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Abstract. Astrophysical flows span a broad range of scales and thus require sub-grid
modeling. We compute the energy fluxes in the Fourier and physical space for the turbulent
magnetized shearing box simulations with a weak net vertical magnetic flux. The energy fluxes
are dominated by the injection term from the mid-to-large scale range due to the Reynolds and
Maxwell stresses in both cases while the small scales are dominated by dissipation. Since the
nature of turbulent cascades requires a clear separation of scales, our work is unable to address
these questions conclusively. But because our work is the first of its nature in trying to connect
the Fourier and physical space energy flux behavior, we are able to make connections between
the two profiles.

1. Introduction
Experiments and observations of fluids typically do not offer highly resolved data in either
space or time. This is especially a problem for astrophysical fluids with extreme Reynolds
number (Re ≥ 1012). For example, in the current state-of-the-art observations of disks around
young stars the spatial resolution is ∼ 1AU = 1013 meters, as opposed to a dissipation scale
of approximately 103 meters. Numerical modeling of magnetohydrodynamic (MHD) equations
offers an opportunity to understand these high dimensional non-linear systems.

Keplerian flows are thought to be ubiquitous in accretion disks since the central gravitational
source typically has a much higher mass than the disk. A stable background shear flow like
this can be approximated by homogeneous shear flow. Hydrodynamic quasi-Keplerian velocity
profiles, Vφ(r) ∼ r−1/2, are hydrodynamically stable in Taylor-Couette experiments up to
Re = 105 [15]. But the addition of a weak magnetic field makes Keplerian flows linearly unstable
to magnetorotational instability (MRI: [4]). Shearing box simulations of magnetized Keplerian
flows have been extensively studied both with [14] and without [19] a background magnetic
flux. Both the lifetime of MHD turbulence and the non-linear characteristics of the developed
turbulent state are sensitive to the ratio of viscosity and magnetic diffusivity (magnetic Prandtl
number, Pm: [28, 19]).

Large Eddy Simulations (LES) offers a chance to model astrophysical fluids but they require
understanding of multi-scale physics and chemistry. The cross-scale transfers of energy in fully
developed turbulence can give insight into modeling sub-grid physics. Most sub-grid modeling
relies on the presence of an ‘inertial range’ in the energy spectra that has universal behavior
independent of the nature of injection and dissipation for a particular flow. Identifying the
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regimes where those processes dominate is possible by studying different terms in the fluid
equations in either spectral [9] or physical space [2, 8].

Kolmogorov phenomenological picture of turbulence requires that the nature of energy
transfers is local-in-scale implying that direct exchanges of energy between the smallest and
largest length scales of the flow do not occur. While this picture has been widely accepted
in hydrodynamics, early work on spectral shell-to-shell transfers in magnetohydrodynamics
suggested that a significant fraction of the energy transfer can be non-local [29, 1]. More recent
work showed that the transfer in MHD is also local [3] if the spectra are binned logarithmically
in spectral space instead of linearly. The argument relies on the basic idea that ‘locality’ should
be defined as exchanges between powers of 2 (or some other base like 10), for example, instead
of linearly spaced shells. Logarithmic binning is motivated by the power law behavior of the
inertial range. Intuitively, for example in base 10, this means that the question of locality
should be addressed in terms of transfers between distinct wavemode bands K = 1 − 10 and
K = 10 − 100 instead of transfers between the same power of 10, say, K = 1 to K = 9. Using
base 10 logarithmic binning, a significant energy transfer between K = 1 and K = 99 will still
be considered ‘local’ as these are adjacent bands on the log scale.

The study of energy transfers can also address the direction of transfer: ‘inverse’ (small-to-
large) as opposed to the ‘direct’ (large-to-small) transfers. In hydrodynamics, 2D turbulence
leads to inverse energy cascade while 3D leads to a direct cascade. In MHD, even 3D turbulence
can lead to an inverse cascade due to the conservation of magnetic helicity [7]. For MHD systems
without a net helicity, energy cascades forward but still shows a pileup of energy on the largest
scales. Understanding the co-existence of this dual cascade is an active topic of research and is
currently limited by the dynamic range offered by state-of-the-art simulations.

Few works on non-linear energy transfers in Keplerian flows exist and all of them have used
spectral space analysis using isotropy, an unrealistic but numerically convenient assumption.
[12], [17] studied spectral transfers in homogeneous shear flows without and with a net magnetic
flux in the computational box, respectively. The energy cascade was found to be direct but
due to the lack of a clear inertial range, it remained unclear what kind of sub-grid models
were appropriate. Some initial work on LES models for MHD shear flows [18] has shown some
promise. In all of these works, anisotropic effects due to the magnetic field and shear were
completely ignored to simplify the analysis. We adopt a similar approximation in our work here.

We study energy transfers in a homogeneous shear flow with a background magnetic flux that
is unstable to the MRI. Our work is novel because we study both: (i) spectral and physical space
transfers in MRI; (ii) Pm < 1 and Pm ≥ 1 parameter regimes. The Pm ≤ 1 limit is thought
to be qualitatively distinct from the Pm > 1 due to different interaction of the magnetic and
kinetic fields in the inertial and dissipative ranges of the spectra [23, 24]. We assume isotropy
for numerical convenience and linearly spaced spherical shells in Fourier space. We leave the
exploration of logarithmic binning in Fourier space and the study of anisotropy to future work.

We describe the numerical methods followed by a brief overview of the data in the next
section. In the subsequent section, we discuss the physical and spectral energy transfers. We
end with conclusions about the implications of our work.

2. Methods
No large publicly available databases on homogeneous shear MHD turbulence exist thus
necessitating new Direct Numerical Simulations (DNS) to collect data for our analysis. We
describe below the MHD equations, the code that we use, and parameters of the simulations
used in this work.
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2.1. Numerical method
We simulate incompressible MHD equations with a homogeneous shear flow using a
pseudospectral solver snoopy 1 [16] (also known as the ‘shearing box’ in astrophysical literature).
The MHD equations consist of the Navier-Stokes equation with the Lorenz force due to
the magnetic field and the induction equation for the evolution of the magnetic fields. In
dimensionless form they read:(
∂

∂t
− Sx ∂

∂y

)
V = B · ∇B −V · ∇V + 2ΩVyex − (2Ω− S)Vxey −∇Π + B0 · ∇B + ν∇2V ,

(1)(
∂

∂t
− Sx ∂

∂y

)
B = B · ∇V −V · ∇B − SBxey + B0 · ∇V + η∇2B , (2)

where V and B are the velocity and magnetic field respectively. Both the velocity and magnetic
fields are divergence free: ∇ · V = 0 = ∇ · B . The effective pressure, Π, incorporates both
hydrodynamic and magnetic pressure: Π = (p+B2/2).

Units: The velocity field is scaled so that the shear parameter of the mean velocity
Vsh = −Sx ey is unity (S = qΩ = 1). The factor q = −d ln Ω/d ln r = 3/2 approximates
Keplerian disks profile, and Ω = 2/3 represents the angular frequency. The magnetic field is in
the units of the Alfv́en speed, vA = B/

√
µ0ρ = B (magnetic permeability, µ0 = 1 = ρ). Time

dimension is the ‘shear time’: 1/S.
Initial conditions: We use a background magnetic field, B = B0ez (B0 = 0.01) that is

conserved throughout the evolution of the MHD equations because of the periodic boundary
conditions. Additionally, we apply random perturbations to the velocity with small amplitude
(1% of the background shear) to low wavemodes.

Boundary conditions and resolution: The spatial resolution in the physical space is 2563,
which implies 256/3 de-aliased modes in Fourier space in each direction. The ‘shear-periodic’
boundary condition implies: f(kx, ky, kz, t) = f(kx + Skyt, kz, t).

Dimensionless parameters: The Reynolds, magnetic Reynolds and magnetic Prandtl
numbers are defined as:

Re = SL2
x/ν, Rm = SL2

x/η, Pm = Rm/Re. (3)

The Reynolds and magnetic Reynolds number quantify the ratio between the advection and
diffusion in velocity and magnetic fields respectively, and Pm = ν/η sets up the ratio of viscosity
to magnetic dissipation.

2.2. Description of data
Forced isotropic MHD turbulence is hard to excite in the Pm � 1 regime with a Rm required
to be above a threshold [23]. The same issue exists for homogeneous shear MHD flows [28, 19].
We study three different values of Pm to study whether the energy transfers are drastically
different in these regimes. Table 1 provides a summary. Runs Pm1 and Pm4 are marginally
under-resolved according to the criterion kmaxλV,B & 1. Here λV and λB are the Kolmogorov
dissipation scales for velocity and magnetic fields respectively. A systematic comparison of
energy transfers for a range of Pm has not been undertaken before as previous work focused on
just one regime at a time: “ideal” non-resistive MHD (η → 0) [11], Pm < 1 [17] or Pm > 1 [12].

MRI simulations have several time scales: ‘shear’ time (tS = 1/S), most unstable MRI mode
growth time (tMRI ∼ 1/Ω), ‘viscous’ (tν = L2/ν) and ‘resistive’ times (tη = L2/η). More time
scales can be defined using properties of the turbulent state. When choosing how long to evolve

1 http://ipag.osug.fr/~lesurg/snoopy.html



Fourth Madrid Summer School on Turbulence

Journal of Physics: Conference Series 1522 (2020) 012005

IOP Publishing

doi:10.1088/1742-6596/1522/1/012005

4

Name Re Rm kmaxλV kmaxλB V 2/2S2L2 B2/2S2L2

Pm025 10000 2500 4.06 7.75 0.0029 0.0039
Pm1 10000 10000 0.82 0.69 0.29 2.47
Pm4 1000 4000 2.24 0.68 4.96 68.31

Table 1. Summary of the simulations used in this paper. We used a resolution of 2563 and a
box size of 13 for all of our simulations. The runs are named with the magnetic Prandtl number,
Pm = Rm/Re. The energies grow with magnetic Prandtl number, which has been seen in
previous simulations of MRI. Except Pm025 the simulations are not fully resolved.
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Figure 1. The time history of volume averaged energies. Left: For the Pm = 0.25 case, the
energy amplitudes are roughly of the same magnitude and the corresponding evolution is quite
similar as well except for the large initial spike early on in the evolution of the magnetic energy.
Right: The magnetic energy is more than an order of magnitude larger than the kinetic energy
for Pm = 4. The distinction between low and high Pm is one of the primary motivations for
exploring energy transfers.

the simulations, one has to make sure that the important dynamics are captured such that the
flow reaches a quasi-steady state in quadratic quantities like energy. On the other hand, longer
evolution is computationally expensive. We made a compromise such that:

tS , tMRI � tf � tν , tη,

while also making sure that we capture at least two full cycle periods in the magnetic field (see
figure 1: consecutive maxima imply one full cycle period in the magnetic field).

In figure 2, we show the time evolution of the Reynolds 〈VxVy〉 and Maxwell stresses 〈−BxBy〉.
The Maxwell stresses always dominate the Reynolds stresses, a well known property of (linear)
MRI with a net vertical field [21] that appears to hold in the non-linear regime as well. The
“kinetic-to-magnetic” ratios of both energies and stresses are sensitive to the magnetic Prandtl
number Pm as can be witnessed both in Figures 1, 2, and Table 1. Moreover, the fluctuations
around the mean of time series happens on a slower time scale for low Pm as opposed to the
high Pm case. In all the runs, Rm is considerably larger than unity that is consistent with
the simulations of MRI in Taylor–Couette geometry indicate that Maxwell stresses dominate
Reynolds stresses only if Rm is large enough [13].
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Figure 2. The volume averaged Reynolds (〈VxVy〉) and Maxwell (〈−BxBy〉) stresses both
normalized with S2L2

x. Left: The Maxwell stress remains larger than the Reynolds stress
throughout the evolution unlike 1 where the magnetic energy even dips below the kinetic for a
short time. Right: As the Pm has increased, the gap between the Reynolds and Maxwell stress
increased as well. However, the difference is still less than an order of magnitude as opposed to
the energies in fig 1.

3. Energy transfers
For our system, the steady state volume averaged energy equations reduce to:

S〈VxVy〉 − 〈BjBi∂jVi〉 = ν〈W 2〉, (4)

−S〈BxBy〉+ 〈BjBi∂jVi〉 = η〈J2〉, (5)

where W = ∇× V = is the vorticity and J = ∇×B = is the current density. The first term
in both equations 4 and 5 are shear source terms that can be thought of as the ‘injection’ terms
while the dissipation terms are on the right hand side of each equation. The second term on
the left hand side represents the ‘exchange’ between velocity and magnetic fields. It is precisely
this term that has caused confusion about whether the cascade in MHD turbulence is non-local
[1, 3]. The exchange term only acts as a coupling term between the velocity and magnetic fields
and does not contribute to the total volume averaged energy. Unlike the forced isotropic case
[5], the exchange term 〈BjBi∂jVi〉 is always negative since it is dominated by the Maxwell stress:
−BxBy > 0 (see figure 2). The physical interpretation is that the energy injected by shear in
the magnetic field is, on average, transformed into kinetic energy.

3.1. Fourier space transfers
We Fourier transform the fields using the definition:

Ṽ (k) ≡
∫
V (r) exp(−ik · r)d3r, V (r) =

1

(2π)3

∫
V (k) exp(ik · r)d3k, (6)



Fourth Madrid Summer School on Turbulence

Journal of Physics: Conference Series 1522 (2020) 012005

IOP Publishing

doi:10.1088/1742-6596/1522/1/012005

6

where k is the wavevector. The energy equations in Fourier space are:(
∂t − S

kx(t)ky
|k(t)|2

δ(|k(t)| −K)

)
|Ṽ |2

2
= <

[
Ṽ ∗ · ˜(B · ∇B)− Ṽ ∗ · ˜(V · ∇V )− ν|W̃ |2

]
+ <

[
Ṽ ∗ · ˜(B0ikzB) + SṼ ∗

y Ṽx

]
, (7)(

∂t − S
kx(t)ky
|k(t)|2

δ(|k(t)| −K)

)
|B̃|2

2
= <

[
B̃∗ · ˜(B · ∇V )− B̃∗ · ˜(V · ∇B)− η|J̃ |2

]
+ <

[
B̃∗ · ˜(B0ikzV )− SB̃∗

yB̃x

]
. (8)

Here K =
√
k2x + k2y + k2z and the asterisk represents complex conjugate. The second term

on the left hand side is the shear advection term −Sx∂y transformed to Fourier space. Its
peculiar form originates from the time dependent nature of the x-component of the wavevector,
kx(t) = kx0 + Stky (see the appendices in [17]).

Shell averaging: The flow is not isotropic because of magnetic fields and shear. We
nonetheless consider isotropic shell averaging in this work due to simplified numerical analysis.
The velocity and magnetic fields are averaged over linearly spaced (isotropic, for simplicity)
spherical shells:

VK(r) =
∑

K−δK/2<k<K+δK/2

V (k) exp(ik · r), (9)

where δK = Kn+1 − Kn for integer n = 1 : Kmax. With this definition, the power spectra of
velocity and magnetic fields become Ekin = 〈V 2

K/2〉 and Emag = 〈B2
K/2〉 respectively. The

angled brackets represent a spatial average. The non-linear transfer terms take the form:〈(
Ṽ ∗ · ˜(V · ∇V )

)
K

〉
and similarly for other transfer terms.

The delta function in the second term in equations 7 and 8 does not allow a direct calculation
in each shell but averaging over shells of some size (K0− δK/2,K0 + δK/2) gets rid of the delta
function. Because of periodic remapping, shear advection term is only significant ‘locally’ in a
δK neighborhood. For convenience, we chose to only use snapshots where t = Ts implying that
kx(t) = kx. For further discussion on how to compute the shear advection term, see [17].

Earlier work on MRI energy transfers [10, 17, 18] found some evidence for law scaling for
energy spectra with kinetic energy favoring a K−3/2 scaling. Magnetic energy spectra power
laws were not studied in these previous works as it did not show any clear power law range.
For kinetic energy, we find similar results for Pm = 1 (left panel) figure 3 where the kinetic
energy spectra is close to a K−3/2 scaling for nearly one decade in modes whereas for Pm = 4
(right panel), no clear power law seems to hold for even one decade. The K−3/2 power law
is favored by Iroshnikov-Krachnan MHD turbulence model based on the assumption of ‘strong
magnetization’. The magnetic energy spectra in figure 4 shows hints of a power law but just
like the kinetic energy spectra in figure 3, it does not have enough range in scales.

Spectral transfers plotted in figure 5 cannot tell us about the locality of transfer but can
tell us about the direction of cascade. The sum of all the transfer terms is positive in all cases
indicating a net transfer of energy forwards. The most noticeable feature of these plots is that
the injection term (VxVy −BxBy) dominates all other terms in the Fourier transfers for the first
few modes whereas for larger modes, the dissipation term starts to become significant. It is,
therefore, unclear that the decade KL/2π = 2 : 20 of K−3/2 seen in the left panel of figure 3
can be termed an ‘inertial’ range. These plots are consistent with existing work [11, 17] that
similarly found that the injection term is dominant across a range of modes thus making the
identification of an inertial range quite difficult despite hints of a power law in the kinetic energy
spectra.
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Figure 3. Pre-multiplied shell averaged spectrum of the kinetic energies. Left: The kinetic
energy for Pm = 1 seems to follow a K−3/2 (orange) power law for roughly a decade
(KL/2π = 2 : 20). Right: For Pm = 4, the spectrum is closer to K−5/3 (blue) but does
not last for even one decade. The dashed straight line acts as a guide.
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Figure 4. Pre-multiplied shell averaged spectrum of the magnetic energies. Left: The power
law for Pm = 1 seems to behave as K−2 (green). Right: The Pm = 4 spectrum is steeper as
the spectrum is closer to K−8/3 (green).

The non-linear transfer terms remain sub-dominant for the entire range of modes. The shear
advection term (red) appears to be significant for an intermediate range for the Pm = 1 case,
which is similar to the behavior of the Pm = 4 run reported in [12] where the shear advection
term dominated all other terms.

3.2. Physical space transfers
For studying energy transfers in physical space, we use the Gaussian filter:

V `(x) =

∫
d3rG(r)V (x + r) (10)

where the V ` is the physical space filtered velocity and the Gaussian filter is defined as

G(x) =
1

(2π`2)3/2
exp(−r2/2`2) (11)
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Figure 5. The nonlinear transfer terms in the induction equation. The kinetic non-linear term

refers to Re[Ṽ ∗ · ˜(B · ∇B)− Ṽ ∗ · ˜(V · ∇V )] while the magnetic term is Re[B̃∗ · ˜(B · ∇V )− B̃∗ ·
˜(V · ∇B)]. The injection term is: S(Ṽ ∗

y Ṽx − B̃∗
yB̃x). Left: For Pm = 1, the injection term

(green) dominates for the first few modes and then the shear advection term (red) takes over.
Right: Similar spectral profiles of all terms except that in this case the shear advection term
does not become significant.

where ` is the filter length and r2 = x2+y2+z2. Since we work in a periodic box, the convolution
in equation 10 translates into a multiplication in Fourier space: V `(k) = G(K, `)V (k) =

exp(−K2`2/2)V (k). Here K =
√
k2x + k2y + k2z has the same definition as it did in equations 7

and 8. In Fourier space, the ‘fluctuating’ field is simply (1−G(K, `))V (k). We use an isotropic
filter for simplicity but since we are studying a magnetized shear flow, anisotropies are likely to
play a strong role. We leave this for future work.

The shear advection term does not commute with the Gaussian filter:

(x∂yV )` = x∂yV ` + `2∂x∂yV `. (12)

The other terms commute and so the equation has the form:

(∂t − Sx∂y)
V

2
`

2
− S`2∂x∂y

V
2
`

2
+∇ · (...) = −ΠV

` −B`,iB`,j∂jV `,i − νW
2
`

−B`,iB0∂zV `,i + SV `,xV `,y, (13)

(∂t − Sx∂y)
B

2
`

2
− S`2∂x∂y

B
2
`

2
+∇ · (...) = −ΠB

` +B`,iB`,j∂jV `,i − ηJ
2
`

+B`,iB0∂zV `,i − SB`,xB`,y. (14)

Here the flux terms represented by ellipsis are ignored since we volume average over a periodic
domain and so these flux terms average to zero. The nonlinear transfer terms are [2]:

ΠV
` = −∂jV `,i

(
(ViVj)` − V `,iV `,j − ((BiBj)` −B`,iB`,j)

)
,

ΠB
` = −∂jB`,i

(
(VjBi)` − V `,jB`,i − ((ViBj)` − V `,iB`,j)

)
.

These represent the energy transferred from the large scales l > ` to the small scales l < ` and
depending on the properties of these terms, an appropriate sub-grid model can be chosen to
represent scale invariant behavior of the system in the inertial range.
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Figure 6. Shell averaged spectrum of the energies with Gaussian filter with length ` = 0.0265
(K`/2π = 6: vertical dashed line). Left: For Pm = 0.25, the peak at small modes is not as
pronounced but still the Gaussian filtered field contains most of the energy. The magnetic energy
(bottom) dissipates earlier than the kinetic energy as is expected for Pm < 1. The integral scales
for both kinetic and magnetic energy are separated by a few modes (2π/Lint ∼ 1.9, 5.5 for the
smoothed and fluctuating fields respectively). Right: For Pm = 4, the spectra extend all the
way to Kmax but have a stronger dominance of the first few modes. The integral scales for both
kinetic and magnetic energy are separated by a few modes (2π/Lint ∼ 1.6, 7.0 for the smoothed
and fluctuating fields respectively).

In figure 6, we show the kinetic and magnetic energies for two runs Pm = 0.25 (left column)
and Pm = 4 (right column). The Pm = 0.25 energies are truncated at lower wavemodes
because they are highly resolved (see table: 1). The Gaussian filtered fields for the the kinetic
and magnetic energy have similar behavior: they both account for most of the energy in the
system because the energy spectra are dominated by the first few modes. The integral scales
for kinetic and magnetic energies in each of the runs are separated by a few modes indicating
the difference in dominant scales for velocity and magnetic fields with the caveat that we use an
isotropic filter.

We computed a spectrum-like plot in figure 7 for Gaussian filters using a three step process:

(i) Apply the Gaussian filter for a given length ` for each term in equations 13, 14.

(ii) Looped over ` = 1, 4, 8, ..., 148 in steps of 4.

(iii) Volume average over the whole domain and time average over 20 snapshots.

The amplitude of large-scale (filtered) fields increase as the filtering length approaches
dissipation scale. The interpretation of the Gaussian filtered terms is different from the Fourier
spectra: the Gaussian filtered quantities can be thought of as a ‘cumulative’ spectrum where
all the energy up to a certain length scale is included for a quantity at length, ‘`’. This causes
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Figure 7. The spatial and temporal mean of linear and nonlinear terms that have been Gaussian
filtered at each wavenumber, Kfilt = 2π/` in Fourier space. The term labels represent different

terms in equations 13, 14. The exchange term is plotted as −B`,iB`,j∂jV `,i, which is always
positive. For both Pm = 1 (left) and Pm = 4 (right), the non-linear transfer terms compete
with each other at large filter lengths while being overshadowed by the much stronger injection
term.

the large-scale terms such as the exchange and injection terms to increase with K`/2π (fig. 7)).
The (shear) injection term (red) only acts on scales: ` & 2π/10 and is thus consistent with
the physical intuition that shear is a large scale effect. Given the limited resolution of these
simulations, the dissipation term already starts to dominate beyond ` & 2π/10 implying that
an inertial range simply does not exist. The shear advection term that dominated the Pm = 1
Fourier transfer plots in figure 5 is zero for Gaussian filters. This is because we computed a
spatial volume average, which due to periodic boundary conditions reduces the 〈∂x()〉 = 0.

Recently [5] found that the cascade of the kinetic and magnetic energies are coupled in the
intermediate to large scales (within the inertial range) through the −B`,iB`,j∂jV `,i term while
they are decoupled from the small to intermediate scales (within the inertial range) in isotropic
forced MHD simulations. We find that while −B`,iB`,j∂jV `,i is smaller than the non-linear
kinetic (ΠV ) and magnetic transfers (ΠB) up to K`/2π ∼ 40, the exchange term only starts to
become significant compared to the non-linear terms in the dissipation regime. The difference
between our results and the forced isotropic turbulence in [5] could come from: (i) the non-local
nature of the injection term as opposed to forced isotropic turbulence where the injection term
is restricted to a small band; (ii) lack of resolution since [5] use up to 20483 simulations whereas
we restrict ourselves to 2563. Indeed a clear inertial range is hard to achieve in even in low
resolution homogeneous isotropic turbulence simulations.

3.3. Comparing Fourier and Gaussian spectra
Gaussian filtered quantities are cumulative: V ` contains contributions from all scales l < `. In
contrast, Fourier transformed quantities represent the values of the field at each wavenumber
(K ∼ `−1). Gaussian filtered quantities can be related to Fourier power spectra using `−shells:
EFourier(K`) ∼ EGaussian(K`2) − EGaussian(K`1)/δ` [26]. Similar shell-to-shell computations
can be done for transfer terms in physical space (or alternatively cumulative spectra in Fourier
space) but this is beyond the scope of the current work.
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4. Conclusions
We explored Pm = 0.25, 1.0, 4.0 in this work, which at face value might appear to be a small
range but the three runs show qualitatively different behavior. Indeed the Pm = 0.25 run has a
spectrum that truncates earlier than other runs and is highly resolved with the same resolution
where the other two runs are marginally resolved. We analyzed the energy transfers in both
Fourier space and physical space (using Gaussian filters) and found that the energy injection
term dominates in both cases. Our main conclusions are:

• A clear inertial range does not exist because: (i) injection term due to Reynolds and Maxwell
stresses is effective at mid-to-large scales; and because of small Re,Rm and resolution, (ii)
the dissipation dominates the small-to-mid scales.

• In contrast to hydrodynamically forced isotropic turbulence, magnetic energy feeds kinetic
energy through the exchange term.

Our work highlights challenges for constructing meaningful sub-grid models for MHD fluids
with a homogeneous shear. Overall, our results suggest that turbulent MHD homogeneous shear
flows are significantly different from homogeneous isotropic turbulence where a clear separation
between the injection and dissipation scales exist. The lack of a clear inertial range could be the
result of modest resolution of 2563 or it could be a property of magnetized homogeneous shear
flows. Future work with high resolution simulations might offer insight into this question.

We considered only isotropic shell averaging in Fourier space and isotropic Gaussian filters in
physical space. Homogeneous magnetized shear flows are known to be strongly anisotropic, which
highlights a major limitation of our work. Furthermore, we only considered isotropic domains
further restricting the development of strong anisotropic structures. We only considered linearly
spaced bins in Fourier space instead of logarithmic binning. The comparison between Fourier
and physical space further suffers from the differences in the nature of the two approaches:
Fourier space analysis is not cumulative while Gaussian physical space analysis is. We hope to
address these limitations in future work.

Acknowledgements
This work was supported in part by the Coturb project of the European Research Council, and
performed during the 4th. Madrid summer workshop on turbulence. We are grateful to Alberto
Vela–Mart́ın for his careful review of an early version of this manuscript.

References
[1] Alexakis A., Mininni P. D., and Pouquet A., 2005 Shell-to-shell energy transfer in magnetohydrodynamics. I.

Steady state turbulence. Phys. Rev. E 72:046301
[2] Aluie H. 2017 Coarse-grained incompressible magnetohydrodynamics: analyzing the turbulent cascades. New.

J. Phys. 19:025008
[3] Aluie H. and Eyink G. L. 2010 Scale locality of magnetohydrodynamic turbulence. Phys. Rev. Lett. 104,

081101
[4] Balbus S. A. and Hawley J. F. 1998 Instability, turbulence, and enhanced transport in accretion disks. Rev.

Mod. Phys. 70:1–53.
[5] Bian, X. and Aluie, H. 2019 Decoupled cascades of kinetic and magnetic energy in magnetohydrodynamic

turbulence. Phys. Rev. Lett. 122:135101
[6] Bodo G., Mignone A., Cattaneo F., Rossi P. and Ferrari A. 2008 Aspect ratio dependence in magnetorotational

instability shearing box simulations. A. & A. 487:1–5.
[7] Brandenburg A. 2001 The inverse cascade and nonlinear alpha-effect in simulations of isotropic helical

hydromagnetic turbulence. ApJ 550:824–840.
[8] Camporeale E., Sorriso-Valvo L., Califano F. and Retinò A. 2018 Coherent structures and spectral energy
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[25] Sekimoto A., Dong S. and Jiménez J. 2016 Direct numerical simulation of statistically stationary and
homogeneous shear turbulence and its relation to other shear flows . Phys. Fluids 28:035101

[26] Sadek, M., Aluie, H. 2018 Extracting the spectrum of a flow by spatial filtering. Phys. Rev. Fluids 3:124610
[27] Shakura N. and Postnov K. 2015 On properties of Velikhov–Chandrasekhar MRI in ideal and non-ideal

plasma. MNRAS 448:3697-3706.
[28] Shi J.-M., Stone J. M. and Huang C. X. 2016 Saturation of the magnetorotational instability in the

unstratified shearing box with zero net flux: convergence in taller boxes. MNRAS 456:2273-2289.
[29] Verma M. K. 2004 Statistical theory of magnetohydrodynamic turbulence: recent results. Phys. Rep. 401

229-380.


