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Abstract

It is well known that univalence is incompatible with unique-
ness of identity proofs (UIP), the axiom that all types are
h-sets. This is due to finite h-sets having non-trivial auto-
morphisms as soon as they are not h-propositions.

A natural question is then whether univalence restricted
to h-propositions is compatible with UIP. We answer this
affirmatively by constructing a model where types are el-
ements of a closed universe defined as a higher inductive
type in homotopy type theory. This universe has a path con-
structor for simultaneous "partial" univalent completion, i.e.,
restricted to h-propositions.

More generally, we show that univalence restricted to (n—
1)-types is consistent with the assumption that all types are
n-truncated. Moreover we parametrize our construction by a
suitably well-behaved container, to abstract from a concrete
choice of type formers for the universe.
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1 Introduction, Motivation, and Overview

Martin-Lof type theory [20] (MLTT) is a formal system useful
both for dependently typed programming and as a founda-
tions for the development of mathematics. It is the basis of
proof assistants like Agda, Coq, Idris, Lean.

Homotopy type theory (HoTT) is a variation born out
of the observation that equality proofs in MLTT behave
like paths in homotopy theory [6]. A major focus is then to
characterize the exact nature of equality for each type, filling
some gaps left underspecified by MLTT by taking inpiration
from the connection to spaces up to homotopy.

Central is Voevodsky’s univalence axiom, stating that
equalities of types corresponds to equivalence of types. From
univalence other extensionality principles follow, like func-
tion and propositional extensionality: equality of functions
corresponds to pointwise equality, and equality of proposi-
tions corresponds to logical equivalence.

Another important contribution is the introduction of
higher inductive types (HITs), which generalize inductive
types by not only allowing elements of the type but also
equalities between them to be inductively generated. A gen-
eral example is taking the quotient of a type by a relation,
other examples are finite and countable powerset types[13,
27], ordinal notations [21], syntax of type theory up to judge-
mental equality [2], other forms of colimits, and types of
spaces for synthetic homotopy theory [26].

HoTT also brought attention to a classification of types
based on the complexity of their equality type. We say that a
type is (—2)-truncated or contractible if it is equivalent to the
unit type, we say a type A is (n + 1)-truncated when for any
X,y : A, the equality type x =4 y is n-truncated. In particular
(—1)-truncated types are referred to as h-propositions, and
are those for which any two elements are equal, while 0-
truncated types, whose equality types are h-propositions,
are called h-sets.

The h-sets are the notion of set of homotopy type theory,
and where most constructions will belong when using HoTT
as a foundation for set-based mathematics or to reason about
programs. Restricting oneself to types whose equality type
is an h-proposition also avoids having to stipulate coherence
conditions between different ways of proving the same equal-
ity. Such coherence conditions might be arbitrarily complex
and not necessarily expressible within HoTT itself [17].

It would be tempting then, at least for these applications,
to assume that every type is an h-set, i.e., the uniqueness of
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identity proofs (UIP). In the case of HITs, e.g. for set quo-
tients, an explicit equality constructor can be included to
impose the desired truncation level. However we are forced
to step outside the h-sets when considering them collec-
tively as a type, which we call the universe of h-sets, U=°,
In fact, by univalence, equalities in T/ = correspond to iso-
morphisms between the equated h-sets, of which in general
there are more than one. This is often unfortunate because
of, e.g, the need to define sets by induction on a set quotient,
or the lack of a convenient type that could take the role
of a Grothendieck universe when formalizing categorical
semantics in sets or presheaves.

The counterexample of U<? however does not apply to
univalence restricted to h-propositions, i.e. proposition ex-
tensionality, since any two proofs of logical equivalence
between two propositions can be proven equal. Moreover
results about set-truncated HITs often rely on propositional
extensionality when defining a map into h-propositions by
induction. One example is effectiveness of quotients, i.e.,
that equalities [a] =4/r [b] between two representative of
an equivalence class correspond to proofs of relatedness
R(a, b).

In this paper we show, for the first time, that UIP is consis-
tent with univalence for h-propositions, and more generally
that, for n > 0, the assumption that every type is n-truncated
is consistent with univalence restricted to (n — 1)-truncated
types (Corollary 4.8). We refer to this as partial univalence.
We note that the result cannot be improved to include univa-
lence for n-truncated types, as that would imply univalence
for all types, and then we could prove that the n-th universe
is not an n-type by the main result of [18].

We stress that existing truncated models such as the set
model or groupoid model [15] do not model partial univa-
lence. Although the set model contains a univalent universe
of propositions, it is not the case that the set of small sets
is univalent when restricted to propositions. Similarly, the
groupoid model contains a univalent universe of sets, but
the groupoid of small groupoids is not univalent when re-
stricted to h-sets, i.e. groupoids with propositional sets of
morphisms.

The main challenge will thus be how to interpret the uni-
verses of such a theory. For a fixed collection of type formers,
we show how to overcome this in Section 2, where we con-
struct a partially univalent universe through a indexed higher
inductive type. In Section 3 we generalize the construction
by a signature of type formers given as an indexed container
[1]. We then prove the consistency of a partially univalent
n-truncated type theory in Section 4. The proof uses a model
of HoTT capable of interpreting indexed higher inductive
types to derive a model for our theory.

The viability of MLTT as a programming language relies
on the canonicity property: every closed term is equal to one
in canonical form. While univalence as an axiom interferes
with canonicity, cubical type theory [9] has remedied this
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by representing equality proofs as paths from an abstract
interval type, and made univalence no longer an axiom. We
formulate a partially univalent 0-truncated cubical type the-
ory in Section 5. There we also prove that the theory satisfies
homotopy canonicity, the property that every closed term
is path equal to one in canonical form. We believe that this
result establishes an important first step towards a computa-
tional interpretation of the theory. In Section 6 we discuss
related works and conclude.

A long version of this article is available [24]. It includes
appendices that are used and referenced in our development.

1.1 Formalization

We have formalized the main construction, the subject of
Sections 2 and 3, in Cubical Agda. Separately, we have formal-
ized [24, Appendix A] (the material on pushouts of monomor-
phisms) in Agda with univalence as a postulate. The for-
malizations are available as supplementary material to this
article.

2 A O-truncated Partially Univalent
Universe of 0-types

In this section we set up some preliminary definitions and no-
tations. We then provide a simpler case of our main technical
result Theorem 3.13, to exemplify the reasoning necessary.

When reasoning internally in type theory, we write =
for judgmental equality and = for internal equality using
the identity type. Given a type A, we also write the latter
as A(—,—). Given p : ap =4 a; and a family B over A, the
dependent equality by =p(,) b of by and b; over p is short-
hand for the identity type p.(by) =p(a,) b1, Where p.(bo) is
the transport of by : B(ag) to B(a;) along p. Given a type
Aand n > -2, we write type, (A) for the type that A is
n-truncated. For n = -2, -1, 0, we have the usual special
cases isContr(A), isProp(A), isSet(A) of A being contractible,
propositional, and a set, respectively. All of these types are
propositions.

We recall the notion of a univalent family.

Definition 2.1 (Univalence). A family Y over a type X is
univalent if the canonical map X(xg, x1) — Y(x) = Y(x) is
an equivalence for all xg, x1 : X.

We relativize this notion with respect to a property P on
types. This is supposed to be an extensional property, in the
sense that it should depend only on Y(x), not on the “code”
x : X. To make this precise, we let Y be a valued in a universe
U and express P as a propositional family over U.

We use the word universe in a rather weak sense: until we
add closure under some type formers, it can refer to an arbi-
trary type family. Notationwise, universes are distinguished
in that we leave the decoding function from elements of U
to types implicit.



Definition 2.2 (Partial univalence). Let X be a type and
Y: X — U for some universe U. Let P be a propositional
family over U. We say that (X, Y) is P-univalent if the restric-
tion of the family Y to the subtype X ,.x P(Y(x)) is univalent.

We also say that X is partially univalent or univalent for P,
leaving Y implicit. For P = type,, we say that X is univalent
for n-types. In particular, for P = isProp, we say that X is
univalent for propositions.

Of particular importance is the case where Y is the iden-
tity function. In that case, we say that the universe U is
P-univalent.

Lemma 2.3. Let the universe U be P-univalent. ThenY: X —
U is P-univalent exactly if its restriction to x : X with P(Y(x))
is an embedding.

Proof. Let x1,x; : X with P(Y(x;)) and P(Y(x;)). Consider
the commuting diagram

X1, x2) ————= U (x1), Y(x2))

N

Y(x1) = Y(xa).

Since U is P-univalent, the right map is an equivalence. By
2-out-of-3, the left map is invertible exactly if the top map is
invertible. Quantifying over x, x2, we obtain the claim. O

2.1 Partially Univalent Type V of (Small) Sets

Let now U=° be a univalent universe of sets, meaning its
elements decode to 0-truncated types. We wish to define a
“closed” 0-truncated universe V with a decoding function
Ely : V. — U=C that is univalent for propositions in the
sense of Definition 2.2. We illustrate the essential features of
our construction by requiring that:

e V contains codes for a fixed family N : M — U=C of
elements of U =" where M is a set.
e V is closed under IT-types (assuming that U/ <° is),

The former family can for example include codes for the
empty type or the type of Booleans.

Closed universes are typically defined by induction-recur-
sion, simultaneously defining the type V and the function
Ely : V — U=". To model the above closure conditions, one
takes:

e given m : M, a constructor N(m) : V and a clause
Ely(N(m)) = N(m)._

e given A : V and B :
I1(A, B) : V and a clause

EIV(ﬁ(Z’ E)) = H(a:EIV(Z)) EIV(E(a))s

In order to make V univalent for propositions, one could
imagine turning this into a higher inductive-recursive defini-
tion. Given A; : V with Ely(A;) a proposition for i € {0,1}
and an equality p : U=°(Ely(A), Ely(A,)), one would add a

Ely(A) — V, a constructor
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path constructor ua(e) : V(Ay, A;) with a clause giving an
identification of the action of Ely on the path ua(e) with p.!
This is the right idea, but there are problems.

e While syntax and semantics of higher inductive types
have been analyzed to a certain extent [16, 19] this
analysis does not yet extend to the case of induction-
recursion. As such, the rules for higher inductive-re-
cursive types have not yet been established and none
of the known models of homotopy type theory have
been shown to admit them.

e Induction-recursion is known to increase the proof-
theoretic strength of the type theory over just (in-
dexed) induction. Thus, we do not wish to assume it
in our ambient type theory.

Given a type I, recall that types X with a map X — I are
equivalent to families over I: in the forward direction, one
takes fibers; in the backward direction, one takes the total
type. Exploiting this correspondence, the above inductive-
recursive definition of V (without path constructor for partial
univalence) can be turned into an indexed inductive definition
of a family inV over U =". The translation of the constructors
for II-types and M is given in (i) and (ii) of Definition 2.4. The
path constructor for partial univalence corresponds to the
following: given propositions A; : U=° with wy, : inV(4;)
for i € {0,1} and an equality p : U=°(Ao, A;), we have a
path ua(e) in the family inV betwen wj4, and wy, over p. We
contract the path p with one of its endpoints and arrive at
the definition below.

Definition 2.4. The family inV over U<’ is defined as the
following higher indexed inductive type:

(i) given m : M, a constructor wy(m) : inV(N(m)),

(ii) givenwy : inV(A)and wg(a) : inV(B(a)) for a : A(with
implicit A : U=<" and B : A — U="), a constructor
wi(wa, wg) : inV([1(4.4) B(a)),

(iii) given a proposition X : U= with wy, w; :
path constructor ua(wg, wy) : wo = wy.

inV(X), a

We recover V as the total type V = 3’ x.q/<0) inV(X), with
Ely given by the first projection.

We may regard inV as a conditionally or partially propo-
sitionally truncated indexed inductive type (see [24, Appen-
dix B]). In this form, it becomes clear that the constructor ua
indeed suffices for partial univalence and does not introduce
coherence problems: it exactly enforces that the restriction
of the family inV to elements decoding to propositions is
valued in propositions.

Lemma 2.5. The type V with Ely : V. — U=° is univalent
for propositions.
Proof. Using Lemma 2.3, we have to show that the restriction

of Ely: V. — U= to X : V with Ely(X) a proposition is

! In this particular case, the clause of Ely for the path constructor amounts
to nothing as it is an identification in a propositional type.
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an embedding. Unfolding to inV, this says that inV(X) is
propositional for X : U< a proposition. This is exactly
enforced by the path constructor (iii) in Definition 2.4. O

It remains to show that V is 0-truncated. For this, we adapt
the encode-decode method to characterize the dependent
equalities in inV over an equality in ¢/ <.

2.2 Dependent Equalities in inV

In the following, we make use of (homotopy) pushouts. Re-
call [26, Section 6.8] that the pushout of a span f: A — B
and g: A — C of types is the (non-recursive) higher induc-
tive type B +4 C with points constructors inl(b) : B+4 C
for b : Band inr(c) : B+4 C for ¢ : C and path constructor
glue(a) : (B +4 C)(inl(f (D)), inr(g(c))) for a : A.

As in [22, Lecture 13], we do not require judgmental S-
laws even for point constructors. Thus, pushout types are
simply a particular choice of pushout squares, (homotopy)
initial cocones under the span B «— A — C. We refer to [24,
Appendix A] for some key properties of pushouts used in
our development.

An important special case is the join X x Y of types X and
Y, the pushout of X and Y under X X Y. For a proposition
P, the operation P x — is also known as the closed modality
associated with P [23, Example 1.8]. We will only use the
join in this form. Recall that X % Y is contractible if X or Y
is contractible. In particular, P % X is contractible if P holds.

Problem 2.6. Given an equality p: U<(Xy,X1) and w; :
inV(X;) fori € {0, 1}, we wish to define:

e a type Eq;(p, wo, w1) of codes of equalities over p
between wy and wy

o such that Eq;,,\, (p, wo, w1) is contractible if X, (or equiv-
alently X;) is a proposition.

Construction. By univalence for contractible types, the type
of contractible types is contractible. Thus, the goal is con-
tractible if X, or X is a proposition.

We perform double induction, first on wy : inV(Xy) and
then on wj : inV(X;). In all path constructor cases, we know
that X, or X is a proposition. By the above, the goal becomes
an equality in a contractible type, so there is nothing to show.

In all point constructor cases, we define

Eq;ny (1, wo, w1) =def isProp(Xo) x E

where E is an abbreviation for an expression that varies
depending on the case. Note that this makes Eq;,\ (¢, wo, w1)
contractible when X is a proposition. The expression E codes
structural equality of the top-level constructors.

e For wy = wy(mg) and wy; = wxn(m,), we let E consist
of pairs (p,, ¢) where p,, : M(mg, m;) and c is a proof
that p : U=°(N(mo), N(m;)) is equal to the action of
M on pp,.
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e Forw; = wii(wa,, wg,) withwy, : inV(4;) and wg, (a;) :
inV(B;(a;))fora; : A;,allfori € {0, 1}, we let E consist
of tuples (pa, ea, ps, €, c) where:

- pa: U="(Ag, A1) with es : Eqiy(Pa, wa,, Wa,),

— for ap : Ao, a1 : Ay, and an equality p, over pa
between ay and a;, we have pg : U=°(By(ao), B1(a1))
with e : Eq;,y(PB, WB,(a0), wp, (a1)).

— ¢ witnesses that

P+ U(TT(ay.40) Bo(a0), [1(a,.,) B1(ar))

is equal to the action of the type forming operation
IT on p4 and pp.
e In the remaining “mixed” cases, we let E be empty. O

Proposition 2.7. Given p : U=°(Xy, X1) and w; : inV(X;)
fori € {0, 1}, there is an equivalence between dependent equal-
ities in inV over p between wy and wy and Eq;,y (p, wo, w1).

Proof. For the purpose of this proof, it will be convenient to
work with a different, but equivalent definition of the expres-
sion E in the construction of Problem 2.6 in the case w; =
wi(wa,, wp,) with wy, : inV(4;) and wg,(a;) : inV(B;(a;))
fora; : A;, all for i € {0, 1}. Namely, we let E consist of pairs
(g, 7) as follows.
e The component q is an equality (Ag, By) = (A1, B1) in
the dependent sum Y 4.¢/z0) A — U=’.
e Inducting on the equality g, we may suppose A =def
Ap = A; and B =¢ef By = B;. The component r is then
a triple (eq, ep, ¢) where
- e : Eq;,y(refla, wa,, wa,),
- ep(a) : Eq;,y(reflp(q), wa,(a), wp,(a)) for a : A,
—c:p =refl.
The equivalence between this choice of E and the previous
one is a staightforward consequence of structural equiva-
lences, splitting up the equality g into components for A and
B and distributing them over the components of r.
We follow the encode-decode method as described in [24,
Subappendix B.3]. To define

encodep, g, w;

Wo :mV(p) w1 Eqinv(P, Wwo, Wl))

we use equality induction on p and the argument, reducing
the goal to encode’(w) : Eq;, (reflx, w,w) for w : inV(X).
We induct on x : inV(X).

e For w = wn(m) : inV(N(m)), we take
encode’(x) = inr(refl,,, refl).
e For w = wi(wa, wg) : inV([](4.4) B(a)), we take
encode’(x) = inr
(refl 4, B), (encode’(wy), Aa. encode’(wp(a)), refl)).

e In the path constructor case, we have that X is a propo-
sition. Then the goal is a dependent equality in a con-
tractible type.



We now show encode;,’lw()’Wl (e) for e : Eq,y(p, wo, w1).
We use double induction on wy and wj. In all path construc-
tor cases, we know that X, or X; is a proposition (hence
both are). Thus, both source and target of encodey .., are
contractible, so the goal becomes contractible. In all point
constructor cases, we have e : isProp(Xy) x E where E de-
pends on the particular case. We induct on e. In the case
for inl or glue, we have isProp(Xj), and the goal becomes
contractible. For e = inr(z), we proceed with z according to
the point constructor case for wy and w;.

e For wy = wn(mp) and w; = wy(m,), we have z =
(Pm, ¢). By equality induction on p,, : M(mg, m;), we
may suppose m =def My = my and p,, = refl,. By
equality induction on ¢, we may then suppose p = refl
and ¢ = refl. We have

e = inr(refl,,, refl)
= encode’(wy(m))
= encodereﬂN(m),WN(m),WN(m)(feﬂ)’
showing encode, ', ., (e).

e Forw; = wi(wa,, wp,) withwg, : inV(A;) and wg,(a;) :

inV(B;(a;)) for a; : A;, all for i € {0,1}, we have
z = (q,r) as described at the beginning of this proof.
By equality induction on q : (Ao, By) = (A1, B1), we
may suppose A =g4ef A9 = A1, B =4e By = By, and
q =def refl. Then r = (ea, ep, ¢). By equality induc-
tion ¢, we may suppose that p = refl and ¢ = refl. By
induction hypothesis, we have

-1
encodereﬂA’WAO’WA1 (ea),

-1
encode
reflp(a), WB,

(alWBl(a)(eB(a)) fora: A.
By equality induction and function extensionality, we

may thus suppose that

ep = enCOdereﬂA,WAO,WA1 (qA)’
e = Aa. enCOdereﬂB(a),wBO(a),wBl(u)(QB(a))

for some g4 : wa, = wa, and gg(a) : wg,(a) = wp,(a)
for a : A. By equality induction on g4 and gp (after
using function extensionality), we may suppose that
WA Sdef WA, = Wa, and g4 = refl as well as wp =gef
wp, = wg, and gp = Aa. refl. Now we have

e = inr(refl4 p), (encode’(wa), Aa. encode’(wg(a)), refl))
= encode’(w(wa, wg))

= encodereﬂn(a:A) B(a)» Wi(Wa, wB), wi(wa, wp)(refl),

. -1
showing encode, ,, ., (€).

e In all “mixed” cases, we have z : 0. O

For readers concerned with the length of the above argu-
ment, we note the following. In Section 3, we will motivate
abstraction that will allow us to reorganize the above argu-
ment into smaller, more general pieces.
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2.3 Visaset

From our characterization of dependent equality in inV, we
obtain a corresponding characterization of equality in V.
Given X; = (X;, w;) : V for i € {0, 1}, we define

Eqv()_Q)J_G) =def Z
PU=(Xo,X1)

Eqiny (D, Wo, w1).

Corollary 2.8. For )_(0,)_(1 : V., we have
V()_(o,)_(l) = Eqv()_(o,)_(l)-

Proof. Equality types in the type V' = 3 x.q/<0) inV(X) are
dependent sums of an equality in U=° and a dependent
equality over it. Thus, the claim is a consequence of Proposi-
tion 2.7. O

Proposition 2.9. The type V is 0-truncated.

Proof. GivenX; = (X;,w;) : V fori € {0, 1}, we wish to show
V (X, X1) propositional. By Corollary 2.8, this amounts to
showing Eqy,(Xo, X1) propositional. This we show by double
induction, first on wy : inV(Xy) and then on w; : inV(X;).
Since the goal is propositional, there is nothing to show in
the path constructor cases.

In all point constructor cases, we have

EqV()_<07)_<1) = Z

PU(Xo, X1)

isProp(Xy) x E(p) (1)

where E(p) is as in the construction for Problem 2.6, abbrevi-
ating an expression depending on the point constructor case
(for clarity, we have made the dependency on p explicit). By
definition, this join forms a pushout square

isProp(Xy) X E(p) —— isProp(Xp)

| o

E(p) ——— isProp,_(XO) * E(p).

The dependent sum over a fixed type preserves pushout
squares in its remaining argument (abstractly, because it is a
higher functor left adjoint to weakening). From (1) and (2),
we thus obtain the following pushout square:

Z(p:WSO(Xg,Xl)) isProp(Xo) X E(p) — Z(P:WSO(XO’Xl)) isProp(XO)

l ®)

= —
2 (p U= (Xo, X)) E(P) — > Eqy(Xo, X1).

Since U= is univalent, the type U=°(X,, X;) is proposi-
tional if isProp(Xp). From this, we see that the span in (3) is a
(homotopy) product span. By invariance of pushouts under
equivalence, it follows that Eq, (X, X) is equivalent to the
join

(U=, X)) X isProp(Xo)) + (.
UKo, X1)

Ep). @



LICS °20, July 8-11, 2020, Saarbriicken, Germany

We now apply [24, Lemma A.9]: to show that this join is
propositional, it suffices to show that each of its factors is
propositional.? Since U =°(Xy, X;) is propositional if we have
isProp(Xy), and the latter is propositional, then their product
is propositional as well.

It remains to show that T Zqgef X(pias=0(x,,x,)) E(P) is a
proposition. For this, we argue according to the current point
constructor case, recalling the corresponding definition of
E(p) from Problem 2.6.

e In the case wy = wn(mg) and w; = wx(my), we have

T= > > (p=apy(om)
(p:U=(X0,X1)) (Prm:M(mo,m1))
=~ M(my, my),

a proposition since M was assumed a set.

o In the case w; = wi(wa,, wp,) with wa, : inV(4;) and
wp,(a;) : inV(B;(a;)) for a; : A; for i € {0,1}, recall
that T consists of tuples (p, pa, ea, pB, €s, ¢) with types
as in the construction of Problem 2.6. We contract
the equality ¢ with its endpoint p. What remains is
equivalent to the dependent sum of:
= (pasea) : Eqy (Ao, A1) where A; =qef (Ai, wi),

- for ap : Ay, a1 : Ay, and a dependent equality p, over
pa between ag and a;:

(PB,GB) : Eqv(Eo(ao),El(al))

where B;(a;) Zqef (Bi(a;), wi(a;)).
Both EqV(ZO,Zl) and EqV(EO(aO),El(aI)) (the latter
for all ag, a;) are (n — 1)-truncated by induction hy-
pothesis. The claim now follows by closure of (n — 1)-
truncated types under dependent sums and dependent
products (with arbitrary domain).
e In the remaining, “mixed” cases, we have

T= Z 1=~1,
PU (X, X1)

which is propositional. O

3 n-truncated Partially Univalent
Universes of n-types

To obtain the main result of this paper, we need to generalize
the constructions of the previous section to a partially univa-
lent n-truncated universe of n-types rather than sets, and to
a universe closed under more type formers. For the sake of
generality, we will also build a universe that is P-univalent
for an arbitrary proposition P, although the n-truncatedness
result will need P(X) to imply type,_;)(X).

This section only makes use of univalence for (n—1)-types.

2 Alternatively, we could appeal to the fact that closed modalities are left
exact, hence preserve truncation levels [23].

Christian Sattler and Andrea Vezzosi

3.1 Indexed Containers and Preservation of
Truncation

To abstract from a particular choice of type formers, we will
parametrize our universe by a signature of them represented
by an indexed container [1], as is done for indexed W-types.
We recall here the precise definitions of indexed container
and its extension that we will use in the rest of the paper.

Definition 3.1 (Indexed container). Given a type I, an I-
indexed container is a pair (S, Pos) of a type family S over I
and a type family Pos over ;. S(i) X .

Definition 3.2 (Extension of a container). Let (S, Pos) be an
I-indexed container. Its extension Extg, pos takes a family F
over I and produces another:

Exts, pos(F, i) = 2s:s(iy) [jiry Pos(is s, j) = F(j)

Given (s, t) : Extg, pos(F, i) we will write ty(p) for t(Y)(p).

In the universe construction we will use a ¢ <"-indexed
container, here we demonstrate by example that they not
only cover the type formers considered in Section 2, but
also ones with a more complex signature like (truncated)
pushouts.

Example 3.3 (Nullary type formers). Given a fixed family
of types N : M — U=" we define a container with empty
positions:

S(X) = Sman(X = N(m))

Pos(_, , )=1

Example 3.4 (II-types). The signature for II-types can be
represented by a U ="-indexed container where both S and
Pos are given by indexed inductive types with constructors:

e given A : U=" and B : A — U=" a constructor
(A, B) : S(I(x:4) B(x)).
and with s = (A, B) and X = [](4.4) B(a):
e a constructor pos, : Pos(X, s, A)
e given a : A a constructor posg : Pos(X, s, B(a))

Example 3.5 (Truncated pushouts). Pushouts truncated to
be n-types can also be represented as a U ="-indexed con-
tainer:
e given A; : U="fori € {0,1,2} and f : Ay — A; and
g : Ay — A, a constructor po(f,g) : S(A; + Ay),
e for each i € {0, 1, 2} a constructor
pos; : Pos(A; +1’}‘0 Az, po(f,g),Ai).
More generally, this works for arbitrary HITs with an addi-
tional constructor ensuring n-truncatedness.

To establish the n-truncatedness of the universe we will
need to know that the extension of the container Exts_p(F, i)
preserves the truncation level of the family F. We cannot
however just ask for type, (3 ;.r) -Exts, p(F, 1)) to hold when-
ever type, (2. F(i)) holds, as the latter would already be
the whole result when F = inV. We extract then the follow-
ing condition from what is needed during the induction in
the proof of Theorem 3.13.



Definition 3.6 (Retaining n-truncatedness). An I-indexed
container (S, Pos) retains n-truncation, if for any family F
over I, any ip : I and element of the extension (sp,tp) :
Exts, pos(F, ip) for b € {0, 1} we have that

H(joj1 ) H(POZPOS(io,So,jn),Pl=P03(i1,51,j1))

tyPe(n-1)(X(q:io=i) tio(Po) =r(g) 1 (P1))

implies

type,—1)((i0s S0, £0) =3, ;1) Exts pos(F, 1) (i1, S1,11))

Example 3.7 (Signatures retaining n-truncatedness). Exam-
ples 3.3 to 3.5 all retain n-truncatedness. The case of nullary
type formers is trivial. As mentioned the case for II-types fol-
lows the reasoning in Proposition 2.9. For truncated pushouts
we can observe that (X, (s, t)) of type 2} (x.q/<n) Exts, pos(F, X)
is equivalent to the following data:

o X :UY="

e fori e {0,1,2}, both A; : U=" and w; : F(A;)

o f:Ay > Ajandg: Ay — A

e g:X=A +Z0A2
then X and q form a contractible pair, the types of f and g
are n-truncated by construction, so we only have to worry
about the (A;, w;) pairs. But since the w; are obtained from
t, those components are handled by the premise given to us.

Coproducts of such containers also retain n-truncatedness

as their extension will correspond to the sum of the exten-
sions, which means we can collect multiple type formers
into a single n-truncatedness preserving indexed container.

3.2 A P-univalent n-truncated Universe of
n-truncated Types

Now we have everything in place to provide the final version
of our universe

V= inVEpX)
X:U=n
with Ely : V — U=" given by first projection. We will often
omit the sub- and sup- scripts on inV as they will be clear
from context.

The family inV is defined as follows. In analogy with the
indexed W-type Ws_pos, which one would use for an ordinary
closed universe, we use the P-propositional indexed W-type
inV =gef stpos ([24, Definition B.3]). The theory of partially
propositional indexed W-types is developed in [24, Appen-
dix B]. For convenience, we give here the explicit definition
as an indexed higher inductive type.

Definition 3.8. Given a U ="-indexed container (S, Pos),
the family inV over U =" is defined as the higher inductive
type generated by the following constructors:
(i) givenc : Exts pos(inV, X), a constructor tcon(c) : inV(X),
(i) given X : U=" with P(X), and wy, w; : inV(X), a path
constructor ua(wy, i) : Wy =inv(x) Wi.

Lemma 2.5 generalizes to the new setting.
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Lemma 3.9. Let (S, Pos) be a U="-indexed container, and P
a family of propositions over U=". The typeV with Ely : V —
U=" is P-univalent. O

We unfold here the definition of codes for equality in

WSITPDS of [24, Subappendix B.4].

Problem 3.10. Given an equality p: U="(Xy, X;) and w; :
inV(X;) fori € {0, 1}, we define:
e a type Eq;,(p, wo, w1) of codes of equalities between
wo and wy over p, as in Figure 1.
e such that Eq;,(p, Wo, w1) is contractible if P(Xj).

Construction. The definition proceeds by double induction
on wy and wy, defining the pair of Eq,,,(p, wo, w1) and its
conditional contractibility in one go. Given P(Xj) the case
when both w; are built with tcon is contractible because it’s
a join with an inhabited proposition. When either wy or w;
is built by ua we again have by univalence that the type of
contractible types is contractible. O

From [24, Subappendix B.4], we have the following result.

Proposition 3.11. Given p : U=<"(Xy, X1) and w; : inV(X;)
fori € {0,1}, there is an equivalence

Wo =inv(p) W1 = Eqinv(p7 Wo, W1). a
As in Section 2 we define

Eqy(ps )_(0,)_(1) =def Z

p:w£n<X(),X1)

Eqi,v (P> Wo, w1)-

for X; = (X;,w;) for i € {0,1} and derive its equivalence
with equality in V.

Corollary 3.12. For Xy, X; : V, we have
V()_(o,)_(l) = Eqv()_(o,)_(ﬁ- O
3.2.1 Vs n-truncated.

Theorem 3.13. Let (S, Pos) be an n-truncatedness retaining
container. If P(X) implies type,,_,(X) then V is n-truncated.

Proof. Given X; = (X;,w;) : V fori € {0,1} we proceed
by induction on wy and w; to prove V(Xo, X4) is (n — 1)-
truncated. By Corollary 3.12 and the same reasoning as in
the proof of Proposition 2.9, we have to concern ourselves
only with the following pushout square®:

2o usn(Xo, X1)) PX0) X E(p) = X(pea=n(x0,x1)) P(Xo0)

l ()

Y _
2o (X, 1)) E() ——— Eqy (X0, X1)

where E(p) = Eq; (P, (50, o), (51, t1)). By [24, Proposition A.11],
it is enough to show the top right and bottom left corners
are (n — 1)-truncated to conclude that EqV(YO,Yl) is as well.
2(pusn(xo,xy)) P(Xo) is (n — 1)-truncated because P(Xo) is a

3a variant of (3)
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Eq{nv(q, (S0 t0), (51, £1)) =def Z (g5 : So =5(q) $1).

Christian Sattler and Andrea Vezzosi

(er = Tey:ausny [po, pr) Po =Postq.qs.Y) P1 = Eqiay(refl, toy(po), t1y(p1)))

P(Xo) * Eq/.,/(g. co, c1)

Eqinv(q : Xo = X1, Wo, W1) =def { by contractibility

if wg = tcon(cy), wy = tcon(cy)
if wy or wy given by ua(...)

Figure 1. Definition of Eq;,,.

proposition and implies type,,_,(Xp), so that T="(X,, X;) is
(n—1)-truncated by univalence. 3’ ,.¢/<n(x,,x,)) E(p) is equiv-
alent to (Xo, (so, to)) = (X1, (51, t1)) by Proposition 3.11, so we
can conclude its (n — 1)-trucatedness by using that (S, Pos)
retains n-truncatedness, because its premise is satisfied by
the induction hypothesis. O

As the special case where P is constantly false, we obtain
the folklore construction of 0-truncated “closed” universes.

Corollary 3.14. Let (S, Pos) be a 0-truncatedness retaining
container. If P = AX. L thenV is 0-truncated. O

4 Models of n-truncated Type Theory with
Univalence for (n — 1)-types.

In this section, we show that Martin-Lof type theory with
function extensionality and the assumption that all types are
n-truncated is consistent with univalence for (n — 1)-types.

Remark 4.1. The full strength of this statement is realized
only with a sufficiently long chain of universes U, . . . , U,
one included in the next. For if k < n, it is known [18, Sec-
tion 6] how to modify a model of homotopy type theory
(including univalence, but no higher inductive types) to be
n-truncated by restricting types of “size” i (classified by U;)
to i-types (and restricting all types to the n-truncated).

For the reason given in the above remark, we consider
Martin-Lof type theory to come with an w-indexed (cumu-
lative) hierarchy of universes Uy, Ui, . . .. Alternatively, we
could include higher inductive types, which in the presence
of univalence for (n—1)-types are still able to produce proper
n-types.* However, a key point is still for an n-truncated uni-
verse univalent for (n — 1)-types to be able to contain a code
for a (smaller) universe of the same kind, and at this point
we may as well consider a hierarchy of universes.

We use categories with families (cwfs) [12] as our notion
of model of dependent type theory. They are models of a
generalized algebraic theory [8] (as will all semantic notions
considered here). Fixing the underlying category C, we ob-
tain a category of cwf structures on C. We refer to a cwf
structure on C by its presheaf of types Ty, the presheaf Tm
of terms on its category of elements f Ty left implicit.

4 For example, univalence for 0-types is sufficient to show that the circle S*
is a proper 1-type. We consider an n-type proper if it is not an (n — 1)-type.

Let T stand for a choice of type formers, specified by a
collection of rules that are generally natural in the context
(one way to ensure this naturality is by demanding that
these rules be interpretable in presheaves over the category
of contexts and substitutions [5, 7]). Type formers can be
standard type formers such as dependent sums, dependent
products, or identity types, but also “axioms” such as function
extensionality. As before, we have categories of cwfs with
type formers T as well as cwf structures with type formers T
on a fixed category C.

Definition 4.2 ([4, Definition 2.4]). A cwf hierarchy Ty with
type formers T on a category C is a sequential diagram

Tyy—— Ty, —— ...
of cwf structures with type formers T on C.

Note that the lifting maps Ty; — Ty, preserve type
formers T. As before, cwf hierarchies with type formers T
assemble into a category.

Definition 4.3 ([4, Definition 2.5]). A model of Martin-Lof
type theory with type formers T is a category C with a cwf hi-
erarchy Ty with type formers T on C together with, for each i,
a global section U; with an isomorphism El; : Tm; (T, U;) =~
Ty;(T') natural inT € C.

In all uses of the above definition, we will implicitly as-
sume that T contains at least dependent sums, dependent
products, identity types, and finite coproducts. This makes
available basic concepts of homotopy type theory such as be-
ing n-truncated (for an external number n). We write MLT T
for the category such models, and MLTT7(C) if we wish to
fix the underlying category. We say that C is n-truncated
(where n > -2) if all A € Ty,(T) are n-truncated, naturally
inT € C, for all i. As a type former (an axiom), we denote it
Tr(n).

We call U; the i-th universe of C. Note that, in contrast to
our internal reasoning, we explicitly reference the decoding
natural transformation El;. Given a generic property P of
types (such as being n-truncated) forming an internal propo-
sition, we say that C satisfies univalence for P if the universe
U; is P-univalent for all i in the sense of what follows Defi-
nition 2.2. We add a subscript UA(n) to MLTTr to indicate
restriction to models with univalence for n-types.

Let T be a collection of type formers. Given C € MLTTr
and i > 0, the type forming operations contained in T can be



encoded as internal operations on the universe ;. Assume
that these internal operations restrict to the subuniverse
UE" of n-types. For well-behaved T, it is possible to find a
global U;-indexed container C of size i + 1 such that for any
family S over U=", a lift of the given internal operations on
UE" to 2 x:usm) S(X) corresponds to a C-algebra structure
on S. Lastly, assume that C retains n-truncatedness in the
sense of Definition 3.6. If all of this is the case, naturally in
C, we say that T is n-benign.

Example 4.4. The basic type formers we implicitly require
for a model of Martin-Lof type theory are n-benign for any
n > 0. The associated U*"-indexed containers are listed
in Figure 2 (with the size index i omitted). Retention of
n-truncatedness in the sense of Definition 3.6 follows the
scheme of Example 3.7.

Example 4.5. Any type former that only has term form-
ing operations is automatically n-benign. In the first place,
this applies to axiom-style type formers such as function
extensionality.

We are now ready to state the main result.

Theorem 4.6. Letn > 0 and T be an n-benign choice of type
formers, including function extensionality. Let (C,Ty) be a
model of Martin-Lof type theory with type formers T that is
univalent for (n — 1)-types. Then there is an n-truncated model
Ty’ of Martin-Lof type theory with type formers T on C that is
univalent for (n — 1)-types. Furthermore, there is a morphism
Ty” — Ty of cwf hierarchies with type formers T on C.

Proof. Given a cwf structure Ty on a category C, note that a
further cwf structure Ty’ together with a morphism Ty’ —
Ty corresponds up to isomorphism to just a presheaf Ty’ of
types with a natural transformation Ty’ — Ty.” The terms
of Ty’ are inherited (up to isomorphism) from those of Ty
since terms correspond to sections of context projections
and Ty’ — Ty should preserve context extension. Abstractly
speaking, the forgetful functor from cwf structures on C to
discrete fibrations on C is itself a discrete fibration.

Let us further assume that Ty implements some type type
formers T. To interpret T in Ty’ such that Ty’ — Ty preserves
T, we only have to interpret the actual type forming opera-
tions of T in Ty’ such that they are preserved by Ty’ — Ty;
the term forming operations of T will then be uniquely in-
herited from Ty.

Let us now return to the situation of Theorem 4.6. The
type forming operations of the type formers T in (C, Ty;)
can be encoded as internal operations on the universe U;.°
Since T is n-benign, these internal operations further restrict
to the subuniverse U=" of n-types. We now wish to define a

5This is immediate when switching from cwfs to the equivalent notion of
categories with attributes.

Note that this is only a bijective correspondence if we have the judgmental
n-law for dependent products, but this is not required here.
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global type V; of size i + 1 with a map V; — U=". Restricting
El; along this map, we can see V; as a universe. Defining
Ty;(T') = Tm(T, V;) with Ty; — Ty, induced by V; — U=",
we then obtain the cwf structure Ty] with a map Ty; — Ty,.
Interpreting T in Ty; compatible with Ty; will follow from
a (strict) lift of the internal type formation operations from
UE" to V;. Finally, everything needs to be natural in i € .

Let us start with the base i = 0. We will define Vi =gef
Z(X:'L(Of") inV, for a family inV, over ‘LIOS", with V; — 7103"
the first projection. Using that T is n-benign, we have a
“L[OS"-indexed container Cy such that a lift of the internal
formations operations from U; " to V; corresponds to a
Co-algebra structure on inVy. We now follow Section 3 for
the construction of inV, from Cy; this means inV, is the
type,,_;-propositional indexed W-type nge"’l as per [24,
Subappendix B.5]. In particular, we obtain a Cy-algebra struc-
ture on inVy. Note that Vj is univalent for (n — 1)-types by
Lemma 3.9 and n-truncated by Theorem 3.13.

For general i, we let C! be the coproduct of the U="-
indexed container C; given from T being n-benign with the
indexed container with shapes 0 < j < i, with indexing of
j being V; (lifted to Ty;), and no positions. We then define
inV; from C; as before. This guarantees that there are codes
for the universes below i in V;.

To make Ty’ into a cwf hierarchy and Ty’ — Ty into a
morphism of cwf hierachies, we need to construct, for every
i > 0, a dotted morphism making the naturality square

Tyi——Ty;

[

TY;H — TYi+1

of presheaves of types commute. This amounts to defining
internal V; — V;;; making the square

Vi—U;

Vier —— Ui

commute strictly. In turns, this corresponds to an internal
function

inV;(X) — inV; 1 (lift(X)) (6)
for X : UZ". We define this by recursion for inV;, noting
that inV;,; restricted along lift carries a C;-algebra structure,
forgetting the code for the i-th universe in its C;,  -algebra
structure.

It remains to check that the map Ty; — Ty, respects
the type forming operations of T. This follows from (6) com-
muting strictly with C;-algebra structures. This follows from
the judgmental f-law of the higher inductive family inV;.”

7 This is the only place in our entire construction where judgmental -laws
for higher inductive types are needed. One might well regard it as an artifact
of our universe hierarchy setup.
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o Unit type: o Dependent products: o Empty type:
s=1, $ = Liausm A= U, S=1,
t(.) =1, t(Aa B) = H(a:A) B(a)a t(.) =0,
Pos(A, x,y) = 0. Pos(A,B) =1+ 4, Pos(A, x,y) = 0.

s((A, B), inl(e)) = A
s((A, B),inr(a)) = B(a).

e Dependent sums:

S =Yy A— U=,
t(A,B) = X (a:a) B(a),
Pos(A,B) =1+ A,
s((A, B),inl(e)) = A,
s((A, B),inr(a)) = B(a).

o Identity types:
S = Z(A:(LIS") AXA,
(A, x,y) = Alx, y),
POS(A9 X, y) = 1’
s((A,x,y),e) = A.

e Binary coproducts:

S=U"XxU=",
t(A,B) = A + B,
Pos(A,B) = 1+1,
s((A, B),inl(e)) = A,
s((A, B),inr(e)) = B.

Figure 2. U="-indexed containers for basic type formers. The specifying data is given in a slightly alternate form: a type of
shapes S, a target function t : S$ — 71;", a family of positions Pos over S, and a source function s : [],.g Pos(s) — 'L{f”. This
corresponds to a polynomial functor U=<" « S — P — U=" with middle arrow a fibration. The actual indexed container is

obtained by taking fibers using the identity type.

It remains to check that Ty’ has universes as required by
Definition 4.3. Indeed, the i-th universe U/ is simply given
by V; itself, with El] the identity isomorphism. O

Corollary 4.7. Relative to Martin-Lof type theory with func-
tion extensionality and univalence for (n — 1)-types (and any
further n-benign type formers), if the addition of pushouts and
propositionally truncated indexed W-types is consistent, then
it is consistent to assume that all types are n-truncated.

Proof. Given a model for the former theory, we obtain a
model (on the same category) of the latter theory by Theo-
rem 4.6. By construction, the empty type is inhabited in this
model exactly if it is inhabited in the old model. O

Corollary 4.8. In Martin-Lof type theory with function ex-
tensionality and univalence for (n — 1)-types (and any further
n-benign type formers implemented by a known model of ho-
motopy type theory), it is consistent to assume that all types
n-truncated.

Proof. Apply Corollary 4.7 to a model of homotopy type
theory such as simplicial sets or cubical sets that supports
higher inductive families. O

5 A Cubical Type Theory with UIP,
Propositional Extensionality, and
Homotopy Canonicity

In [11] the authors establish the homotopy canonicity prop-

erty for a cubical type theory without judgmental equations

for the box filling operations. Here we will follow that proof
to prove homotopy canonicity for a cubical type theory with
an axiomatic UIP principle and propositional extensionality

given by a modified Glue-type. To keep this section brief, we
closely follow their notation.

5.1 O-truncated Cubical Cwf

We take the definition of cubical cwf from [11] and adapt
it by adding a new trunc operation and an extra argument
to Glue-types. The definition is internal to the category of
cubical sets of [9]. A minor difference to [11], following the
previous section, we only require a sequential diagram of
Ty, presheaves, without topmost Ty, and we do not require
the lifting map Ty; — Ty, to be mono.

Given A : Ty,('), we define isProp(A) and isSet(A) in
Ty;(T') using the Path-type former.

e Glue types. Given A : Ty,(I'), A, : Elem(T, isProp(A)),
¢ :ET:[p] = Ty;(I'), and e : Elem(T, Equiv(T tt, A)),
we have the glueing Glue(A, A,, ¢, T, e) in Ty,(T'), equal
to T tt on ¢. We also have glue(a, t), unglue, and their
equations as described in [11, Sec. 1.3].

¢ 0-truncation operation. Given A in Ty,(I') we have
trunc(A) in Elem(T, isSet(A)). No equations are needed
other than stability under substitution.

5.2 Standard Model

We now work in the category of cubical sets of [9]. It satisfies
the assumptions listed at the top of [11, Section 2.2], so we
have a hierarchy of universes of fibrant types U?b, defined
from a cumulative hierarchy of universes of presheaves U;
fori € {0,1,...,}. Using it as a model of cubical type
theory with uniformly indexed higher inductive types, we
replay the construction from Section 3 and obtain a family



inV : (Uf)<0 — Ufb Then we take

Vi = Z(AZ(UEib)SO) an(A) : Ufl_t_jl
with Ely, : V — (Ufit)=<0,
Just as [11, Section 2.3] defines fche standard model as an
internal cwf from the universes Ug'b, we define the standard
model from the universes V;:

e Con is the category with objects in U,, and functions
between them as morphism,

o the types of size i over I' : U, are maps " — V;,

o the elements of A: I' — V; are II(p : I").Ely,(A p).

We will often omit the use of Ely, to lighten the notational
burden.

Type formers II, %, N, Path and universes are given by
including a code for them in the container (S, Pos) for V;.
The filling operation is derived from the one for U?b. Glue-
types are handled below.

5.2.1 A Code for Glue in V;. One would think that inV
might need an explicit constructor for Glue. However, the
path constructor ua of inV suffices to derive one, given Glue
for Uf and fibrancy of inV.

GivenT : U,, A:T = V;, A, : I(p : T).isProp(Ap), ¢ : F,
T:[p] > T — V;ande : [¢] = Equiv(Ttt, A), we wish to
define Glue(A,Ap, ¢, T,e) : T — V;. We take

Glue(A, Ap, 0, T, e) p =def (G, Wg)

where G = Glue(Ely(A p), ¢, Ely o (T p),ep) : U?b, and given
wy = Ap.2 and wr = 10.T 0p.2, we obtain wgj,e by first
transporting w4 : inV(Ely(A p)) to wg; : inV(G) by the canon-
ical path between the two indices, and then composing under
[¢] with a path between w(, and wr built by ua. The latter is
possible because, assuming [¢], both w(;, and wr are codes
for Ely (T tt p), which is propositional by A, p. Note that with
this correction Glue(A, Ay, ¢, T,e) = T tt when [¢] = T. One
then checks that the code so defined commutes with the
lifting maps V; — V1.

5.3 Sconing Model

Given a cubical cwf M (denoted by Con, Ty, Elem, .. .), we
want to define a new cubical cwf M*, (denoted by Con*, Ty7,
Elem®, ...) as the Arting glueing of M along an internal
global sections functor |—|. We assume M size-compatible
with the universes U; as in [11, Sec. 3]. In [11], the functor
|-| targets the standard model directly, given that Elem(1, A)
is a fibrant type. In our case, we have to include a code for it
in inV;, as in extending the container (S, Pos), as follows:

e given A : Ty;(1), a constructor [A] : inV;(Elem(1, A)).
Note that both Ty;(1) and Elem(1, A) are 0-truncated, because
the trunc operation implies isSet(Elem(1, A)) for any A in
Ty;(1), and Ty,(1) itself is equivalent to Elem(1, U;). This
makes sure that the extended container still preserves 0-
truncatedness.
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For the definition of natural numbers in M*, we will also
need a code for the type family N’ : Elem(1,N) — Ugb
defined in [11, Appendix B]:

e given n : Elem(1, N), a constructor N’(n) : inVo(N’ n)
where N’ n can be shown to be 0-truncated by Corollary 3.14.

The functor || is then given on contexts, types, and ele-

ments of M like so:
o || =¢er Hom p((1,T),
* |Al p =der (Elem(1, A), [Ap]),
o lal p Zer ap.

We now define the sconing model M?*, starting with the
cwf components.

e A context (I',T’) : Con* consists of I : Con in M and
afamily T’ : [T| — U,,.
e Atype (A, A") : Ty;(T',T”) consists of a type A : Ty,;(T')
in M and a family
A" :(p: |TN(p" : T p) = Al p — Vi
of proof-relevant predicates over it.
e An element (a,d’) : Elem*((I',I”), (A, A")) consists of
an element a : Elem(T, A) in M and
a :I(p: [T)(p": T" p) — Alp, p’, ap).
We observe that this definitions differs from the one given in
Coquand et al. [11] only by the use of V; in place of U?b to
define Ty}. As such we will not repeat here the details about

the rest of the cwf structure or the shared type formers and
operations, and instead discuss only Glue* and tr*.

5.3.1 Glue-types.
Lemma 5.1. Let (A, A’) in Ty;(I,T"). The following state-

ments are logically equivalent, naturally in (T,T”):
Elem*((T,T"), isProp*(A, A”)) (7)
Elem(T, isProp(A))
XTI(p : [T’ : T p).isProp((a : 14| p).A'(p. p' ) ¥
Elem(T, isProp(A))
XTI(p : [T} : T p)(a : |A] p).isProp(a’(p. p' a)) )

Proof. Given (7), we have A, : Elem(T, isProp(A)) and a proof
that one can fill lines in A’ over lines produced by |A,|; that
is enough to fill lines in the 2-type in (8). From there, we
derive (9): since |A| p is propositional, any path from a to
a is constant. Going back to (7) requires only to contract a
path in |A| p. O

Let (A, A") in Ty}(I, I'), ¢ inF, (T, T’) in [¢] — Ty;(T,I"),
(e, e’y in Elem™((T,T”), Equiv*((T tt, T’ tt), (A, A"))),
and (4, A}) in Elem*((T,T”), isProp*(A, A”)). We follow the
recipe of [11, Sec. 3.2.6] and define
Glue™ (A, A"), (Ap, A}), 0. (T, T"), e, €"))
as (Glue(A, Ay, ¢,T,e),G’) where G’ p p’ (glue(a, t)) is de-
fined as the Glue-type in V; of A’ pp’a and T’ ttp p’ (¢ tt)
along ¢. In our case we also have to provide a proof of
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isProp(A’ p p” a), which we obtain from (A,, A},) by applying
Lemma 5.1, going from (7) to (9).

5.3.2 trunc-operation.

Lemma 5.2. Let (A, A") : Ty;(T,I”). The following state-
ments are logically equivalent, naturally in (I',T"):

Elem*((T, T’), isSet*(A, A")) (10)

Elem(T, isSet(A)) 1)

XI(p : |T)(p" : T" p).isSet(3(a : |A] p).A"(p, p” a))
Elem(T, isSet(A))

xT(p : TN(p" : T p)(a : |Al p).isSet(A'(p, p” a))

Proof. This follows the same strategy as Lemma 5.1, except

this time filling and contracting squares rather than lines. O

(12)

Let (A, A”) : Ty;(I', I’). We define
trunc*(A, A) : Elem™((T',T”), isSet™(A4, A))

by applying Lemma 5.2 in the direction from (10) to (12). to
the pair of trunc(A) and trunc’ where

trunc’ p p" a - isSet(Ely,(A’(p, p" a)))
is given by Ely,(A’(p, p’ a)) : (U?b)so.
Given the above constructions, one mechanically verifies
the necessary laws to obtain the following statement.

Theorem 5.3 (Sconing). Given any 0-truncated cubical cwf
M that is size-compatible in the sense of [11, Sec. 3], the sconing
M* is a O-truncated cubical cwf with operations defined as
above. We further have a morphism M* — M of 0-truncated
cubical cwfs given by the first projection. O

We state homotopy canonicity with reference to the ini-
tial O-truncated cubical cwf I, whose existence and size-
compatibility is justified as in [11, Sec. 4]. The proof of the
theorem also follows the argument given in that section.

Theorem 5.4 (Homotopy canonicity). In the internal lan-
guage of the cubical sets category of [9], given a closed natural
n: Elem(1, N) in the initial model I, we have a numeralk : N
with p : Elem(1, Path(N, n, S¥(0))). O

6 Related Work and Conclusion
6.1 Related Work

In the realm of type theories with UIP and function exten-
sionality, XTT [25] is a non-univalent variant of CTT that
takes the extra step of making UIP hold judgmentally, in
the spirit of observational type theory (OTT) [3]. As formu-
lated XTT does not provide propositional extensionality and
requires a typecase operation within the theory for (strict)
canonicity. OTT does include propositional extensionality,
but only for a universe of propositions closed under a specific
set of type formers that made it possible to assume judgmen-
tal proof irrelevance for such propositions. We conjecture
that by introducing UIP (or n-truncatedness) only as a path
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equality we will be able to refine our theory to one with
strict canonicity without encountering similar limitations.
Regarding strict propositions, i.e. where any two elements
are stricly equal in the model, the semantics for a univalent
universe of them within the cubical sets model is described
in [10]. However the corresponding universe of strict sets is
not a strict set itself. Such semantics are used in [14] to jus-
tify the addition of a primitive universe of strict propositions
sProp.

6.2 Conclusion

We proved consistency for a theory with n-truncatedness
and univalence for (n — 1)-types. We also showed homotopy
canonicity for cubical variant of such a theory. The main
technical tool used was an n-truncated universe of n-types
that is also univalent for (n — 1)-types. We would like to
stress that such a universe can also be used directly in HoTT
with indexed higher inductive types, for applications that
do not mind the universe being limited to a fixed set of type
formers.
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