨̄ϕc ,m̈c , γ̈, ¨̄ϕd ,m̈d ;δϕ̄c ,δmc ,δγ,δϕ̄d ,δmd ]+
G int[ϕ̄c ,mc ,γ,ϕ̄d ,md ;δϕ̄c ,δmc ,δγ,δϕ̄d ,δmd ]−

Gext[δϕ̄c ,δmc ,δγ,δϕ̄d ,δmd ] = 0 ∀ δϕ̄c ,δmc ,δγ,δϕ̄d ,δmd

(3.51)

Following Larsson et al. [4] and introducing the displacement vector n̂t = [ϕ̄c ,mc ,γ,ϕ̄d ,md ]
and the shell deformation and stress resultant vectors (cf. Appendix B.2 for defini-
tions of all stress resultants)

δn̂t
c = [

δϕ̄c,α,δmc,α,δmc ,δγ,α,δγ
]

, δn̂t
d = [

δϕ̄d ,α,δmd ,α,δmd
]

,

δn̂t
coh = [

δJϕ̄dK,δJmdK
]

(3.52)

N̂
t
c = [

Nα,Mα,T, Mα
h ,Th

]
, N̂

t
d = [

Nα
d ,Mα

d ,Td
]

, N̂
t
coh = [nS ,mS ] , (3.53)

58



544248-L-bw-Mostifizadeh544248-L-bw-Mostifizadeh544248-L-bw-Mostifizadeh544248-L-bw-Mostifizadeh
Processed on: 2-6-2020Processed on: 2-6-2020Processed on: 2-6-2020Processed on: 2-6-2020 PDF page: 73PDF page: 73PDF page: 73PDF page: 73

the inertia and the internal and external virtual work contributions can be written as

G ine =
∫
Ω0

ρ0δn̂t (M̂ ¨̂n+M̂con)ω0 dξ1dξ2 (3.54)

G int =
∫
Ω0

δn̂t
c N̂cω0 dξ1dξ2 +

∫
Ω0

δn̂t
d N̂dω0 dξ1dξ2 +

∮
LΓS

δn̂t
cohN̂coh dL (3.55)

Gext =

∮
L∂Ω0

(
δϕ̄c ·n0 +δmc ·m̃0 +δγms

)
dL +

∮
L∂Ω0∩L∂D0

(δϕ̄d ·n0 +δmd ·m0)dL

−
∫
Ω

p
(
δϕ̄c +δϕ̄d

) ·gb1
×gb2

dΩ.

(3.56)

In Eq. (3.56), the perpendicular forces have been limited to external pressure in view of the
Cauchy traction t =−pn on the deformed surfaceΩ. Furthermore, the consistent mass matrix
M̂ and the convective mass force M̂con per unit area were derived in [4], cf. Appendix B.3 for
details. To be specific, the convective mass (force) M̂con involves contributions from the first
order time derivative of the continuous director field and the inhomogeneity strain field.

In order to arrive at Eqs. (3.54)-(3.56), a change of the integration domain from B0 (3D) to
Ω0 (2D) was made via the ratio j0[ξ] = b0/ω0, defining the relation between area and volumet-
ric measures of the shell as

dB0 = j0dξdΩ0 with dΩ0 =ω0dξ1dξ2 and ω0 = |Φ,1 ×Φ,2| (3.57)

Furthermore, LΓ was introduced to denote the line defined as the intersection between the
corresponding boundary surface and the shell midsurface.

3.3.4. SPATIAL DISCRETISATION INCLUDING SUBSCALE REFINEMENT
The approximation of the different fields involved in the shell formulation will follow the gen-
eral structure as defined for the 3D case. As a starting point, the finite element approximation
of the continuous part of the mapping is approximated by standard shape functions ψ̂[ξ1,ξ2]
associated with boundary nodes and subscale nodes as

ϕh
c = ∑

i∈I
ψi [ξ1,ξ2]

(
ˆ̄ϕM ,i

c +ξm̂M ,i
c

(
1+ 1

2
ξ

∑
n∈I∪J

ψn [ξ1,ξ2]γ̂n

))

+ ∑
j∈J

ψ j [ξ1,ξ2]

(
ˆ̄ϕ

s, j
c +ξm̂

s, j
c

(
1+ 1

2
ξ

∑
p∈I∪J

ψp [ξ1,ξ2]γ̂p

))

= ψ̂M
(

ˆ̄ϕM
c +ξm̂M

c

(
1+ 1

2
ξψ̂γγ̂

))
+ψ̂s

(
ˆ̄ϕs

c +ξm̂s
c

(
1+ 1

2
ξψ̂γγ̂

))
(3.58)

where I and J are the total sets of macroscale nodes and subscale nodes in B0 and ˆ̄ϕM ,i
c , m̂M ,i

c ,

γ̂n , ˆ̄ϕ
s, j
c , m̂

s, j
c and γ̂p are the corresponding degrees of freedom associated with both sets of

nodes. In Eq. (3.58), we also introduced ψ̂γ as being the shape function matrix (row vector)

associated with the scalar field γ, and ψ̂M and ψ̂s as shape functions associated with the
macroscale and subscale nodes cf. the discussion in Subsection 3.2.2.

As in the 3D case, for the local discontinuous enrichment, the ’shifted’ form of the Heav-
iside function is utilised to realise the strong discontinuity, which results in the following FE
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approximation of the discontinuous field:

ϕh
d = ∑

k∈K
H̃S [X,Xk ]ψk

(
ˆ̄ϕM ,k

d +ξm̂M ,k
d

)
+ ∑

l∈L
H̃S [X,Xl ]ψl

(
ˆ̄ϕs,l

d +ξm̂s,l
d

)
= ψ̂M

HS

(
ˆ̄ϕM

d +ξm̂M
d

)
+ψ̂s

HS

(
ˆ̄ϕs

d +ξm̂s
d

) (3.59)

where, in analogy to Subsection 3.2.2, K ⊂ I is the set of macroscale enriched with discontinu-
ous degrees of freedom and L ⊂ J is the set of subscale nodes enriched with subscale (discon-
tinuous) degrees of freedom. At this point, we also note that

Jϕh
d K= ψ̂M

HS

(
ˆ̄ϕM

d +ξm̂M
d

)
+ψ̂s

HS

(
ˆ̄ϕs

d +ξm̂s
d

)
. (3.60)

Given the FE approximation of the different fields involved, we can also establish the ap-
proximation of the corresponding spatial co-variant basis vectors as

gh
bm

=



∑
i∈I

((
ˆ̄ϕM ,i

c +ξm̂M ,i
c

(
1+ 1

2
ξ

∑
n∈I∪J

ψn γ̂n

))
∂ψi

∂ξm
+ 1

2
ξ2ψi m̂M ,i

c

( ∑
n∈I∪J

∂ψn

∂ξm
γ̂n

))
+

∑
j∈J

((
ˆ̄ϕ

s, j
c +ξm̂

s, j
c

(
1+ 1

2
ξ

∑
p∈I∪J

ψp γ̂p

))
∂ψ j

∂ξm
+ 1

2
ξ2ψ j m̂

s, j
c

( ∑
p∈I∪J

∂ψp

∂ξm
γ̂p

))
+

∑
k∈K

H̃S [X,Xk ]
(

ˆ̄ϕM ,k
d +ξm̂M ,k

d

) ∂ψk

∂ξm
+ ∑

l∈L
H̃S [X,Xl ]

(
ˆ̄ϕs,l

d +ξm̂s,l
d

) ∂ψl

∂ξm

m = 1,2

∑
i∈I

ψi m̂M ,i
c

(
1+ξ ∑

n∈I∪J
ψn γ̂n

)
+ ∑

j∈J
ψ j m̂

s, j
c

(
1+ξ ∑

p∈I∪J
ψp γ̂p

)
+

∑
k∈K

H̃S [X,Xk ]ψk m̂M ,k
d + ∑

l∈L
H̃S [X,Xl ]ψl m̂s,l

d

m = 3

(3.61)

gh
dα

= Jϕh
d Ksα = ∑

k∈K
ψk

(
ˆ̄ϕM ,k

d +ξm̂M ,k
d

)
sα+ ∑

l∈L
ψl

(
ˆ̄ϕs,l

d +ξm̂s,l
d

)
sα α= 1,2 (3.62)

where sα = (∂S/∂ξα) = NS ·Gα. To obtain the discretised set of equations, let us first formulate
the shell displacement and deformation vectors in terms of the approximated fields. Given the
FE approximation of the displacement, director and inhomogeneity fields, the corresponding
virtual fields and their respective derivatives, we note that, on the element level, these vectors
can be written on Voight form as

n̂h
c =


ϕ̄

h,e
c,α

mh,e
c,α

mh,e
c

γ
h,e
,α
γe

=


B̂M 0 0 B̂s 0 0

0 B̂M 0 0 B̂s 0
0 ψ̂M 0 0 ψ̂s 0
0 0 B̂M

γ 0 0 B̂s
γ

0 0 ψ̂M
γ 0 0 ψ̂s

γ


︸ ︷︷ ︸[

BF E
1 BF E

2

]



ˆ̄ϕM ,e
c

m̂M ,e
c

γ̂M ,e

ˆ̄ϕs,e
c

m̂s,e
c

γ̂s,e


︸ ︷︷ ︸[
ϕ̂

M ,e
c
ϕ̂

s,e
c

]

⇒ δn̂h
c = BF E

1 δϕ̂
M ,e
c +BF E

2 δϕ̂
s,e
c

(3.63)
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n̂h
d =


ϕ̄

h,e
d ,α

mh,e
d ,α

mh,e
d

=

 B̂M
HS

0 B̂s
HS

0

0 B̂M
HS

0 B̂s
HS

0 ψ̂M
HS

0 ψ̂s
HS


︸ ︷︷ ︸[

BF E
3 BF E

4

]


ˆ̄ϕM ,e

d
m̂M ,e

d
ˆ̄ϕs,e

d
m̂s,e

d


︸ ︷︷ ︸ ϕ̂

M ,e
d
ϕ̂

s,e
d


⇒ δn̂h

d = BF E
3 δϕ̂

M ,e
d +BF E

4 δϕ̂
s,e
d

(3.64)

n̂h,e =


ϕ̄

h,e
c

mh,e
c

γh,e

ϕ̄
h,e
d

mh,e
d

=


ψ̂M 0 0 ψ̂s 0 0 0 0 0 0

0 ψ̂M 0 0 ψ̂s 0 0 0 0 0
0 0 ψ̂M

γ 0 0 ψ̂s
γ 0 0 0 0

0 0 0 0 0 0 ψ̂M
HS

0 ψ̂s
HS

0

0 0 0 0 0 0 0 ψ̂M
HS

0 ψ̂s
HS


︸ ︷︷ ︸[

ψF E
1 ψF E

2 ψF E
3 ψF E

4

]



ˆ̄ϕM ,e
c

m̂M ,e
c

γ̂M ,e

ˆ̄ϕs,e
c

m̂s,e
c

γ̂s,e

ˆ̄ϕM ,e
d

m̂M ,e
d

ˆ̄ϕs,e
d

m̂s,e
d


⇒ δn̂h =ψF E

1 δϕ̂
M ,e
c +ψF E

2 δϕ̂
s,e
c +ψF E

3 δϕ̂
M ,e
d +ψF E

4 δϕ̂
s,e
d

(3.65)

and

n̂h,e
coh =

[
Jϕ̄h,e

d K
Jmh,e

d K

]
=

[
ψ̂M

HS
0 ψ̂s

HS
0

0 ψ̂M
HS

0 ψ̂s
HS

]
︸ ︷︷ ︸[

ψF E
5 ψF E

6

]


ˆ̄ϕM ,e

d
m̂M ,e

d
ˆ̄ϕs,e

d
m̂s,e

d


⇒ δn̂h

coh =ψF E
5 δϕ̂

M ,e
d +ψF E

6 δϕ̂
s,e
d

(3.66)

By inserting the FE approximation in the weak form of the momentum balance, and ne-
glecting edge tractions, one finally arrives at


Me

cc Me
cd Me

ccs
Me

cds
Me

dc Me
dd Me

dcs
Me

dds
Me

cs c Me
cs d Me

cs cs
Me

cs ds
Me

ds c Me
ds d Me

ds cs
Me

ds ds


︸ ︷︷ ︸

Me


âM ,e

c

âM ,e
d

âs,e
c

âs,e
d

=


fe,ext
c − fe,i nt

c

fe,ext
d − fe,i nt

d + fe,coh
d

−fe,i nt
cs

−fe,i nt
ds

+ fe,coh
ds

 (3.67)
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where

âM ,e
c = ∂2

∂t 2

 ˆ̄ϕM
c

m̂M
c

γ̂M

 , âM ,e
d = ∂2

∂t 2

([
ˆ̄ϕM

d
m̂M

d

])
, âs,e

c = ∂2

∂t 2

 ˆ̄ϕs
c

m̂s
c

γ̂s

 , âs,e
d = ∂2

∂t 2

([
ˆ̄ϕs

d
m̂s

d

])
(3.68)

and where explicit expressions for the terms in Eq. (3.67) can be found in Appendix B.1.

It may be noted that Eqs. (3.67)-(3.68) are idential in structure to Eqs. (3.19)-(3.20), whereby
the same condensation approach is proposed also for the shell. Thereby, if the central dif-
ference scheme with variable time step is utilised for the temporal discretisation of the shell
problem, it can be solved by the solution methodology proposed for the 3D case (including
local model reduction), cf. Eqs. (3.21)-(3.41), in exactly the same fashion.

3.4. NUMERICAL EXAMPLES
In order to verify the theory and implementation of the proposed methodology in the previ-
ous sections, we present four numerical examples in this section. In the first example we verify
that the kinematics represented by the subscale element refinement yields the same (or sim-
ilar) response as the corresponding formulation using the conventional XFEM formulation.
This example also examines the capability of the new scheme to represent crack tips as well
as kinks inside the elements. The second example explores the application of the subscale
crack tip refinement in conjunction with cohesive zone models. In the third example, we are
investigating the significance of describing kinks inside the cracked elements. Finally, in the
fourth example we show the capability of the proposed subscale method in a more refined
case involving an out-of-plane loaded plate.

For all simulations, 6-node triangular elements are employed. For the spatial integration,
6 integration points in-plane and 4 integration points through the thickness are utilised per
element. The in-plane integration scheme is carried out as in the 2D plane strain case in Refer-
ence [16], including the sub–triangulation of the elements cut by a crack. As to the integration
of the mass matrix, it appears that (at least) 6 integration points are necessary in each sub-
triangle to obtain a stable time stepping procedure. All simulations in the first three examples
are carried out using the explicit central difference scheme with a time step of ∆t = 10−7 s. In
the fourth example a time step of ∆t = 2.5×10−8 s is used.

The response of the bulk material is represented according to the isotropic hypoelastic-
inelastic framework, cf. Reference [18], to properly account for finite deformations. In this
context, the Green-Naghdi stress rate of the Kirchhoff stress is used. The material elastic pa-
rameters are taken as E = 210GPa, ν = 0.3. Furthermore, the elastoplastic response is ac-
counted for utilising the Johnson and Cook [19] (JC) phenomenological model, where e.g.
an isotropic non-linear hardening effect is invoked. We thus disregard the influence of rate-
dependency and temperature and thereby consider only the quasi-static isothermal yield func-
tion of the JC–model written as

F = τe −
(

A+B
(
ε

p
e

)
n
)

(3.69)

where the parameters are taken as A = 175MPa, B = 767MPa, and n = 0.67.

As to the constitutive model governing the traction-separation of the interface, the cohe-
sive zone model developed by Fagerström and Larsson [20] is employed, where the degrada-
tion of the traction across the interface is described by a damage-viscoplasticity model. For
the sake of simplicity, rate-dependence of the interface material model is also disregarded.
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3.4.1. EXAMPLE 1: MEMBRANE LOADED PLATE WITH NO INTERFACE TRAC-
TION

This example is intended to explore the accuracy of the crack kinematics applying the pro-
posed method. It concerns a pre-notched elastic-inelastic plate of dimension 1.5×1m2 with a
thickness of 8mm. In a first case the plate is discretised with a refined mesh and analysed using
conventional XFEM enrichment in terms of the shifted enrichment function, cf. Figure 3.4a.
In the second case the plate is analysed using the proposed subscale refinement method, and
it is discretised with a coarser mesh whose subscale mesh mimics the discretisation of the first
case, cf. Figure 3.4b. In order to ensure that the new method is capable of representing a crack
kink and/or a tip inside the element, the crack path is predefined to inside the first cracked
element and to end inside the second one. For both cases, the bottom side of the plate is con-
strained and fixed and the top side is prescribed by a constant velocity of 20m/s, as shown in
Figure 3.4.

Given that the boundary conditions in both cases are the same, and that the discretisation
in the case of the conventional XFEM enrichment corresponds to the discretisation in the case
analysed with the proposed subscale crack refinement, the results are expected to be the same.
By comparing the deformed geometries in Figure 3.5 and resulting force-displacement curves
in Figure 3.6, obtained from the both cases, it is obvious that the results agree well which ver-
ifies the potential of the proposed methodology in capturing the accurate kinematics of crack
opening once the crack kinks and/or ends inside an element.

 

0
.5

 m
 

1
.5

 m
 

1 m 

0
.6

 m
 

125
° 

0.275 m 

0.3 m 

 

0
.5

 m
 

1
.5

 m
 

1 m 

0
.6

 m
 

125
° 

0.275 m 

0.3 m 

a) b)

Figure 3.4: Boundary conditions for a) a refined mesh with conventional XFEM enrichment and b) a coarse
mesh with the proposed subscale refinement.

3.4.2. EXAMPLE 2: MEMBRANE LOADED PLATE WITH INTERFACE TRAC-
TION

In this example, the aim is to ensure that the new methodology can be extended to include
dynamic ductile fracture, where the crack propagates progressively and a cohesive zone is
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a) b)

Figure 3.5: Example 1: Deformed geometry for a) the refined mesh with conventional enrichment and b)
the coarse mesh with subscale refinement analysed in the first numerical example.

present in the vicinity of the crack tip. In order to demonstrate the influence of including co-
hesive tractions along the crack interface together with the subscale refinement, we consider
again the plate in the previous example, but now including cohesive tractions acting along the
same crack path. The same bulk material model and associated parameters are utilised and
the boundary conditions are unchanged. The parameters used in cohesive zone model are a
fracture energy of G f = 250 kJ/m2, and a tensile strength of 306 MPa.

As can be observed in Figure 3.7, the difference between the forces obtained by the con-
ventional XFEM and the proposed method is less than one percent which proves that the pro-
posed method is able to treat the case where cohesive tractions are active on the crack seg-
ments.
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Figure 3.6: Example 1: Force versus displacement diagram measured at upper left corner point where no
cohesive traction is involved, both for XFEM with conventional enrichment and subscale refinement.
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Figure 3.7: Example 2: Force versus displacement diagram measured at upper left corner point in the
case of cohesive traction acting on the crack surfaces, both for XFEM with conventional enrichment and
subscale refinement.
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3.4.3. EXAMPLE 3: MEMBRANE LOADED PLATE WITH AND WITHOUT KINK
In the third example, we want to emphasise the importance of describing cracks that kink in-
side the element when predicted to do so. For this purpose, the two cases depicted in Figure 3.8
are considered.
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Figure 3.8: Example 3: Boundary conditions for a) the refined mesh with standard enrichment with no
kink inside and b) the coarse mesh enriched based on subscale refinement technique including a kink
inside the first cracked element

As can be observed in Figure 3.8b, in the case enriched with the subscale refinement, the
crack kink is represented inside the cracked element. In contrast, in order to prove the impor-
tance of representing the kink inside the element, this subscale refined case is compared to a
refined case with standard XFEM enrichment not including the kink, cf. Figure 3.8a. There-
fore, in the latter case, the crack path for the first two crack segments is defined between the
corresponding entry and exit points of the first and second macroscopic element of the stan-
dard enrichment case.

As demonstrated from the results shown in Figure 3.9, the resulting force-displacement
curves do not match one another. This is explained by a difference in mass distribution but
also (mainly) by the difference in the effect from the cohesive traction due to a different length
and orientation of the crack.

3.4.4. EXAMPLE 4: PRE-NOTCHED PLATE UNDER OUT-OF-PLANE LOAD-
ING

This example concerns a plate with the dimension of 203×203 mm and thickness of 0.8 mm,
where it is clamped on two sides. It is pre-notched and loaded in out-of-plane direction so
that the initial crack with length of 40 mm starts to propagate, cf. Reference. [21].

Here we aim at investigating the accuracy of the proposed subscale refinement approach
in comparison with the conventional XFEM in a case involving thin-shells. For that, two differ-
ent mesh discretisations, i.e. a fine mesh and a coarse mesh, are employed where the domain
is meshed using 502 elements for the fine case and 380 elements for the coarse case. In both

66



544248-L-bw-Mostifizadeh544248-L-bw-Mostifizadeh544248-L-bw-Mostifizadeh544248-L-bw-Mostifizadeh
Processed on: 2-6-2020Processed on: 2-6-2020Processed on: 2-6-2020Processed on: 2-6-2020 PDF page: 81PDF page: 81PDF page: 81PDF page: 81

0 0.02 0.04 0.06 0.08 0.1
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

Displacement

F
o

rc
e

 

 

Subscale refinement
with kink

Refined mesh
without kink

Figure 3.9: Example 3: Force versus displacement diagram measured at upper left corner point both for
XFEM with conventional enrichment including no kink and subscale refinement including kink.
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Figure 3.10: Example 4: Geometry and boundary condition of the plate
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cases the mesh is unstructured and the type of the elements used is 6-noded triangle, cf. Fig-
ure 3.11.

 

 

a) b)

Figure 3.11: Boundary conditions for a) a coarse mesh to be used for the simulation by the proposed
subscale refinement approach and b) a fine mesh to be used for the simulation by the conventional XFEM.

As in Reference. [11], the values assigned for the fracture energy, and the maximum trac-
tion in the cohesive zone are 250 kJ/m2, and 306 MPa respectively. All other parameters are set
as in the introduction of Section 3.4. Employing explicit time integration scheme it is decided
to apply a constant velocity of 20 m/s at the tip of the notch rather than the force in the actual
experiment which is carried out in a quasi-static manner. In the case of the fine mesh where
more elements are furnished along the crack path it is the conventional XFEM used while for
the coarse mesh it is the subscale refinement approach employed.

As it is seen in Figure 3.13, due to employing dynamic analysis the force captured at the tip
of the notch shows an oscillatory pattern which is caused by the reflection of the stress wave at
the boundaries of the domain. However, there is still a good agreement between the numerical
results and the experimental result.

It is observed in Reference [11] that edge-to-edge representation of the crack propaga-
tion may induce artificial oscillations. In this example a relatively coarse mesh is used for the
simulation carried out by the subscale refinement approach. However, the amplitude of the
oscillations seen in both fine mesh and coarse mesh is about the same. It shows the potential
of the proposed method to obtain an accurate and smooth propagation in a computationally
less expensive way.

3.5. CONCLUSIONS
The main message of the present chapter concerns the development of a special type of dis-
continuity representation for the ductile fracture processes in thin-walled large scale struc-
tures subjected to dynamic impact loading. The method does not influence the macroscopic
base FE-mesh of the domain and it avoids the introduction of new nodes in the same mesh.
This is achieved via a subscale refinement of the continuous and the discontinuous fields com-
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Figure 3.12: Deformed mesh after the crack propagation
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Figure 3.13: Load-deflection curve for the subscale refinement approach and conventional XFEM com-
pared with the experimental result in case of the out-of-plane loaded plate
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bined with dynamic condensation of the additional continuous and discontinuous degrees of
freedom. In this way, the crack tip is generally not apparent on the structural scale, whereby
the crack tip element can be interpreted as a “fracture process zone element” that becomes
fully cracked first in the case of being fully penetrated.

The subscale refinement idea has been exemplified through four numerical examples,
where it is shown that the concept yields an accurate kinematical representation of kinks and
crack tips within an element. The investigations were done for both open (traction free) as well
as cohesive zone cracks, describing ductile failure along the crack segments. From the com-
parison with and without element crack kinks, we showed the relevance of actually resolving
the internal crack kink. A significant difference in the load-displacement relation was then
obtained due to differences in crack length, crack orientation and mass distribution between
the different sides of the crack.

We also note that the subscale treatment of the crack tip ensures the introduction of shorter
crack segments (as compared to without the subscale treatment) whenever the propagation
criterion is met. This behaviour relates to the observed artificial oscillatory structural re-
sponse, cf. Reference [11], due to the (inevitable) “segment by segment”-wise imposed crack
propagation. Since these oscillations decrease upon mesh refinement, we believe that the
subscale refinement method will (in addition to various stabilisation procedures) contribute
to reduce such oscillations. To support this, it is shown in the fourth example that using the
subscale refinement method one can capture a smooth crack propagation compared to the
conventional XFEM even though the mesh used is coarser. This offers an approach to deal
with simulation of big structures where usage of coarse mesh is preferable, however accuracy
and smoothness of representation of the crack propagation is of high importance.

As an extension of the proposed methodology, it would be possible to include more than
one element in the model reduction domain so that the entire process zone, as defined by the
cracked elements in which the cohesive zone is still active. There are however computational
efficiency aspects of this that need to be considered since the model reduction technique in-
troduces (non-local) couplings between the nodes on the boundary of the considered domain.

To conclude, the steps taken in this chapter are directed towards a balanced computa-
tional efficiency and level of detailing in the modelling of larger structures. On the one hand,
we want to model and account for the entire thin-walled structure using shell theory. On the
other hand, we need to realistically describe the fine scaled nature of the ductile failure pro-
cess using the proposed elementwise subscale refinement. Clearly, the subscale refined XFEM
based shell element increase the detailing of the crack path without having to resort to addi-
tional mesh refinement on the structural scale.
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4
AN ELEMENT SUBSCALE

REFINEMENT FOR

REPRESENTATION OF THE

PROGRESSIVE FRACTURE BASED

ON THE PHANTOM NODE

APPROACH

A new approach for the analysis of the ductile fracture of thin-walled large scale structures is
developed. The method proposes a subscale refinement of the elements containing the crack.
It allows for smooth progression of the crack without furnishing required level of the mesh re-
finement, and a more detailed representation of the crack tip and crack kink within the cracked
elements. This approach is based on the phantom node method and is intended to be applicable
for different types of elements including both low and high order elements. Numerical examples
for dynamic crack propagation are presented and compared to conventional solutions to prove
the accuracy and effectiveness of the proposed approach.

This chapter was integrally extracted from [1].
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4.1. INTRODUCTION
Thin-walled structures are widely used for different applications, such as maritime structures,
off-shore structures, and aircraft fuselages. These various engineering applications call for a
reliable methodology to predict their failure under different loading conditions. One of the
main challenges of such a problem is to find a methodology to analyse the ductile failure of
large-structures using shell theory. In this respect a complexity addressed in the current chap-
ter is accounting for the fine scale of ductile failure.

Analysing large-scale thin-walled structures requires sufficient level of mesh refinement to
maintain a high degree of accuracy in the results. However, mesh refinement inherently adds
to the cost of the computation. Therefore, there is a need for a methodology that simplifies
such analyses, and yet includes the required level of detail in the model. In line with develop-
ments by Rabczuk et al.[2] and Mostofizadeh et al.[3], we propose herein a method to ensure
smoothness and accuracy of the crack propagation without requiring a high degree of mesh
refinement. A new crack tip element based on the phantom node method [4] is presented
which brings in the possibility to represent the growth of a crack through a single element
in multiple steps using a subscale refinement. The current approach bears similarity to the
developments by Zi and Belytschko [5], Chau-Dinh et al.[6] and Xiao and Karihaloo [7]. How-
ever, in the current method the treatment of the crack kinks internal to the element can also
be represented which is an addition to the previous developments. The method is applicable
to different type of elements with both low and high order approximations and it does not re-
quire any change in the spatial discretisation of the neighbouring elements which leads to less
degree of mesh refinement.

The chapter is outlined as follows. In Section 4.2, the subscale refinement of a crack tip
element based on the phantom node method is described. In Section 4.3, the formulation is
extended to shell theory. In Section 4.4, the continuum material model and interface material
model are summarised. In Section 4.5, numerical results are verified and compared with the
results obtained from the conventional phantom node method. Finally, the chapter is con-
cluded in Section 4.6, where conclusions are discussed.

4.2. SUBSCALE REFINEMENT OF DISPLACEMENT FIELD
In this section, the subscale refinement of the crack tip element based on the phantom node
method will be presented. The underlying concept of this method is to enhance the represen-
tation of the kinematics of the discontinuity with a subscale refinement. That is, additional
degrees of freedom are added on the subscale level of the cracked element. The conformity of
this additional field is imposed with Dirichlet boundary condition on the boundary nodes of
the subscale problem.

Below, a review of the phantom node method will be given, followed by the details of the
subscale refinement of the crack tip element. It should be emphasised that we herein consider
standard Phantom node kinematical relations for a 2D continuum with cracks, although pre-
sented in a somewhat non-standard format to provide a basis for the subsequent application
to shell problems in Section 4.3.

4.2.1. A REVIEW ON THE PHANTOM NODE METHOD
To set the stage, we introduce three configurations: the reference (or inertial) cartesian con-
figuration B, the undeformed (material) configuration B0 and the deformed (spatial) config-
uration B as indicated in Figure 4.1. In this framework, any material point (in 2D) X = (X1, X2)
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in the undeformed configuration is related to a point in the intertial configuration ξ= (ξ1,ξ2)
via the mapping

X =Φ[ξ]. (4.1)

Similarly, any point x = (x1, x2) in the deformed configuration relates to the point ξ in
the inertial configuration via the (time-dependent) mapping from the inertial to the deformed
configuration, herein denoted as the placement, as

x =ϕ[ξ, t ]. (4.2)

Analysing problems that concern strong and weak discontinuities, such as cracks, and
shear bands, poses a modelling challenge. In the conventional finite element method, ac-
curacy of the approximation field is maintained provided that the field of approximation is
sufficiently smooth and continuous. In case of presence of a crack within an element, the dis-
placement field is continuous on each side of the crack, while it is discontinuous across it.
Exploiting the partition of unity concept, cf. Melenk and Babuška [8], this has been treated
in the eXtended Finite Element Method (XFEM), pioneered by Belytschko and Black [9] and
Moës et al. [10], by enriching the approximation function with additional bases allowing for
the representation of discontinuities. However, depending on the enrichment function em-
ployed, neighbouring elements may require changes to be made.
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Figure 4.1: A domain containing a crack in which the displacement jump is described by the phantom
node method - the solid circles represent real nodes and the solid squares represent phantom nodes.

An alternative approach, the phantom node method, has been proposed by Hansbo and
Hansbo [4]. In terms of the represented kinematics, the phantom node method is identical
to XFEM [11], but it enjoys an easier implementation. In the current approach, rather than
adding additional degrees of freedom as in XFEM, a jump in the displacement field is realised
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with overlapping elements as indicated in the bottom of Figure 4.1. Each of these elements,
whose support is partially active, represents the displacement field on one side of the crack. It
requires the integrations to be carried out only partially, on the active support of the overlap-
ping elements.

Now, consider a discretised cracked body as in Figure 4.1, and particularly a subdomain
(equal to an element) cut by the crack. In the material configuration, this subdomain (ele-
ment), denoted De

0, is decomposed into a plus side, De+
0 , and a minus side, De−

0 , on either
side of the discontinuity surface, ΓS with normal NS . As for the mapping Φ, it can then be
approximated in a standard isoparametric1 fashion, irrespectively if it is cut by a crack or not,
as

Φh,e = ∑
i∈I

N i [ξ1,ξ2]X̂i (4.3)

where N i are shape functions associated with the set of nodes I belonging to the plus side2

element and X̂i are their coordinates.
As for the mapping from the inertial to the current configuration, it is approximated as

ϕh,e = ∑
i∈I

N i [ξ1,ξ2]ϕ̂i HS [S[X]]+ ∑
j∈J

N j [ξ1,ξ2]ϕ̂ j HS [−S[X]] (4.4)

where in addition to N i we have introduced N j as the shape functions associated with the set
of nodes J belonging to the minus side element, and ϕ̂i and ϕ̂ j are placement fields associ-
ated with the plus and minus side element. Therein S[X] is the level set function defining the
position of the discontinuity line where S[X] = 0. HS , is the classical Heaviside function, which
returns one for positive values and zero for negative values.

The jump in the placement field at a point x ∈ ΓS is given as

Jϕh,eK= ∑
i∈I

N i ϕ̂i − ∑
j∈J

N j ϕ̂ j (4.5)

Given that the continuous placement field is at hand, the deformation gradient pertinent
to the bulk material, Fb , is defined as follows

Fb =ϕ⊗∇X = ∀X ∈ B0 \ΓS (4.6)

Neglecting the body force and utilising the displacement field as already stated, the weak form
of the momentum balance becomes∫

B0

ρ0δϕ · ϕ̈dV =
∫
∂B0

δϕ · t̄1dA−
∫

B0

δFb
t : Pt dV+

∫
ΓS

JδϕK · t1dA, ∀ δϕ (4.7)

in which Pt is the first Piola Kirchhoff stress tensor. Therein, the prescribed nominal traction
vector along the boundary (with normal N) and the cohesive traction along the crack surface
are respectively t̄1 = Pt ·N and t1 = Pt ·NS .

1To make it clear: even though we in the continuous case consider three different configurations and a
unique one-to-one mapping between a point ξ in the inertial configuration and a point X in the unde-
formed configuration, we consider for simpler implementation of the discretised case a single parent
element (with local coordinates) in the inertial configuration.

2One can just as well consider the minus side element since, for both these elements, the nodal coordi-
nates in B0 will be the same.
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4.2.2. SPATIAL DISCRETISATION BASED ON THE SUBSCALE REFINEMENT

OF THE PHANTOM NODE METHOD
In order to allow for a more detailed representation of the discontinuity in cracked elements,
a method is proposed wherein refinement of the discontinuity is realised via additional nodes
and degrees of freedom within the domain of interest. This accommodates the possibility to
represent kinks and crack tips within several subscale elements inside the macroscale element.
To avoid introduction of new nodes on the macroscale level, this refinement is carried out in
conjunction with a model reduction technique, i.e. dynamic condensation. There are other
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Figure 4.2: Progression of crack within an element based on the subscale refined phantom node method:
Crack ends inside the element (a), Crack ends at the element edge (b), Crack crosses the element edge (c)
- Solid and empty circles represent macro-scale and subscale nodes on the original support and solid and
empty squares represent macro-scale and subscale nodes on the phantom support respectively.

methods, cf. Rabczuk et al.[2], to treat cracks which end inside the element, however, these
methods are only applicable to linear elements. We propose an alternative method applicable
to any type of element, however for sake of briefness only triangular elements are discussed in
this chapter.

The current approach considers the cracked element as a subscale problem, wherein the
domain of the macroscale element is divided into sub-domains according to the progression
of the crack within the element. In the subscale problem, each of these sub-domains is re-
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garded as an element whose nodes consist of the macroscale nodes on the boundary of the
macroscale element and additional subscale nodes introduced to the subscale problem, cf.
Figure 4.2. Once the crack propagates into the element, the subscale element whose support
is cracked will be doubled as in the conventional phantom node method. In order to enforce
continuity at the crack tip, nodes along the edge of the subscale element, where the crack tip
is located on, will not be doubled.

Considering the Figure 4.2, based on the failure criterion and length and direction of pro-
gression of the crack, the subscale domain is partitioned into a number of subscale elements
- in this case two elements - to represent the discontinuity path. Shape functions utilised for
interpolations, N i , are limited in terms of their support to the domain of each subscale ele-
ments. Thereby, on the element level, the approximation of the deformation map becomes

ϕh,e = ∑
i∈I

N i ϕ̂i HS [S[X]]+ ∑
j∈J

N j ϕ̂ j HS [S[X]]+ ∑
k∈K

N k ϕ̂k HS [−S[X]]+ ∑
l∈L

N l ϕ̂l HS [−S[X]]

(4.8)
where N i and N j are shape functions of the plus side elements associated with macroscale, I ,
and subscale, J , sets of nodes respectively, and N k and N l are also shape functions of the mi-
nus side elements associated with macroscale, K , and subscale, L, sets of nodes respectively.
It may also be described as

ϕh,e = N̂m
H

p
S
ϕ̂

m,e
p + N̂

f

H
p
S

ϕ̂
f ,e
p + N̂m

H m
S
ϕ̂

m,e
m + N̂

f
H m

S
ϕ̂

f ,e
m = N̂m ϕ̂m,e + N̂ f ϕ̂ f ,e (4.9)

where N̂m
H

p
S

and N̂
f

H
p
S

, are shape functions associated with macro-scale nodes and subscale

nodes located on the plus side, while N̂m
H m

S
and N̂

f
H m

S
are the corresponding vectors evaluated

on the minus side of the crack. Thereafter, for sake of simplicity the following substitutions are
made

N̂m = [N̂m
H

p
S

,N̂m
H m

S
], N̂ f = [N̂

f

H
p
S

,N̂
f
H m

S
], ϕ̂m,e =

[
ϕ̂

m,e
p

ϕ̂
m,e
m

]
, ϕ̂ f ,e =

[
ϕ̂

f ,e
p

ϕ̂
f ,e
m

]
(4.10)

Accordingly the approximations of the deformation gradient in terms of the bulk material is
defined as

Fh,e
b = ∑

i∈I
HS [S[X]]ϕ̂i

(
∂N i

∂X

)t

+ ∑
j∈J

HS [S[X]]ϕ̂ j

(
∂N j

∂X

)t

+

∑
k∈K

HS [−S[X]]ϕ̂k

(
∂N k

∂X

)t

+ ∑
l∈L

HS [−S[X]]ϕ̂l

(
∂N l

∂X

)t

(4.11)

Employing Voigt notation and Galerkin’s method, virtual displacement fields become

δϕh,e = N̂m
H

p
S

δϕ̂
m,e
p + N̂

f

H
p
S

δϕ̂
f ,e
p + N̂m

H m
S
δϕ̂

m,e
m + N̂

f
H m

S
δϕ̂

f ,e
m = N̂m δϕ̂m,e + N̂ f δϕ̂ f ,e(4.12)

Jδϕh,eK= N̂m
H

p
S

δϕ̂
m,e
p + N̂

f

H
p
S

δϕ̂
f ,e
p − N̂m

H m
S
δϕ̂

m,e
m − N̂

f
H m

S
δϕ̂

f ,e
m = N̂m

d δϕ̂m,e + N̂
f
d δϕ̂

f ,e(4.13)

δF̂h,e
b = B̂m

H
p
S

δϕ̂
m,e
p + B̂

f

H
p
S

δϕ̂
f ,e
p + B̂m

H m
S
δϕ̂

m,e
m + B̂

f
H m

S
δϕ̂

f ,e
m = B̂m δϕ̂m,e + B̂ f δϕ̂ f ,e(4.14)
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Therein B̂m
H

p
S

and B̂
f

H
p
S

, are introduced as derivatives of shape functions associated with macro-

scale nodes and subscale nodes of the element that is active on the plus side, and B̂m
H m

S
and

B̂
f
H m

S
, are similar quantities, associated with nodes of the element active on the minus side.

There the following substitutions are also made

N̂m
d = [N̂m

H
p
S

,−N̂m
H m

S
], N̂

f
d = [N̂

f

H
p
S

,−N̂
f
H m

S
], B̂m = [B̂m

H
p
S

, B̂m
H m

S
], B̂ f = [B̂

f

H
p
S

, B̂
f
H m

S
] (4.15)

Employing the aforementioned variational field into Eq. (4.7), the contribution of the cracked
elements to the discretised form of the momentum balance becomes

[
Me

mm Me
m f

Me
f m Me

f f

][
âe

m
âe

f

]
=

[
fe,ext
m − fe,i nt

m + fe,coh
m

−fe,i nt
f + fe,coh

f

]
(4.16)

where

âe
m = ∂2ϕ̂m,e

∂t 2
, âe

f = ∂2ϕ̂ f ,e

∂t 2
(4.17)

Therein, the contributions from mass, external force, internal force, and cohesive force are

Me
mm =

∫
De+

0

ρ0(N̂m
H

p
S

)t N̂m
H

p
S

dV +
∫

De−
0

ρ0(N̂m
H m

S
)t N̂m

H m
S

dV (4.18)

Me
m f =

(
Me

f m

)t =
∫

De+
0

ρ0(N̂m
H

p
S

)t N̂
f

H
p
S

dV +
∫

De−
0

ρ0(N̂m
H m

S
)t N̂

f
H m

S
dV (4.19)

Me
f f =

∫
De+

0

ρ0(N̂
f

H
p
S

)t N̂
f

H
p
S

dV +
∫

De−
0

ρ0(N̂
f
H m

S
)t N̂

f
H m

S
dV (4.20)

fe,ext
m =

∫
∂De+

0

(N̂m
H

p
S

)t t̄1 dA +
∫
∂De−

0

(N̂m
H m

S
)t t̄1 dA (4.21)

fe,i nt
m =

∫
De+

0

(B̂m
H

p
S

)t P̂t dV +
∫

De−
0

(B̂m
H m

S
)t P̂t dV (4.22)

fe,i nt
f =

∫
De+

0

(B̂
f

H
p
S

)t P̂t dV +
∫

De−
0

(B̂
f
H m

S
)t P̂t dV (4.23)

fe,coh
m =

∫
Γe

S

(N̂m
H

p
S

)t t1 dA −
∫
Γe

S

(N̂m
H m

S
)t t1 dA (4.24)

fe,coh
f =

∫
Γe

S

(N̂
f

H
p
S

)t t1 dA −
∫
Γe

S

(N̂
f
H m

S
)t t1 dA (4.25)

where subscript M and f, in force and mass contributions, denote macroscale and subscale
degrees of freedom respectively, and also De+

0 and De−
0 denote parts of the plus and minus

side elements that belong to the original domain adjacent to the crack.

4.2.3. SCALE COUPLING USING DYNAMIC CONDENSATION
For the time integration, a central difference time integration method is employed. Thereby,
in every time step the current configuration is updated using the accelerations, â, found in

M â = f (4.26)
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where M and f are mass matrix and unbalance force vectors.
In the current proposed approach for the sub-scale refinement of the crack tip element,

there are two scales each of which has a separate time integration schemes and spatial dis-
cretisation. The coupling between the two scales is realised by applying the boundary condi-
tion from the macro-scale problem to the sub-scale one. In order to separate sub-scale from
macro-scale, it is opted to employ dynamic condensation technique, by which, the subscale
degrees of freedom may be solved.

COUPLING AND KINEMATIC CONSTRAINTS

To ensure conformity of the boundaries between two scales, it is required to constrain the
additional subscale nodes positioned on the sub-scale boundary using a kinematic constraint.
For this, the constraint may be established utilising constraint matrix, P, which relates the full
set of degrees of freedom in the sub-scale elements âe to the reduced set of degrees of freedom
present on the macro-scale element ˆ̃ae as

âe = P ˆ̃ae (4.27)

where P consist of all basis functions of the macro-scale element including linear relation of
the ones required to interpolate for the subscale nodes on the boundary, âe = [âe

m , âe
c , âe

f ]T

and ˆ̃ae = [âe
m , âe

f ]T . Therefore Eq. (4.26) can be rewritten with three types of degrees of free-

dom now as 
Me

mm Me
mc Me

m f
Me

cm Me
cc Me

c f
Me

f m Me
f c Me

f f


 âe

m
âe

c
âe

f

=

 fe
m
fe
c

fe
f

 (4.28)

where subscripts m, c, and f denote macro-scale dofs, constrained subscale dofs, and free
subscale dofs respectively as illustrated in the Figure 4.3.

=

     

  

 

 

Figure 4.3: Illustration of different types of nodes namely macro-scale node (m), constrained subscale
node (c) and free subscale node (f).

Employing the constraint matrix, P, with the same constraints enforced also on the corre-
sponding virtual displacement field, Eq. (4.28) can be reformulated as

PT


Me

mm Me
mc Me

m f
Me

cm Me
cc Me

c f
Me

f m Me
f c Me

f f

 P

[
âe

m
âe

f

]
= PT

 fe
m
fe
c

fe
f

 (4.29)
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which results in the reduced form of Eq. (4.29) as[
M̃e

mm M̃e
m f

M̃e
f m M̃e

f f

][
âe

m
âe

f

]
=

[
f̃
e
m

f̃
e
f

]
(4.30)

DYNAMIC CONDENSATION

In order to obtain the element mass and force contribution to Eq. (4.26) considering only
macroscopic degrees of freedom, the discretised momentum balance in Eq. (4.30) needs to
be condensed into

Me
m âe

m = fe,ext
m − f̄e,i nt

m (4.31)

utilising

Me
m = M̃e

mm −M̃e
m f M̃e

f f
−1M̃e

f m (4.32)

f̄e,i nt
m = f̃

e,i nt
m − f̃

e,coh
m −M̃e

m f M̃e
f f

−1
(
f̃
e,i nt
f − f̃

e,coh
f

)
(4.33)

which are given via solving for acceleration of subscale dofs employing the central difference
method for the sub-scale problem as

âe
f = M̃e

f f
−1

(
−M̃e

f m âe
m − f̃

e,i nt
f + f̃

e,coh
f

)
. (4.34)

4.3. APPLICATION OF SUBSCALE REFINEMENT TO SHELLS
With respect to the main application of this development which is dynamic ductile fracture
of the thin-walled structures, the 7-parameter shell formulation employed in [12] is extended
based on the phantom node method. Therein the current approach for the representation of
the discontinuity within the crack tip element is addressed accordingly. The element formu-
lation will be described in this section. For this, we start off on the initial and current shell
geometry, which will be then followed by the spatial discretisation of the subscale refinement.
For sake of briefness the weak form of the momentum balance is covered in the Appendix C.1.

4.3.1. INITIAL SHELL GEOMETRY IN TERMS OF CONVECTED COORDINATES
As described in [13] and [12], and demonstrated in Figure 4.4, the initial configuration B0 of
the shell is introduced in terms of the convected coordinates (ξ1,ξ2,ξ) as

B0 = {
X =Φ0[ξ1,ξ2,ξ] = Φ̄[ξ1,ξ2]+ξMΦ[ξ1,ξ2]

with [ξ1,ξ2] ∈ A and ξ ∈ h0
2 [−1,1]

}
(4.35)

whereΦ0[ξ1,ξ2,ξ] defines the mapping from the inertial Cartesian frame to the reference con-
figuration and is specified in terms of the midsurface placement Φ̄[ξ1,ξ2], the outward unit
normal vector field MΦ (with |MΦ| = 1) and coordinate ξ, as in Figure 4.4. The coordinate ξ
is defined in the direction of MΦ using h0 as the initial thickness of the shell. The co-variant
basis vectors are defined as

Gα =Φ,α+ξMΦ,α, α= 1,2 and G3 = G3 = MΦ. (4.36)
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Figure 4.4: Mappings of 7-parameter shell model defining undeformed and deformed shell configurations
relative to the inertial Cartesian frame.

where •,α denotes the derivative with respect to ξα. The co-variant vectors Gi and the contra-
variant basis vectors Gi are correlated via Gi ⊗Gi = 1, which results in

G j =GijG
i , G j =G ijGi with Gij = Gi ·G j and G ij = (

Gij
)−1 (4.37)

The infinitesimal volume element dB0 in the reference configuration can also be defined
in the convected coordinates as

dB0 = b0dξ1dξ2dξ with b0 = (G1 ×G2) ·G3 (4.38)

4.3.2. DISCONTINUOUS CURRENT SHELL GEOMETRY
The continuous deformation map for the current geometry is formulated in terms of the con-
vected coordinates (ξ1,ξ2,ξ) as

x =ϕ[X[ξ1,ξ2,ξ], t ] ∀X ∈ B0 \ΓS (4.39)

where considering ϕ+ and ϕ− to be the placement on the plus and minus side of the discon-
tinuity, the jump of the mapping can be expressed as

JϕK=ϕ+−ϕ− (4.40)

In line with the developments in Reference [13], the through-the-thickness fracture is repre-
sented in terms of subtraction of the continuous placement of both sides of the crack using
the phantom node method. Thereby the mapping ϕ and its discontinuity over ΓS are defined
as {

ϕ[ξ1,ξ2,ξ] = ϕ̄[ξ1,ξ2]+ξm[ξ1,ξ2]+ 1
2ξ

2mγ[ξ1,ξ2] ∀X ∈ B0 \ΓS

Jϕ[ξ1,ξ2,ξ]K=ϕ+[ξ1,ξ2,ξ]−ϕ−[ξ1,ξ2,ξ] ∀X ∈ ΓS
(4.41)

where in order to avoid Possion locking effect, the continuous placement ϕ is specified in
terms of a second order Taylor series expansion in the director m, which leads to representa-
tion of inhomogeneous thickness deformation effects of the shell, γ, cf. Figure 4.4. It is also
shown in [12] that the deformation gradient can be formulated as

dx = Fb ·dX with Fb = gbm ⊗Gm (4.42)

in terms of the spatial co-variant basis vectors

gbm
=ϕ⊗∇ξm

. (4.43)
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4.3.3. FINITE ELEMENT APPROXIMATION OF THE CURRENT SHELL GE-
OMETRY BASED ON THE PHANTOM NODE METHOD

We continue to extend the spatial discretisation presented in section 4.2 based on the shell
formulation employed. Thereby, on the element level, the continuous part of mapping is ap-
proximated as

ϕh,e = ∑
i∈I∪J

N i [ξ1,ξ2] H
p
S

(
ˆ̄ϕi +ξm̂i

(
1+ 1

2
ξ

∑
j∈I∪J

N j [ξ1,ξ2]γ̂ j

))

+ ∑
k∈K∪L

N k [ξ1,ξ2] Hm
S

(
ˆ̄ϕk +ξm̂k

(
1+ 1

2
ξ

∑
l∈K∪L

N l [ξ1,ξ2]γ̂l

))

= N̂m
(

ˆ̄ϕm +ξm̂m
(
1+ 1

2
ξN̂γγ̂

))
+ N̂ f

(
ˆ̄ϕ f +ξm̂ f

(
1+ 1

2
ξN̂γγ̂

))
(4.44)

where I and J are the macroscale and subscale sets of nodes belong to D+
0 and K and L are

the macroscale and subscale sets of nodes belong to D−
0 . There we also introduced N̂γ as the

shape function matrix associated with the thickness inhomogeneous field. As it is noted and
already discussed in subsection 4.2.2, in addition to the approximation functions related to
the marco-scale nodes, approximations related to the subscale nodes is also added to improve
the kinematic representation of the discontinuous field. Consequently, discontinuity across
the crack can be approximated as

Jϕh,eK= ∑
i∈I

N i [ξ1,ξ2] H
p
S

(
ˆ̄ϕi +ξm̂i

(
1+ 1

2
ξ

∑
j∈I

N j [ξ1,ξ2]γ̂ j

))

− ∑
k∈K

N k [ξ1,ξ2] Hm
S

(
ˆ̄ϕk +ξm̂k

(
1+ 1

2
ξ

∑
l∈K

N l [ξ1,ξ2]γ̂l

))

= N̂m
d

(
ˆ̄ϕ+ξm̂

(
1+ 1

2
ξN̂γγ̂

))
+ N̂

f
d

(
ˆ̄ϕ+ξm̂

(
1+ 1

2
ξN̂γγ̂

))
(4.45)

Considering the approximation of the continuous field, the special co-variant basis vectors
can be written as

g
h,e
bm

=



∑
i∈I

H
p
S

((
ˆ̄ϕi +ξm̂i
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2
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p
S N i m̂i
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j∈I
N j γ̂ j

)
+ ∑

k∈K
Hm

S N k m̂k
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(
1+ξ ∑
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N l γ̂l

)
m = 3

(4.46)

4.4. BULK AND INTERFACE MATERIAL MODEL
Capturing the accurate response of a structure under impact loading requires employing a
reliable material model for the continuum and interface material where failure occurs. To
model occurrence of the plastic deformation in the bulk material prior to the localisation, in
line with the developments in [14] and [12], a hypoelastic-inelastic framework is used in which
to represent the yield function the Johnson and Cook model [15] is incorporated. Thereby the
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isotropic non-linear hardening behaviour, rate-dependency, and thermal softening effect are
included as

F = τe −
(

A+B
(
ε

p
e

)
n
)(

1+C < ln

[
ε̇

p
e

ε̇0

]
>

)(
1− θ̂m)

(4.47)

where ε
p
e is the equivalent accumulated plastic strain, ε̇

p
e is the effective plastic strain rate, and

θ̂ is the so-called homologous temperature. Therein also A, B and C represent the initial yield,
strain hardening, and rate sensitivity parameters, whereas n and ε̇0 defines the hardening ex-
ponent and the cut-off strain-rate. In case a quasi-static loading case is under investigation,
by disregarding the strain rate and temperature dependencies the yield function may be sim-
plified as

F = τe −
(

A+B
(
ε

p
e

)
n
)

(4.48)

Modelling ductile fracture requires accurate modelling of the material at the localisation pro-
cess zone. For this, in line with the developments in [12] and [13] a damage-viscoplastic co-
hesive zone model where traction across the interface is described in terms of an effective
traction (t̂1) and a damage parameter (α) as

t1 = (1−α) t̂1 (4.49)

The effective traction may be transferred to effective Mandel stress traction by

t̂1 = F−t · Q̂ (4.50)

whereby, considering the stiffness of the cohesive zone K, the total material jump J, the elas-
tic material jump Je , and the plastic material jump Jp , the bilinear traction-separation law is
formulated as

Q̂ = K · (J− Jp ) = K · Je . (4.51)

In the above, the plastic part of the material jump and the damage parameter are obtained via
evolution laws as in [16], which for sake of briefness are not detailed here. The response of
the bilinear traction-separation law for pure mode I and mode II is depicted in the Figure 4.5.
Thereinσ f n andσ f s are maximum normal and shear stress, Qn and Qn are normal and shear
components of the traction, and Jn and Js are normal and tangential parts of the crack open-
ing.

4.5. NUMERICAL EXAMPLES
In the numerical section, we intend to prove that the subscale in fact works as expected; that
i) it provides the same results as a more refined model with the same crack path and ii) that it
indeed captures the effect of a tortuous crack path in the case when the subscale enrichment
is utilised. For this, in this section three numerical examples are investigated to verify the the-
ory of the proposed method as well as the accuracy it provides. The first example is intended
to investigate a loaded membrane with a predefined crack path which kinks and ends inside
the element. This example examines the potential of the subscale refinement of the phantom
node approach compared to the conventional phantom node method. The second example
explores the influence of the subscale refinement of the cracked element on the cohesive zone
present at the interface and with dissipative material bulk behaviour. The third example con-
cerns the advantage the new approach provides dealing with a complex crack path.

In all examples, the quadratic triangle element is used for which the spatial integration is
carried out employing six integration points in-plane and four integration points through the
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Figure 4.5: Illustration of a) the pure mode I and b) pure mode II response of the bilinear traction-
separation law.

thickness. For integration of the cracked elements, sub-triangulation is performed as in [16],
where six integration points are required for every subtriangle in-plane integration of the mass
matrix. The time integration for all simulations is done using an explicit central difference
scheme.

4.5.1. MEMBRANE LOADED PLATE WITH TRACTION-FREE FACES ALONG

THE PREDEFINED CRACK
In first example the accuracy of the kinematics represented by the proposed approach is in-
vestigated and compared to the result obtained by the conventional phantom node approach.
It is also intended to show how the crack kink and tip can be represented employing the cur-
rent approach without furnishing required spatial discretisation of the cracked region of the
domain. As depicted in the Figure 4.6, the plate is of dimension 1×1m2 and is discretised with
both a coarse and a refined mesh. The number of elements in the refined mesh is double that
of the coarse mesh case. The path of the predefined crack is the same for both cases and is
defined such that it kinks and ends inside the cracked elements. The bottom edge of the plate
is clamped and all nodes of the top edge is prescribed with a constant velocity of 20 m/s. The
response of the bulk material is captured using an isotropic hypoelastic material model where
Young’s modulus and Poisson’s ratio are E = 210GPa, ν= 0.3.

To examine the accuracy and efficiency of the proposed method, the coarse mesh is anal-
ysed using subscale refinement of the phantom node method and the fine mesh is analysed
using the conventional phantom node method. Comparing the results of force versus dis-
placement measured on all nodes of the top edge in both cases, as it is seen in Figure 4.8, al-
though the number of elements used for simulation of the coarse mesh is half of the fine mesh,
the results are in perfect agreement which verifies the accuracy of the kinematics captured by
the proposed approach.

4.5.2. MEMBRANE LOADED PLATE WITH ACTIVE COHESIVE ZONE ALONG

THE PREDEFINED CRACK
The second example explores how accurate the new approach captures the plastic deforma-
tion of the bulk and the traction across the interface of the crack. For this, the same test case
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a) b)

Figure 4.6: Example 1: Boundary conditions for a) a refined mesh simulated using the conventional phan-
tom node method and b) a coarse mesh simulated using the proposed subscale refinement.

Figure 4.7: Example 1: Deformed geometry for the refined mesh with conventional refinement - different
colours represent different displacements.

as in the previous example is considered but with a straight crack as seen in the Figure 4.9. As
in the first test case, the plate is of dimension 1×1m2 and is discretised in the same way as in
the previous example. The bottom edge of the plate is clamped and all nodes of the top edge
is prescribed with a constant velocity of 20 m/s.

The crack path is predefined such that it ends inside the element for the coarse case and
along its path the cohesive zone, discussed in Section 4.4, is active. The case with fine discreti-
sation is simulated using the conventional phantom node while for the case with the coarse
mesh the new approach is utilised.
To capture the accurate behaviour of the bulk material, the hypoelasto-plastic material frame

work as in Section 4.4 with the yield function as mentioned in Eq. (4.48) is employed where
Young’s modulus and Poisson’s ratio are E = 210GPa, ν= 0.3. The parameters assigned for the
yield function are as A = 175 MPa, B = 767 MPa, and n = 0.67.
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Figure 4.8: Example 1: Force versus displacement diagram measured at all nodes of the top edge for the
conventional phantom node method and subscale refinement of the phantom node method.

a) b)

Figure 4.9: Example 2: Boundary conditions for a) a refined mesh simulated using the conventional phan-
tom node method and b) a coarse mesh simulated using the proposed subscale refinement.

As can be seen in the Figure 4.11, the force versus displacement curves captured on all nodes
of the top edge of the domain for both cases perfectly match one another. Initially that the ma-
terial deforms elastically and in the following starts hardening there is no deviation between
the results observed, while once the cohesive zone degrades completely then the curves don’t
match perfectly. Considering the fact that the number of degrees of freedom utilised in both
cases is different, perfect correlation between the oscillations may not be expected. However,
once oscillations are damped out a perfect match between them is again obtained.

4.5.3. MEMBRANE LOADED PLATE WITH A COMPLEX COHESIVE CRACK
The third example aims at investigating the advantage of the current approach once a cohesive
crack propagates in a complex pattern. Representing progression of such a cohesive crack
requires a higher degree of refinement around the failure zone to capture the accurate energy
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Figure 4.10: Example 2: Deformed geometry for the refined mesh with conventional refinement - different
colours represent different displacements.
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Figure 4.11: Example 2: Force versus displacement diagram measured at all nodes of the top edge for the
conventional phantom node method and subscale refinement of the phantom node method.

being dissipated due to degradation of the cohesive zone. For this, the same coarse mesh as
in the previous examples is utilised but with two different crack patterns, one straight and one
zigzag shaped, cf. Figure 4.12. Once again, the plate is of dimension 1×1m2 and it is clamped
at the bottom edge while constant velocity of 20m/s is prescribed on all nodes of the top edge.
To capture the plastic deformation of the bulk material and cohesive force across the crack
the same material and cohesive zone model as previous example is employed. In order to
explore advantage of the proposed method, the plate with straight predefined cohesive crack
is simulated using the conventional phantom node method while the plate with predefined
zigzag cohesive crack is simulated using the proposed method which offers the possibility to
represent kinking inside the element. As it can be observed in the Figure 4.13, during the initial
elastic response and the following plastic hardening phase no deviation takes place. However
the deviation appears during the degradation of cohesive zone along the crack path. As it is
expected and may also be seen due to longer crack path present in case of the zigzag cohesive
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a) b)

Figure 4.12: Example 3: Boundary conditions for a) a straight crack simulated using the conventional
phantom node method and b) a zigzag crack using the proposed subscale refinement.
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Figure 4.13: Example 3: Force versus displacement diagram measured at all nodes of the top edge for the
conventional phantom node method and subscale refinement of the phantom node method.

zone it takes more energy to be dissipated up until the cohesive zone is fully degraded. By the
time the resisting forces of the cohesive cracks are completely degraded the forces measured
at all nodes of the top edges of both cases match each other once again which is due the same
bulk material remaining in front of the crack tip to sustain the loading. Thereby one may
conclude that the proposed method suggests a more detailed approach towards representing
the failure zone without need to refine the neighbouring elements.

4.6. CONCLUSIONS
A new approach to represent crack tips and kinks within the elements, based on the phantom
node method has been developed. This is in line with Mostofizadeh et al.[3] where a similar
method based on the XFEM is presented. However, due to less complexities in the implemen-
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tation of the Phantom node approach, compared to the XFEM, the current approach can be
regarded as an advantageous alternative. The method introduces a sub-scale problem for each
cracked element using additional subscale nodes. In order to do that without influencing the
macro-scale domain a dynamic condensation technique is utilised, which results in a more
efficient computation. Therefore, in contrary to the conventional approach, high level of re-
finement needed for the spatial discretisation around the crack tip is avoided. Although the
method has been implemented and presented for a shell formulation using 6-node triangle
elements, it has the potential to be applied to any type of element.

To evaluate the accuracy of the proposed approach, several examples have been investi-
gated. It is shown that for both hypo-elastic and hypo-plastic cases it captures the accurate
kinematics as expected. It has also represented the cohesive traction along the crack with
proper accuracy.

One step towards making this approach even more efficient is to solve for the cracked ele-
ments only in the macro-scale level once the crack tip progressed to the next element and the
cohesive zone degradation has been captured with sufficient accuracy the method provides.
Therefore history variables of the sub-scale domain can be mapped back to the macro-scale
domain and the rest of the simulation for that part of the domain may be carried out only on
the macro-scale level.

It would also be an interesting step forward to develop a mass lumping method to lower
the computational cost even further. However, in the current development the emphasis was
given to address subscale refinement alone.
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5
A CONTINUUM DAMAGE FAILURE

MODEL FOR THIN-WALLED

STRUCTURES

A new approach is developed to the analysis of failure in thin-walled structures based on duc-
tile failure described by continuum damage. A continuum damage coupled to visco-plasticity
formulation is proposed, where the total response is obtained from a damage enhanced effec-
tive visco-plastic material model. The fracture area production is based on a rate dependent
damage evolution law, where the damage–visco-plasticity coupling is modeled via the inelastic
damage driving dissipation. A local damage enhanced model is obtained for the ductile failure
analysis, which contributes to computational efficiency. The Johnson-Cook visco-plasticity and
failure initiation models are used as main prototypes in the implementation. In the numerical
examples, the accuracy of the model is investigated and an experimental case is validated. From
the examples, the resulting model yields mesh convergence for a finite damage propagation pa-
rameter.
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5.1. INTRODUCTION

For large scale structures, e.g. impact and/or blast loading of aircraft fuselage and off-shore
structures, we are particularly concerned with the level of detailing in the structural and mate-
rial models balanced against the computational cost of the ductile fracture analysis. To tackle
the problem, we have previously (among others) considered shell modelling combined with
“Cohesive Zone” (CZ) modelling of the fracture, cf. Larsson et al. [1], Mostofizadeh et al. [2–4].
Typically, in the CZ approach, XFEM is a main ingredient to resolve the fracture zones to obtain
the proper balance between “sufficient” fracture resolution and FE resolution of the remainder
of the large scale structure, cf. Melenk and Babuška [5], Belytschko and Black [6] and Moës et
al. [7], Wells and Sluys [8]. From these developments there is still a need to consider alternative
methodology capable of representing the crack propagation efficiently and in a sufficiently ac-
curate manner. The final model should not need to require too heavily refined meshes to yield
reasonable results. For this, we propose a continuum damage mechanics approach combined
with shell theory for the analysis of ductile fracture of thin-walled structures subjected to high
rates of loading. As to ductile damage it is often attributed to the growth of micro voids, as
described in Gurson [9]. Typically, the (local) plasticity models of Gurson type are coupled to
void volume growth, that is assumed to coalesce into fracture surfaces in the FE-application.
Various formulations of void growth, including extensions from the local Gurson model, have
been considered, e.g. Needleman and Tvergaard [10], Pardoen and Hutchinson [11], Reusch
et al. [12].

Another approach to fracture modelling is to consider a damage enhanced effective mate-
rial of "Lemaitre" type combined with phase field models. This concept has been extensively
investigated for brittle fracture processes, e.g. cf. [13], [14], [15], [16], [17]. The generalisation
to ductile fracture modelling has been considered by e.g. [18], [19], [20]. Along these lines,
we present in this paper a damage enhanced effective material based on the visco-plastic JC-
model [21]. Special focus is placed on the resulting energy dissipation, involving elastic and
inelastic contributions in terms of a damage threshold, cf. also [22], based on the JC-fracture
model [23]. As to damage evolution, the developments in Larsson et al. [24] are reconsidered
for ductile fracture, where the fracture area production is formulated in terms of a propaga-
tion velocity and a length-scale parameter without any non-local gradient term. The resulting
damage evolution model is completely local, which contributes to computational efficiency
of the final model. For the handling of the thin-walled nature of the problem considered, dif-
ferent methods of crack representation, including through the thickness fracture have been
investigated. By making use of an enhanced assumed strain formulation to deal with the lock-
ing occurring for thin shells, Areias and Belytschko [25] developed a shell element based on
Mindlin-Reissner theory was developed, A Kirchhoff-Love shell model was employed by Areias
et al. [26]. However, a possible drawback of the Kirchhoff-Love theory is that it is not capa-
ble to represent out-of-plane shear deformation. As to continuum damage with the involved
damage field representation a special shell model has been proposed by Kiendl et al. [27].
In order to properly handle thin-walled structures including general (3D) non-linear ductile
failure analyses, we adopt in this paper the 7-parameter shell model (without discontinuous
XFEM enhancement) used in e.g. refs. [1, 2]. The formulation avoids the "Poisson locking" ef-
fect occurring in the thin shell limit and allows for the representation of thickness strains due
to bending, cf. Betsch et al. [28], Parisch [29] and Bischoff and Ramm [30].

The paper is organised as follows: In Section 5.2, the kinematics of the 7-parameter shell
element formulation is reviewed, followed the momentum balance formulation. In Section
5.3, the visco-elasto-plasticity coupled to damage formulation is specified. In the damage–
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visco-plasticity coupling, a special damage driving energy (including a threshold for damage
initiation) is used in the damage evolution law based on the developments in [20]. In Section
5.4, two examples are presented in which the modelling approach to represent the ductile
failure process and its accuracy is verified and compared to an experiment. Finally, in Section
5.5, the paper is concluded with closing remarks and discussion.

5.2. SHELL KINEMATICS
In this section, the shell model for thin-walled structures subjected to dynamic ductile fracture
processes is outlined. In this development, the kinematics of the 7-parameter shell formula-
tion used in [4] is considered. We start by describing the reference and current configurations
of the shell and continue with weak form of the momentum balance.

5.2.1. REFERENCE AND CURRENT CONFIGURATIONS IN CONVECTED CO-
ORDINATES

The reference configuration B0 of the shell is defined in terms of the convected coordinates
(ξ1,ξ2,ξ) as

B0 =
{

X =Φ0[ξ1,ξ2,ξ] = Φ̄[ξ1,ξ2]+ξMΦ[ξ1,ξ2] and ξ ∈ h0

2
[−1,1]

}
(5.1)

where, as shown in Figure 5.1, Φ0[ξ1,ξ2,ξ] defines the mapping from a point in the inertial
Cartesian domain to the corresponding one in the reference domain. Therein, Φ̄ defines the
placement of the points on the mid-surface of the shell, MΦ defines outward unit normal vec-
tor to the mid-surface of the shell, and ξ1,ξ2 are the in-plane convected coordinates of the
shell. In order to further specify the placement of a point through-the-thickness of the shell,
the coordinate ξ is defined along the unit normal vector MΦ using the initial thickness of the
shell h0.

B0 , Ω0

ξMΦ

B , Ω

Γ

F

E2ξ2
ξ1E1

E3ξ
E= E3

Inertial Cartesian frame

Φ[ξ1, ξ2] , M[ξ1, ξ2]

Reference configuration

φc[ξ1, ξ2] , mc[ξ1, ξ2]

Current configuration

h0

ξ1G1

ξ2G2
ξ mc1+ ξγ

ξ1g1
ξ2g2

Γ0

∂B0 ∂B

m0

n0

B φd[ξ1, ξ2] , md[ξ1, ξ2]

Figure 5.1: Mappings of the reference and current shell configurations with respect to the inertial Carte-
sian frame. Here, B0 defines the 3D region of the shell, whereasΩ0 defines the mid-surface. Moreover, ∂B0
denotes the external boundary of the 3D domain and Γ0 refers to the (line) boundary of the mid-surface.
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The co-variant base vectors in the reference configuration are expressed as

Gα =Φ0,α = Φ̄,α+ξMΦ,α, α= 1,2 and G3 = G3 = MΦ. (5.2)

where •,α refers to the derivative with respect to ξα. The co-variant base vectors Gi and the
contra-variant base vectors Gi are related by Gi ⊗Gi = 1. Using the metric tensors Gij and G ij

we arrive at
G j =GijG

i , G j =G ijGi where Gij = Gi ·G j and G ij = (
Gij

)−1 (5.3)

Moreover, the infinitesimal volume element dB0 in the reference configuration can be defined
using the convected coordinates as

dB0 = b0dξ1dξ2dξ with b0 = (G1 ×G2) ·G3 (5.4)

In a similar fashion as before, the current configuration of the shell, B , can be specified in
terms of convected coordinates as

B =
{

x =ϕ[ξ1,ξ2,ξ] = ϕ̄[ξ1,ξ2]+ξm[ξ1,ξ2]+ 1
2ξ

2mγ[ξ1,ξ2]
}

(5.5)

where ϕ̄ is the mid-surface placement, m is the extensible director vector, and γ is the thick-
ness inhomogeneous field in the current configuration. In fact, the current mapping,ϕ, corre-
sponds to the second order Taylor expansion along the director, and the latter additional field
is intended to avoid Possion locking effect in shells, cf. ref. [28]. Furthermore, by defining the
spatial co-variant base vectors as

gα =ϕ⊗∇ξi
, i = 1,2,3. (5.6)

the deformation gradient can be expressed as

dx = F ·dX with F = gi ⊗Gi (5.7)

and given Eq. (5.6), the spatial co-variant base vectors can be elaborated as

gi =
{
ϕ̄,i +m,i

(
ξ+γ 1

2 (ξ)2
)
+mγ,i

1
2 (ξ)2 i = 1,2

m
(
1+γξ) i = 3

(5.8)

5.2.2. MOMENTUM BALANCE
In line with refs [2–4], the weak form of the momentum balance is formulated in terms of
contributions from inertia G ine, internal- G int and external virtual work Gext as Find: [ϕ̄,m,γ]
so that

G ine[ ¨̄ϕ,m̈, γ̈;δϕ̄,δm,δγ]+
G int[ϕ̄,m,γ;δϕ̄,δm,δγ]−

Gext[δϕ̄,δm,δγ] = 0 ∀ δϕ̄,δm,δγ (5.9)

where each contribution is further described as

G ine =
∫

B0

ρ0δϕ · ϕ̈dB0, (5.10)

G int =
∫

B0

(
δFt ·F

)
: SdB0, (5.11)

Gext =
∫

B0

ρ0δϕ ·bdB0 +
∫
∂B0

δϕ · t̄1dS0 (5.12)
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Here, b is the body force per unit volume, S is second Piola Kirchhoff stress tensor, and t̄1 =
Pt ·N (Pt is the first Piola-Kirchhoff stress) is the prescribed nominal traction vector on the
outer boundary ∂B0 as in Figure 5.1. Upon defining the displacement vector as n̂t = [ϕ̄,m,γ],
each contribution to the momentum balance can be reformulated as

G ine =
∫
Ω0

ρ0δn̂t (M̂ ¨̂n+M̂con)ω0 dξ1dξ2 (5.13)

G int =
∫
Ω0

δn̂t
c N̂cω0 dξ1dξ2 (5.14)

Gext =
∫
Γ0

(
δϕ̄ ·n0 +δm ·m̃0 +δγms

)
dΓ0 −

∫
Ω

p δϕ̄ ·gb1
×gb2

dΩ (5.15)

where in Eq. (5.14), δn̂t
c and N̂t

c are introduced as

δn̂t
c = [

δϕ̄,α,δm,α,δm,δγ,α,δγ
]

(5.16)

N̂t
c = [

Nα,Mα,T, Mα
s ,Ts

]
(5.17)

Here, Nα, Mα, T are the membrane, bending and shear/thickness stretch stress resultants,
respectively, whereas Mα

s and Ts are higher order stress resultants, cf. D.1 for the detailed
expressions. In Eq. (5.13), M̂ and M̂con are respectively consistent mass matrix and convective
mass force per unit area, where convective mass involves contributions from the thickness
inhomogeneous strain fields and the first order time derivative of the director vector (cf. D.2
and [1, 2]). Therein, to perform the integration a change in the domain from B0 (3D) to Ω0
(2D) via j0[ξ] = b0/ω0 is carried out as

dB0 = j0dξdΩ0 with dΩ0 =ω0dξ1dξ2 and ω0 = |Φ,1 ×Φ,2| (5.18)

Furthermore, in Eq. (5.15), p denotes pressure and n0, m̃0, ms , m0 are the stress resultants
due to the traction applied on the outer boundary, cf. D.1.

5.3. CONTINUUM DAMAGE MODELLING FRAMEWORK
In this section, we outline a thermodynamically motivated visco-elasto-plasticity formulation,
combined with a continuum damage model. Details may be found in [20]. Here, the deforma-
tion gradient F is considered subdivided into an elastic component F and the inelastic part
Fp , forming the total deformation gradient multiplicatively as F = F·Fp . We also introduce the

spatial velocity gradient l = Ḟ·F−1, which in view of the multiplicative split induces an additive
decomposition of l in elastic and inelastic portions l and lp as

l = l+ lp with l = Ḟ ·F
−1

and lp = F ·Lp ·F
−1

(5.19)

where Lp =: Ḟp · F−1
p is the plastic velocity gradient. Related to the non-symmetric spatial

velocity gradient l, let us also introduce the symmetric total and plastic rate of deformation
tensors as

d = lsym , dp = l
sym
p =−Lv

[
b
]
·b

−1
with Lv

[
b
]
= F · ˙

F−1 ·b ·F−t ·Ft (5.20)

where the •sym denotes the symmetric portion of the second order tensor • and Lv

[
b
]

is the

Lie derivative of the reversible Finger tensor b = F ·F.
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In order to represent the stress response, we introduce the stored free energy function

ψ = ψ
[

b,k,α
]

in the micro hardening k and the isotropic damage variable 0 ≤ α ≤ 1. Direct

application of the dissipation rate D ≥ 0 together with Colemans equations at isothermal con-
ditions yields the reduced disspation rate

D = τ : l− ψ̇= τ : dp +κk̇ +A α̇Ê 0 (5.21)

corresponding to the Kirchhoff stress τ, the micro hardening stress κ and the elastic damage
driving force A obtained as

τ= 2b · ∂ψ
∂b

, κ=−∂ψ
∂k

, A =−∂ψ
∂α

(5.22)

5.3.1. A VISCO-PLASTIC MODEL COUPLED TO CONTINUUM DAMAGE
In the present framework, we consider a scalar damage enhanced effective material model
where the damage evolution is induced by inelastic damage driving dissipation related to the
effective material, whose quantities are denoted by a hat, i.e. •̂. This is achieved by consid-
ering the isochoric part of the effective (=undamaged) material degraded with the damage
degradation function f [α] = (1−α)2 (where 0 ≤α≤ 1 is the isotropic damage variable) written
as

ψ= f [α]
(
ψ̂iso

[
b
]
+ ψ̂mic[k]

)
+ ψ̂vol[J ] (5.23)

where ψ̂iso is the isochoric part of the effective free energy, ψ̂mic represents stored energy due
to internal (isotropic) hardening processes in the material and ψ̂vol is the stored free energy
due to volumetric deformation. Moreover, J = det[F] denotes the (reversible) volumetric de-
formation.

In line with the Johnson-Cook (JC) model [21] for the effective material response, the stored
energy contributions are defined as

ψ̂iso = 1

2
G

(
1 : b

iso −3
)

, ψ̂vol = 1

2
K log[J ]2 , ψ̂mic = B

1+n
(−k)1+n (5.24)

where b
iso = J−

2
3 b is the isochoric portion of b, G is the shear modulus, K is the bulk modulus,

and according to the JC-model, B is the isotropic hardening parameter and n is the hardening
exponent.

In view of (5.22), (5.23) and (5.24), we now obtain the continuum stress, internal hardening
and elastic damage driving force as

τ= f [α]τ̂iso − J p1 , κ= f [α]κ̂ , A =− f ′[α]
(
ψ̂iso + ψ̂mic

)
(5.25)

where τ̂iso is the effective isochoric Kirchhoff stress tensor, κ̂ is the effective micro hardening
stress and p is the pressure. Note that the pressure is undamaged during the entire damage
process, i.e. p = p̂. The explicit expressions of the effective stress response (=response of the
virgin undamaged material) for our prototype model become

τ̂iso = 2
∂ψ̂iso

∂b
·b =Gb

iso
, p =−∂ψ̂

vol

∂ J̄
=−K J−1 log[J ] , κ̂=−∂ψ̂

mic

∂k
= Bkn (5.26)

where κ̂ is the isotropic hardening stress and p is the pressure in the material. This corre-
sponds to the dissiation rate (5.21) formulated in the effective and damage driving contribu-
tions, cf. ref [22], as

D = f [α]D̂+A α̇≥ 0 with D̂ = τ̂ : dp + κ̂k̇ (5.27)
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According to the Perzyna visco-plasticity format, the (deviatoric) rate of deformation is
postulated as

dp =λ3

2

τ̂iso

τ̂e
, k̇ =−λ with λ= ε̇0 exp

[ <φs >
C (A+ κ̂)

]
≥ ε̇0 > 0 (5.28)

where the plastic multiplier λ ≥ 0 is determined by the positive part < φs >. Here, φs is the
static “yield” function defined as

φs = τ̂e − (A+ κ̂) , κ̂= B(−k)n (5.29)

where τ̂e is the von Mises stress. Moreover, in line with the JC-model, A is the initial yield
stress, B is the isotropic hardening parameter, n is the hardening exponent, C is a viscosity
parameter and ε̇0 is the reference strain rate parameter. In view of the visco-plastic flow rule
(5.28), the effective dissipation rate D̂ in (5.27) for visco-plastic loading φs ≥ 0 is obtained as
D̂ =λ(

A+<φs >
)
.

5.3.2. DAMAGE DRIVING DISSIPATION RATE AND DAMAGE EVOLUTION

MODEL
To motivate the damage driving dissipation rate, let us reconsider the dissipation rate (5.27) in
terms of the total dissipation D̂T of the effective material defined as

D[t ] = f [α]D̂+A α̇=
.

f D̂T + (B+A ) α̇≈
.

f D̂T +Bα̇ (5.30)

where the inelastic damage driving force B and the total effective dissipation are defined as

D̂T [t ] =
∫ t

0
D̂ d t , B[t ]− f ′[α]D̂T (5.31)

As alluded to in (5.30), it is assumed in this paper that the elastic damage driving energy A is
small enough to be neglected. This approximation is justified from that the elastic deforma-
tion is limited by the yield stress A, whereby the damage driving energy is dominated by the
inelastic contribution B. In this way the total dissipation is completely described the inelastic
damage driving energy, i.e. during a full damage evolution process one obtains

DT =
∫ t

0
D d t = f D̂T +

∫ t

0
Bα̇d t →

∫ 1

0
B dα (5.32)

To increase flexibility of damage driving energy, a damage threshold for onset of dam-
age evolution is introduced. This is done by considering the dissipation rate (5.27) evaluated
before and after the onset of damage happening at t = t f , where t f is the threshold time dic-
tated by e.g. the JC–fracture initiation criterion [23]. To this end, it appears, cf. also [22], that

the total dissipation rate (5.27) can be formulated in the total shifted effective dissipation D̂
f
T ,

evaluated for t ≥ t f . This is written as

D[t ] =
 f [α]D̂+A α̇≈ f [α]D̂ 0 ≤ t ≤ t f.

f D̂
f
T +

(
B f +A

)
α̇≈

.

f D̂
f
T +B f α̇ t ≥ t f

(5.33)

Hence, onset of damage evolution occurs when t = t f is apporached and B f is the shifted
inelastic damage driving energy defined as

B f [t ]− f ′[α]D̂
f
T and D̂

f
T [t ] =

∫ t

t f

D̂ d t (5.34)
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Evidently, different expressions for the dissipation rate are obtained whether the damage
threshold has been arrived at or not. Damage loading/unloading α̇ ≥ 0 may happen only for
t ≥ t f . For t ≥ t f damage loading α̇> 0 is controlled by the damage evolution law of Bingham
type, cf. Larsson et. al [24], defined as

lc α̇= v∗ <αs [α]−α> with αs = lc

Gc
B f (5.35)

where (again) < • > is the positive part function and αs represents source of damage energy
from elastic-plastic deformation. Here, Gc is the fracture energy release parameter and lc is
the internal length parameter describing the diffuse character of the fracture area as indicated
in Fig 5.2. Please note that the damage evolution law may be interpreted as a local balance for
law for the damage production. In the case of damage loading αs −α > 0, the local damage
production lc α̇ and the convection v∗α (where v∗ is the damage progression velocity) balance
input damage production v∗αs = v∗α+ lc α̇. This is depicted in Fig. 5.2. As opposed to the
rate independent damage evolution case corresponding v∗ → ∞ and α = αs [α], we find in
the FE-application that the damage field corresponding to (5.35) exhibits a damage pattern
that generally localise in a consistent way within a fixed shear band width, depending on the
internal crack evolution velocity v∗ and the internal length parameter lc .

4

B0

h0

∂B0

B0

∂B0
lc

N

v*
α
. > 0

α
. = 0

α
. = 0Γs

lc

v*
α
. > 0

α
. = 0 α

. = 0

Figure 5.2: Diffuse fracture area progression within localisation zone α̇> 0 of width lc in shell structure.

5.4. NUMERICAL EXAMPLES
In this section, in order to verify and investigate the accuracy of the continuum ductile failure
model, two examples are presented. In the first example, a plane strain plate subjected to
a uniform tensile loading is considered to study the influence of the mesh refinement and
damage zone front propagation velocity. The second example concerns a pre-notched pipe
under a four point bending load case, where the accuracy of the proposed continuum ductile
damage model together with the shell kinematics is investigated.

In all the simulations a 6-node triangular element mesh with 6 in-plane integration points
and 4 through-the-thickness integration points is used. For computational efficiency, we ex-
ploit the hypo-inelastic concept based on the Green-Naghdi stress rate for the numerical inte-
gration of the visco-plastic flow rule, as proposed in [31] and [2]. To define the damage thresh-
old time t f in (5.33), we consider the JC-fracture criterion [23] stating that onset of plastic
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damage evolution is obtained whenever the equivalent plastic strain k approaches the plastic
failure strain ε

p
f , where

ε
p
f = (

d1 +d2 exp[−d3r ]
)(

1+d4 log

[
λ

ε̇0

])
(5.36)

and d1–d4 and ε̇0 are parameters.

5.4.1. UNIFORM HIGH SPEED TENSION LOADED PLANE STRAIN PLATE

WITH AN IMPERFECTION
In this example, a plane strain plate under high speed extension is investigated. Here, the sen-
sitivity of the response to the damage zone front propagation velocity; also the FE–convergence
behaviour for reduced mesh sizes is studied.

As depicted in Figure 5.3, the plate is 50mm by 50mm with an imperfection with a de-
graded yield stress and size of 4mm by 4mm located in the center of the plate in order to
avoid homogeneous stress state and promote a pattern for the failure zone. At the bottom
side of the plate all nodes are constrained in the vertical direction while the left corner is fully
constrained. To introduce the deformation in the plate a velocity of 2500mm/s in vertical di-
rection is also applied on all nodes associated with the top edge of the plate. The parameters
used for the failure model and Johnson-Cook material model to capture the response of the
pearlitic steel assigned to the plate are provided in Table 5.1.

4 mm

4
 m

m

50 mm

5
0
 m

m

0.7σ
0

Figure 5.3: Tensile loading of the plane strain plate with an imperfection in the center. The yield limit is
assigned to be 70% less than rest of the domain.
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Table 5.1: Material parameters used for Johnson-Cook model as well as the failure parameters for the
pearlitic plane strain plate from [32].

A [MPa] B [MPa] C n m ν ρ [ kg
m3 ]

550 500 0.0804 0.4 1.68 0.3 7850

d1 d2 d3 d4 d5 ε̇0[s−1] E [GPa]

0.25994 0.61368 2.5569 -0.027652 0.6 0.001 190

SENSITIVITY STUDY OF THE PROPAGATION VELOCITY v∗
In order to investigate the sensitivity of the response to the damage zone front propagation
velocity, four different cases with velocities ranging from 10000mm/s to 1000000mm/s are
considered for which the element size is le =1mm.

As shown in Figure 5.5, a lower propagation velocity results in a more ductile response of
the plate. It is due to the fact that lower propagation velocity provides more time for the dam-
age zone to develop. It is also observed that the convergence in the response for the pearlitic
steel is obtained for v∗ = 250000 mm/s.

SENSITIVITY STUDY OF INTERNAL LENGTH PARAMETER AND ELEMENT SIZE

In order to investigate the influence of the internal length parameter lc on the response of the
plate, a range of different internal length values between 0.1mm to 10mm is studied while
keeping the FE-element size le =1 mm fixed. As it may be seen in Figure 5.6, assigning a lower
internal length parameter, response of the plate becomes more ductile. It is also clear that a
converged response is reached at internal length of 1mm. Considering the fixed element size,
it can be concluded that in order to achieve the converged response, the minimum length
assigned to the internal length parameter needs to be the same size as the element size used.

In line with the previous finding, we assign the converged propagation velocity 250000
mm/s, and also the internal length parameter as the mesh size, sensitivity of the response with
respect to different discretisations is studied. As it is seen in Figure 5.8, mesh convergence is
obtained between the element sizes le = 1 mm and le = 1.5 mm.

5.4.2. PRE-NOTCHED PIPE UNDER FOUR POINT BENDING LOAD
In order to verify the behaviour of the damage model in conjunction with the current shell
kinematics, a four point bending test of a pre-notched carbon-steel pipe is studied. As it is
seen in Figure 5.9, the pipe is of length of 4m, diameter of 219mm and thickness of 15.1mm.
For the boundary condition, at the right bottom corner of the pipe all translational degrees of
freedom are constrained while at the left bottom corner it is free to slide along the longitudinal
direction. In order to apply the displacement to the pipe, a velocity of 2m/s in the vertical
direction is prescribed at two points on top of the pipe. To mimic the physical test, the rate-
dependent part of the model is eased and for sake of simplicity only the inelastic part, B f ,
of the damage driving force is considered. Material parameters used for the Johnson-Cook
model are also listed in Table 5.2.

It is found in [33] that the fracture energy, Gc , varies from 2× 103 and 8× 103 kJ/m2 as
the crack length increases. However for simplicity it is opted to consider the median value,
5× 103 kJ/m2, as the fracture energy. For the internal length parameter, lc , in line with the
findings in the previous example, it is chosen to be the average mesh size around the failure
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a) b)

c) d)

Figure 5.4: Convergence study of damage zone front propagation velocity, a) v∗ of 10000mms−1, b) v∗ of
250000mms−1, c) v∗ of 500000mms−1 and , d) v∗ of 1000000mms−1.
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Figure 5.5: Force versus displacement relationships at convergence study with respect to the propagation
velocity v∗. The element size is le = 1mm.

Figure 5.6: Force versus displacement relation for different choices of the internal length parameter.

zone. The fracture criterion utilised herein is von Mises yield stress given the fact there was no
data available in terms of Johnson-Cook fracture criterion for carbon-steel S A333Gr 6.
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a) b)

c) d)

Figure 5.7: Convergence study with respect to mesh size, a) le of 1mm, b) le of 1.5mm, c) le of 2mm, and
, d) le of 3mm.
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Figure 5.8: Force versus displacement relations for different choices of element size. The internal length
is lc =2mm.

Table 5.2: Material parameters used for Johnson-Cook model for the carbon-steel pipe.

A [MPa] B [MPa] n E [GPa] ν ρ [ kg
m3 ]

288 558 0.535 180 0.3 7850
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Figure 5.9: Four point bending test of a pre-notched carbon-steel pipe

SENSITIVITY STUDY WITH RESPECT TO PROPAGATION VELOCITY

In this subsection, and in line with the previous example, in order to find the propagation ve-
locity v∗ at which convergence in results is achieved, five cases with different propagation ve-
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locities are investigated. As seen in Figure 5.10, different velocities studied are between 10m/s
and 500m/s and convergence in the result is observed at 100m/s. Given the converged propa-
gation velocity further investigation on sensitivity of the results with respect to mesh size may
be carried out.

Figure 5.10: Force versus displacement for different propagation velocities

SENSITIVITY STUDY WITH RESPECT TO MESH SIZE

In order to validate the damage model, two different discretisations are utilised where for the
coarse and fine cases, size of the mesh around the damage zone is respectively 20mm and
12mm. In line with the findings in the previous example, the internal length parameter is as-
signed the same length as the mesh size around the damage zone. Figure 5.11, 5.12 and 5.13
present respectively the deformed state of the pipe once loaded and the force versus displace-
ment measured at the points where displacement is prescribed for. As it is seen in Figure 5.13,
Comparing the results with the experimental result in [33], the response captured using the
proposed approach is in perfect agreement with experimental one.

5.5. CONCLUDING REMARKS
In the current contribution, a method to represent the ductile fracture process of thin-walled
structures under high strain rate loads is presented. For this, a scalar damage enhanced model
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Figure 5.11: Deformed state of the pipe once loaded

Figure 5.12: Deformed state of the pipe once loaded

where the damage is induced by shear deformation via degradation of the isochoric part of
the effective material is developed. To represent the response of the effective material, visco-
elaso-plastic model of Johnson-Cook is employed, where evolution of the damage is governed
by the balance between the energy dissipation due to damage driving energy and the energy
dissipation due to production of new fracture surface area. Progression of the fracture sur-
face is formulated in terms of the fracture area propagation velocity and an internal length
parameter specifying the diffuse character of the fracture area. Therein, the inelastic part of
the contribution to the damage driving energy is regarded to be dominant whereas onset of
the damage evolution occurs once the threshold is reached. Based on the numerical exam-
ples presented, it is observed that lowering the propagation velocity leads to a more ductile
behaviour which is due to more time available for the damage to develop. Moreover, by in-
creasing the propagation velocity convergence in the response is achieved. Performing the
sensitivity studies on the internal length parameter and the element size, it is shown that by
assigning a lower internal length the response becomes more ductile. It is also seen that by
increasing the internal length convergence in the response is obtained. Another finding is
that the internal length should be assigned such that it is the same size as the element size or
preferably larger than the element size employed.

As the validation case, a four point bending test of a pre-notched pipe is investigated. In
line with the findings of the first examples, the internal length parameter is assigned the same
size as the average element size within the neighbourhood of the damage zone. Performing
the sensitivity study with respect to the propagation velocity, the velocity at which conver-
gence is obtained is used to compare the response captured by the model against the exper-
iment. Comparing the force versus displacement obtained from the proposed model to the
experiment a perfect agreement between the two is seen. It shows the capability of the pro-
posed approach to capture the accurate behaviour of the structure provided that the proper
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Figure 5.13: Force versus displacement for different mesh sizes

calibration for the parameters in the model is carried out.
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6
CONCLUSION

A framework capable of analysing ductile fracture of thin-walled steel structures subjected to
high strain rates has been developed. Of particular importance was the application to large
scale structures for which an efficient numerical procedure is required.

As the first contribution, a modelling approach for dynamic crack propagation in elasto-
plastic thin-walled structures is proposed. For that, a hypoelastic-inelastic framework based
on the Johnson and Cook phenomenological model is employed. Therefore, temperature and
plastic strain rate dependencies that are of high significance in case of impact load are ac-
counted for. To represent the shell kinematics a 7-parameter shell formulation with exten-
sible directors and second order inhomogeneous thickness deformation is used. To model
the through-the-thickness crack, the shifted version of XFEM is utilised. Resisting forces at
the failure process zone are represented using a damage-viscoplastic cohesive zone model.
To validate the proposed model different numerical examples are presented and the results
obtained are shown to correlate well with the experiments. Based on the results, accounting
for the large plastic deformation and including the rate dependency in both bulk and cohe-
sive zone models are of high significance. Furthermore, in order to mitigate the oscillations
triggered during crack propagation, two methods are investigated which are proven to be of
computational importance for explicit temporal integration. Another finding in the current
development is that if the crack is made to propagate in a more smooth way by extending it
step-wise with shorter segments less oscillations occur. This is due to the fact that a smaller
part of the domain is affected by the enrichment to introduce the discontinuity.

Given the intended application of the current developments to large scale structures, fur-
nishing a coarse mesh for spatial discretisation is preferable. It is therefore of importance to
represent the crack path with more detail without resorting to the standard remeshing proce-
dures which increases the computational cost. To this end, the second contribution concerns
representation of the discontinuity via an XFEM based subscale refinement of the crack tip el-
ement where the spatial discretisation of the domain remains intact. For this, a combination
of subscale refinement of the continuous and discontinuous fields with dynamic condensa-
tion of the additional continuous and discontinuous degrees of freedom is employed. The
proposed method is verified using various numerical examples and it is shown that accurate
kinematical representation of the kinks and crack tip within an element is captured. Moreover,
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it is shown that a more detailed crack path representation may result in a significantly differ-
ent load-displacement relation. It is caused by a different crack path and orientation captured
which also leads to a different mass distribution. It is also noted that the proposed approach
allows for the introduction of shorter crack segments during crack propagation which is ob-
served to decrease the artificial oscillations in the structural response.

In line with the previous development, the third contribution involves a new phantom
node based method to represent the crack tips and kinks within an element. The main advan-
tage compared to the previous developments lies in the more straightforward implementation
of the phantom node method. Similar to XFEM, this approach considers each cracked element
as a sub-scale problem for which additional nodes are introduced. To couple the sub-scale
problem with the macro-scale domain, a dynamic condensation method is employed which
results in a more efficient computation. Using this approach, further refinement around the
crack tip needed to capture the accurate response can be avoided. The proposed method is
presented using a 6-node triangle element, however it is applicable to any type of finite ele-
ment. To investigate the accuracy of the proposed method, several examples are presented
and it is shown that for both hypo-elastic and hypo-plastic cases the accurate kinematics are
captured. Moreover, cohesive traction along the crack is also represented accurately.

As a final contribution, in order to investigate a diffuse failure modelling approach, a scalar
damage enhanced model is developed. In this, the damage is governed by shear deformation
via degradation of the isochoric part of the effective material. The behaviour of the effective
material is captured via a visco-elasto-plastic framework based on the Johnson-Cook model.
For damage evolution, an energy balance is specified between the damage driving dissipation
and the dissipation due to production of new fracture surface. To specify diffuse fracture and
its progression, it is formulated in terms of the fracture area progression velocity, the rate of
damage, and the internal length parameter representing the width of the diffuse fracture area.
In order to perform sensitivity analyses with respect to the various parameters in the model,
different examples are presented. Based on the results, it is shown that lowering the propaga-
tion velocity leads to a more ductile behaviour. This is due to the fact that damage has time
to develop. As expected, by increasing the propagation velocity, convergence in the force-
displacement curve is observed. Investigating the influence of the internal length parameter,
it is observed that considering a smaller internal length parameter results in a more ductile
behaviour. It is also shown that increasing the internal length parameter, convergence in the
force-displacement curve is achieved. Furthermore it is noted that the internal length param-
eter needs to be assigned properly such that it is not lower than the average element size in the
vicinity of the failure process zone. Given all the aforementioned findings regarding different
parameters in the model, a four point bending test as a validation case is investigated and the
response obtained is found to be in perfect agreement with the experiment. It shows the ca-
pability of the proposed model to accurately represent the response of the structure provided
that calibration of the internal parameters is carried out properly.

In the current research, main emphasis was on the accurate modelling of the shell kine-
matics, the representation of the propagating strong discontinuity and the diffuse fracture in
the domain under consideration. Capturing the accurate behaviour of the bulk material as
well as the interface material were also of importance to propose a framework capable of rep-
resenting the response of a thin-walled structure under impact load case. However, there are
other influential factors and details which can be further explored. Future research may inves-
tigate developing a reliable mass scaling scheme to lower the computational cost, yet main-
taining the accurate kinematics of the shell formulation required. It is considered to be of high
importance to be able to model behaviour of the large scale structures within reasonable time
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and cost. In the current research, initial steps towards this goal are taken, however due to lack
of validation study it is not included in this manuscript. An addition to the current kinematic
representation of the crack to address in future research is a curved crack path within cracked
elements. To clarify, in case of elements spanning along a curvature, proper representation of
the crack path such that it follows the curvature within the element is of significance. Ignoring
such details once modelling shell structures with a coarse mesh may result in large errors in
the crack propagation path. In the current research initial developments to tackle this prob-
lem are carried out, however due to lack of experimental result and validation test cases, it is
not addressed in this manuscript. Considering the main application of the current research,
impact loading, accounting for temperature variation in material can result in a more accurate
response captured. Addressing this requires a thermo-mechanical coupling model which can
be studied in future research.

115



544248-L-bw-Mostifizadeh544248-L-bw-Mostifizadeh544248-L-bw-Mostifizadeh544248-L-bw-Mostifizadeh
Processed on: 2-6-2020Processed on: 2-6-2020Processed on: 2-6-2020Processed on: 2-6-2020 PDF page: 130PDF page: 130PDF page: 130PDF page: 130



544248-L-bw-Mostifizadeh544248-L-bw-Mostifizadeh544248-L-bw-Mostifizadeh544248-L-bw-Mostifizadeh
Processed on: 2-6-2020Processed on: 2-6-2020Processed on: 2-6-2020Processed on: 2-6-2020 PDF page: 131PDF page: 131PDF page: 131PDF page: 131

ACKNOWLEDGEMENTS

This research was carried out in the project M41.2.10378 "Failure of thin-walled structures un-
der blast and impact loading" within the framework of the Research Program of the Materials
innovation institute M2i, (www.m2i.nl), at the Department of Applied Mechanics at Chalmers
University of Technology and Faculty of Civil Engineering and Geosciences at Delft University
of Technology.

First of all, I would like to take the opportunity to thank my excellent supervisors at Chalmers
University of Technology, Professor Ragnar Larsson and my co-supervisor Associate professor
Martin Fagerström, for their invaluable guidance, involvement, encouragement and especially
their endless patience and understanding. I would also like to express my gratitude and ap-
preciation to my supervisors at Delft University of Technology, Professor Bert Sluys and Frans
van der Meer, for their support and guidance during this research.

Furthermore, I want to thank my friends and colleagues at the Division of Material and
Computational Mechanics at Chalmers and structural mechanics section at Delft for creating
a motivating and pleasant working environment. I specially thank Mohammad Rouhi, Amin
Karamnejad, Mehdi Musivand Arzanfudi and Senad Razanica for being such a great friend
during this journey.

Most importantly, I would like to thank my lovely parents and my sister, for their endless
support through these years. Last, but definitely not least, I wish to thank my wonderful wife,
Shabnam Ilchikabir, and my lovely baby girl , Elena, for all their love and patience.

Salar Mostofizadeh
Gothenburg, Oct 2019

117

https://www.m2i.nl/


544248-L-bw-Mostifizadeh544248-L-bw-Mostifizadeh544248-L-bw-Mostifizadeh544248-L-bw-Mostifizadeh
Processed on: 2-6-2020Processed on: 2-6-2020Processed on: 2-6-2020Processed on: 2-6-2020 PDF page: 132PDF page: 132PDF page: 132PDF page: 132



544248-L-bw-Mostifizadeh544248-L-bw-Mostifizadeh544248-L-bw-Mostifizadeh544248-L-bw-Mostifizadeh
Processed on: 2-6-2020Processed on: 2-6-2020Processed on: 2-6-2020Processed on: 2-6-2020 PDF page: 133PDF page: 133PDF page: 133PDF page: 133

A
APPENDIX A

A.1. STRESS RESULTANTS

The through-thickness integrated stress resultants referred to in Eq. (2.26) are defined as
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Nα =
∫ h0/2

−h0/2
Sαk gck j0dξ (A.1)

Mα =
∫ h0/2

−h0/2

(
1+ 1

2
γξ

)
ξSαk gck j0dξ (A.2)

T =
∫ h0/2

−h0/2

((
1+γξ)S3k gck +

1

2
ξ2Sαk ·gckγ,α

)
j0dξ (A.3)

Mα
s =

∫ h0/2

−h0/2

1

2
ξ2Sαk mc ·gck j0dξ (A.4)

Ts =
∫ h0/2

−h0/2

(
1

2
ξ2Sαk mc,α ·gck +ξS3k mc ·gck

)
j0dξ (A.5)

Nα
d =

∫ h0/2

−h0/2
Sαk gck j0dξ (A.6)

Mα
d =

∫ h0/2

−h0/2
ξSαk gck j0dξ (A.7)

Td =
∫ h0/2

−h0/2
S3k gck j0dξ (A.8)

n0 =
∫ h0/2

−h0/2
t̄1dξ (A.9)

m̃0 =
∫ h0/2

−h0/2
ξ

(
1+ 1

2
ξγ

)
t̄1dξ (A.10)

ms =
∫ h0/2

−h0/2

1

2
ξ2mc · t̄1dξ (A.11)

m0 =
∫ h0/2

−h0/2
ξt̄1dξ (A.12)

nS =
∫ h0/2

−h0/2
t1dξ (A.13)

mS =
∫ h0/2

−h0/2
ξt1dξ (A.14)

where Sαk are the contra-variant components of the second Piola Kirchhoff stress tensor S,
gck the spatial co-variant basis vectors defined in Eq. (2.17), j0 the relation between area and
volumetric measures of the shell defined in Eq. (2.24) and t1 is the nominal traction vector of
the cohesive zone defined by t1 = Pt ·NS . It should be remarked that these stress resultants are
very similar to the ones obtained in the formulation by Larsson et al. [1]. However, since the
discontinuity enrichment is introduced in a different way in the current paper, they are not
identically the same.
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A.2. MASS MATRIX

The consistent mass matrix M̂ and the convective mass (force) M̂con introduced in Eq. (2.23)
have, for the current kinematical representation, the explicit forms

M̂ =
∫ h0

2

− h0
2

ρ0

4
·


41 2ξ

(
2+γξ)1 2mcξ

2 41 4ξ1

2ξ
(
2+γξ)1 ξ2(

2+γξ)21 ξ3 (
2+γξ)mc 2ξ

(
2+γξ)1 2ξ2 (

2+γξ)1
2ξ2mc ξ3 (

2+γξ)mc ξ4mc ·mc 2ξ2mc 2ξ3mc
41 2ξ

(
2+γξ)1 2mcξ

2 41 4ξ1
4ξ1 2ξ2 (

2+γξ)1 2mcξ
3 4ξ1 4ξ21

 ·
j0[ξ]dξ (A.15)

and

M̂con =
∫ h

2

− h
2

ρ0


ξ21

1
2ξ

3 (
2+γξ)1

1
2ξ

4mt
c

ξ21
ξ31

ṁc γ̇ j0[ξ]dξ. (A.16)

It turns out that the mass contributions can be integrated explicitly in the thickness direc-
tion, whereby in view of Eq. (2.24) it is noted that the volume measure j0[ξ] (relating to the
undeformed configuration) can to be developed in terms of the covariant vectors as

j0 = b0

ω0
= a1ξ

2 +a2ξ+a3 (A.17)

where

a1 = |MΦ,1 ×MΦ,2|
|Φ,1 ×Φ,2|

, a2 = MΦ · (Φ1 ×MΦ,2 +MΦ,1 ×Φ2
)

|Φ,1 ×Φ,2|
, a3 = 1 (A.18)

Hence, the explicit integrated result of the consistent mass matrix M̂ in Eq. (A.15) is in view of
(A.17) obtained as

M̂ =


M11 M12 M13 M14 M15
M21 M22 M23 M24 M25
M31 M32 M33 M34 M35
M41 M42 M43 M44 M45
M51 M52 M53 M54 M55

 (A.19)

where one obtains e.g. the components

(
M11 M12
M21 M22

)
=

= ρ0

 (
1

12 h3a1 +ha3

)
1 1

480 h3 (
3h2γa1 +40a2 +20γa3

)
1

1
480 h3 (

3h2γa1 +40a2 +20γa3
)

1
h3(

3h2((
112+5h2γ2)

a1+112γa2
)+28

(
80+3h2γ2)

a3
)

26880 1


(A.20)
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We also obtain the integrated result for the convective contribution M̂con in Eq. (A.16) as

M̂con = ρ0



1
240 h3 (

3h2a1 +20a3
)

h5(
5h2γa1+56a2+28γa3

)
4480

h5(
5h2a1+28a3

)
4480 mt

c
1

240 h3 (
3h2a1 +20a3

)
1

80 h5a2

ṁc γ̇ (A.21)
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B
APPENDIX B

B.1. EXPLICIT TERMS IN THE DISCRETISED FORM OF THE

MOMENTUM BALANCE

Individual terms in Eq. (3.19) are defined as:
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Me
cc =

∫
B e

0

ρ0
(
ψ̂

)t
ψ̂ dV (B.1)

Me
cd =

(
Me

dc

)t =
∫

B e
0

ρ0
(
ψ̂

)t
ψ̂H̃S

dV (B.2)

Me
ccs

= (
Me

cs c
)t =

∫
B e

0

ρ0
(
ψ̂

)t
ψ̂ (B.3)

Me
cds

=
(
Me

ds c

)t =
∫

B e
0

ρ0
(
ψ̂

)t
ψ̂H̃S

dV (B.4)

Me
dd =

∫
B e

0

ρ0

(
ψ̂H̃S

)t
ψ̂H̃S

dV (B.5)

Me
dcs

=
(
Me

cs d

)t =
∫

B e
0

ρ0

(
ψ̂H̃S

)t
ψ̂ dV (B.6)

Me
dds

=
(
Me

ds d

)t =
∫

B e
0

ρ0

(
ψ̂H̃S

)t
ψ̂H̃S

dV (B.7)

Me
cs cs

=
∫

B e
0

ρ0
(
ψ̂

)t
ψ̂ dV (B.8)

Me
cs ds

=
(
Me

ds cs

)t =
∫

B e
0

ρ0
(
ψ̂

)t
ψ̂H̃S

dV (B.9)

Me
ds ds

=
∫

B e
0

ρ0

(
ψ̂H̃S

)t
ψ̂H̃S

dV (B.10)

fe,ext
c =

∫
∂B e

0

(
ψ̂

)t t̄1 dA (B.11)

fe,i nt
c =

∫
B e

0

(
B̂

)t P̂t dV (B.12)

fe,ext
d =

∫
∂B e

0

(
ψ̂H̃S

)t
t̄1 dA (B.13)

fe,i nt
d =

∫
B e

0

(
B̂H̃S

)t
P̂t dV (B.14)

fe,coh
d =

∫
Γe

S

(
ψ̂H̃S

)t
t1 dA (B.15)

fe,i nt
cs

=
∫

B e
0

(
B̂

)t P̂t dV (B.16)

fe,i nt
ds

=
∫

B e
0

(
B̂H̃S

)t
P̂t dV (B.17)

fe,coh
ds

=
∫
Γe

S

(
ψ̂H̃S

)t
t1 dA. (B.18)

Individual terms in Eq. (3.67) are defined as:
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Me
cc =

∫
Ωe

0

ρ0NF E
1

t
M̂NF E

1 ω0dξ1dξ2 (B.19)

Me
cd =

(
Me

dc

)t =
∫
Ωe

0

ρ0NF E
1

t
M̂NF E

2 ω0dξ1dξ2 (B.20)

Me
ccs

= (
Me

cs c
)t =

∫
Ωe

0

ρ0NF E
1

t
M̂NF E

3 ω0dξ1dξ2 (B.21)

Me
cds

=
(
Me

ds c

)t =
∫
Ωe

0

ρ0NF E
1

t
M̂NF E

4 ω0dξ1dξ2 (B.22)

Me
dd =

∫
Ωe

0

ρ0NF E
2

t
M̂NF E

2 ω0dξ1dξ2 (B.23)

Me
dcs

=
(
Me

cs d

)t =
∫
Ωe

0

ρ0NF E
2

t
M̂NF E

3 ω0dξ1dξ2 (B.24)

Me
dds

=
(
Me

ds d

)t =
∫
Ωe

0

ρ0NF E
2

t
M̂NF E

4 ω0dξ1dξ2 (B.25)

Me
cs cs

=
∫
Ωe

0

ρ0NF E
3

t
M̂NF E

3 ω0dξ1dξ2 (B.26)

Me
cs ds

=
(
Me

ds cs

)t =
∫
Ωe

0

ρ0NF E
3

t
M̂NF E

4 ω0dξ1dξ2 (B.27)

Me
ds ds

=
∫
Ωe

0

ρ0NF E
4

t
M̂NF E

4 ω0dξ1dξ2 (B.28)

fe,i nt
c =

∫
Ωe

0

BF E
1

t
N̂c ω0dξ1dξ2 (B.29)

fe,i nt
d =

∫
Ωe

0

BF E
3

t
N̂d ω0dξ1dξ2 (B.30)

fe,i nt
cs

=
∫
Ωe

0

BF E
2

t
N̂c ω0dξ1dξ2 (B.31)

fe,i nt
ds

=
∫
Ωe

0

BF E
4

t
N̂d ω0dξ1dξ2 (B.32)

fe,coh
d =

∮
LΓe

S

NF E
5

t
N̂coh dL (B.33)

fe,coh
ds

=
∮
LΓe

S

NF E
6

t
N̂coh dL (B.34)

(B.35)

B.2. STRESS RESULTANTS

The through-thickness integrated stress resultants referred to in Eq. (3.55) are defined as:
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Nα =
∫ h0/2

−h0/2
Sαk gbk

j0dξ (B.36)

Mα =
∫ h0/2

−h0/2

(
1+ 1

2
γξ

)
ξSαk gck

j0dξ (B.37)

T =
∫ h0/2

−h0/2

((
1+γξ)S3k gbk

+ 1

2
ξ2Sαk ·gbk

γ,α

)
j0dξ (B.38)

Mα
h =

∫ h0/2

−h0/2

1

2
ξ2Sαk mc ·gbk

j0dξ (B.39)

Th =
∫ h0/2

−h0/2

(
1

2
ξ2Sαk mc,α ·gbk

+ξS3k mc ·gbk

)
j0dξ (B.40)

Nα
d =

∫ h0/2

−h0/2
Sαk gbk

j0dξ (B.41)

Mα
d =

∫ h0/2

−h0/2
ξSαk gbk

j0dξ (B.42)

Td =
∫ h0/2

−h0/2
S3k gbk

j0dξ (B.43)

n0 =
∫ h0/2

−h0/2
t̄1dξ (B.44)

m̃0 =
∫ h0/2

−h0/2
ξ

(
1+ 1

2
ξγ

)
t̄1dξ (B.45)

ms =
∫ h0/2

−h0/2

1

2
ξ2mc · t̄1dξ (B.46)

m0 =
∫ h0/2

−h0/2
ξt̄1dξ (B.47)

nS =
∫ h0/2

−h0/2
t1dξ (B.48)

mS =
∫ h0/2

−h0/2
ξt1dξ (B.49)

where Sαk are the contra-variant components of the second Piola Kirchhoff stress tensor S,
gbk

the spatial co-variant basis vectors defined in Eq. (3.50), j0 the relation between area and
volumetric measures of the shell defined in Eq. (3.57) and t1 is the nominal traction vector of
the cohesive zone defined by t1 = Pt ·NS .
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B.3. MASS MATRIX

The consistent mass matrix M̂ and the convective mass (force) M̂con introduced in Eq. (3.54)
have, for the current kinematical representation, the explicit forms

M̂ =
∫ h0

2

− h0
2

ρ0

4
·


41 2ξ

(
2+γξ)1 2mcξ

2 41 4ξ1

2ξ
(
2+γξ)1 ξ2(

2+γξ)21 ξ3 (
2+γξ)mc 2ξ

(
2+γξ)1 2ξ2 (

2+γξ)1
2ξ2mc ξ3 (

2+γξ)mc ξ4mc ·mc 2ξ2mc 2ξ3mc
41 2ξ

(
2+γξ)1 2mcξ

2 41 4ξ1
4ξ1 2ξ2 (

2+γξ)1 2mcξ
3 4ξ1 4ξ21

 ·
j0[ξ]dξ (B.50)

and

M̂con =
∫ h

2

− h
2

ρ0


ξ21

1
2ξ

3 (
2+γξ)1

1
2ξ

4mt
c

ξ21
ξ31

ṁc γ̇ j0[ξ]dξ. (B.51)

It turns out that the mass contributions can be integrated explicitly in the thickness direc-
tion, whereby in view of Eq. (3.57) it is noted that the volume measure j0[ξ] (relating to the
undeformed configuration) can to be developed in terms of the covariant vectors as

j0 = b0

ω0
= a1ξ

2 +a2ξ+a3 (B.52)

where

a1 = |MΦ,1 ×MΦ,2|
|Φ,1 ×Φ,2|

, a2 = MΦ · (Φ1 ×MΦ,2 +MΦ,1 ×Φ2
)

|Φ,1 ×Φ,2|
, a3 = 1 (B.53)

Hence, the explicit integrated result of the consistent mass matrix M̂ in Eq. (B.50) is in view of
(B.52) obtained as

M̂ =


M11 M12 M13 M14 M15
M21 M22 M23 M24 M25
M31 M32 M33 M34 M35
M41 M42 M43 M44 M45
M51 M52 M53 M54 M55

 (B.54)

where one obtains e.g. the components

(
M11 M12
M21 M22

)
=

= ρ0

 (
1

12 h3a1 +ha3

)
1 1

480 h3 (
3h2γa1 +40a2 +20γa3

)
1

1
480 h3 (

3h2γa1 +40a2 +20γa3
)

1
h3(

3h2((
112+5h2γ2)

a1+112γa2
)+28

(
80+3h2γ2)

a3
)

26880 1


(B.55)
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We also obtain the integrated result for the convective contribution M̂con in Eq. (B.51) as

M̂con = ρ0



1
240 h3 (

3h2a1 +20a3
)

h5(
5h2γa1+56a2+28γa3

)
4480

h5(
5h2a1+28a3

)
4480 mt

c
1

240 h3 (
3h2a1 +20a3

)
1

80 h5a2

ṁc γ̇ (B.56)
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C
APPENDIX C

C.1. WEAK FORM OF MOMENTUM BALANCE
In this section the weak form of the momentum balance based on the employed shell formu-
lation is discussed. To avoid unnecessary elaboration, it is assumed the domain under consid-
eration is cracked and completely refined on the subscale level using the proposed approach.
We begin from the momentum balance in Eq. (4.7) and extend it in terms of the shell formu-
lation kinematics employed Eq. (4.41) as follows

Find: [ϕ̄,m,γ]

G ine[ ¨̄ϕ,m̈, γ̈;δϕ̄,δm,δγ]+G int[ϕ̄,m,γ;δϕ̄,δm,δγ]−
Gext[δϕ̄,δm,δγ] = 0 ∀ δϕ̄,δm,δγ (C.1)

Introducing the deformation vector n̂t = [ϕ̄,m,γ] and the stress resultant vectors (cf. Ap-
pendix C.2) we arrive at the inertia, internal, and external virtual work contributions as

G ine =
∫
Ω0

ρ0δn̂t (M̂ ¨̂n+M̂con)ω0 dξ1dξ2 (C.2)

G int =
∫
Ω0

δn̂t
c N̂cω0 dξ1dξ2 +

∫
LΓS

δn̂t
cohN̂coh dL (C.3)

Gext =
∫
L∂Ω0

(
δϕ̄ ·n0 +δm ·m̃0 +δγms

)
dL −

∫
Ω

p δϕ̄ ·gb1
×gb2

dΩ (C.4)

where δn̂t
c , δn̂t

coh, N̂t
c and N̂t

coh are defined as

δn̂t
c = [

δϕ̄,α,δm,α,δm,δγ,α,δγ
]

, δn̂t
coh = [

δJϕ̄K,δJmK,δJγK
]

(C.5)

N̂t
c = [

Nα,Mα,T, Mα
s ,Ts

]
, N̂t

coh = [
nS ,mS ,tS

]
, (C.6)

Therein, p and M̂ denotes external pressure and consistent mass matrix. As in [1], the con-
tributions from the first order time derivative of the director and thickness inhomogeneous
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strain fields are represented by, M̂con, convective mass force per unit area (cf. Appendix C.3).
The boundary along the shell midsurface over which traction acts is also considered as L . In
order to carry out integration of Eqs. (C.2)-(C.4), domain of integration is changed from B0
(3D) toΩ0 (2D) via j0[ξ] = b0/ω0 as

dB0 = j0dξdΩ0 with dΩ0 =ω0dξ1dξ2 and ω0 = |Φ,1 ×Φ,2| (C.7)

C.2. STRESS RESULTANTS

The through-thickness integrated stress resultants referred to in Eq. (C.3) are defined as:

Nα =
∫ h0/2

−h0/2
Sαk gbk

j0dξ (C.8)

Mα =
∫ h0/2

−h0/2

(
1+ 1

2
γξ

)
ξSαk gck

j0dξ (C.9)

T =
∫ h0/2

−h0/2

((
1+γξ)S3k gbk

+ 1

2
ξ2Sαk ·gbk

γ,α

)
j0dξ (C.10)

Mα
s =

∫ h0/2

−h0/2

1

2
ξ2Sαk m ·gbk

j0dξ (C.11)

Ts =
∫ h0/2

−h0/2

(
1

2
ξ2Sαk m,α ·gbk

+ξS3k m ·gbk

)
j0dξ (C.12)

n0 =
∫ h0/2

−h0/2
t̄1dξ (C.13)

m̃0 =
∫ h0/2

−h0/2
ξ

(
1+ 1

2
ξγ

)
t̄1dξ (C.14)

ms =
∫ h0/2

−h0/2

1

2
ξ2m · t̄1dξ (C.15)

m0 =
∫ h0/2

−h0/2
ξt̄1dξ (C.16)

nS =
∫ h0/2

−h0/2
t1dξ (C.17)

mS =
∫ h0/2

−h0/2
ξt1dξ (C.18)

where Sαk are the contra-variant components of the second Piola Kirchhoff stress tensor S,
gbk

the spatial co-variant basis vectors defined in Eq. (4.43), j0 the relation between area and
volumetric measures of the shell defined in Eq. (C.7) and t1 is the nominal traction vector of
the cohesive zone defined by t1 = Pt ·NS .
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C.3. MASS MATRIX

The consistent mass matrix M̂ and the convective mass (force) M̂con introduced in Eq. (C.2)
have, for the current kinematical representation, the explicit forms

M̂ =
∫ h0

2

− h0
2

ρ0

4
·


41 2ξ

(
2+γξ)1 2mξ2 41 4ξ1

2ξ
(
2+γξ)1 ξ2(

2+γξ)21 ξ3 (
2+γξ)m 2ξ

(
2+γξ)1 2ξ2 (

2+γξ)1
2ξ2m ξ3 (

2+γξ)m ξ4m ·m 2ξ2m 2ξ3m
41 2ξ

(
2+γξ)1 2mξ2 41 4ξ1

4ξ1 2ξ2 (
2+γξ)1 2mξ3 4ξ1 4ξ21

 ·
j0[ξ]dξ (C.19)

and

M̂con =
∫ h

2

− h
2

ρ0


ξ21

1
2ξ

3 (
2+γξ)1

1
2ξ

4mt

ξ21
ξ31

ṁγ̇ j0[ξ]dξ. (C.20)

It turns out that the mass contributions can be integrated explicitly in the thickness di-
rection, whereby in view of Eq. (C.7) it is noted that the volume measure j0[ξ] (relating to the
undeformed configuration) can to be developed in terms of the covariant vectors as

j0 = b0

ω0
= a1ξ

2 +a2ξ+a3 (C.21)

where

a1 = |MΦ,1 ×MΦ,2|
|Φ,1 ×Φ,2|

, a2 = MΦ · (Φ1 ×MΦ,2 +MΦ,1 ×Φ2
)

|Φ,1 ×Φ,2|
, a3 = 1 (C.22)

Hence, the explicit integrated result of the consistent mass matrix M̂ in Eq. (C.19) is in view of
(C.21) obtained as

M̂ =


M11 M12 M13 M14 M15
M21 M22 M23 M24 M25
M31 M32 M33 M34 M35
M41 M42 M43 M44 M45
M51 M52 M53 M54 M55

 (C.23)

where one obtains e.g. the components

(
M11 M12
M21 M22

)
=

= ρ0

 (
1

12 h3a1 +ha3

)
1 1

480 h3 (
3h2γa1 +40a2 +20γa3

)
1

1
480 h3 (

3h2γa1 +40a2 +20γa3
)

1
h3(

3h2((
112+5h2γ2)

a1+112γa2
)+28

(
80+3h2γ2)

a3
)

26880 1


(C.24)
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We also obtain the integrated result for the convective contribution M̂con in Eq. (C.20) as

M̂con = ρ0



1
240 h3 (

3h2a1 +20a3
)

h5(
5h2γa1+56a2+28γa3

)
4480

h5(
5h2a1+28a3

)
4480 mt

1
240 h3 (

3h2a1 +20a3
)

1
80 h5a2

ṁγ̇ (C.25)
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D
APPENDIX D

D.1. STRESS RESULTANTS
The stress resultants terms referred to in Eq. (5.14) and Eq. (5.15) are expressed as:

Nα =
∫ h0/2

−h0/2
Sαk gbk

j0dξ (D.1)

Mα =
∫ h0/2

−h0/2

(
1+ 1

2
γξ

)
ξSαk gck

j0dξ (D.2)

T =
∫ h0/2

−h0/2

((
1+γξ)S3k gbk

+ 1

2
ξ2Sαk ·gbk

γ,α

)
j0dξ (D.3)

Mα
s =

∫ h0/2

−h0/2

1

2
ξ2Sαk m ·gbk

j0dξ (D.4)

Ts =
∫ h0/2

−h0/2

(
1

2
ξ2Sαk m,α ·gbk

+ξS3k m ·gbk

)
j0dξ (D.5)

n0 =
∫ h0/2

−h0/2
t̄1dξ (D.6)

m̃0 =
∫ h0/2

−h0/2
ξ

(
1+ 1

2
ξγ

)
t̄1dξ (D.7)

ms =
∫ h0/2

−h0/2

1

2
ξ2m · t̄1dξ (D.8)

m0 =
∫ h0/2

−h0/2
ξt̄1dξ (D.9)

in the equations above Sαk is the contra-variant component of the second Piola Kirchhoff
stress tensor S, gbk

is the spatial co-variant basis vectors defined in Eq. (5.8), and j0 is the
relation between area and volumetric measures of the shell defined in Eq. (5.18).
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D.2. MASS MATRIX
To elaborate on consistent mass matrix M̂ and the convective mass M̂con employed in Eq. (5.13),
based on the current configuration we have

M̂ =
∫ h0

2

− h0
2

ρ0

4
·


41 2ξ

(
2+γξ)1 2mξ2 41 4ξ1

2ξ
(
2+γξ)1 ξ2(

2+γξ)21 ξ3 (
2+γξ)m 2ξ

(
2+γξ)1 2ξ2 (

2+γξ)1
2ξ2m ξ3 (

2+γξ)m ξ4m ·m 2ξ2m 2ξ3m
41 2ξ

(
2+γξ)1 2mξ2 41 4ξ1

4ξ1 2ξ2 (
2+γξ)1 2mξ3 4ξ1 4ξ21

 ·
j0[ξ]dξ (D.10)

and

M̂con =
∫ h

2

− h
2

ρ0


ξ21

1
2ξ

3 (
2+γξ)1

1
2ξ

4mt

ξ21
ξ31

ṁγ̇ j0[ξ]dξ. (D.11)

where mass contributions can be integrated in the thickness direction by employing the
volume measure j0[ξ] (cf. Eq. (5.18)) that can be formulated in terms of the covariant vectors
as

j0 = b0

ω0
= a1ξ

2 +a2ξ+a3 (D.12)

where

a1 = |MΦ,1 ×MΦ,2|
|Φ,1 ×Φ,2|

, a2 = MΦ · (Φ1 ×MΦ,2 +MΦ,1 ×Φ2
)

|Φ,1 ×Φ,2|
, a3 = 1 (D.13)

Integrating the mass matrix M̂ in Eq. (D.10) considering the (D.12) it becomes

M̂ =


M11 M12 M13 M14 M15
M21 M22 M23 M24 M25
M31 M32 M33 M34 M35
M41 M42 M43 M44 M45
M51 M52 M53 M54 M55

 (D.14)

where it results in e.g. the components

(
M11 M12
M21 M22

)
=

= ρ0

 (
1

12 h3a1 +ha3

)
1 1

480 h3 (
3h2γa1 +40a2 +20γa3

)
1

1
480 h3 (

3h2γa1 +40a2 +20γa3
)

1
h3(

3h2((
112+5h2γ2)

a1+112γa2
)+28

(
80+3h2γ2)

a3
)

26880 1


(D.15)

Also integrating the convective mass contribution M̂con in Eq. (D.11) results in
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M̂con = ρ0



1
240 h3 (

3h2a1 +20a3
)

h5(
5h2γa1+56a2+28γa3

)
4480

h5(
5h2a1+28a3

)
4480 mt

1
240 h3 (

3h2a1 +20a3
)

1
80 h5a2

ṁγ̇ (D.16)
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