
On Improving the Computing Capacity of Dynamical Systems

Downloaded from: https://research.chalmers.se, 2024-03-13 07:19 UTC

Citation for the original published paper (version of record):
Athanasiou, V., Konkoli, Z. (2020). On Improving the Computing Capacity of Dynamical Systems.
Scientific Reports, 10(1). http://dx.doi.org/10.1038/s41598-020-65404-3

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

1Scientific Reports | (2020) 10:9191 | https://doi.org/10.1038/s41598-020-65404-3

www.nature.com/scientificreports

On Improving The Computing
Capacity of Dynamical Systems
Vasileios Athanasiou✉ & Zoran Konkoli

Reservoir Computing has emerged as a practical approach for solving temporal pattern recognition
problems. The procedure of preparing the system for pattern recognition is simple, provided that the
dynamical system (reservoir) used for computation is complex enough. However, to achieve a sufficient
reservoir complexity, one has to use many interacting elements. We propose a novel method to reduce
the number of reservoir elements without reducing the computing capacity of the device. It is shown
that if an auxiliary input channel can be engineered, the drive, advantageous correlations between
the signal one wishes to analyse and the state of the reservoir can emerge, increasing the intelligence
of the system. The method has been illustrated on the problem of electrocardiogram (ECG) signal
classification. By using a reservoir with only one element, and an optimised drive, more than 93% of the
signals have been correctly labelled.

Reservoir Computing (RC) has been successfully used for solving plethora of temporal information processing
problems, such as speech recognition or time series prediction and classification1–3. In Fig. 1a, we show the clas-
sical RC scheme in the context of signal classification. The internal state of the reservoir is defined as r(t) = (R1(t),
R2(t), …, RN(t)) where Ri(t) describes the state of an i-th element at a time instance t. For example, if the reservoir
is built from neurons then Ri(t) denotes the activation state of a neuron. Likewise, if the reservoir is a memristor
network, then Ri(t) represents a memristance value. Plethora of other elements have been suggested to build
reservoirs (cf.4 and references therein). The set of all possible values of r constitutes the configuration space of the
reservoir Ω.

The process of computation is realised by “feeding” an input signal q(t) to a dynamical system that represents
the reservoir5. The external input q(t) “pushes” the state of the reservoir into a configuration r(t) according to a
dynamic law r t H r t q t() ((), ()) = , where the dot over a symbol denotes the time derivative, e.g.  ≡r dr dt/ . The
configuration r(t) is the result of the computation performed by the reservoir computer. Note that the state of the
system at a particular time instance t depends on the full history of the input signal up to that time point. Thus r(t)
depends on all q(t′) with t′ < t. To emphasise this we write r t q t() []()=  . Essentially, the reservoir works as a
filter: it converts an uncountable series of values q into another series r q[]=  . One can think of time as an index
that can be used to access a particular value in such a series. In the following, when discussing specifically a
one-element reservoir, to simplify the notation we write r(t) = R1(t) instead of r(t) = R1(t).

The state r(t) should also depend on the initial condition of the system i, and one ought to assume
r t q r t() [,]()ˆ= . However, if the system exhibits the fading memory property then this dependence on the initial
condition should be very weak: ˆ q r q[,] []≈ . A few examples of dynamical systems that illustrate the fading
memory concept can be found in literature6.

The reservoir is equipped with a readout layer ψ that assigns a label y to the reservoir state at every time
instance ψ=t y t r t: () (()). The readout layer should be a simple structure, and it should not contribute substan-
tially to the computation7; it is used to identify the region that the state has been driven to. For example, to realise
a binary classification, one would use y t r t() (())wψ= with ≡ ∑ +=r t w R t w() ()w i

N
i i1 0, where ψ is a sigmoid-like

function, and w w w, , , N0 1 are free parameters.
The main claim is that under suitable reservoir conditions, one can realise any computation by using a fixed

reservoir and by simply adjusting the readout layer achieve any desired functionality8. In the context of the binary
classification example introduced above, this implies that any binary classification can be achieved by only adjust-
ing the free parameters w w w, , , N0 1  . In principle, any dynamical system could be used like this provided that
the system is complex enough.

It is intuitively clear that the computing power cannot come out of nothing. Indeed, in a genuine reservoir
computing setup, the computing power does not reside in the readout layer, but it originates from the complexity

Department of Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg, Sweden.
✉e-mail: vasath@chalmers.se

OPEN

https://doi.org/10.1038/s41598-020-65404-3
mailto:vasath@chalmers.se
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-65404-3&domain=pdf

2Scientific Reports | (2020) 10:9191 | https://doi.org/10.1038/s41598-020-65404-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

of the reservoir9. In practice, to achieve this, one needs reservoirs with a large number of elements that feature
recursive feedback mechanisms (intrinsic or externally engineered), both for hardware10 or software3 implemen-
tations. This intuitive understanding has been corroborated with rigorous mathematical arguments.

The most important formal criterion that makes the RC approach possible is that the dynamical system being
used as the reservoir has to separate inputs11,12. The rigorous mathematical formulation is rather involved, and
somewhat counterintuitive. In brief, assuming a fixed time reference t, a reservoir separates inputs if for any pair
of distinct input signals q and q’ there is a readout layer ψ ′q q, such that respective outputs y t r t() ([])q q q,ψ= ′ and

ψ′ = ′ ′y t r t() ([])q q q, are different, where rq = H[q] and r q[]q H= ′′ . A pedagogical discussion on the mathematical
background to the concept can be found in literature13. An intuitive formulation of the separability requirement
is as follows. Assuming that the goal is to classify signals into a fixed number of k classes c1, c2, …, ck, the reservoir
has to exhibit the following behaviour. If the input belongs to a class c0, then, the state of the reservoir r should be
driven towards a region Ω0 of the configuration space; for an input of class c1 the state should be driven towards a
region Ω1 and so on. The key requirement is that the regions Ω0, Ω1, …, Ωk should not overlap and they ought to
be compact so that the decision boundaries are simple14–16.

Input separation may not be possible if the reservoir were not complex enough. In machine learning, prior to
the development of the deep learning paradigm, a specific practice for separating inputs has been considered. The
practice features the use of additional input channels to achieve the desired separation, and is normally referred
to as feature engineering17–19. In deep learning, feature engineering occurs spontaneously while training deep
neural networks. Note that high quality features are found by training deep neural networks’ internal structure,
which implies modification of the dynamical system used for computation. However, in RC, one is not allowed
to adjust reservoir’s internal structure for training purposes. By assumption, one cannot modify the reservoir to
increase the performance. This is particularly true in the context of the physical reservoir computing7,13 where, by
assumption, one is interested in building computers from dynamical systems that cannot be easily modified. In
this work, we suggest that it is possible to work around this problem.

Figure 1.  (a) The classical RC scheme. A dynamical system (reservoir) responds to the input q(t). The internal
state of the reservoir r(t) is processed by a simple readout layer. The only part of the system being trained is
the readout layer. (b) Same as for panel (a), but an auxiliary drive signal u(t) is provided that interacts with the
reservoir. (c) Same as for panel (b) with an additional feedback mechanism uR(t) = h(r(t)) being included. The
drive signal, the feedback mechanism and the weights are trained.

https://doi.org/10.1038/s41598-020-65404-3

3Scientific Reports | (2020) 10:9191 | https://doi.org/10.1038/s41598-020-65404-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

Instead of modifying the dynamical system one can try to adjust the input that is being fed into the system.
In particular, we demonstrate a generic method of building powerful reservoir computers by using an additional
input feature, a drive signal. If providing an additional input feature contributes to input separation, then, one
does not need to search for more complex dynamical systems with a larger number of interconnected reservoir
elements. Instead, one can perform RC with the minimum amount of reservoir elements. The purpose of using an
additional input feature is to achieve optimal input separation.

The key idea explored in this study is that a drive signal can be used to achieve advantageous correlations
between input and reservoir’s state, increasing the performance of RC. If so, then a “recognizable” correlation
between r and q is built in the sense that r can be used to infer about q without a substantial engineering over-
head. If this can be achieved, then the drive and the reservoir can operate in synergy, so that the “intelligence”
that should reside in the reservoir, is transferred into the drive instead, which could allow for reservoirs with
smaller size20. In this context, we use the term “intelligence” as a measure of the computational resources needed
to execute an algorithm, being often referred to as “logical depth”21. An implicit assumption is being made that a
higher logical depth implies larger engineering overhead necessary to implement the algorithm on a computing
machine. Therefore, the transfer of intelligence from the reservoir to the drive means that the need for reservoir’s
computational resources can be reduced by using a drive signal.

The method works for dynamical systems that can be driven by an external signal. By assumption, the system
responds to two signals, q(t) and u(t), where q is the signal one wishes to classify, and u features as an auxiliary
additional input channel (feature). Using the notation introduced earlier, one can write = r t q u t() [,](). In
Fig. 1, we show two implementations of the ideas discussed above in the context of a signal classification problem.
Implementation 1 (Fig. 1b): In this case, the reservoir is stimulated by a drive signal u and an input signal q. The
dynamics of the reservoir is defined by r t H r t q t u t() ((), (), ()) = . Implementation 2 (Fig. 1c): The complexity of
the system can be increased by adding a feedback,  = +r t H r t q t u t u t() ((), (), () ())R , where the feedback signal
uR(t) is a function of the reservoir state u t h r t() (())R = . Note that H is considered fixed, and only once H is given,
one chooses the appropriate implementation. This implies that those two implementations lead to two different
(non-equivalent) pattern recognition algorithms, where implementation 1 is a special case of 2. For example, it is
impossible to find a drive for implementation 1 that would mimic the behavior of implementation 2 if h(r(t)) ≠ 0.
To do this, one would have to construct a drive that behaves as a filter, since the state of the reservoir r behaves in
such a way. In particular, one would have to find a drive that has an intimate knowledge of the input signal q, but
this is impossible as the input signal is not known a priori.

To find an optimal drive signal u, we suggest a generic training procedure that can be applied at any super-
vised learning problem or any reservoir. The system is optimised on a set of training data until the result of the
computation agrees with the desired functionality. The ability of the system to generalise is examined by using a
separate set of test data.

The training procedure consists of two phases. In the first phase, the drive signal and the feedback (if used) are
optimised to achieve maximum input separation, without considering the readout layer. If the reservoir separates
inputs, then, a simple readout layer (e.g. linear classifier) could be trained to successfully classify inputs by reading
the reservoir’s state11. In the second phase, only the readout layer is optimised, by keeping the drive signal and
the feedback function found from the first phase. The advantage of considering the two phases of training is that
the readout layer can be optimised offline. The states of the reservoir are generated under the optimum drive and
feedback (if used). Then, the readout layer is trained with supervised learning to infer the correct class by reading
the reservoir states.

Phase 1: To measure input separation we use the separability index which is introduced and described in
detail in the methods section. For a single-element network and a binary classification problem with classes of
input signals c0 and c1 the separability index is defined as

u d u q q[] [, ,]
(1)q c q c0 1 ,0 0 1 1

ν =
∈ ∈

where q c q c,0 0 1 1
〈... 〉 ∈ ∈ denotes the geometric mean over different input signals q0 and q1 that characterise each

input class c0 and c1 respectively. The variable d[u, q0, q1] denotes a typical distance between trajectories that are
generated when the system is exposed to each pair of input signals q0 and q1 under a drive u.

Trajectories are analysed over an extended time interval [0, T] where T denotes the observation time. A typical
distance is computed as

= − |¯ ¯d u q q R u q R u q[, ,] [,] [,] (2)0 1 0 1

with

∫= R̄ u q
T

u q t dt[,] 1 [,]() (3)
T

0

note that the average over time is computed first, followed by the computation of the difference between the
average memristance values. In methods, it is explained why it would be wrong to perform these operations in
the reverse order.

The degree of trajectory separability can be controlled by the drive signal u. Thus, in the first training phase,
the goal is to find the optimal drive signal u* = maxarguv[u] and the feedback function h* (if used) that achieves
the maximal trajectory separability. We use a genetic algorithm optimisation, which is described with details in
methods, with the separability index v[u] as the fitness function.

https://doi.org/10.1038/s41598-020-65404-3

4Scientific Reports | (2020) 10:9191 | https://doi.org/10.1038/s41598-020-65404-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

Phase 2: The readout layer implementation used differs somewhat from the central RC dogma. The purpose
of the first phase of training is to maximise the separation of inputs over the whole time interval T, which features
the computation of average memristance values R̄ T R t dt()i

T
i

1
0∫= − . Therefore, instead of the classical readout

layer, the inference unit performs the assessment at the time instance T: y T r() ()w̄ψ= with r w R ww i
N

i i1 0≡ ∑ +=¯ ¯ .
When compared to the classical RC readout layer, the computational cost of implementing such a unit is mar-
ginal. The idea to construct the readout layer by using such averages have been verified independently in separate
studies22.

For technical reasons we assume ψ =r r()w w¯ ¯ . This allows the use of the least square method. In particular, for
a binary classification problem, the output should be close to +1 (−1) when a signal from class c0 (c1) is applied,
and we simply minimise the prediction error by varying w0, w1, …, wN. The decision by the inference unit is con-
sidered as the simplest possible: if y(T) > 0 then infer class c0 otherwise infer class c1.

The dynamical system used consists of a single memristor and an optional feedback unit. A memristor is a
non-linear, passive, two-terminal component with a time-varying resistance often being referred to as the mem-
ristance R(t). The memristor element is suitable for temporal information processing since it exhibits the filter
property: The memristance value at a specific time instance depends on the whole history of the applied voltage
signal up to that time. Few applications of memristor networks for temporal information processing purposes
can be found2,23.

To illustrate the method, a simple Pershin Di Ventra model24 is used. The memristance R(t) changes depend-
ing on the voltage signal ΔV that is applied across the element according to a simple law. If −Vthr < ΔV < Vthr,
then the memristance changes as R Vα= Δ . For ΔV < −Vthr or ΔV > Vthr, R V const β= Δ + ; α, β are device
dependent parameters, const is a constant value and usually α ≪ β. The memristance is bounded between the
lowest value Rmin > 0 and the maximum value Rmax. This can be written as:

R t f V t R t V t() ((),) ((), ()) (4)β= Δ Θ Δ

with

β β α β∆ = ∆ + − ⋅ |∆ + | − |∆ − |f V V V V V V(,) 1
2

() () (5)thr thr

and

θ
θ

Θ Δ =








Δ =
> Δ >

> Δ <
R V

V
R R V
R R V

(,)
0, if 0

(), if 0
(), if 0

max

min

where θ(Rmax > R) is zero unless the condition in the argument is satisfied, and likewise for θ(R > Rmin).
Figure 2 shows how R depends on R and ΔV. The dependence of f on the applied voltage ΔV (Rmin < R < Rmax)

is shown in panel a). The flowlines of the ordinary differential equation system are illustrated in Fig. 3. When
ΔV > 0, then the memristance increases until R = Rmax is reached. When ΔV < 0, the memristance decreases
until R = Rmin.

In this study, the parameters α, Vthr, Rmin and Rmax are always kept fixed. More realistic memristor models are
available. For example, real devices can exhibit asymmetry in the memristance change ( ∆ ≠ −∆R V R V() ()) and
non-linear rate of memristance changes25. However, the model used here is known to reproduce most of the
experimental results.

The drive signal u(t) is expressed as a Fourier series with nine amplitudes and a base frequency (details pro-
vided in the methods section). The feedback function is defined as uR(t) = h(R(t)) = p1R(t) + p0. The ten parame-
ters of the drive signal and the parameters p1, p0 are optimised in the first phase of the training procedure.

Figure 2.  The memristance rate of change R is plotted against the volage difference ΔV for values of parameters
β = 3.0, α = 1.0, Vthr = 0.5 (thick line) and β = 2.0, α = 0.5, Vthr = 0.5 (dashed line). The plot is given for three
different cases of the value R(t) when (a) Rmin < R < Rmax, (b) R = Rmax and (c) R = Rmin.

https://doi.org/10.1038/s41598-020-65404-3

5Scientific Reports | (2020) 10:9191 | https://doi.org/10.1038/s41598-020-65404-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

Two options of how the input signal q(t) interacts with the reservoir are considered. Option 1: It is natural
to assume that the input signal influences the β parameter of the memristor model making it time dependent:
βq(t) = m1q(t) + m0. Such a model has been explored before23. Option 2: Another option is to assume that the
input signal acts as an external voltage source2 uq(t) with uq(t) = k1q(t) + k0 and β kept fixed at the value βc. These
two options (Options 1 and 2) along with the two implementations (Implementations 1 and 2) result in the four
models I1O1, I2O1, I1O2 and I2O2. The dynamical equations for those models are summarised in Table 1.

We compare the performance of these four models with a set of simpler models in which neither a drive signal
nor a feedback function are optimised. In such a way one can test the performance of a reservoir when no addi-
tional input features are provided. This reveals a “raw” intelligence of a reservoir. Then, the increase in the addi-
tional computational power provided by an additional input feature can be analyzed. The dynamical equations
of the models I0O1 and I0O2 are given in Table 1. The model I0O1 results from option 1 when neither a drive
signal nor a feedback function is optimised. In this case, the reservoir is always driven by the same drive signal uc
and there is no feedback uR(t) = 0. The model I0O2 results from option 2 without providing any drive signal nor
a feedback: u(t) = 0 and uR(t) = 0.

Results
As a source of data, the labelled data set of ECG signals “ECG5000” from the UEA and UCR Time Series
Classification Repository26 is used. Usually, in the literature, ECG signals are classified into many classes27.
However, since the reservoir consists of only one memristor element, a simple problem of binary signal classi-
fication is investigated. Including more classes would require larger memristor networks. Thus only two classes
are considered, class c0 (healthy heart) and class c1 (heart problems). The strategy of using the single memristor
for ECG signal classification is simple to describe: the memristance ought to be driven towards Rmin or Rmax
depending on whether the input signal belongs to c0 or c1 respectively. If this can be achieved, classification can be
performed by simply checking whether the memristance value exceeds a pre-defined threshold. The same type of
thinking applies to more complex classification problems with many classes. For example, with a two-memristor
network with r = (R1, R2) a four-class problem could be solved. The state could be driven towards four different
regions (Rmin, Rmin), (Rmin, Rmax), (Rmax, Rmin), and (Rmax, Rmax).

In the training procedure, 40 signals with the label c0, and 40 with the label c1 have been used. The training
procedure for each model (I1O1, I2O1, I1O2 and I2O2) resulted in an optimum drive signal: u11 for I1O1, u21 for
I2O1, u12 for I1O2 and u22 for I2O2. The two optimal feedback functions were found too: h21 for I2O1 and h22 for
I2O2.

The ability of the trained models to generalise has been validated on a separate set of test data: 740 signals with
the label c0, and 740 signals with the label c1. The trained models were exposed to those signals, and the percent-
age of correct label assignments was counted. The quality of recognition is described in terms of the success rate
0 ≤ S ≤ 1 being defined by the percentage of correct signal classifications. Thus S ≈ 1 indicates a good classifier.

In this work, the set of test data has been considered to be much larger than the set of training data (740 ≫ 40).
The reason is to test the performance of the proposed models in the worst case when few training examples are
available. It has been shown that RC performs relatively well with a few training examples because RC can extract
general features from the training data set28,29. Choosing data sets and their size can be crucial in machine learn-
ing for improving accuracy of models. One could try different sizes of data sets and the performance of models

Figure 3.  The flowlines of the dynamical system. The small rectangle shows the path the system would take
under a square wave voltage input.

Dynamics

I0O1 R t f u t t R t u t() ((), ()) ((), ())c q cβ= Θ

I1O1  β= ΘR t f u t t R t u t() ((), ()) ((), ())q

I2O1 β= + Θ +Ṙ t f u t u t t R t u t u t() (() (), ()) ((), () ())R q R

I0O2 β= ΘR t f u t R t u t() ((),) ((), ())q c q


I1O2  β= + Θ +R t f u t u t R t u t u t() (() (),) ((), () ())q c q

I2O2 R t f u t u t u t R t u t u t u t() (() () (),) ((), () () ())q R c q R˙ β= + + Θ + +

Table 1.  The equations which describe the dynamics of the models I0O1, I1O1, I2O1, I0O2, I1O2 and I2O2.

https://doi.org/10.1038/s41598-020-65404-3

6Scientific Reports | (2020) 10:9191 | https://doi.org/10.1038/s41598-020-65404-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

would also depend on the choice of data sets30. Investigating the right choice of data sets and their size falls out of
the scope of this article.

An ECG signal has a natural time reference, the top of the QRS peak (regardless of the class). Thus in the
database all signals are aligned so that their QRS peaks coincide. To investigate whether the models can be used
for classifying non-synchronised ECG signals, we intentionally modified the phase of each signal in the training
and the test data sets by random shifts in time. Thus we distinguish two major groups of data sets: aligned versus
asynchronous.

In the simulations, since ECG signals are quasi-periodic, the observation time was taken to be ten periods,
T = 10 periods. The reservoir has the chance to “absorb” in its state extended information about the input over a
longer time interval. In such a way, small features of the input signal that might be ignored by visual inspection,
can accumulate over time and be detected. Observing the signal over several periods gives the reservoir necessary
time to distinguish important trends from insignificant fluctuations.

Since the memristance value is bounded, it is useful to normalise the separability index v in a range of possible
values between 0 and 1. When v = 1 this signals a maximum input separation. Any two input signals from the two
different classes drive the state (on average) to its opposite extreme bounds Rmin or Rmax. The value v = 0 indicates
that there is no correlation whatsoever between the states’ values and the input signal q. For example, it is even
possible that the state is driven on average to the same region of values for both classes of inputs.

Frozen input layer.  The device parameters m1, m0, k1, and k0 used in simulations have been kept fixed. The
values of m1 and m0 were chosen so that β(t) has a mean value close to βc and is always positive. The values of k1
and k0 were chosen so that the voltage signal uq(t) is bounded in the [−10, 10] interval. The drive signal uc was
chosen as a square wave pulse with +1 the first half and −1 the second half of each period. The values for all
parameters used in the simulations are provided in the methods section.

In Fig. 4, the phase space separation is shown as it was achieved with the optimum models I1O1 and I2O1
under two input signals from the different classes. Those input signals are shown in panel a) covering two peri-
ods in time, to be referred to as q0(t) and q1(t) for class c0 and c1 respectively. In b), only one curve is shown, the
optimised drive signal u11(t). This drive signal governs the applied voltage signal across the memristor and is
independent of the input signal. In d), the memristance trajectories r0(t) = H[r0, q0, u11](t) and r1(t) = H[r1, q1,
u11](t) are shown for the model I1O1.

The phase space separation is evident: the trajectories r0(t) and r1(t) are driven towards two different regions
of the state space: r1(t) ≈ Rmax and r0(t) ≈ Rmin for t → ∞. It is important to notice that the memristor model is
exposed to the same drive u11 for both inputs q0 and q1; the machine can never “know” which input signal it will
have to analyse. Yet, the drive posses an intrinsic “intelligence” that works in synergy with the memristor ele-
ment, to achieve the phase space separation. The drive signal u11 has been found so that when q = q0 (q = q1) the
memristance is driven to a region close to Rmin (Rmax) for t → ∞. Note here that u11 (panel (b)) has both positive
and negative values. If u11 was only positive (negative) then R(t) ≈ Rmax (R(t) ≈ Rmin) and R(t) would not be sep-
arable. Therefore, u11 has been found with the right amount and synchronisation of positive and negative values
to achieve input separation.

Figure 4.  (a) An example of two input signals taken from for the two classes of interest. Panels (b,c) depict the
optimised drive signals u11 and u21. Panel (d) shows the memristance behavior of model I1O1 when exposed
to u11 and the two input signals shown in (a). (e) The memristance as function of time for model I2O1 when
exposed to u21, with the feedback function h21 and the two input signals shown in (a).

https://doi.org/10.1038/s41598-020-65404-3

7Scientific Reports | (2020) 10:9191 | https://doi.org/10.1038/s41598-020-65404-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

In panel c), the voltage signal across the memristor model is shown when the model I2O1 was simulated
with u21(t), h21 and the input signals shown in a). Because of the feedback, the voltage across the memristor
u21(t) + uR(t) is different for the two different applied inputs. Again, the phase space separation is evident, as
shown in panel e). In fact, one can pick any pair of signals from classes c0 and c1 and, provided the same optimised
u11, u21, and h21 are used, the separation property will likely hold. Thus one can think of u11, u21, and h21 as the
device configuration “parameters”.

The fact that input separation is evident in panels d) and e) shows why the two training phases suggested in
this work operate in synergy. The task of genetic algorithm optimisation was to find a drive signal so that phase
space separation occurs for most of the signals in the training data set. If so, then, one can simply build a linear
classifier for inferring the class of the input signal. For example, by observing those two panels, one could build a
linear classifier with a bare eye.

Additionally, it is of interest to notice that the response of the device was faster for the model I2O1 than the
model I1O1. For example, in e) one can see that phase space separation occurred already at the first period of
the input signal. However, in d) more periods were needed for the memristance to be driven towards its bounds.
This is owed to the usage of a feedback function. An additional usage of a feedback function resulted in faster
responses.

The values of the separability index v and the success rates of the optimised circuits are summarised in Table 2.
The left panel summarises the results of the analysis for synchronised data set signals. The right panel is for asyn-
chronous signals.

Aligned signals.  For the aligned signals in Table 2, a larger separability index v was obtained for the models with
a feedback mechanism (I2O1 and I2O2) than the ones without feedback (I1O1 and I1O2). The lowest separability
indexes were obtained for the models I0O1 and I0O2 where neither a drive nor a feedback were optimised. To
judge whether a larger separability index means a better training process, one should test the optimised models
with a test data set. In the left panel, all the success rates with optimised input features (I1O1, I2O1, I1O2 and
I2O2) were found S > 93.2% indicating that these or similar models can be used for classifying ECG signals.

It is important to notice here that the success rates were found smaller for the models with optimised feedback
than the models with just optimised drive signal. This happened due to overfitting, a problem which usually
occurs in machine learning: The extra parameter to be optimised (feedback) was so powerful that the models fit
too much on details of the training data set that were not generally features of other input signals of the test data
set.

The success rates for models with just a drive signal (I1O1 and I1O2) were found larger than the models with-
out any drive signal (I0O1 and I002). In particular, by training a drive signal, the success rates improved from
87.2% to 97.9% and from 51.9% to 97.8%. Therefore, training a drive signal resulted to exceptional success rates
which could not be achieved by just using a memristor element.

Additionally, for the model I1O2, even though the training process resulted in a very low v = 0.059, the success
rate was large (97.8%). This happened because it was still possible to construct a readout layer which classifies
most of the input signals correctly. By inspecting closer the state R(t) over time (not shown), we saw that although
the instantaneous state R(t) was driven to overlapping regions, the average value of the state was separable. This is
one of the advantages of using a readout layer which averages the state over time. For example, if the memristance
values were driven on average to the numerical values 3.10 and 3.00 for inputs of class c0 and c1 respectively, then
the separability index would be small but it would still be possible to construct a readout layer: if the average
memristance is larger than 3.05 then infer class c0 otherwise infer class c1.

These results indicate that a single memristor model equipped with an optimised voltage driving signal can
be used for ECG signal classification. Note that the drive needs to be trained only once during the first phase of
training, on a known set of signals, but the device can be used on unknown signals. However, we reiterate that the
downloaded data set consists of signals with the same phase, (see Fig. 4a)). In practice, for online classification,
one would need an online QRS detector31. QRS detectors are used to recognise the phase of ECG signals by iden-
tifying the part of the ECG signal which changes fastest in time. Moreover, the task of signal classification would
be harder if there was no information regarding the phase of the signals, for example for embedded computation
where every piece of extra equipment is a problem, one might want to remove a QRS detector unit. Can the sys-
tem still classify with such a high success rate if there is no fixed time reference?

Asynchronous signals.  The separability indexes v and the success rates in the right panel in Table 2 for
non-aligned signals were found smaller than their aligned counterparts listed in the left panel. This is expected

v S v S

I0O1 0.126 87.2% I0O1 0.093 47.8%

I1O1 0.501 97.9% I1O1 0.204 55.4%

I2O1 0.839 93.2% I2O1 0.729 87.9%

I0O2 0.002 51.9% I0O2 0.004 75.3%

I1O2 0.059 97.8% I1O2 0.027 45.0%

I2O2 0.890 96.1% I2O2 0.441 79.0%

Table 2.  Optimised v values obtained during the training process, and success rates S during the test phase. Left
panel: all signals are aligned (with the QRS wave); right panel: non-aligned signals.

https://doi.org/10.1038/s41598-020-65404-3

8Scientific Reports | (2020) 10:9191 | https://doi.org/10.1038/s41598-020-65404-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

because now the models should be smarter and infer correctly independently of the input signal phase. The mod-
els without a feedback mechanism (I1O1 and I1O2) performed worse with success rates 55.4% and 45.0% respec-
tively. Including and optimising a feedback mechanism (models I2O1 and I2O2) improved both the training
procedure (index v) and the testing one (success rate S). The separability indexes from I1O1 to I2O1 and I1O2 to
I2O2 improved from 0.204 to 0.729 and from 0.027 to 0.441 respectively. Additionally the success rates improved
from 55.4% to 87.9% and from 45.0% to 79.0%. Therefore, here, contrary to the results of using the initial data set
(in the left panel in Table 2) there was no over-fitting: The extra parameter to be optimised (feedback) was so pow-
erful that the models fit better on some features of the training data set which are also features of the test data set.

Optimised input layer.  The classification performance can be improved if there is an option to adjust the
input layer parameters m1, m0, k1, or k0. While this is clearly possible for in silico implementations, it might be
possible for hardware implementations too. The values of the separability index v and the success rate when the
input layers were additionally optimised are shown in Table 3 for both aligned (left panel) and non-aligned signals
(right panel).

By comparing the results in Table 2 to the ones in Table 3, the following key results were found regarding the
additional optimisation of a simple input layer:

•	 The largest success rates across all models is S = 98.6% for the aligned signal data set (Table 3, the second row),
and S = 93.1% for the non-aligned signal data set (Table 3, the sixth row).

•	 Larger success rates were achieved for the non-aligned signals when the input layer was optimised (S > 90%
in Table 3 versus S < 90% in Table 2).

•	 In contrast to the above, for the aligned data set, the input layer optimisation does not improve the success
rate uniformly across all models (cf. the S values in the left panels of Tables 2 and 3). This could be an instance
of overfitting: the input layer optimisation works well on the training data but does not generalise (towards
the test data).

•	 A single memristor model without optimising a drive signal (models I0O1 and I0O2) cannot be used to
classify the ECG signals since S < 90% for both frozen and optimised input layers. The only way to achieve
S > 90% was to provide an additional input feature such as a drive signal or a drive signal with a feedback
function. For example, in Table 3 right panel, models I1O2 and I2O2 performed better than I0O2 and model
I2O1 performed better than I0O1.

An interesting finding concerns the question whether the addition of a feedback function improves v and S. It
depends on how hard is the problem. For easier classification problem, when the signals are aligned, the feedback
does not always improve the accuracy of the prediction. However, for a harder problem, when the signals are not
aligned, the addition of the feedback always improves both v and S. For example, I2O1 did not perform better
than I1O1 when the signals were aligned (see the left panel in Table 3). Even though I2O1 is an extension of I1O1,
neither a larger index v nor a larger S was found for I2O1. This has probably happened because of convergence
problems during the optimisation. It was hard to optimise both the input layer and the drive signal. Probably,
better optimisation algorithms should be tested in future, such as optimising one layer at a time, e.g. optimising
the input layer and keeping fixed the feedback and the drive signal etc.

Discussion
A novel classification method has been suggested that can be used to increase the intelligence of pattern recog-
nition devices. The method requires modest resources to implement. The approach has been illustrated in the
reservoir computing context, but the method could be easily used in other pattern recognition setups.

A typical pattern recognition device is a dynamical system that accepts an input signal and informs about
which class the signal belongs to by producing a label, being the output of the computation. The key idea is to
equip a machine learning system (the reservoir) with an auxiliary input channel, the drive signal, that is external
to the system and easy to control. This signal can be optimised so that the information about the signal one wishes
to analyse (the input signal) can be efficiently embedded into the reservoir state. Then, the reservoir state can be
analysed to infer the information about the input.

An intuitive way of understanding the concept is to envision a theatre performance. A prompter in a theatre
helps an actor that forgot a line. The prompter is familiar with the intrinsics of the play, and has an overall under-
standing of the right timing of the narrative. In a similar way, the optimised drive provides clues that accumulate
over time and increase the overall intelligence of the system.

v S v S

I0O1 0.239 82.0% I0O1 0.205 48.2%

I1O1 0.818 98.6% I1O1 0.290 55.5%

I2O1 0.774 90.1% I2O1 0.640 91.0%

I0O2 0.042 88.6% I0O2 0.046 42.9%

I1O2 0.211 90.8% I1O2 0.186 90.3%

I2O2 0.843 96.3% I2O2 0.783 93.1%

Table 3.  Optimised v values and success rates S for the system with the optimised input layer. Left panel: all
signals are aligned (with the QRS wave); right panel: non-aligned signals.

https://doi.org/10.1038/s41598-020-65404-3

9Scientific Reports | (2020) 10:9191 | https://doi.org/10.1038/s41598-020-65404-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

The method can be exploited in two ways. First, in the bottom-up approaches, when the reservoir is engi-
neered from scratch, the intelligence that normally resides in the reservoir can be moved to the drive. This would
allow engineering reservoirs with smaller size, without reducing the computing capacity of the device. Second,
the intelligence of an existing system could be increased, especially for reservoirs that built in a top-down manner,
that are not engineered from scratch or once engineered are not meant to be modified. The respective examples
might include an amorphous structure (e.g. to be used for in materio computation), or an echo state network
(essentially a random neural network with feedback links).

Our approach offers a series of practical advantages. The reported successes rates have been obtained with
rather modest resources: the machine learning system consisted only of a simple memristor element, and an
optimised drive signal. Thus, it has been demonstrated that extra intelligence can indeed be provided through
the external drive since a single memristor (models I0O1 and I0O2) cannot be used to solve such a classification
problem. The results of our work point to the exciting possibility that there is a potential synergy between the
reservoir state dynamics and the external input signal profile (the signal one wishes to analyze) in terms of the
information they could potentially share. This synergy can be exploited, but it is deeply hidden, scattered over
time, as small clues that a traditional pattern recognition device ignores. The drive signal can be used to unlock
that hidden potential. Clearly, such a synergy might not exist for every information processing problem (a par-
ticular reservoir-input combination), but it seems that for the problem that has been investigated it is there: The
presence of the drive had much stronger effect on the aligned signals with a fixed time reference. Further, it is true
that the presence of the drive imposes some limitations on the system design. However, arranging for an extra
input channel ought to be possible in general.

To demonstrate the method, we used it to classify ECG signals. The method classifies the ECG signal with
success rate 98.6% (93.1%) for aligned (non-aligned) signals. The reported success rates fall roughly in the range
of other state of the art methods. For example, it has been reported that for the data set “ECG5000”, the best
performing algorithm “COTE”, achieved a success rate of 94.61%32. Other state-of-the-art approaches, e.g. deep
learning networks33, have reported similar success rates. Interestingly, the state of the art success rate has been
achieved despite the fact that rather modest resources were used to implement the classification algorithm.
Naturally, such a comparison is not entirely fair since we use the lowest possible number of classes (two). In con-
trast, the COTE algorithm was applied on the set of aligned signals with five-classes. Likewise, Hannun et al.33
have solved a ECG classification problem with twelve classes and different ECG data sets. Thus it is likely that the
success rates reported in here would deteriorate if one would increase the number of classes. However, to mitigate
this one can consider using more complex memristor networks. Still, the fact that the success rates fall in the same
range illustrate the potential of the method.

Since we considered just one memristor element it did not make much sense to work classification problems
with more than two classes. The method can be easily applied to any multi-class pattern recognition problem,
however. To do this, as already mentioned, one could consider using more complex dynamical systems. But there
are other practices used in machine learning that might be used with an advantage. One could also consider a
combination of several classification systems similar to ones suggested in this work. For example by, again, using a
single memristor equipped with one linear readout layer. In particular, one system could be trained for a different
task, e.g. to classify if a signal belongs to class 1 or 2, another system if a signal belongs in class 1 or 3, etc. Another
option would be to use current work as models for trying ensemble learning methods34. All those ideas are left
for future implementations.

The training data set (80 signals) was much smaller in size than the testing data set (1480 signals), and still the
system performed very well. The findings of our method agree with other findings28,29 that RC works well with a
few number of training examples. Generic features can be extracted from the training data set since a few param-
eters are trained because reservoir’s internal structure is not trained. Similarly, in our work, the fact that the drive
was parameterised with very few parameters (and a limited training data set) suggests that the hidden correlations
we seek to explore are in some sense global, and do not require detailed drive tuning to access. It is possible that a
sub-optimised drive could do the job as well as the fully optimised one. In fact, this has also been corroborated by
inspecting the genetic algorithm optimization steps. There is no reason to believe that such a global synergy could
not be found and exploited in other systems.

The biggest challenge with the method is the process of training the drive. For very large systems with many
elements the drive optimization procedure might be a problem. One would have to compute distances between
points in a space with a very large dimension over many time instances. However, this issue could be mitigated
in several ways.

First, to train the drive, there is no need for a rigorous supervised learning approach during this phase. Let us
illustrate this on a thought experiment. Assume that the goal is to apply the approach for the pattern recognition
problem where the goal is to use an artificial neural network. It is true that during the drive optimization step the
user needs to have an access to labelled data, but not in the same way as for supervised learning approaches. To
train an artificial neural networks one uses labels actively to train “inside” of the network, i.e. adjust its weights.
Our use of the labels is more passive, we operate from the “outside”. The main advantage of the suggested approach
is that an easily adjustable external signal needs to be manipulated instead of the internal network weights. This
might not matter for in silico implementations but it might be a decisive difference for hardware implementations,
especially if one cannot engineer the reservoir easily.

Further, the fact that a sub-optimal drive might work opens for several options for building scalable separa-
bility optimization techniques that can be used on large systems. An obvious option is to reduce the training data
set size: The size of the training data set influences the number of distance computations, and as argued above,
the training data set with limited size was sufficient to optimise the drive. Another option to explore is to estimate
separability in some other way, without computing distances between all trajectories (and trajectory points),
when forced working with large data sets. Then, one might try to use a sampling technique in which not every

https://doi.org/10.1038/s41598-020-65404-3

1 0Scientific Reports | (2020) 10:9191 | https://doi.org/10.1038/s41598-020-65404-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

distance has to be computed. For example, instead of computing the distance among the full set of trajectory
points, one picks few sampling points at random, e.g. when the average trajectory position is used to estimate
distances. Such an average could be efficiently estimated efficiently by random sampling.

It has been shown that including more reservoir resources (in addition to the external drive signal) such as
feedback mechanisms or input layers significantly improved the performance of the device. These options are rec-
ommended for software applications since it would only cost the training of just few additional free parameters.
However, for hardware implementations, those options should be considered wisely: these additional resources
imply additional engineering overhead, e.g. in terms of energy consumption.

While the method is demonstrated theoretically on a simple memristor model, it is likely that such recogniz-
able correlations can be exploited in other dynamical systems. The extensions towards other systems ought to be
straight forward, at least in principle. It is possible that a novel pattern recognition paradigm might emerge at the
interface between the theory of complex dynamical systems, and state-of-the-art machine learning methods, by
further exploring (developing and applying) the method suggested in here.

Methods
To perform the first phase of the training procedure, we introduce a separability index and a genetic algorithm
optimisation. The separability index acts as the fitness function of the optimisation. The details for calculating
the separability index are presented in the first subsection. The optimisation algorithm is explained in the second
subsection. Details of implementing numerical simulations are presented in the third subsection.

Separability index.  The separability index v is introduced as a tool for quantifying the ability of a reservoir
to separate inputs. Several such measures have been considered in the literature14–16. The measure suggested in
this study is specifically tailored towards measuring the degree of collaboration between the elements.

One assumes a drive signal u and generates all possible trajectories for a given training data set which is a set
of input signals with a corresponding label each one. The separability index v is computed by estimating typical
distances between the trajectories. If typical distances are large then v should be large too. This implies that v
depends on u and on all input signals qj

i. To emphasize this, the notation v[u; c1, c2, …, ck] will be used. If the
classes are implicit, then a shorter form v[u] is more useful.
Every class of input signals c1, c2, …, ck is represented by typical input signals { }c q q q, , ,i

i i
N
i

1 2 i
= 

:

{ }
{ }

{ }

{ }

c q q q

c q q q

c q q q q

c q q q

, , ,

, , ,

, , , , ,

, , ,

N

N

i
i i

j
i

N
i

k
k k

N
k

1 1
1

2
1 1

2 1
2

2
2 2

1 2

1 2

i

k

1

2

=

=

=

=

�

�

�

� �

�

�

If the input is a signal belonging to class ci, e.g. qj

i with j ∈ {1, 2, …, Ni}, then the readout layer should report a
corresponding class label li.

A trajectory for a given combination of a drive signal u and an input signal qj
i can be written as

≡S u q t R u q t R u q t R u q t[,]() ([,](), [,](), , [,]()) (6)j
i

j
i

j
i

N j
i

1 2 R

Such trajectories are traced during a finite time interval t ∈ [0, T] where T denotes the length of the observa-
tion time.

The separability index v is obtained by computing a typical distance between trajectories. A straightforward
way of doing this it to compute the instantaneous distance between two trajectories S u q t, ()j

i





 and 



′

′S u q t, ()j
i

resulting from two inputs of different classes (i and i’) using the Euclidean norm in the state space:

S u q t S u q t R u q t R u q t[,]() [,]() ([,]() [,]())
(7)j

i
j
i

m

N

m j
i

m j
i2

1

2R

∑|| − || = −
=

′
′

This distance will be denoted by

= || − ||′
′d t S u q t S u q t() [,]() [,]() (8)j j

i i
j
i

j
i

,
,

To obtain a typical distance one simply averages the instantaneous distance over time as

d
T

dt d t1 () (9)j j
i i T

j j
i i

,
,

0
,
,∫=′

′
′
′

The above formulas seem perfectly reasonable. However, there is a problem with these formulas that is not
obvious. For example, consider the trajectories depicted in Fig. 5. Panel (a) shows a desirable behavior, a

https://doi.org/10.1038/s41598-020-65404-3

1 1Scientific Reports | (2020) 10:9191 | https://doi.org/10.1038/s41598-020-65404-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

trademark of good input separation. By observing the probability distributions, one can with a bare eye decide a
decision boundary. However, the behavior illustrated in panel (b) is problematic. For these trajectories the corre-
sponding distance ′

′d t()j j
i i
,
, is larger than zero for most time-points t implying that the average in Eq. (9) would be

large too. This would signal that the behavior depicted in panel (b) is a trademark of good input separation and
yet it would be hard to find a decision boundary by considering the probability distributions. The problem is that
even though the individual trajectories are separated in time the regions they visit change over time. This implies
that one would need to design a readout layer that is aware of these changes, leading to additional computational
overhead.

A better distance estimate is obtained if one averages over time first, before the Euclidean norm is computed.
The algorithm used to compute the typical distances is given by

= −′
′

′
′‖ ¯ ¯ ‖d

N
S u q S u q1 [,] [,]

(10)
j j
i i

R
j
i

j
i

,
,

where

≡¯ ¯ ¯ ¯
S u q R u q R u q R u q[,] ([,], [,], , [,]) (11)j

i
j
i

j
i

N j
i

1 2 R

with

¯ ∫=R u q
T

dtR u q t[,] 1 [,]() (12)m j
i T

m j
i

0

The above equations result in the following compact expression

d
N

R u q R u q1 ([,] [,])
(13)

j j
i i

R m

N

m j
i

m j
i

,
,

1

2R

∑= −′
′

=

¯ ¯

Equation (13) is a more useful measure than the one given in Eq. (9). For example, consider the two trajecto-
ries in Fig. 5 panel (a). There the regions claimed by the trajectories are stable. The problem with Eq. (9) is that
it cannot properly distinguish between the situations depicted in panels (a) and (b). This equation predicts large
degree of separability for both panels, which is clearly incorrect. If Eq. (13) is used, then the distance measure is
larger for the pair of trajectories in (a) than in (b).

Further, note that in Eq. (10) the additional factor, N1/ R , has been added. This factor is extremely important.
It penalizes careless increase of the dimension of the state space. In practical terms, without that factor, the dis-
tance between trajectories would increase when adding additional copies of the existing memristors but without
any direct coupling with the existing network. Note that if such elements are added then they contribute to the
sum in the distance formula and the distance measure increases. This wrongly signals an increase in the informa-
tion processing ability of the device. In principle, such parallel copies of non-interacting elements should not add
any additional information processing ability.

Combining typical distance between trajectories into an overall separability measure.  Assuming that the typical
distances have been estimated, there are several ways to define the index v. For example, the most natural defini-
tion would be to calculate the average over the typical distances:

Figure 5.  In the panels a and b two imaginary examples are used to show the probability distributions of the
state variable R under two input signals q1 and q2. In the left side of the panels, the trajectories in the state space
R are depicted. In the right side the resulting probability distributions of the state variable are shown.

https://doi.org/10.1038/s41598-020-65404-3

1 2Scientific Reports | (2020) 10:9191 | https://doi.org/10.1038/s41598-020-65404-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

∑ ∑ ∑ ∑ν =
= ′= + = ′=

′
′

′

ˆ u c c c
N

d[; , , ,] 1

(14)
k

D i

k

i i

k

j

N

j

N

j j
i i

1 2
1 1 1 1

,
,i i

where ND denotes the number of all possible distances in the set of the training data. This number is given by

N 1
(15)

D
i

k

i i

k

j

N

j

N

1 1 1 1

i i

∑ ∑ ∑ ∑=
= ′= + = ′=

′

If each class contained N elements, then this number would be given by = ()N k N
2D

2. If the number of ele-
ments per class varies Eq. (15) is the only way to compute ND.

We argue that the procedure to estimate the separability index given in Eq. (14) is not the optimal one. Instead,
in this study, the following estimate is used:

 ∏ ∏ ∏ ∏ν =










= ′= + = ′=
′
′

′

u c c c d[; , , ,]
(16)

k
i

k

i i

k

j

N

j

N

j j
i i

N

1 2
1 1 1 1

,
,

1
i i D

If the index v is calculated according to Eq. (14) then it can have a large value even though some distances are
extremely small. This measure cannot be used if we prefer that all the distances are fairly large. However, if the Eq.
(16) is used, the index v is maximized only if all distances are fairly large, since when one of the distances is very
small, the final product will also be small.

Genetic algorithm optimisation.  Genetic algorithms (GA) are used in the first phase of the training pro-
cedure with the separability index v as a fitness function. GA is a strong optimisation technique that can be used
to solve problems regardless of their complexity35–37. Additionally, there is one other reason why GA is preferred
in this work and not other methods such as gradient-based optimisations: At the moment, calculating gradients
of index v with respect to the parameters of the drive signal requires extensive mathematical analysis and valida-
tion since similar work has not been implemented before.

Genetic algorithm optimisation is implemented in which a combination of two nested loops is used. The small
loop represents the typical GA optimisation steps (e.g. crossover or mutation). Iterations in this block are stopped
when the best fitness does not improve in four consecutive steps. However, each GA block starts with random
sampling of the candidate solutions. There is a possibility that the small loop does not converge to a solution with
a sufficiently large fitness due to extremely unlucky choice of the candidates. To guard against that problem, we
repeat the GA iteration block several times, remembering the best solution. If indeed the best fitness does not
improve in two subsequent iterations then it is extremely likely that the best solution has been found. The ideas
discussed above have been implemented as follows:

•	 1. Determine the parameters to be optimised.
•	 2. Big loop – Repeat:

•	 2.1. Initialization: Sample 300 candidate solutions and store in the list CANDIDATES. If a best candidate
solution is available from the previous iteration (stored in the variable BEST) include it into the CANDI-
DATES list.

•	 2.2. Small loop – Repeat:

•	 2.2.1. Keep the 30 best solutions out of the list CANDIDATES to use them for the genetic operations.
•	 2.2.2. Choose another 10 randomly generated parents as candidate solutions.
•	 2.2.3 Perform genetic operations with the 30 + 10 = 40 parents to produce 300 offsprings. Decide with proba-

bility 0.5 if you will perform mutation or crossover. Create an offspring in the following way.

•	 If you perform mutation, choose randomly 1 out of the 40 parents. Choose randomly one parameter of the
parent. Convert it into a binary number and choose randomly one bit of the binary number to mutate. Then
convert the mutated binary number into a decimal number.

•	 If you perform crossover, choose randomly 2 out of the 40 parents. Choose randomly one parameter in the
same position for both parents. Convert both parameters into binary numbers. Crossover the binary numbers
to produce a new binary number. Convert the new binary number into a decimal one.

•	 2.2.4 Store the 300 offsprings and the 40 parents to the candidate solution list CANDIDATES. Note that this
replaces all the elements and extends the size of the list by 40. After this step the length of the CANDIDATES
is 340.

•	 2.2.5 Sort the CANDIDATE list and pick the best candidate solution and store in the variable BEST.

https://doi.org/10.1038/s41598-020-65404-3

13Scientific Reports | (2020) 10:9191 | https://doi.org/10.1038/s41598-020-65404-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

•	 2.3. Until four subsequent iterations of the small loop give the same solution variable BEST.
•	 2.4. Continue with the big loop iteration.

•	 3. Until two subsequent iterations of the big loop give the same best solution (the variable BEST does not
change across two subsequent iterations).
Classical GA suffers from premature convergence. This can happen if the population diversity is not main-
tained and the genetic operations of crossover and mutation cannot produce better off-springs than their
parents38. In the GA scheme above, the following measures are taken to prevent premature convergence:

•	 In the step 2.1, a big amount of initial candidate solutions (300) are sampled.
•	 In the step 2.2.1, a big amount of best solutions (30) are kept to be used for genetic operation at the next

iteration.
•	 In the steps of the small loop, a bigger priority is given to the solutions with best fitness and a slow conver-

gence is avoided because 30 best solutions are chosen against 10 randomly generated. The randomly gener-
ated solutions encourage the genetic diversity which is important for avoiding premature convergence.

Numerical simulations.  This section provides details on how the simulations have been implemented. The
drive signal is expressed as a Fourier series

∑ ω ω= + +
=

u t A A n t B n t()
2

(sin cos)
(17)n

n

n n
0

1

c

when the drive signal is optimised, both the expansion parameters and the base frequency ω are optimised. With
nc = 4 there are 10 parameters in total. The fixed numerical values of the Pershin-Di-Ventra model parameters are
shown in Table 4. When the input layers were not optimised, the parameters m1, m0, k1 and k0 were fixed. Their
fixed values are shown in the Table 5.

Received: 24 September 2019; Accepted: 4 May 2020;
Published: xx xx xxxx

References
	 1.	 Appeltant, L. et al. Information processing using a single dynamical node as complex system. Nat. Commun. 2, 468, https://doi.

org/10.1038/ncomms1476 https://www.nature.com/articles/ncomms1476#supplementary-information (2011).
	 2.	 Du, C. et al. Reservoir computing using dynamic memristors for temporal information processing. Nat. Commun. 8, 2204, https://

doi.org/10.1038/s41467-017-02337-y (2017).
	 3.	 Abdulrasool, A. S. & Abbas, S. M. Article: Reservoir computing: Size and connectivity optimization using the “worm algorithm”. Int.

J. Comput. Appl. 69, 18–22 Full text available (2013).
	 4.	 Konkoli, Z., Nichele, S., Dale, M. & Stepney, S. Reservoir Computing with Computational Matter, p. 269, in Computational Matter

(Springer International Publishing, Cham, 2018; Editors: S. Stepney, S. Rasmussen, M. Amos).
	 5.	 Marinella, M. J. & Agarwal, S. Efficient reservoir computing with memristors. Nat. Electron. 2, 437–438, https://doi.org/10.1038/

s41928-019-0318-y (2019).
	 6.	 Konkoli, Z. Reservoir Computing, p. 1–12, in Encyclopedia of Complexity and Systems Science (Springer Berlin Heidelberg, Berlin,

Heidelberg, 2017, Editor: R.A. Meyers).
	 7.	 Tanaka, G. et al. Recent advances in physical reservoir computing: A review. Neural Networks 115, 100–123, https://doi.

org/10.1016/j.neunet.2019.03.005 (2019).
	 8.	 Scardapane, S., Comminiello, D., Scarpiniti, M. & Uncini, A. Significance-Based Pruning for Reservoir’s Neurons in Echo State

Networks, 31–38 (Springer International Publishing, Cham, 2015).

numerical value

βc 3.0

α 1.0

Vthr 0.5

Rmin 1.0

Rin 4.0

Rmax 7.0

Table 4.  Pershin Di-Ventra model.

numerical value

m1 0.83

m0 5.5

k1 3.33

k0 5.0

Table 5.  Numerical values of the parameters m1, m0, k1 and k0.

https://doi.org/10.1038/s41598-020-65404-3
https://doi.org/10.1038/ncomms1476
https://doi.org/10.1038/ncomms1476
https://www.nature.com/articles/ncomms1476#supplementary-information
https://doi.org/10.1038/s41467-017-02337-y
https://doi.org/10.1038/s41467-017-02337-y
https://doi.org/10.1038/s41928-019-0318-y
https://doi.org/10.1038/s41928-019-0318-y
https://doi.org/10.1016/j.neunet.2019.03.005
https://doi.org/10.1016/j.neunet.2019.03.005

1 4Scientific Reports | (2020) 10:9191 | https://doi.org/10.1038/s41598-020-65404-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

	 9.	 Goudarzi, A., Banda, P., Lakin, M. R., Teuscher, C. & Stefanovic, D. A comparative study of reservoir computing for temporal signal
processing 1401.2224 (2014).

	10.	 Shainline, J. M., Buckley, S. M., Mirin, R. P. & Nam, S. W. Superconducting optoelectronic circuits for neuromorphic computing.
Phys. Rev. Appl. 7, 034013, https://doi.org/10.1103/PhysRevApplied.7.034013 (2017).

	11.	 Ghani, A., See, C. H. & Ali, S. M. U. Step forward to map fully parallel energy efficient cortical columns on field programmable gate
arrays. IET Sci. Meas. & Technol. 8, 432–440, https://doi.org/10.1049/iet-smt.2014.0004 (2014).

	12.	 Jensen, J. H. & Tufte, G. Reservoir computing with a chaotic circuit. The 2019 Conf. on Artif. Life 222–229, https://doi.org/10.1162/
isal_a_039 (2017).

	13.	 Konkoli, Z. On reservoir computing: from mathematical foundations to unconventional applications, p. 573, in Advances in
Unconventional Computation, Vol. 1. Theory (Springer, 2016, Editor: A. Adamatzky).

	14.	 Goodman, E. & Ventura, D. Spatiotemporal pattern recognition via liquid state machines. In The 2006 IEEE International Joint
Conference on Neural Network Proceedings, 3848–3853, https://doi.org/10.1109/IJCNN.2006.246880 (2006).

	15.	 Gibbons, T. E. Unifying quality metrics for reservoir networks. In The 2010 International Joint Conference on Neural Networks
(IJCNN), 1–7, https://doi.org/10.1109/IJCNN.2010.5596307 (2010).

	16.	 Norton, D. & Ventura, D. Improving the separability of a reservoir facilitates learning transfer. In 2009 International Joint Conference
on Neural Networks, 2288–2293, https://doi.org/10.1109/IJCNN.2009.5178656 (2009).

	17.	 Skansi, S. Introduction to Deep Learning From Logical Calculus to Artificial Intelligence. Undergraduate topics in computer science
(Springer International Publishing: Imprint: Springer, Cham, 2018).

	18.	 Zheng, A. & Casari, A. Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists (O’Reilly Media, Inc.,
2018).

	19.	 Liu, S., Tang, B., Chen, Q., Wang, X. & Fan, X. Feature engineering for drug name recognition in biomedical texts: Feature
conjunction and feature selection. Comput. Math. Methods Medicine 2015, 9, https://doi.org/10.1155/2015/913489 (2015).

	20.	 Konkoli, Z. The sweet algorithm: generic theory of using reservoir computing for sensing applications. Int. J. Parallel, Emergent
Distributed Syst. 121–143 (2016).

	21.	 Li, M., Vit P. M. B. #225 & nyi. Kolmogorov complexity and its applications, 187–254 (MIT Press, 1990).
	22.	 Bianchi, F. M., Scardapane, S., Løkse, S. & Jenssen, R. Reservoir computing approaches for representation and classification of

multivariate time series. CoRR abs/1803.07870 1803.07870 (2018).
	23.	 Athanasiou, V. & Konkoli, Z. On using reservoir computing for sensing applications: exploring environment-sensitive memristor

networks. Int. J. Parallel, Emergent Distributed Syst. (2017).
	24.	 Ventra, M. D., Pershin, Y. V. & Chua, L. O. Circuit elements with memory: Memristors, memcapacitors, and meminductors. Proc.

IEEE 97, 1717–1724, https://doi.org/10.1109/JPROC.2009.2021077 (2009).
	25.	 Gong, N. et al. Signal and noise extraction from analog memory elements for neuromorphic computing. Nat. communications 9,

2102–2102, https://doi.org/10.1038/s41467-018-04485-1 (2018).
	26.	 Dau, H. A. et al. The UCR Time Series Archive. ArXiv e-prints 1810.07758 (2018).
	27.	 Jambukia, S. H., Dabhi, V. K. & Prajapati, H. B. Classification of ecg signals using machine learning techniques: A survey. In 2015

International Conference on Advances in Computer Engineering and Applications, 714–721, https://doi.org/10.1109/
ICACEA.2015.7164783 (2015).

	28.	 Krishnagopal, S., Aloimonos, Y. & Girvan, M. Similarity learning and generalization with limited data: A reservoir computing
approach. Complexity 2018, 15, https://doi.org/10.1155/2018/6953836 (2018).

	29.	 Panda, P. & Srinivasa, N. Learning to recognize actions from limited training examples using a recurrent spiking neural model.
Front. neuroscience 12, 126–126, https://doi.org/10.3389/fnins.2018.00126 (2018).

	30.	 Barbedo, J. G. A. Impact of dataset size and variety on the effectiveness of deep learning and transfer learning for plant disease
classification. Comput. Electron. Agric. 153, 46–53, https://doi.org/10.1016/j.compag.2018.08.013 (2018).

	31.	 Kim, J. & Shin, H. Simple and robust realtime qrs detection algorithm based on spatiotemporal characteristic of the qrs complex.
Plos one 11, e0150144–e0150144, https://doi.org/10.1371/journal.pone.0150144 (2016).

	32.	 Lines, J., Taylor, S. & Bagnall, A. Time series classification with hive-cote: The hierarchical vote collective of transformation-based
ensembles. ACM Trans. Knowl. Discov. Data 12, 52:1–52:35, https://doi.org/10.1145/3182382 (2018).

	33.	 Hannun, A. Y. et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural
network. Nat. Medicine 25, 65–69, https://doi.org/10.1038/s41591-018-0268-3 (2019).

	34.	 Sagi, O. & Rokach, L. Ensemble learning: A survey. WIREs Data Min. Knowl. Discov. 8, e1249, https://doi.org/10.1002/widm.1249
(2018).

	35.	 Shayanfar, H. A., Shayeghi, H., Abedinia, O. & Jalili, A. Design rule-base of fuzzy controller in multimachine power system stabilizer
using genetic algorithm. In Proceedings of the 2010 International Conference on Artificial Intelligence, ICAI 2010, July 12-15, 2010,
Las Vegas Nevada, USA, 2 Volumes, 43–49 (2010).

	36.	 Shayeghi, H., Shayanfar, H. A. & Albedinia, O. Fuzzy pss design for a multi-machine power system using improved genetic
algorithm. Comput. Sci. Eng. https://doi.org/10.5923/j.computer.20120201.01 (2012).

	37.	 Abedinia, O., Naderi, M. S., Jalili, A. & Khamenehpour, B. Optimal tuning of multi-machine power system stabilizer parameters
using genetic-algorithm. In 2010 International Conference on Power System Technology, 1–6, https://doi.org/10.1109/
POWERCON.2010.5666603 (2010).

	38.	 Malik, S. & Wadhwa, S. Preventing premature convergence in genetic algorithm using dgca and elitist technique. Int. J. Adv. Res.
Comput. Sci. Softw. Eng. 4, 410 (2014).

Acknowledgements
Open access funding provided by Chalmers University of Technology.

Author contributions
This work is a part of graduate education at Chalmers University of Technology. Vasileios Athanasiou has
conducted the numerical experiments under the guidance of Zoran Konkoli. Both authors have reviewed the
manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to V.A.
Reprints and permissions information is available at www.nature.com/reprints.

https://doi.org/10.1038/s41598-020-65404-3
https://doi.org/10.1103/PhysRevApplied.7.034013
https://doi.org/10.1049/iet-smt.2014.0004
https://doi.org/10.1162/isal_a_039
https://doi.org/10.1162/isal_a_039
https://doi.org/10.1109/IJCNN.2006.246880
https://doi.org/10.1109/IJCNN.2010.5596307
https://doi.org/10.1109/IJCNN.2009.5178656
https://doi.org/10.1155/2015/913489
https://doi.org/10.1109/JPROC.2009.2021077
https://doi.org/10.1038/s41467-018-04485-1
https://doi.org/10.1109/ICACEA.2015.7164783
https://doi.org/10.1109/ICACEA.2015.7164783
https://doi.org/10.1155/2018/6953836
https://doi.org/10.3389/fnins.2018.00126
https://doi.org/10.1016/j.compag.2018.08.013
https://doi.org/10.1371/journal.pone.0150144
https://doi.org/10.1145/3182382
https://doi.org/10.1038/s41591-018-0268-3
https://doi.org/10.1002/widm.1249
https://doi.org/10.5923/j.computer.20120201.01
https://doi.org/10.1109/POWERCON.2010.5666603
https://doi.org/10.1109/POWERCON.2010.5666603
http://www.nature.com/reprints

1 5Scientific Reports | (2020) 10:9191 | https://doi.org/10.1038/s41598-020-65404-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020

https://doi.org/10.1038/s41598-020-65404-3
http://creativecommons.org/licenses/by/4.0/

	On Improving The Computing Capacity of Dynamical Systems

	Results

	Frozen input layer.
	Aligned signals.
	Asynchronous signals.

	Optimised input layer.

	Discussion

	Methods

	Separability index.
	Combining typical distance between trajectories into an overall separability measure.

	Genetic algorithm optimisation.
	Numerical simulations.

	Acknowledgements

	Figure 1 (a) The classical RC scheme.
	Figure 2 The memristance rate of change is plotted against the volage difference ΔV for values of parameters β = 3.
	Figure 3 The flowlines of the dynamical system.
	Figure 4 (a) An example of two input signals taken from for the two classes of interest.
	Figure 5 In the panels a and b two imaginary examples are used to show the probability distributions of the state variable R under two input signals q1 and q2.
	Table 1 The equations which describe the dynamics of the models I0O1, I1O1, I2O1, I0O2, I1O2 and I2O2.
	Table 2 Optimised v values obtained during the training process, and success rates S during the test phase.
	Table 3 Optimised v values and success rates S for the system with the optimised input layer.
	Table 4 Pershin Di-Ventra model.
	Table 5 Numerical values of the parameters m1, m0, k1 and k0.

