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Abstract: Let G be a connected semi-simple compact Lie group and for 0 < q < 1,
let (C[G]q,Δq) be the Jimbo–Drinfeld q-deformation of G. We show that the C∗-
completions of C[G]q are isomorphic for all values of q. Moreover, these isomorphisms
are equivariant with respect to the right-actions of the maximal torus.

1. Introduction

The quantized universal enveloping algebra Uq(g) of a semi-simple Lie algebra g was
introduced by Drinfeld and Jimbo in the mid-80’s [3,5]. In [4], Drinfeld also introduced
their dual objects, deformations C[G]q of the Hopf algebra of regular functions on a
semi-simple Lie group G. Moreover, when G is compact, the algebra C[G]q can be
given the structure of a Hopf ∗-algebra. In this case one can see that the enveloping C∗-
algebra of C[G]q exists, giving a natural q-analogue C(G)q of the algebra of continuous
functions on G. The analytic approach to quantum groups was initially proposed by
Woronowicz [14]. In the 90’s Soibelman gave a complete classification of the irreducible
∗-representations of C[G]q. These were shown to be in one-to-one correspondence with
the symplectic leaves of G coming from the Poisson structure on C(G) determined by
the quantization when q → 1. However, it was not clear how the C∗-algebraic structure
of C(G)q was depending on the parameter q. In fact, several evidence pointed towards
that the structure was actually independent of it. In the special case of SU2, it was
observed (see [14]) that the C∗-algebras C(SU2)q , q ∈ (0, 1) are all isomorphic. In the
mid 90’s, G. Nagy showed in [8] that the same holds for C(SU3)q. Moreover, it was
also shown by Nagy (in [9]) that C(SUn)q is KK-equivalent to C(SUn)s, for all n ∈ N

and all q, s ∈ (0, 1). This was extended by Neshveyev–Tuset in [10] to yield a KK-
equivalence between C(G)q and C(G)s for any compact simply connected semi-simple
Lie group G. In this paper, we show that some of the ideas that underpin Nagy’s proof
of the q-independence of C(SU3)q can be extended to give the following result: for a
fixed symplectic leaf U ⊆ G, with corresponding ∗-representations πq of C[G]q, we
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have an isomorphism Imπq ∼= Imπ s for all q, s ∈ (0, 1). Using this, we prove that
C(G)q ∼= C(G)s, thus showing that these non-isomorphic compact quantum groups are
all isomorphic as C∗-algebras. This confirms the conjecture made in [8].

The paper is organized as follows. We finish this section by giving some geometric
intuitions underlying the proof and describing the idea of the proof using this geometric
picture.We then present and prove the lifting theoremused in the proof of themain result.
Section 2goes through the formal definitions ofC[G]q aswell as its representation theory.
In Sect. 3, we prove some more specific results regarding representations and how these
depend on the q parameter. In Sect. 4, we state and prove the main result.

1.1. Outline of the proof. To explain the main ideas of the proof, it is worth to start by
considering the case of G = SU3, previously covered by Nagy. There is an irreducible
∗-representation πq : C[SU3]q → B(�2(Z+)

⊗3) that, in Nagy’s words, corresponds to
the "big symplectic leaf" in SU3. However, there is an inherent problem when trying to
determine if Imπq ∼= Imπ s for different q, s ∈ (0, 1). As πq can be seen to vary (in
a certain sense) continuously on q, one intuitive approach could be to let q → 0, and
then find some natural set of generators such that an isomorphic set of generators can
be found in Imπq for each q ∈ (0, 1). This method works, for example, in the case of
C(SU2)q. However, for C[SU3]q, there seems to be no simple way of taking the limit
q → 0. As it sits, the image of πq is simply too "twisted" to allow passing to any limit.

These problems are resolved in the following way: We observe that Imπq , for all
q ∈ (0, 1), contains the compact operators K ⊆ B(�2(Z+)

⊗3), and moreover, the
intersection Imπq ∩ K is non-trivial. The compact operators form a minimal ideal
in Imπq , in the sense that it is contained in any other ideal. We now consider the
composition

C[SU3]q πq−→ B(�2(Z+)
⊗3)

p−→ B(�2(Z+)
⊗3)/K∼= Q(�2(Z+)

⊗3),

where p is the quotient map x 	→ x +K, and we then proceed by analyzing p ◦ πq . It
is clear that πq can not be a direct summand in p ◦ πq , as the elements mapped by πq

into Imπq ∩ K is now mapped into zero. It turns out that there are two Hilbert spaces
H1, H2, such that for every q ∈ (0, 1), we have ∗-representations

C[SU3]q
Π

q
1−→ B(H1), C[SU3]q

Π
q
2−→ B(H2)

and an isomorphismϕq : Imπq/K→ Im(Πq
1 ⊕Π

q
2 ), such that for everya ∈ C[SU3]q,

we have ϕq(p ◦ πq(a)) = (Π
q
1 ⊕ Π

q
2 )(a). Moreover, in this case, one can show that

actually we have Im(Πq
1 ⊕Π

q
2 ) = Im(Π s

1 ⊕Π s
2) for all q, s ∈ (0, 1) as subspaces of

B(H1) ⊕ B(H2). Thus, by quoting out the compact operators, we have successfully

"untwisted" the ∗-representation πq . Letting M = Im(Πq
1 ⊕Π

q
2 ), one then shows that

the injective homomorphisms ϕ−1
q : M → Q(�2(Z+)

⊗3) varies norm-continuously on
q, meaning that, for a fixed x ∈ M, the map q ∈ (0, 1) → ϕ−1

q (x) is a continuous
function of q.We then get an isomorphism

p−1(ϕ−1
q (M)) ∼= p−1(ϕ−1

s (M)), q, s ∈ (0, 1) (1)

using the lifting result (Lemma1 below).AsK⊆ Imπq , it follows that p−1(ϕ−1
q (M)) =

Imπq and hence we have established an isomorphism for different q. One needs further
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argument to conclude that actually C(SU3)q ∼= C(SU3)s, but by proving (1), the main
effort is done. The proof below essentially systematizes this line of argument in a way
that makes it also work for a general G, by quoting out ideals to "untwist" an irreducible
∗-representation πq of C(G)q further and further, until it is clear that the images of the
resulting ∗-representations are independent of q. Then one uses inductive arguments to
check that also Imπq ∼= Imπ s for q, s ∈ (0, 1).

One can give a quite clear geometric heuristic of this, using the one-to-one cor-
respondence between irreducible ∗-representations of C[G]q and symplectic leaves in
G coming from the corresponding Poisson structure on C(G) (see [7]). Recall that G
can be decomposed into a disjoint union of symplectic leaves and that each leaf is an
even-dimensional sub-manifold of G. LetU be a 2m-dimensional symplectic leaf of G,
corresponding to a ∗-representations πq of C[G]q, and let C0(U ) be the ideal of C(U )
of all continuous functions vanishing onU\U. Thus quoting out this ideal gives a homo-
morphism C(U ) → C(U\U ). It turns out that U\U can be written as a disjoint union
∪ jU j , of symplectic leaves of dimension strictly less than 2m, and that the leaves in this
union of dimension < 2m − 2 are contained in the closures of the leaves of dimension
2m − 2. In general, we can write U as a disjoint union of symplectic leaves

U = U ∪
(
∪ jU

(m−1)
j

)
∪

(
∪ jU

(m−2)
j

)
∪ · · · ∪

(
∪ jU

(0)
j

)

such that each U (k)
j is a symplectic leaf of dimension 2k and

∪ jU
(k)
j =

(
∪ jU

(k)
j

)
∪ · · · ∪

(
∪ jU

(0)
j

)
. (2)

This shows that we can make a sequence of homomorphisms

C(U ) −→
∏
j

C(U
(m−1)
j ) −→ · · · −→

∏
j

C(U
(1)
j ) −→

∏
j

C(U
(0)
j ) (3)

such that on each step, the homomorphism
∏

j C(U
(k)
j ) → ∏

j C(U
(k−1)
j ) has kernel∏

j C0(U
(k)
j ). Let us explain how a q-analogue of (3) is used.

Remark 1. For several reasons, the notations used here will differ somewhat from the
ones used later in the text.

Let U and U (k)
j be as above. We can think of Imπq and the ideal K ⊆ Imπq as q-

analogs of C(U ) and C0(U ), denoted by C(U )q and C0(U )q respectively. There is then
a sequence of homomorphisms

C(U )q
∂
q
m−→

∏
j

C(U
(m−1)
j )q

∂
q
m−1−→ · · · ∂

q
2−→

∏
j

C(U
(1)
j )q

∂
q
1−→

∏
j

C(U
(0)
j )q (4)

such that on each step, the homomorphism ∂k : ∏
j C(U

(k)
j )q → ∏

j C(U
(k−1)
j )q has

kernel equal to
∏

j C0(U
(k)
j )q .Let us denote byC(∂(k)U )q , k = 0, . . . ,m−1, the image

of C(U )q in
∏

j C(U
(k)
j )q via the composition of homomorphisms in (4). The idea is

to proceed by induction on the dimensions of the symplectic leaves. In the case of zero-
dimensional leaves, the corresponding ∗-representations are one-dimensional (maps to
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C) and hence trivially q-independent. For higher dimensional leaves, we can use the
induction hypothesis to connect the lower dimensional leaves for different q, s ∈ (0, 1)

C(U )q

��
�
�
�
�

∂
q
m ��

∏
j C(U

(m−1)
j )q

Γ
s,q
m−1

��

∂
q
m−1

�� · · · ∂
q
2 ��

∏
j C(U

(1)
j )q

∂
q
1 ��

Γ
s,q
1

��

∏
j C(U

(0)
j )q

Γ
s,q
0

��

C(U )s
∂sm ��

∏
j C(U

(m−1)
j )s

∂sm−1
�� · · · ∂s2 ��

∏
j C(U

(1)
j )s

∂s1 ��
∏

j C(U
(0)
j )s

(5)

Moreover, this can be done in a way such that the diagram (5) is commutative. The
aim is then to construct a dotted arrow from C(U )q to C(U )s that makes the diagram
commutative. The main obstacle to do this is to check that C(∂(m−1)U )q is mapped by
Γ

s,q
m−1 to C(∂

(m−1)U )s . In order to prove this, one shows the following

(i) for k = 0, . . . ,m − 1 the intersection of C(∂(k)U )q with
∏

C0(U
(k)
j )q is mapped by

Γ
s,q
k to the intersection of C(∂(k)U )s with

∏
C0(U

(k)
j )s,

(ii) the C∗-algebras C(∂(0)U )q are commutative and isomorphic for all q ∈ (0, 1), via
Γ

s,q
0 ,

(iii) for k = 1, . . . ,m − 1, there is an approximate unit {u(k)q,i }∞i=1 for
∏

j C0(U
(k)
j )q such

that {u(k)q,i }∞i=1 ⊆ C(∂(k)U )q and Γ s,q
k (u(k)q,i ) = u(k)s,i for all i ∈ N.

Remark 2. In the actual proof below, we do not really use (i i i), since by the way the
arguments are constructed there, explicitly stating this point becomes unnecessary.

From the commutivity of the square

∏
j C(U

(k)
j )q

∂
q
k ��

Γ
s,q
k

��

∏
j C(U

(k−1)
j )q

Γ
s,q
k−1

��∏
j C(U

(k)
j )s

∂sk ��
∏

j C(U
(k−1)
j )s

(6)

it follows that if Γ s,q
k−1 restricts to a ∗-isomorphism from C(∂(k−1)U )q to C(∂(k−1)U )s,

then as for any x ∈ C(∂(k)U )q , we have

∂sk (Γ
s,q
k (x)) = Γ

s,q
k−1(∂

q
k (x)) ∈ C(∂(k−1)U )s,

it follows that Γ s,q
k (x) = y + c where y ∈ C(∂(k)U )s and c ∈ ∏

j C0(U
(k)
j )q . By (i i i),

we have an approximate unit {u(k)q,i }∞i=1 such that xu
(k)
q,i is in the intersection ofC(∂

(k)U )q

with
∏

j C0(U
(k)
j )q . It now follows from (i) that for all i ∈ N, we have

Γ
s,q
k (xu(k)q,i ) ∈ C(∂(k)U )s,

yΓ s,q
k (u(k)q,i ) ∈ C(∂(k)U )s
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and thus it follows that also cu(k)s,i ∈ C(∂(k)U )s . Letting i → ∞ now gives c ∈
C(∂(k)U )s and thus Γ s,q

k (x) ∈ C(∂(k)U )s . Using (i i), it now follows by induction
that C(∂(m−1)U )q is mapped isomorphically onto C(∂(m−1)U )s . As ker ∂

q
m = C0(U )q ,

this is equivalent to

C(U )q/C0(U )q ∼= C(U )s/C0(U )s, q, s ∈ (0, 1).
After checking that these isomorphisms are varying norm-continuously as functions of
q and s, the dotted arrow in (5) can then be constructed using Lemma 2 below.

1.2. Lifting results.

Lemma 1 (Lemma 2 in [8]). Let H be a separable Hilbert space, let K be the space
of compact operators on H, let Q(H) = B(H)/K be the Calkin algebra and p :
B(H) → Q(H) the quotient map. Suppose A is a fixed separable C∗-algebra of type
I and φq : A → Q(H), q ∈ [0, 1] is a point-norm continuous family of injective
∗-homomorphisms. Denote

Aq := φq(A) :
Mq := p−1(Aq).

Then there exists a family of injective ∗-homomorphisms Φq : M0 → B(H), q ∈ [0, 1]
with the following properties

(a) Φq(M0) = Mq for q ∈ [0, 1] and Φ0 = IdM0 ,

(b) the family Φq : M0 → B(H), q ∈ [0, 1] is point-norm continuous,
(c) for every q ∈ [0, 1], the diagram

M0
Φq

��

p
��

Mq

p
��

A0
φq ◦ φ−1

0

�� Aq

(7)

is commutative.

We remind the reader that a C∗-algebra of type I, is one where the image of every
irreducible ∗-representation includes a non-zero compact operator. Here, we will use a
modified version of Lemma 1.

Lemma 2. LetH be a separable Hilbert space, letKbe the space of compact operators
on H, let Q(H) = B(H)/K be the Calkin algebra and p : B(H) → Q(H) be the
quotient map. For every q ∈ (0, 1), suppose Aq ⊆ Q(H) is a separable C∗-algebra of
type I and we have a family of ∗-isomorphisms φs,q : Aq → As, s, q ∈ (0, 1) which
are continuous in the point-norm topology (i.e. for every fixed q ∈ (0, 1) and x ∈ Aq ,

the map s ∈ (0, 1) 	→ φs,q(x) ∈ Q(H) is norm-continuous). Assume moreover that
φq,q = IdAq and φt,s ◦ φs,q = φt,q for all t, s, q ∈ (0, 1). Denote

Bq := p−1(Aq).

Then there exists a family of inner ∗-isomorphismsΦs,q : B(H) → B(H), s, q ∈ (0, 1)
(i.e Φs,q(x) = U∗

s,q xUs,q for some unitary Us,q ∈ B(H)) with the following properties
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(i) Φs,q(Bq) = Bs for s, q ∈ (0, 1),
(ii) Φq,q = Id and Φt,s ◦Φs,q = Φt,s for all t, s, q ∈ (0, 1),
(iii) for fix q, the family Φs,q : Bs → B(H), s ∈ [0, 1] is point-norm continuous,
(iv) for all s, q ∈ (0, 1), the diagram

Bq
Φs,q

��

p
��

Bs

p
��

Aq
φs,q

�� As

(8)

is commutative.

Proof. If a < b, then clearly the conclusion of Lemma 1 still holds if we change the
interval to [a, b]. Let ak ∈ (0, 1), k ∈ Z be a strictly increasing sequence such that
ak → 1 and a−k → 0 as k → ∞. For k ≥ 0, we apply Lemma 1 to the set of injective
∗-homomorphisms

φ̃q,k := φq,ak : Aak → Q(H), q ∈ [ak, ak+1],
and let Mq,k = p−1(φ̃q,k(Aak )) = p−1(Aq). For k < 0, we instead apply Lemma 1 to

φ̃q,k := φq,ak+1 : Aak+1 → Q(H), q ∈ [ak, ak+1].
Let Φ̃q,k, k ∈ Z, be the ∗-isomorphisms aquired by applying Lemma 1. Note that Φ̃q,k is
an isomorphism from Bak to Bq for q ∈ [ak, ak+1] and k ≥ 0 and an isomorphism from
Bak+1 to Bq if k < 0. Let us define a ∗-isomorphism Φq : Ba0 → Bq by the formula

Φq =
{
Φ̃q,k ◦ Φ̃ak ,k−1 ◦ · · · ◦ Φ̃a1,0, if q ∈ [ak, ak+1] and k ≥ 0
Φ̃q,k ◦ Φ̃ak ,k+1 ◦ · · · ◦ Φ̃a−1,−1, if q ∈ [ak, ak+1] and k < 0

(9)

It follows from Lemma 1 and the construction of Φq that for x ∈ Ba0 , the map q ∈
(0, 1) 	→ Φq(x) ∈ B(H) is norm-continuous. That p ◦ Φq = φq,a0 ◦ p holds follows
from φt,s ◦ φs,q = φt,q and iteration of the commutative diagram

Ba0

Φ̃a1,0 ��

p
��

Ba1

Φ̃q,1
��

p
��

Bq

p
��

Aa0 φa1,a0

�� Aa1 φq,a1

�� Aq

We then letΦs,q = Φs ◦Φ−1
q for s, q ∈ (0, 1). By (7), we have a commutative diagram

Bq

Φ−1
q

��

p
��

Ba0
Φs ��

p
��

Bs

p
��

Aq
φ−1
q,a0

�� Aa0 φs,a0

�� As
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From this, we get the commutivity of (8), as

φs,a0 ◦ φ−1
q,a0 = φs,a0 ◦ φa0,q = φs,q .

Hence, (i), (i i), (i i i), and (iv) holds for Φs,q as a ∗-isomorphism Bq → Bs .

WenowextendΦs,q as an inner automorphismof all ofB(H). To do this,wefirst show
that the restriction Φs,q |K is inner. We have K⊆ Bq , and we get from the diagram (8)
that Φs,q(K) ⊆ K, and as Φ−1

s,q = Φq,s it follows that actually

Φs,q(K) = K. (10)

So Φs,q is an irreducible representation of K. It is known that any such is unitarily
equivalent to the identity representation (e.g. see Corollary 1.10 in [2]). Hence, there
exists a unitaryUs,q ∈ B(H) such thatΦs,q(x) = Us,q xU∗

s,q for all x ∈ K. For arbitrary
y ∈ Bq , we obtain

Φs,q(x)Φs,q(y) = Φs,q(xy) = Us,q xyU
∗
s,q = Φs,q(x)Us,q yU

∗
s,q

for all x ∈ K. This gives Φs,q(y) = Us,q yU∗
s,q . ��

2. Preliminaries

In this section we recall some facs about the Hopf algebras Uq(g) and C[G]q. The
presentation is mainly taken from [10]. A general reference for the technical claims
made here is [7].

2.1. The quantum group Uq(g). Let G be a simply connected semisimple compact Lie
group and let g denote its complexifiedLie algebra.WewriteU(g) to denote the universal
enveloping algebra of g equipped with a ∗-involution induced by the real form derived
fromG.Moreover, we let h ⊆ g be the Cartan sub-algebra coming from amaximal torus
T ⊆ G. Let t ⊆ h be the real subspace of skew-symmetric elements. WriteΦ for the set
of roots of g,Φ+ for the set of positive roots andΩ = {α1, . . . , αn} for the set of simple
roots.

Wedenote theWeyl group of g byW and identify its set of generators si , i = 1, . . . , n,
(as a Coxeter group) withΩ by the identification αi 	→ sαi =: si .Moreover, we identify
Φ+ with the set {wsiw−1 : si ∈ Ω,w ∈ W } ⊆ W. In both instances, we write the
identification as α 	→ hα ∈ t.

Let q ∈ (0, 1). Let (ai j )i j be the Cartan matrix of g and di = (αi ,αi )
2 for i = 1, . . . , n.

Let qi = qdi for i = 1, . . . , n. The quantized universal enveloping algebra Uq(g) is the
unital complex algebra generated by elements Ei , Fi , Ki , K

−1
i , i = 1, . . . , n subject to

the relations

Ki K
−1
i = K−1

i Ki = 1, Ki K j = K j Ki , Ki E j = q
ai j
i E j Ki , Ki Fj = q

ai j
i Fi K j ,

Ei Fj − Fj Ei = δi j
Ki − K−1

i

qi − q−1
i

1−ai j∑
k=0

(−1)k
[
1 − ai j

k

]

qi

Ek
i E j E

1−ai j−k
i = 0,

1−ai j∑
k=0

(−1)k
[
1 − ai j

k

]

qi

Fk
i Fj F

1−ai j−k
i = 0
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where

[
k
j

]

qi

= ∏ j−1
m=0

q−(k−m)
i −qk−m

i

q−(m+1)
i −qm+1

i

is a q-analogue of the binomial coefficients.

Uq(g) becomes a Hopf ∗-algebra when equipped with a co-associative co-product
Δ̂q , a co-unit ε̂q , an antipode Ŝq and a ∗-involution given on generators as

Δ̂q(Ki ) = Ki ⊗ Ki , Δ̂q(Ei ) = Ei ⊗ 1 + Ki ⊗ Ei , Δ̂q(Fi ) = Fi ⊗ K−1
i + 1 ⊗ Fi ,

ε̂q(Ei ) = ε̂q(Fi ) = 0, ε̂q(Ki ) = 1,

Ŝq(Fi ) = −Fi Ki , Ŝq(Ei ) = −K−1
i Ei , Ŝq(Ki ) = K−1

i

K ∗
i = Ki , E∗

i = Fi Ki , F∗
i = K−1

i Ei .

We denote the antipode of Uq(g) by Ŝq . For q = 1,we let U1(g) = U(g) be the ordinary
universal enveloping algebra with the usual Hopf ∗-algebra structure and denote the
co-product, co-unit, antipode simply by Δ̂, ε̂, Ŝ.

Let P be the set of weights for g. Let P+ ⊆ P be the set of dominant integral weights,
i.e. λ ∈ P such that 〈λ, αi 〉 ≥ 0 for i = 1, . . . , n. Moreover, let P++ ⊆ P+ ⊆ P be the
set of those dominant weights λ such that 〈λ, αi 〉 > 0 for i = 1, . . . , n.

The theory of Uq(g)-modules is very similar to the case q = 1 (see [7]). It is well
known that for every q ∈ (0, 1), the monoidal category Mq(g) of admissible finite
dimensional Uq(g)-modules are parameterized by λ ∈ P+, with the same fusion rules
as M(g), the monoidal categories of finite dimensional U(g)-modules. Moreover, for
any λ ∈ P+, the vector spaces V

q
λ and Vλ have the same dimension. There is a similar

decomposition intoweight sub-spaces V q
λ (γ ) ⊆ V q

λ , for γ ∈ P; these are the sub-spaces
such that

Ki · η = qγ (Hi )

i η, η ∈ V q
λ (γ ), i = 1, . . . , n. (11)

For each γ ∈ P, we also have a vector space isomorphism

V q
λ (γ )

∼= Vλ(γ ).

In particular, the sub-space Vq
λ (λ) is one-dimensional and is the highest weight-space

of Vq
λ , in the sense that for ξ ∈ V q

λ (λ), we have

Ei · ξ = 0, for i = 1, . . . , n.

There is a non-degenerate inner product 〈·, ·〉 on Vq
λ such that

〈a · η, ξ 〉 = 〈η, a∗ · ξ 〉, ∀a ∈ Uq(g), ∀η, ξ ∈ V q
λ .

Clearly, with respect to this inner product, different weight sub-spaces Vq
λ (γ ) are or-

thogonal for different γ . For any w ∈ W, the Weyl group of G, the weight sub-space
Vq
λ (w · λ) is one dimensional. Thus we can choose a unit vector ξw·λ ∈ V q

λ (w · λ). Let
us do this in such way that ξw·λ = ξv·λ ifw ·λ = v ·λ and thus no ambiguity arises from
this notation.

For w ∈ W, let l(w) ∈ Z+ denote the length of w. By definition, this is the smallest
integer m such that w can be written as a product of m generators

w = si1 · · · sim . (12)
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For the identity element e ∈ W, we let l(e) = 0. If l(w) = m in (12) then the product
w = si1 · · · sim is said to be reduced. Recall that the Bruhat order on W is the partial
ordering generated by declaring that

v < w, if ∃α ∈ Φ+ such that vα = w and l(v) = l(w)− 1. (13)

Let Uq(b) be the sub-algebra of Uq(g) generated by Ki , K
−1
i , Ei for i = 1, . . . , n.

We can concretely connect the Bruhat order of W with certain Uq(g)-modules in the
following way:

Lemma 3 (Proposition 3.3 in [10]). Let v,w ∈ W. The following are equivalent:

(i) We have v ≤ w in the Bruhat order on W.
(ii) For any λ ∈ P++ we have V q

λ (v · λ) ⊂ (Uq(b))V
q
λ (w · λ).

Both the subspaces Vq
λ (v · λ) and (Uq(b))V

q
λ (w · λ) are invariant under the actions

of Ki , i = 1, . . . , n. Notice that these are commuting self-adjoint operators on Vq
λ

that separate the weight-spaces. As the space Vq
λ (v · λ) is one-dimensional, it follows

from (11) that if v �≤ w and hence Vq
λ (v · λ) �⊂ (Uq(b))V

q
λ (w · λ), then we have the

following corollary of Lemma 3.

Corollary 4. If λ ∈ P++ and v �≤ w, then

V q
λ (v · λ)⊥(Uq(b))V

q
λ (w · λ).

2.2. The quantum group C[G]q. We define C[G]q ⊆ (Uq(g))
∗ as the subspace of the

dual generated by linear functionals of the form

Cλη,ξ (a) := 〈a · η, ξ 〉,
for a ∈ Uq(g), η, ξ ∈ V q

λ , λ ∈ P+. (14)

We let Δq , εq and Sq respectively be the dual of the product, co-product and antipode
of Uq(g).Moreover, we define a ∗-involution on C[G]q by the formula

(Cλη,ξ )
∗(a) = Cλη,ξ ((Ŝq(a))

∗).

We let C[G] = C[G]1 as well as Δ = Δ1, ε = ε1 and S = S1 denote the ∗-algebra of
regular functions onGwith the usual co-product, co-unit and antipode. For an irreducible
module Vq

λ with an orthonormal basis ξk, k = 1, . . . ,m = dim Vq
λ , it follows from the

definition of C[G]q that for i, k = 1, . . . ,m,

Δq(C
λ
ξi ,ξk

) =
m∑
j=1

Cλξi ,ξ j ⊗ Cλξ j ,ξk , (15)

εq(C
λ
ξi ,ξk

) = Cλξi ,ξk (I ) = 〈ξi , ξk〉 = δik1. (16)
m∑
i=1

(Cλξi ,ξk )
∗Cλξi ,ξ j = δkm I, k, j = 1, . . . ,m. (17)
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To deduce (17), consider any a ∈ Uq(g), then it follows from the Hopf algebra axioms

that (noticing that Cλη,ξ (a) = Cλξ,η(a
∗) and hence (Cλη,ξ )

∗(a) = Cλξ,η(Ŝq(a)))

m∑
i=1

(Cλξi ,ξk )
∗Cλξi ,ξ j (a) =

m∑
i=1

((Cλξi ,ξk )
∗ ⊗ Cλξi ,ξ j )(Δ̂q(a))

=
m∑
i=1

(Cλξk ,ξi ⊗ Cλξi ,ξ j )((Ŝq ⊗ ι)Δ̂q(a))

= Cλξk ,ξ j (
∑

Ŝq(a(1))a(2)) = Cλξk ,ξ j (ε̂q(a)) = δk j ε̂q(a)I,

where Δ̂q(a) = ∑
a(1) ⊗ a(2) in the Sweedler notation. We define inductively

Δ(2)q = Δq .

Δ(n)q = (Δq ⊗ ι⊗ · · · ⊗ ι︸ ︷︷ ︸
n−1 terms

) ◦Δ(n−1)
q : C[G]q −→ C[G]q ⊗ · · · ⊗ C[G]q︸ ︷︷ ︸

n terms

. (18)

Notice that by co-associativity (Δq ⊗ ι) ◦ Δq = (ι ⊗ Δq) ◦ Δq , it does not matter
which tensor factor you apply Δq to in (18).

Let us denote by C(G)q the universal enveloping C∗-algebra of C[G]q. It is known
from [7] that the universal enveloping C∗-algebra exists and that the natural homomor-
phism C[G]q ↪→ C(G)q is injective. Hence we can identify C[G]q with its inclusion
C[G]q ⊆ C(G)q. Moreover, the co-product can be extended to a ∗-homomorphism
Δq : C(G)q → C(G)q ⊗ C(G)q (the minimal tensor product), giving a structure of
C(G)q as a compact quantum group in the sense of Woronowicz [13]. We will use the
same symbol for a ∗-representation of C[G]q as well as its extension to C(G)q.

Recall the special case of SU2. Let V
q
λ be the unique 2-dimensional Uq(su2)-module,

with basis ξλ =: ξ1, ξ−λ =: ξ2 and let

ti j = Cλξi ,ξ j , for i, j = 1, 2.

Then the elements ti j generateC[SU2]q as an algebra, and they are subject to the relations
t11t21 = qt21t11, t11t12 = qt12t11, t12t21 = t21t12,

t22t21 = q−1t21t11, t22t12 = q−1t12t22,
t11t22 − t22t11 = (q − q−1)t12t21, t11t22 − qt12t21 = 1,

t∗11 = t22, t∗12 = −qt21.

(19)

Moreover, the relations (19) determine C[SU2]q , in the sense that this algebra is iso-
morphic to the universal ∗-algebra with generators t̂i j , i, j = 1, 2, satisfying the rela-
tions (19).

Given two ∗-representations π1, π2, such that πi : C(G)q → B(Hi ) for i = 1, 2,
we can define the tensor product using the co-multiplication as

π1 � π2 := (π1 ⊗ π2) ◦Δq : C(G)q −→ B(H1)⊗ B(H2) ⊆ B(H1 ⊗H2) (20)

where ⊗ denotes the minimal tensor product between C∗-algebras. We will also use ⊗
to denote the algebraic tensor product; it will always be clear from context which one
we use (e.g. we will never take the algebraic tensor product between two C∗-algebras).
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2.3. Representation theory of C[G]q. Recall a ∗-representationΠq of C[SU2]q defined
in the following way: let Cq , S, dq : �2(Z+) → �2(Z+) be the operators defined on the
natural orthonormal basis {e j } j∈Z+ as follows:

Sen = en+1, Cqen =
√
1 − q2nen, dqen = qnen . (21)

Then the map

Πq(t1,1) = S∗Cq , Πq(t1,2) = qdq , Πq(t2,1) = −dq , Πq(t2,2) = Cq S (22)

extends to a ∗-representation of C[SU2]q. Let C∗(S) ⊆ B(�2(Z+)) be the C∗-algebra
generated by S (so thatC∗(S) is equal to the Toeplitz algebra). From the expressions (21)
for Cq and dq it is easy to see that Cq , dq ∈ C∗(S) and hence that

Πq(C[SU2]q) ⊆ C∗(S).

We recall the ∗-representation theory for C[G]q, q ∈ (0, 1), due to Soibelman [7]: For
each simple root αi ∈ Ω we get an injective Hopf ∗-homomorphism Uqi(su2) → Uq(g)
that dualizes to a surjective Hopf ∗-homomorphism

ς
q
i : C[G]q −→ C[SU2]qi , i = 1, . . . , n

(this is true also for q = 1, we write ςi = ς1i ). For i = 1, . . . , n, we define ∗-
representations

π
q
i := Πqi ◦ ςqi : C[G]q −→ C∗(S) ⊆ B(�2(Z+)).

Let w ∈ W , with a reduced presentation w = s j1 · · · s jm (and hence m = l(w)), and
define

πq
w := π

q
j1

� · · · � π
q
jm

: C[G]q −→ C(S)⊗l(w) ⊆ B(�2(Z+)
⊗l(w)) (23)

when e ∈ W is the identity element, we let πe = εq (corresponding to the empty reduced
presentation). From [7],we know thatπq

w does not depend on the reduced decomposition,
in the sense that if we have two reduced presentationsw = s j1 · · · s jm = s j ′1 · · · s j ′m , then
the two corresponding ∗-representations

π
q
j1

� · · · � π
q
jm
, π

q
j ′1

� · · · � π
q
j ′m

are unitarily equivalent. For simplicity, let us write

Hw := �2(Z+)
⊗l(w).

Thus πq
w is a ∗-representation C[G]q → B(Hw). We have a subgroup T ⊆ G of a

maximal torus, corresponding to the real sub-algebra t ⊆ g. Let ωi , i = 1, . . . , n, be
the fundamental weights for g.We have an isomorphism T ∼= T n, given by

t = ex ∈ T 	→ (eω1(x), . . . , eωn(x)) ∈ T n, (24)

where x ∈ t. For every t ∈ T, we have mutually non-equivalent one-dimensional ∗-
representations χt : C[G]q → C, such that, for s, t ∈ T, we have χs � χt = χst and



1748 O. Giselsson

χt � χt−1 = χ1 = εq . By [10], we can for every t ∈ T associate a unitary operator
Ut ∈ ∏

λ∈P+ B(V
q
λ ), such that if x ∈ t satisfies t = ex , then for all λ ∈ P+ and γ ∈ P

〈Utη, ξ 〉 = χt (Cλη,ξ ), η, ξ ∈ Vq
λ , (25)

Utη = eγ (x)η, η ∈ Vq
λ (γ ). (26)

The following theorem characterizes all irreducible ∗-representations of C[G]q (up
to unitary equivalence).

Theorem 5 (Theorem 6.2.7 in [7]).

(i) For w ∈ W and t ∈ T, the ∗-representations πq
w � χt are irreducible and mutually

non-equivalent, and
(ii) every irreducible∗-representationπ ofC[G]q is unitarily equivalent to someπw�χt ,

w ∈ W, t ∈ T.

3. Basis Properties of C(G)q Under ∗-Representations

3.1. Paths in the Weyl group and subsets of T. For elements v,w ∈ W, we write v�w

to mean that

(i) v < w in the Bruhat order,
(ii) there is no r ∈ W, such that v < r < w.

By Theorem 2.2.6 in [1], this means that there is a α ∈ Φ+ such that vα = w and
l(v) = l(w)− 1. Keeping with the established terminology, we also say that w covers v
if v�w. In general, we write v�(k) w if we have elements r1, . . . , rk−1 ∈ W such that

v � r1 � · · · � rk−1 � w.

It is a property of W that every chain

v � r � · · · � w

must have the same length and hence that the relation �(k) is actually well-defined for
k > 1 (see Theorem 2.2.6 in [1]).

Let v,w ∈ W. If v�w, we also write v
γ� w, for a γ ∈ Φ+, if vγ = w. In general,

if v ≤ w, then we say that we have a path from v to w

v = v1
γ1� v2

γ2� . . .
γm−1� vm

γm� vm+1 = w (27)

if v j � v j+1 and v jγ j+1 = v j+1 for j = 1, . . . ,m. Clearly, every path from v to w has
the same length m = l(w)− l(v).We write (27) as the composition of paths

v
γ� w, for γ = γ1 ◦ · · · ◦ γm (28)

to indicate that we have a specific path between v and w.

For each path v
γ� w we associate a closed connected subgroup Tγ ⊆ T by taking

the exponential of the real subspace of t spanned by hγi for i = 1, . . . ,m. For the path

v
γ1� r

γ2� w and γ = γ2 ◦ γ1, we have
Tγ2Tγ1 := {ts : t ∈ Tγ2 , s ∈ Tγ1} = Tγ . (29)
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Let Twv be the union of all the subgroups of T generated by paths from v tow. From (29),
it follows that we have the following multiplicative property: If v ≤ r ≤ w then

Tr
vT

w
r ⊆ Twv .

Clearly, it follows from (27) that for v < w, we have

Twv = ∪
v<r�wT

r
vT

w
r , (30)

where the union ranges over all r ∈ W such that v < r �w. For later use, we also note

the following special case of (29): if v
γ� r � w with rα = w then

TγT
w
r = Tα◦γ . (31)

3.2. Ideals and quotients. We will use the following results from [10] (though stated in
a less general fashion in order to suit our purposes).

Theorem 6 (Theorem 4.1 (i i) in [10]). Let σ ∈ W and Y ⊆ T. For any r ∈ W and
t ∈ T, the kernel of the representation πq

r � χt contains the intersection of the kernels
of the representations πq

σ � χs, s ∈ Y of C(G)q if and only if r ≤ σ and t ∈ YTσr .

Lemma 7 (Lemma 4.5 in [10]). Let t ∈ T and let w ∈ W. Assume x ∈ C(G)q is such
that (πq

v � χs)(x) = 0 for all v ∈ W such that v < w and s ∈ tTwv , then

(πq
w � χt )(x) ∈ Kw . (32)

Recall the definition of Cλη,ξ ∈ C[G]q, given by (14). To avoid multiple subscripts, let

us write w · λ in place of ξw·λ in (14). Thus, for example, we write Cλw·λ,λ instead of

Cλξw·λ,ξλ .

Lemma 8 (Lemma 2.3 in [10]). Let w ∈ W and λ ∈ P+.

(i) πq
w(Cλw·λ,λ) is a compact contractive diagonalizable operator with zero kernel, and

the vector e⊗l(w)
0 ∈ Hw is its only eigenvector (up to scalar) with an eigenvalue of

absolute value 1.
(ii) If ζ ∈ Vq

λ is orthogonal to (Uq(b))V
q
λ (w · λ), then

πq
w(C

λ
ζ,λ) = 0.

When q = 1, we get a Hopf ∗-algebra homomorphism τ1 = τ : C[G] → C[T]
by restriction to the subgroup T ⊆ G (here C[T] is the Hopf ∗-algebra of trigonometric
polynomials on T). For general q ∈ (0, 1),we define a surjective Hopf ∗-algebra homo-
morphism τq : C[G]q → C[T], that extends to a homomorphism of compact quantum
groups τq : C(G)q → C(T). We define τq in the following way: The compact operators
K ⊆ B(�2(Z+)) is a ∗-ideal in C∗(S), and it is well known that we have the isomor-
phism p : C∗(S)/K 	→ C(T ) such that S∗ +K 	→ z (here z ∈ C(T ) is the coordinate
function). Moreover, it is easy to see that we actually have a homomorphism of Hopf
∗-algebras βq : C[SU2]q → C[T ] ⊆ C(T ) that factors as

C[SU2]q Πq−→ C∗(S) p−→ C∗(S)/K∼= C(T ) (33)
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and such that βq(t
q
11) = z. Consider now the ∗-homomorphism

τq : C[G]q
π
q
1 �···�πq

n−→ C∗(S)⊗n p⊗···⊗p−→ C(T )⊗n ∼= C(T), (34)

with the isomorphism C(T )⊗n ∼= C(T) induced by the isomorphism T n ∼= T given
by (24). By using (33), we can also factor τq as

C[G]q
(ς

q
1 ⊗···⊗ςqn )◦Δ(n)q−→ C[SU2]q1 ⊗ · · · ⊗ C[SU2]qn

βq1⊗···⊗βqn−→ C[T ]⊗n ∼= C[T].
(35)

If we considerC[SU2]q1 ⊗· · ·⊗C[SU2]qn as a tensor product of Hopf ∗-algebras, hence
also a Hopf ∗-algebra, then it is easy to check that the ∗-homomorphisms in (35) are
actually Hopf ∗-algebra morphisms. Thus, τq is a morphisms of Hopf ∗-algebras.
Lemma 9. (i) The ∗-homomorphism τq : C(G)q → C(T) is surjective,
(ii) every χt , t ∈ T, factors as

χt : C(G)q τq−→ C(T)
evt−→ C,

(iii) for η ∈ Vλ(γ1), ξ ∈ Vλ(γ2), we have τq(Cλη,ξ ) = 0 unless γ1 = γ2 and 〈η, ξ 〉 �= 0,

(iv) let ωi , i = 1, . . . , n, be the fundamental weights, then the set τq(C
ωi
ωi ,ωi ), i =

1, . . . , n, generates C(T) as a C∗-algebra.

Proof. Clearly, (i) follows from (iv) or (i i). We have that every one-dimensional ∗-
representation of C[G]q is of the form χt , for some t ∈ T, and different weight spaces
are orthogonal. Hence we get (i i i) from (25) and (26) by point evaluation. Note that
the same argument shows that (i i i) holds for any ∗-homomorphism from C[G]q to a
commutative C∗-algebra.

By Lemma 2.2.1 in [7], the elements of the form Cλη,λ, λ ∈ P+, η ∈ V q
λ generates

C[G]q as a ∗-algebra. Thus it follows from (i i i) that the elements in C(T) of the form
τq(Cλλ,λ), λ ∈ P+ generate the image of τq . As every λ ∈ P+ is a linear combination of
the fundamental weights, it follows from (26) that the set {τq(Cωiωi ,ωi ) : i = 1, . . . , n}
generate the image of τq . Thus (i i) ⇒ (i) ⇒ (iv). To prove (i i), we establish a one-to-
one correspondence between one-dimensional ∗-representations and point evaluations
of τq . By ([6], Theorem 14, Section 6.1.5), the set Fi K j Ek, j ∈ Z i, k ∈ Z+, is a basis
for Uq(su2). Using this, and keeping in mind that ξωi is a heighest weight vector, we
obtain

ς
q
i (C

ω j
ω j ,ω j ) =

{
tqi11, if i = j
I, for i �= j.

(36)

It then follows that (βi ◦ ςqi )(C
ω j
ω j ,ω j ) = z for i = j and (βi ◦ ςqi )(C

ω j
ω j ,ω j ) = I if

i �= j. If we extend ξ1 = ξωi by ξ2, . . . , ξm to an orthonormal basis for V q
ωi , we then get

from (15) and our comment after the proof of (iii), that if we let zi be the i’th coordinate
function of T n, then

τq(C
ωi
ωi ,ωi ) = zi , i = 1, . . . , n, (37)
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and from this it follows that the range of τq is dense in C(T). By (26), if t = ex , x ∈ t,

then we have χt (C
ω j
ω j ,ω j ) = eω j (x) for j = 1, . . . , n. It thus follows that if we use the

identification T ∼= T n given by (24), then t = (eω1(x), . . . , eωn(x)) and hence

χt (C
ω j
ω j ,ω j ) = eω j (x) = evt (z j ) = (evt ◦ τq)(Cω j

ω j ,ω j ), j = 1, . . . , n.

��
Let C[G]invq ⊆ C[G]q denote the ∗-subalgebra of elements invariant under the left-right-
action of the maximal torus T. By definition, this is the subset x ∈ C[G]q, such that for
every t ∈ T, we have Lt (x) = x = Rt (x), where Lt and Rt are given by

Lt : C[G]q Δq−→ C[G]q ⊗ C[G]q τq⊗ι−→ C(T)⊗ C[G]q evt⊗ι−→ C[G]q (Left-action).

(38)

Rt : C[G]q Δq−→ C[G]q ⊗ C[G]q ι⊗τq−→ C[G]q ⊗ C(T)
ι⊗evt−→ C[G]q (Right-action)

(39)

Clearly C[G]invq is a ∗-subalgebra of C[G]q.
Lemma 10. For every w ∈ W, there exists Υw ∈ C[G]invq such that

(i) πq
w(Υw) ∈ B(Hw) is a compact contractive positive operator with dense range,

(ii) e⊗l(w)
0 ∈ Hw is the only eigenvector of πq

w(Υw) (up to a scalar multiple) with eigen-
value 1,

(iii) πq
v (Υw) �= 0 if and only if v ≥ w.

Proof. Take any λ ∈ P++ and considerCλw·λ,λ.By combining Corollary 4 with Lemma 8

it follows that πq
v (Cλw·λ,λ) = 0 for any v �≥ w. If v ≥ w, then as 1 ∈ Tvw (the identity

of T) it follows from Theorem 6 that we have ker πq
v ⊆ ker πq

w. As π
q
w(Cλw·λ,λ) �= 0, it

thus follows that also πq
v (Cλw·λ,λ) �= 0. If we extend ξλ, ξw·λ to an orthonormal basis for

Vq
λ , then we get from (15) and Lemma 9 (i i i) that

Lt (Cλw·λ,λ) = χt (Cλw·λ,w·λ) · Cλw·λ,λ, Rt (Cλw·λ,λ) = χt (Cλλ,λ) · Cλw·λ,λ, t ∈ T. (40)

Let us now define Υw := (Cλw·λ,λ)∗Cλw·λ,λ. As Lt and Rt are ∗-automorphisms for all
t ∈ T, it follows from (40) that Υw ∈ C[G]invq . Positivity follows from the definition of
Υw, and the other claims in (i) and (i i i) follow by Lemma 8 (i). To see (i i), note that

〈πq
w(Υw)e

⊗l(w)
0 , e⊗l(w)

0 〉 = ‖πq
w(C

λ
w·λ,λ)e

⊗l(w)
0 ‖2 = ‖e⊗l(w)

0 ‖2 = 1. (41)

As πq
w(Υw) is a positive contraction, it follows that e

⊗l(w)
0 must be an eigenvector with

eigenvalue 1. To see that e⊗l(w)
0 is the only eigenvector (up to a scalar multiple) of

π
q
w(Υw) with eigenvalue 1, notice that (41) gives that e⊗l(w)

0 is also an eigenvector for

π
q
w(Cλw·λ,λ)∗ and thus the subspace generated by e

⊗l(w)
0 is actually reducingπq

w(Cλw·λ,λ).
By (i) of Lemma 8, it follows that πq

w(Cλw·λ,λ)must have norm strictly less than 1 when

restricted to the orthogonal complement of e⊗l(w)
0 (otherwise there would be another

eigenvector orthogonal to e⊗l(w)
0 with an eigenvalue of absolute value 1). The same then

holds for πq
w(Υw) = π

q
w(Cλw·λ,λ)∗π

q
w(Cλw·λ,λ). ��
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Definition 11. Let us call a ∗-homomorphism of C[G]q a commutative ∗-representation
if the image sits inside a commutative C∗-algebra.

Let χ : C[G]q → C(X) be a commutative ∗-representation. As every one-dimensional
∗-representation ofC[G]q factors throught the commutativeC∗-algebraC(T), it follows
that the commutative ∗-representation χ factors as

χ = ζ ◦ τq
C[G]q τq→ C(T)

ζ→ C(X)

for a unique ∗-homomorphism ζ.

Definition 12. Let

χq : C[G]q → C(X), q ∈ (0, 1)
be a family of ∗-homomorphisms, where X is a fixed compact Hausdorff space. We say
that the ∗-homomorphisms {χq}q∈(0,1) are q-independent if in the factorization

χq = ζ q ◦ τq ,
C[G]q τq→ C(T)

ζ q→ C(X),

we have ζ q = ζ s for all q, s ∈ (0, 1).
Definition 13. (a) For q ∈ (0, 1), let Bq

w ⊆ B(Hw) be the closure of the image πw :
C[G]q → B(Hw).

(b) Ifχ : C[G]q → C(X) is a commutative ∗-representation, then let Bq
w,χ be the closure

of the image of πw � χ : C[G]q → Bq
w ⊗ C(X).

Proposition 14. Let w ∈ W. Let Kw ⊆ B(Hw) be the space of compact operators and
let

pw : B(Hw) −→ Q(Hw)

be the quotient map to the Calkin algebra. For every v�w, there exists a subset Twv ⊆ T
and a commutative q-independent ∗-representation χwv : C[G]q → C(Twv ), such that
the map

η
q
w : πq

w(x) +Kw 	→ ⊕
v�w

(π
q
v � χwv )(x), for x ∈ C[G]q, (42)

(where the sum ranges over all v ∈ W covered by w) determines an isomorphism

ηqw : Bq
w /Kw −→ ⊕

v�w
(π

q
v � χwv )(C[G]q). (43)

We will postpone the proof of Proposition 14 until after Lemma 16.

Lemma 15. If x ∈ C[G]invq , then for anyw ∈ W and any commutative ∗-representation
χ, we have

(πw � χ)(x) = πw(x)⊗ I.
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Proof. By (39) and (38), the left and right-actions by t ∈ T on C[G]q are respectively
given as the compositions

C[G]q (τq⊗ι)◦Δq→ C(T)⊗ C[G]q evt⊗ι→ C[G]q,
C[G]q (ι⊗τq )◦Δq→ C[G]q ⊗ C(T)

ι⊗evt→ C[G]q.
Let x ∈ C[G]invq . Clearly, it follows Lt (x) = Rt (x) = x for all t ∈ T if and only if

(ι⊗ τq) ◦Δq(x) = x ⊗ I, (τq ⊗ ι) ◦Δq(x) = I ⊗ x .

The statement now follows from the fact that any ∗-homomorphism

χ : C(G)q → C(X)

factors as χ = ζ ◦ τq for a unique ∗-representation ζ : C(T) → C(X). ��
Lemma 16. Letχ : C(G)q → C(X)bea∗-homomorphismsuch thatwehaveχ(C(G)q)
= C(X). Then for any w ∈ W,

Kw ⊗C(X) ⊂ Bq
w,χ . (44)

Proof. If we, for any λ ∈ P++, extend ξλ, ξw·λ to an orthonormal basis of V q
λ , then we

get from (15) and Lemma 9 (i i i) that

(πq
w � τq)

(
Cλw·λ,λ

) = πq
w

(
Cλw·λ,λ

) ⊗ τq
(
Cλλ,λ

)
.

By Lemma 10 and Lemma 15, if p0 is the orthogonal projection onto e⊗l(w)
0 , then

p0 ⊗ I ∈ Bq
w,τq . Thus

(p0 ⊗ I )
(
(πq
w � τq)

(
Cλw·λ,λ

))
(p0 ⊗ I ) ∈ Bq

w,τq

and is by Lemma 8 a non-zero constant multiple of p0⊗τq
(
Cλλ,λ

)
. Since the functions

τq

(
Cλλ,λ

)
∈ C(T), λ ∈ P++

are generating C(T) as a C∗-algebra, it follows that

p0 ⊗ C(T) ⊆ Bq
w,τq

. (45)

By (Proposition 5.5 in [12]), the restriction of an irreducible ∗-representation of C(G)q
is still irreducible when restricted to

C(G/T)q
def= {a ∈ C(G)q : (ι⊗ τq) ◦Δq(a) = a ⊗ I }.

It follows that

Kw ⊗I ⊆ (πq
w � τq)(C(G/T)q) ⊆ (πq

w � τq)(C(G)q),

and together with (45), this gives (44). ��
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Proof of Proposition 14. Recall the definition of Twv ⊆ T. For v �w, we let χwv be the
composition

χwv : C(G)q τq−→ C(T) −→ C(Twv ),

where the second ∗-homomorphism is the restriction of f ∈ C(T) to Twv ⊆ T. By defi-
nition, these ∗-representations are commutative and q-invariant. To prove the existence
of the ∗-homomorphism, we use Theorem 6 with Y = {1} (the set containing only the
identity of T). Thus for every v�w and t ∈ Twv we have that ker πq

w ⊆ ker πq
v �χt and

hence we can define a ∗-homomorphism

ϕwv : Bq
w −→ Bq

v,χwv

π
q
w(x) 	→ (π

q
v � χwv )(x), for x ∈ C(G)q.

By Lemma 10, we have πq
w(Υw) �= 0 and πq

v (Υw) = 0 and by Lemma 15

(πq
v � χwv )(Υw) = πq

v (Υw)⊗ I = 0.

Hence the kernel of ϕwv is a non-trivial ideal of Bq
w. By Lemma 16, with χ = εq , we

have Kw ⊂ Bq
w . Thus any non-trivial ideal of Bq

w must contain Kw and therefore
Kw ⊆ ker ϕwv . Now consider the ∗-homomorphism

⊕
v�w

ϕwv : Bq
w −→

∏
v�w

Bq
v,χwv

.

By the definition of the ϕwv ’s, it follows that

( ⊕
v�w

ϕwv ) ◦ πq
w = ⊕

v�w
(πq
v � χwv ). (46)

As Kw ⊂ ker ⊕
v�w

ϕwv we can factor ⊕
v�w

ϕwv =: ηqw ◦ pw for a ∗-homomorphism

ηqw : Bq
w /Kw −→ ⊕

v�w
(πq
v � χwv )(C(G)q).

From (46), it follows that (42) holds. Clearly, by (46) ηqw is surjective. Hence we only
need to show that the kernel of ηqw is trivial. By definition, this is the same as showing

ker ⊕
v�w

ϕwv = Kw . (47)

In order to prove this, we are going to show that, for any x ∈ C(G)q, if (π
q
v �χt )(x) = 0

for all v � w and t ∈ Twv , then also (πq
σ � χs)(x) = 0 for all σ < w and s ∈ Twσ .

To see this, notice that by (30), there is a σ ≤ v � w such that we have s = s1s2 for
s1 ∈ Twv and s2 ∈ Tvσ . As we have (π

q
v � χs1)(x) = 0 we get from Theorem 6 that also

(π
q
r � χs)(x) = 0. The equality (47) now follows from Lemma 7. ��

Proposition 17. Let S ⊆ W be a subset where all the elements have the same length
i.e. l(w) = l(v) for all w, v ∈ S. Moreover, assume that for each v ∈ S, we have a
commutative ∗-homomorphism χv : C(G)q → C(Xv) such that χv(C(G)q) = C(Xv).
Then

∏
v∈S

Kv ⊗C(Xv) ⊆ ⊕
v∈S
(πv � χv)(C(G)q) ⊆

∏
v∈S

Bq
v,χv

. (48)



q-Independence of the Jimbo–Drinfeld Quantization 1755

Proof. As all the elements of S have the same length, they must be mutually non-
comparable in the partial ordering of W. It follows from Lemma 10 and Lemma 15 that
for v ∈ S, we have (πq

v � χv)(Υv) = π
q
v (Υv) ⊗ I �= 0 and (πq

w � χw)(Υv) = 0 for
any other w ∈ S. As πq

v (Υv) is a compact operator with dense range, it follows from
Lemma 16 that

(π
q
v � χv)(Υv(C(G)q)) = Kv ⊗C(Xv)

(π
q
w � χw)(Υv(C(G)q)) = {0}, w ∈ S such that w �= v.

This gives (48). ��

3.3. Continuous deformations.

Lemma 18. There are invertible co-algebra maps

θq : C[G] −→ C[G]q, q ∈ (0, 1)
such that for every w ∈ W, every q-independent commutative ∗-representation χq :
C[G]q → C(X) and any fixed f ∈ C[G], the map

q ∈ (0, 1) 	→ (πq
w � χq)(θq( f )) ∈ Bq

w,χq ⊆ B(Hw)⊗ C(X) (49)

is continuous.

Proof. We will refer to the proof of Theorem 1.2 in [11]. We remark that our notation
differs from theirs. Let tqi j , i, j = 1, 2 be the generators of C[SU2]q for q ∈ (0, 1]. It
follows from the proof that there are invertible co-algebra maps

κq : C[SU2] −→ C[SU2]q, q ∈ (0, 1], κ1 = Id,

such that κq(t1i j ) = tqi j and for every f ∈ C[SU2], the image κq( f ) is a non-commutative

polynomial in tqi j , i, j = 1, 2, with coefficients continuous in q.Moreover, there exists
an invertible co-algebra map ϑq : C[G] → C[G]q, such that for every i = 1, . . . , n,
there exists a continuous family of invertible co-algebra morphisms γ q

i of C[G] that
makes the following diagram commute

C[SU2]

κqi

��

C[G]ςi
��

γ
q
i �� C[G]

ϑq
����
��
��
��
��
��

C[SU2]qi C[G]q
ς
q
i

�� .

(50)

This gives that

κ−1
qi ◦ ςqi ◦ ϑq = ςi ◦ (γ q

i )
−1 (51)

varies continuously on q ∈ (0, 1]. The operators Cq and dq , given by (21) varies con-
tinuously on q ∈ (0, 1). Hence, by (22), it follows that the functions q ∈ (0, 1) 	→
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Πq ◦ κq(ti j ) = Πq(t
q
i j ) ⊆ B(�2(Z+)), for i, j = 1, 2, are continuous. Thus, for any

fixed f ∈ C[SU2], we have a continuous function
q ∈ (0, 1) 	→ Πq ◦ κq( f ) ∈ B(�2(Z+)).

Composing this with (51), we get that for every f ∈ C[G], the function
q ∈ (0, 1) 	→ Πq ◦ ςqi ◦ ϑq( f ) ∈ B(�2(Z+))

is continuous. As the maps in the diagram (50) are all (at least) co-algebra maps, so that
Δq ◦ϑq = (ϑq ⊗ϑq)◦Δ, it follows for f ∈ C[G] andw ∈ W with reduced presentation
w = s j1 · · · s jm , that
πq
w(ϑq( f )) = (π

q
j1

⊗ · · · ⊗ π
q
jm
) ◦Δ(m)q (ϑq( f ))

= (Πq j1
⊗ · · · ⊗Πq jm

) ◦ ((ςqj1 ◦ ϑq)⊗ · · · ⊗ (ς
q
jm

◦ ϑq)) ◦Δ(m)( f )
= ((Πq j1

◦ κq j1
◦ ς j1)⊗ · · · ⊗ (Πq jm

◦ κq jm
◦ ς jm )) ◦Δ(m)( f )

and hence the function q ∈ (0, 1) 	→ π
q
w(ϑq( f )) is continuous. Combining this

with (34), it follows that q ∈ (0, 1) 	→ τq(ϑq( f )) ∈ C(T) is also continuous. Thus

q ∈ (0, 1) 	→ (πq
w � τq)(ϑq( f )) = ((πq

w ◦ ϑq)⊗ (τq ◦ ϑq)) ◦Δ( f ) ∈ B(Hw)⊗ C(T)

is continuous. That (49) holds for all q-independent maps follows by the factorization
χq = ζ ◦ τq . ��
Assumewe have two subsets T1,T2 ⊆ T andT3 = T1T2 (the point-wisemultiplication).
Let us denote by χi , for i = 1, 2, 3 the ∗-homomorphism C[G]q → C(Ti ), i = 1, 2, 3,
given by restriction of τq to Ti . It follows that we have an identification

χ1 � χ2 ∼ χ3 (52)

in the sense that χ3 is the unique ∗-homomorphism with the property that, using the
isomorphism C(T1)⊗ C(T2) ∼= C(T1 × T2), we have

(χ1 � χ2)(a)(t1, t2) = χ3(a)(t1t2), t1 ∈ T1, t2 ∈ T2, a ∈ C[G]q. (53)

The multiplication map m : T1 × T2 → T3 gives an injective ∗-homomorphism

C(T3)
m∗−→ C(T1)⊗ C(T2) ∼= C(T1 × T2)

and it follows from (53) that χ1 � χ2 factors as

C[G]q χ3−→ C(T3)
m∗−→ C(T1)⊗ C(T2).

Furthermore, if for two subsets T1,T2 ⊆ T, we let T3 = T1 ∪ T2 and denote by χi ,
i = 1, 2, 3, the ∗-homomorphisms C[G]q → C(Ti ), i = 1, 2, 3, then we have an
identification

χ1 ⊕ χ2 ∼ χ3 (54)

via the injective ∗-homomorphism C(T1 ∪ T2) → C(T1) ⊕ C(T2) determined by the
two inclusions Ti ⊆ T3 for i = 1, 2. Thus χ3 satisfies

χ1(a) = χ3(a)|T1 , χ2(a) = χ3(a)|T2 , a ∈ C[G]q (55)
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where χ3(a)|Ti , i = 1, 2 denotes the restriction of the function χ3(a) ∈ C(T3) to the
subset Ti ⊆ T3.

For apathv
γ� w, let us denote byχγ the commutativeq-independent∗-representation

C[G]q → C(Tγ ). If we have paths v
γ1� r

γ2� w, then it follows from (29) and (52) that
if we have the composition of paths γ = γ1 ◦ γ2, then

χγ1 � χγ2 ∼ χγ . (56)

4. The Main Result

Theorem 19. (i) For all q, s ∈ (0, 1) and w ∈ W, we have an inner ∗-automorphism
Γ

s,q
w : B(Hw) → B(Hw) that restricts to a ∗-isomorphism Bq

w → Bs
w, such that

Γ
s,q
w (Kw) = Kw and we have

Γ s,t
w ◦ Γ t,q

w = Γ
s,q
w , for all s, t, q ∈ (0, 1)

Γ
q,q
w = Id, for all q ∈ (0, 1).

Moreover, for all q, s ∈ (0, 1) and w ∈ W, the following diagram commutes

Bq
w

Γ
s,q
w ��

η
q
w ◦ pw

��

Bs
w

ηsw ◦ pw

��∏
v�w Bq

v,χwv ∏
v�w(Γ

s,q
v ⊗ ι)

��
∏
v�w Bs

v,χwv

(57)

where ηqw and χwv are as in Proposition 14. The ∗-isomorphisms Γ s,q
w are also con-

tinuous in the point-norm topology in the sense that, for fixed q ∈ (0, 1) and y ∈ Bq
w,

the function s ∈ (0, 1) 	→ Γ
s,q
w (y) ∈ B(Hw) is continuous.

(ii) Ifχq : C[G]q → C(X),q ∈ (0, 1),are commutativeq-independent∗-homomorphisms,
then the ∗-isomorphism Γ

s,q
w ⊗ ι : Bq

w ⊗C(X) → Bs
w ⊗C(X) restrics to a ∗-

isomorphism

Γ s,q
w ⊗ ι : Bq

w,χ −→ Bs
w,χ .

Proof. We will prove (i) and (i i) simultaneously using induction on k = l(w), starting
at k = 0.

If l(w) = 0, then w = e. As πe = εq , we have Be = C. By the definition of a
q-independent commutative ∗-homomorphism χq = ζ ◦ τq , and hence

χq(C(G)q) = ζ
(
τq(C(G)q)

) = ζ(C(T)).

So, (i) and (i i) hold in the case of k = 0 with Γ s,q
e = IdC.

Assumenow that (i) and (i i) hold for all v ∈ W of length l(v) < k.ByProposition 14
we have a ∗-homomorphism

∂
q
1 := ηqw ◦ pw : Bq

w −→ Bq
w /Kw −→

∏
v�w

Bq
v,χwv

(58)
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such that the image is isomorphic to Bq
w /Kw = pw(B

q
w) ⊆ Q(Hw). For v � w, we

have

((ηqv ◦ pv)⊗ ι) ◦ (πq
v � χwv ) =

∏
σ�v

(πq
σ � (χvσ � χwv )) ∼

∏
σ�v

(πσ � χγ ) (59)

where σ
γ� w is the path σ �v�w. Taking the product over all v�w we get from (59)

a ∗-homomorphism

∂
q
2 :=

∏
v�w

(ηqv ◦ pv)⊗ ι :
∏
v�w

Bq
v,χwv

−→
(2)∏
σ�w

Bq
v,χγ

, (60)

where the product
(2)∏
σ�w

is indexed over all σ �(2) w and all possible paths σ
γ� w.

It follows from Lemma 16 that the kernel of ∂q2 is equal to
∏
v�w Kv ⊗C(Twv ). If we

iterate (60), then we get a sequence of ∗-homomorphisms

Bq
w

∂
q
1−→

∏
v�w

Bq
v,χwv

∂
q
2−→

(2)∏
v�w

Bq
v,χγ

∂
q
3−→ . . .

∂
q
k−1−→

(k−1)∏
v�w

Bq
v,χγ

∂
q
k−→

∏
e�w

C(Tγ ), (61)

where the product
∏(i)
v�w ranges over all elements v ∈ W such that v �(i) w and over

all possible paths v
γ� w. In the last product, e ∈ W is the identity element and we

suppress the upper index (k) as it is unnecessary in this case. In general, when we have a
fixed element v ∈ W such that v ≤ w, then v � w denotes the set of all possible paths

v
γ� w. As an example, for v ∈ W, we write

∏
v�w Bv,χγ to mean that the product

ranges over all possible paths v
γ� w. Similarly, we write

∏
v�(i)w to mean that the

product is over all v ∈ W such that v �(i) w. Similar notations will also be used for
direct sums, etc. Clearly, by Lemma 16, for every i = 1, . . . , k, we have

ker ∂qi+1 =
(i)∏
v�w

Kv ⊗C(Tγ ). (62)

Moreover, the commutative C∗-algebra
∏

e�wC(Tγ ) does not depend on q. For i =
1, . . . , k, we let

∂
q
i ◦ · · · ◦ ∂q1 =: Ψ q

i : Bq
w −→

(i)∏
v�w

Bq
v,χγ

∂
q
k ◦ · · · ◦ ∂q1 =: Ψ q

k : Bq
w −→

∏
e�w

C(Tγ )

be the composition of ∗-homomorphisms in (61). By iteration of (42) and (54), we have
for any a ∈ C[G]q

(Ψ
q
i ◦ πq

w)(a) =
(i)⊕
v�w

(π
q
v � χγ )(a), i = 1, . . . , k. (63)
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By induction, for all v ∈ W such that l(v) < k, we have a ∗-isomorphism

Γ s,q
v : Bq

v −→ Bs
v

such that Γ s,q
v (Kv) = Kv and the following diagram is commutative

Bq
v

Γ
s,q
v ��

η
q
v ◦ pv

��

Bs
v

ηsv ◦ pv

��∏
σ�v

Bq
σ,χvσ ∏

σ�v
(Γ

s,q
σ ⊗ ι)

��
∏
σ�w

Bs
σ,χvσ

It follows that for every i = 1, . . . , k − 1, we have ∗-isomorphisms

(i)∏
v�w

(Γ s,q
v ⊗ ι) :

(i)∏
v�w

Bq
v,χγ

−→
(i)∏
v�w

Bs
v,χγ

(64)

that maps
∏(i)
v�w Kv ⊗C(Tγ ) into itself and such that the following diagrams are com-

mutative

Bq
w

Ψ
q
i+1 ���

��
��

��
��

��
��

��
�

Ψ
q
i ��

(i)∏
v�w

Bq
v,χγ

∂
q
i+1

��

(i)∏
v�w

(Γ
s,q
v ⊗ ι)

��
(i)∏
v�w

Bs
v,χγ

∂si+1

��

Bs
w

Ψ s
i��

Ψ s
i+1

����
��
��
��
��
��
��
��

(i+1)∏
v�w

Bq
v,χγ

(i+1)∏
v�w

(Γ
s,q
v ⊗ ι)

��
(i+1)∏
v�w

Bs
v,χγ

(65)

Bq
w

Ψ
q
k−1

��

Ψ
q
k

���
��

��
��

��
��

��
��

��
�

(k−1)∏
v�w

Bq
v,χγ

∂
q
k

��

(k−1)∏
v�w

(Γ
s,q
v ⊗ ι)

��
(k−1)∏
v�w

Bs
v,χγ

∂sk

��

Bs
w

Ψ s
k−1

��

Ψ s
k

		��
��
��
��
��
��
��
��
��

∏
e�w

C(Tγ )
Id

��
∏

e�w

C(Tγ ) .

(66)

The idea is now to show that
∏(i)
v�w(Γ

s,q
v ⊗ ι) restricts to a ∗-isomorphism between

Ψ
q
i (B

q
w) and Ψ s

i (B
s
w) for i = 1, . . . , k. We prove this by ’climbing the ladder’ (65),
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using induction on i, starting at i = k (i.e the case (66)), and then we count down to
i = 1.

The statement is clear at k, since by the q-independence of χγ and the fact that
τq(C(G)q) = C(T) = τs(C(G)s), we have

Ψ
q
k (B

q
w) = ( ⊕

e�w
χγ )(C(G)q) = ( ⊕

e�w
χγ )(C(G)s) = Ψ s

k (B
s
w).

Assume now that the statement holds for i + 1. Consider x ∈ Ψ q
i (B

q
w). Then

∂
q
i+1(x) ∈ Ψ q

i+1(B
q
w),

and hence by induction
⎛
⎝
(i+1)∏
v�w

(Γ s,q
v ⊗ ι)

⎞
⎠ (∂

q
i+1(x)) ∈ Ψ s

i+1(B
s
w).

But by the commutivity of the diagrams (65)–(66), this element is also equal to

∂si+1

⎛
⎝

(i)∏
v�w

(Γ s,q
v ⊗ ι)(x)

⎞
⎠ ∈ Ψ s

i+1(B
s
w)

from which it follows, by (62), that

(i)∏
v�w

(Γ s,q
v ⊗ ι)(x) ∈ Ψ s

i (B
s
w) +

(i)∏
v�w

Kv ⊗C(Tγ ) (67)

and thus

(i)∏
v�w

(Γ s,q
v ⊗ ι)(x) = y + c, y ∈ Ψ s

i (B
s
w), c ∈

(i)∏
v�w

Kv ⊗C(Tγ ). (68)

We show that actually c ∈ Ψ s
i (B

s
w). For a fixed v ∈ W such that v�(i) w,we can embed

B(Hv)⊗ C(Twv ) ⊆
∏
v�w

B(Hv)⊗ C(Tγ ) (69)

via the injective∗-homomorphismsC(Twv ) → ∏
v�wC(Tγ ) coming from the inclusions

Tγ ⊆ Twv and, by the definition of Twv , that T
w
v = ∪v�wTγ . Thus the embedding (69)

is on simple tensors given by

x ⊗ f 	→
∏
v�w

(x ⊗ f |Tγ ), x ∈ B(Hv), f ∈ C(Twv ),

where f |Tγ denoted the restriction of f ∈ C(Twv ) to the subset Tγ ⊆ Twv .Moreover, we
have the embedding

Kv ⊗C(Twv ) ⊆
∏
v�w

B(Hv)⊗ C(Tγ ) (70)
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coming from (69). Using this embedding, we clearly have, for fixed v �(i) w, that

⊕
v�w

(πq
v � χγ ) : C[G]q −→ B(Hv)⊗ C(Twv ) ⊆

∏
v�w

B(Hv)⊗ C(Tγ ) (71)

and that, as in (54), we can identify ⊕
v�w

(π
q
v � χγ ) ∼ π

q
v � χwv . It then follows from

Lemma 16, that under the embeddings (69) and (70) we have

Kv ⊗C(Twv ) ⊆ ⊕
v�w

(π
q
v � χγ )(C[G]q) ⊆ B(Hv)⊗ C(Twv )

⊆
∏
v�w

B(Hv)⊗ C(Tγ ). (72)

Moreover, note that the left-hand sides (69) and (70) are clearly invariant under the
homomorphism

∏
v�w

Γ
s,q
v ⊗ ι.We can now use Proposition 17 and (63) to see that if we

take the product of (72), ranging over all v �(i) w, then

∏

v�(i)w

Kv ⊗C(Twv ) ⊆ Ψ
q
i (B

q
w) ⊆

∏

v�(i)w

B(Hv)⊗ C(Twv ) ⊆
(i)∏
v�w

B(Hv)⊗ C(Tγ ).

(73)

As
(i)∏
v�w

(Γ
s,q
v ⊗ ι) clearly fixes the two sub-algebras on either side ofΨ q

i (B
q
w), it follows

from (68) that

(i)∏
v�w

(Γ s,q
v ⊗ ι)(x)− y = c ∈

∏

v�(i)w

Kv ⊗C(Twv ) ⊆ Ψ s
i (B

s
w).

From this, it follows that

(i)∏
v�w

(Γ s,q
v ⊗ ι)(Ψ

q
i (B

q
w)) ⊆ Ψ s

i (B
s
w), q, s ∈ (0, 1). (74)

But as

(i)∏
v�w

(Γ
s,q
v ⊗ ι) ◦

(i)∏
v�w

(Γ
q,s
v ⊗ ι) = Id , q, s ∈ (0, 1)

we must have equality in (74).
Thus, we have an isomorphism

Bq
w /Kw

∼= Bs
w /Kw, q, s ∈ (0, 1)

via the ∗-isomorphism

Ls,q := (ηsw)
−1 ◦

( ∏
v�w

(Γ s,q
v ⊗ ι)

)
◦ ηqw. (75)
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However, to be able to use Lemma 2 to conclude that theC∗-algebras Bq
w, q ∈ (0, 1) are

all isomorphic, we must also show thatLs,q are continuous in the point-norm topology,
i.e. that for a fixed q ∈ (0, 1) and an element y ∈ Bq

w /Kw, we have a continuous
function

s ∈ (0, 1) → Q(Hw), s 	→ Ls,q(y). (76)

By a classical approximation argument, it is enough to prove this for the dense ∗-
subalgebra (pw ◦ πq

w)(C[G]q). By Lemma 18 we have invertible coalgebra morphisms
θq : C[G] → C[G]q such that for fixed f ∈ C[G], the function q ∈ (0, 1) 	→
π
q
w(θ

q( f )) ∈ B(Hw) is continuous. Thus the function

q ∈ (0, 1) 	→ (pw ◦ πq
w)(θ

q( f )) ∈ B(Hw)/Kw = Q(Hw)

is also continuous. Let us write

Fq := (pw ◦ πq
w)(θ

q( f )) ∈ Q(Hw).

By induction, the function

s ∈ (0, 1) 	→
( ∏
v�w

(Γ s,q
v ⊗ ι)

)
(ηqw(F

q))

is continuous and
(∏

v�w(Γ
q,q
v ⊗ ι)

)
(η

q
w(Fq)) = η

q
w(Fq). Notice that by the definition

of ηqw and (46), we have

ηqw(F
q) = ⊕

v�w
(πq
v � χwv )(θ

q( f ))

and thus by Lemma 18, the function

q ∈ (0, 1) 	→ ηqw(F
q) ∈

∏
v�w

B(Hv)⊗ C(Twv )

is continuous. It follows that for all ε > 0 we have

‖
( ∏
v�w

(Γ s,q
v ⊗ ι)

)
(ηqw(F

q))− (ηsw(F
s))‖

≤ ‖
( ∏
v�w

(Γ s,q
v ⊗ ι)

)
(ηqw(F

q))− ηqw(F
q)‖ + ‖ηqw(Fq)− ηsw(F

s)‖ < ε

for |s−q| < δ1, if δ1 > 0 is made small enough. If we apply the ∗-isomorphism (ηsw)
−1,

we get

‖Ls,q (Fq)− Fs‖ < ε, for |s − q| < δ1 (77)

and thus it follows that there is a 0 < δ ≤ δ1, such that

‖Ls,q (
Fq) − Fq‖

≤ ‖Ls,q (
Fq) − Fs‖ + ‖Fs − Fq‖ < 2ε
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when |s − q| < δ.We can now apply Lemma 2 to get an inner ∗-automorphism Γ
s,q
w :

B(Hw) → B(Hw) that restricts to a ∗-isomorphism Bq
w → Bs

w, that is continuous in
the point-set topology. That the diagram (57) commutes follows from the commutivity
of (8) and the wayLs,q was defined. Clearly, the compact operators are invariant under
Γ

s,q
w .

The case (i i).We prove it first for τq : C[G]q → C(T) (see (34)). We combine the
inclusion Bq

w,τq ↪→ Bq
w ⊗C(T) with the sequence (61) by tensoring all the components

with C(T) in the following way

Bq
w,τq

↪→ Bq
w ⊗C(T)

∂1⊗ι−→
( ∏
v�w

Bq
v,χwv

)
⊗ C(T)

∂2⊗ι−→
⎛
⎝

(2)∏
v�w

Bq
v,χγ

⎞
⎠ ⊗ C(T)

∂3⊗ι−→ . . . . . .
∂k−1⊗ι−→

⎛
⎝
(k−1)∏
v�w

Bq
v,χγ

⎞
⎠ ⊗ C(T)

∂k⊗ι−→
( ∏
e�w

C(Tγ )

)
⊗ C(T). (78)

If we define Ψ q
i as before, then similar to (63), we have

(Ψ
q
i ⊗ ι) ◦ (πq

w � τq) =
(

(i)⊕
v�w

(πq
v � χγ )

)
� τq . (79)

We can proceed exactly as before, using the commutative diagrams (65) and (66) (now
tensored by C(T)), by induction on i = 1, . . . , k, starting at k. Clearly the images
in

(∏
e�wC(Tγ )

) ⊗ C(T) are the same, as the commutative ∗-representation is q-
independent. Assuming that

⎛
⎝
(i+1)∏
v�w

(Γ s,q
v ⊗ ι)

⎞
⎠ ⊗ ι : (

Ψ
q
i+1 ⊗ ι

)
(Bq
w,τq

) −→ (
Ψ s
i+1 ⊗ ι

)
(Bs
w,τs

)

is an ∗-isomorphism gives for x ∈ (
Ψ

q
i ⊗ ι

)
(Bq
w,τq ), that

⎛
⎝

⎛
⎝

(i)∏
v�w

(Γ s,q
v ⊗ ι)

⎞
⎠ ⊗ ι

⎞
⎠ (x) ∈ (

Ψ s
i ⊗ ι

)
(Bs
w,τs

) +

⎛
⎝

(i)∏
v�w

Kv ⊗C(Tγ )

⎞
⎠ ⊗ C(T).

(80)

The rest of the argument follows in a similar fashion as for Bq
w :wefind an embedding

∏

v�(i)w

B(Hv)⊗ C(T) ⊆
⎛
⎝

(i)∏
v�w

B(Hv)⊗ C(Tγ )

⎞
⎠ ⊗ C(T) (81)

such that,

(i) this subalgebra is invariant with respect to the map
(∏(i)

v�w(Γ
s,q
v ⊗ ι)

)
⊗ ι,

(ii) we have

∏

v�(i)w

Kv ⊗C(T) =
∏

v�(i)w

B(Hv)⊗ C(T)
⋂

⎛
⎝

(i)∏
v�w

Kv ⊗C(Tγ )

⎞
⎠ ⊗ C(T) (82)
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(iii) and the following inclusions holds
∏

v�(i)w

Kv ⊗C(T) ⊆ (
Ψ s
i ⊗ ι

)
(Bs
w,τs

) ⊆
∏

v�(i)w

B(Hv)⊗ C(T). (83)

Clearly, this implies
⎛
⎝

⎛
⎝

(i)∏
v�w

(Γ s,q
v ⊗ ι)

⎞
⎠ ⊗ ι

⎞
⎠ (x) ∈ (

Ψ s
i ⊗ ι

)
(Bs
w,τs

).

To do this, we use the natural isomorphism
⎛
⎝

(i)∏
v�w

B(Hv)⊗ C(Tγ )

⎞
⎠ ⊗ C(T) ∼=

(i)∏
v�w

B(Hv)⊗ C(Tγ )⊗ C(T).

Notice that for every v
γ� w, we have an embedding C(T) ⊆ C(Tγ ) ⊗ C(T) deter-

mined by C(Tγ ) ⊗ C(T) ∼= C(Tγ × T ) and the multiplication map Tγ × T → T.
As τq : C[G]q → C[T] is a morphism of Hopf ∗-algebras (hence compatible with the
multiplication in T), it follows that we have a ∗-homomorphism

πq
v � χγ � τq : C(G)q → B(Hv)⊗ C(T) ⊆ B(Hv)⊗ C(Tγ )⊗ C(T).

We can then, for fixed v �(i) w, embed diagonally

B(Hv)⊗ C(T) ⊆
∏
v�w

B(Hv)⊗ C(Tγ )⊗ C(T).

By taking the product over all v �(i) w, we get an embedding (81) such that (83) holds
(the first inclusion follows from Proposition (17)). Clearly, we also have (82). Thus, it
follows that (Γ s,q

w ⊗ ι)(Bq
w,τq ) = Bs

w,τq
, since this is the case i = 1.

This implies the general case: letχq : C(G)q → C(X)be commutativeq-independent
∗-homomorphisms and ζ : C(T) → C(X) the ∗-homomorphism such that χq = ζ ◦ τq .
Then ι ⊗ ζ is a surjective ∗-homomorphism Bq

w,τq → Bq
v,χq . As Γ

s,q
w ⊗ ι is a ∗-

isomorphism Bq
w,τq → Bs

w,τs
, we have

(Γ s,q
w ⊗ ι)(Bq

w,χq ) = (Γ s,q
w ⊗ ι) ◦ (ι⊗ ζ )(Bq

w,τq
) = (ι⊗ ζ ) ◦ (Γ s,q

w ⊗ ι)(Bq
w,τq

)

= (ι⊗ ζ )(Bs
w,τs

) = Bs
w,χ s .

��
Corollary 20. The universal enveloping C∗-algebras of C[G]q are isomorphic for all
q ∈ (0, 1). These isomorphisms are equivariant with respect to the right-action of T.

Proof. If ω ∈ W is the unique element of longest length in the Weyl group and τq :
C(G)q → C(T) the commutative q-independent ∗-homomorphism coming from the
embedding of the maximal torus T ⊆ G, then it follows from Theorem 6 that any
irreducible∗-representationofC(G)q must factor throughπq

ω�τq .ThusBq
ω,τq

∼= C(G)q.
The q-independence follows from Theorem 19(ii). For x ∈ C(G)q and t ∈ T we have

(πq
ω � τq)(Rt (x))

= (ι⊗ ι⊗ evt ) ◦ (ι⊗ΔT)((π
q
ω � τq)(x))
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and thus equivariancewith respect to the right-action follows as the isomorphismBq
ω,τq →

Bs
ω,τs

is of the form Γ
s,q
ω ⊗ ι. ��
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