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a b s t r a c t 

The paper proposes an eco-cruise control strategy for urban public transport buses. The 

aim of the velocity control is ensuring timetable adherence, while considering upstream 

queue lengths at traffic lights in a probabilistic way. The contribution of the paper is 

twofold. First, the shockwave profile model (SPM) is extended to capture the stochastic 

nature of traffic queue lengths. The model is adequate to describe frequent traffic state in- 

terruptions at signalized intersections. Based on the distribution function of stochastic traf- 

fic volume demand, the randomness in queue length, wave fronts, and vehicle numbers are 

derived. Then, an outlook is provided on its applicability as a full-scale urban traffic net- 

work model. Second, a shrinking horizon model predictive controller (MPC) is proposed 

for ensuring timetable reliability. The intention is to calculate optimal velocity commands 

based on the current position and desired arrival time of the bus while considering up- 

coming delays due to red signals and eventual queues. The above proposed stochastic traf- 

fic model is incorporated in a rolling horizon optimization via chance-constraining. In the 

optimization, probabilistic guarantees are formulated to minimize delay due to standstill in 

queues at signalized intersections. Optimization results are analyzed from two particular 

aspects, (i) feasibility and (ii) closed-loop performance point of views. The novel stochastic 

profile model is tested in a high fidelity traffic simulator context. Comparative simulation 

results show the viability and importance of stochastic bounds in urban trajectory design. 

The proposed algorithm yields smoother bus trajectories at an urban corridor, suggesting 

energy savings compared to benchmark control strategies. 

© 2020 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 
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1. Introduction 

In busy urban arterials, particularly during peak hours delay of public transport is critical. Due to the stochastic nature

of traffic networks, adherence to a bus schedule is not guaranteed. Fluctuation of passenger demand, intersection delays,

changing traffic conditions and different driving styles of bus drivers bring several uncertainties into the system. Achieving
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List of symbols 

ω symbol of an elementary event 

ρ J jam density 

d ρC critical density 

ρA ( t, ω) actual density 

Q C peak capacity 

Q A ( t, ω) arrival rate of vehicles, macroscopic vehicle flow 

F Q A (t, ϕ) CDF of the arrival rate Q A ( t, ω) 

ϕ probability level 

v J jam velocity 

v C critical velocity 

v A ( t ) free flow velocity of vehicles 

l q tail of the queue 

l l location of the traffic light 

c traffic light cycle counter 

t cyc traffic light cycle time 

t 1 start of the red traffic light phase 

t 2 end of the red traffic light phase 

t green green time interval 

W 1 ( t, ω) queuing shockwave velocity 

W 2 queue discharge wave velocity 

W 3 ( t, ω) departure shockwave velocity 

W 4 pressure wave 

R J ( t, ω) queue traffic state 

R C ( t, ω) queue discharge traffic state 

n ( c, ω) number of vehicles crossing the intersection at cycle c 

v ( k ) bus velocity at time step k 

x ( k ) bus position (relative to the start of the network) at time step k 

�t discrete time step interval 

τ relaxation parameter 

v des ( k ) desired velocity of the bus (control input) 

z tt ( k ) timetable tracking error 

x tt ( k ) timetable reference signal 

t 0 time instant of the prediction 

t ETA time of arrival of the bus to a stop 

N prediction horizon length 

J ( k ) optimization cost 

R control input weighting matrix 

Q tracking error weighting matrix 

ˆ R J (t, ω) queue traffic state (spatially discretized) 

ˆ R C (t, ω) queue discharge traffic state (spatially discretized) 

v min lower bound for the control input 

v max upper bound for the control input 

ε allowed position error at the bus stop 

σ queue standard deviation of the queue length 

σ traj . standard deviation of the predicted trajectories 

timetable reliability in an environment where “traffic flow dynamics are dominated by external events (red traffic lights)

rather than by the inherent traffic flow dynamics” ( Papageorgiou, 1998 ) is especially difficult. 

The need for increasing energy efficiency and the advances in driver assistance systems brought eco-cruise control strate-

gies to life ( Saerens et al., 2013 ), ( Akhegaonkar et al., 2018 ), ( Qu et al., 2020 ),. In rural areas the focus of eco-crusie control

is on road topology ( Hellström et al., 2010 ), ( Németh and Gáspár, 2011 ). On the other hand, in urban areas interaction

with traffic control devices dictate energy efficiency. The eCoMove project Vreeswijk et al. (2010) proposed a speed advi-

sory system incorporating V2I communication with traffic lights. Simulation results suggested significant emission reduction. 

Kural et al. (2014) implemented a predictive traffic light assistant, that considers traffic light cycles during trajectory plan-

ning. However, they only considered traffic light cycles without queue lengths. Park et al. (2011) and Yang et al. (2017) con-

structed a dynamic programming based strategy to minimize fuel consumption in urban areas with traffic lights. The model
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estimates queue lengths with the help of shockwaves. In Li et al. (2018) a trajectory smoothing algorithm was formulated

considering platoons of connected automated vehicles and traffic lights. 

Determining real-time queue length accurately at an intersection is difficult. Queue length is usually estimated from

traffic flow data from loop detectors Sharma et al. (2007) , video cameras Fathy and Siyal (1998) or various vehicle to in-

frastructure applications such as probe vehicles ( Comert and Cetin, 2009 ). Several model based queue length approximation

methods exist. Liu et al. (2009) estimated intersection queue length by using shockwave theory. The approach could es-

timate time-dependent queue length even when the signal links are congested with long queues. The main measures of

performance at signalized intersections are the mean queue length and mean delay. 

Previous authors tried to grasp the stochastic nature of traffic at signalized intersections. Darroch (1964) modeled queues

at traffic lights as ergodic Markov chains. Heidemann (1994) dealt with statistical distribution of queue length at traffic

signals and derived the probability generating functions of queue length and vehicle delays considering vehicle arrivals as

Poisson process. In Mung et al. (1996) formulas are developed for the probability distributions of queue lengths at fixed

time traffic signals. In Zheng et al. (2018) traffic flow states in an urban network with signalized intersections are estimated

via stochastic Gaussian approximation. 

As basis of this work, the traffic model called shockwave profile model (SPM) Wu and Liu (2011) is used to predict

future traffic states upstream signalized intersections. In order to make up for possible simplification errors and overcome

uncertainties and disturbances, this traffic model is augmented with stochastic assumptions: instead of using deterministic

shockwave trajectories, shockwaves are represented with their probability density functions. 

Parallel to trajectory control of individual vehicles, smart intersections and pre-signalizing strategies are also emerging

with the increasing connectivity of urban transportation systems. Chow et al. (2017) aims at solving a similar timetable

reliable bus control but with adjustable signal timing. Their approach is features a centralized, deterministic, computationally

intensive algorithm. Whereas, we propose a decentralized, stochastic bus velocity control algorithm. In addition, it is possible

to employ velocity control in conjunction with smart signalization. 

According to Yang et al. (2016) it is beneficial to control connected automated vehicles and smart signal heads simulta-

neously, considering different automation levels. Guler and Menendez (2014) evaluates the effect of bus pre-signalizing in a

mixed traffic environment. Although smart signal heads and dedicated bus lanes can significantly improve timetable reliabil-

ity, city infrastructure often limits the implementation of such strategies. Klumpenhouwer and Wirasinghe (2018) proposed

a bus holding strategy with Markov chains to model uncertainties arising during a bus trip. A dynamic bus holding strategy

is proposed by Sánchez-Martínez et al. (2016) . According to Daganzo (2009) a velocity control is more desirable than slack

times or holding, since those are unproductive allocation of time in the cycle time of buses resulting in queuing at stops.

Slack times can be dynamically addressed via changing the speed of the vehicle rather than holding it. In that sense, we

propose a smoothed and pro-active way of slack time reduction foreseeing the trajectory to track. In the paper we aim at

predicting an optimal trajectory for an urban bus, considering traffic light phases as input to the system, in order to enhance

its timetable reliability ( Saif et al., 2019 ). 

There is only a small field for velocity control action possible: (i) in front of signalized intersections vehicle speed is

entirely determined by the current phase of traffic (i.e. queuing, discharge) and (ii) delaying (slowing down) a vehicle in

the course of the journey would only propagate the delay to other participants in traffic. Therefore, velocity control is only

desirable when the controlled vehicle is further away from the intersection and traffic is not too dense or there is space

for overtaking (e.g. multiple lanes, Gu et al. (2013) ). The above assumption also suggests that the proposed bus velocity

control does not perturb the trajectories of other participants of traffic significantly, thus the macroscopic characteristics

and stochasticity of urban traffic flow are unaffected. 

The contribution of this paper is twofold. First, the SPM model is introduced and augmented with the probabilistic na-

ture of vehicle arrivals yielding a stochastic process. Second, a receding horizon model predictive velocity control is out-

lined for public transport buses. The ego-centric controller aims enhancing the timetable reliability of the controlled bus

while predicting smooth, energy-efficient trajectory along a signalized arterial. The major contribution is considering traffic

queue lengths via the stochastic SPM in the optimization as constraints, resulting in a chance-constrained MPC. Compared to

Varga et al. (2018) , surrounding traffic is considered in a more sophisticated way via the proposed stochastic approach. The

calculated velocity from the controller can be used as reference for a cruise control system, or in a speed advisory function

for the human driver, depending on the automation level of buses. 

The paper is organized as follows. In Section 2 the stochastic shockwave profile model is introduced in three steps. 

i) The model is formulated with probabilistic assumptions, 

ii) the distribution of the queue length is derived as a stochastic process, and 

ii) the proposed model is validated against a microscopic traffic simulator. 

In Section 3 the predictive timetable tracking bus dynamics model is formulated. Section 4 merges the results of

Section 2 and Section 3 and presents the cost function for the chance-constrained optimization. Feasibility analysis for

the chance-constrained optimization is given in Section 5 . Then, the performance of the controller is evaluated in a micro-

scopic traffic simulation, compared to different benchmark control strategies. Finally, Section 6 concludes the findings of the

paper. 
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Fig. 1. Traffic flow states in front of a signalized intersection. 
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2. Stochastic shockwave profile model 

This section presents the shockwave profile model and gives its stochastic extension. Stochasticity is injected into the

model through the randomness of traffic flow. The model is discretized using passenger car equivalents (PCE). A simulation

example is given to demonstrate the effectiveness of the model. 

2.1. Stochastic queuing model 

The deterministic SPM model, described in Wu and Liu (2011) is efficient in modeling networks with signalized intersec-

tions, where signal cycles and shockwaves shape traffic flow. The model distinguishes three different traffic states. 

i) Traffic flows freely upstream the queue at the intersection, vehicles travel at their desired speed v A (t) [ m 

s ] and slow

down when they approach the queue. 

ii) Traffic is jammed inside, assuming jam density ρ J and zero velocity v J = 0 . This traffic state is denoted by R J ( t, ω). 

ii) When the queue starts dissipating, the traffic flow state goes from jammed to its critical capacity. The model calls this

state queue discharge region R C ( t, ω). Here, the traffic flow is assumed to be saturated, the average velocity of vehicles

is the critical velocity v C . 

The symbol ω ∈ 	, introduced in R J ( t, ω) and R C ( t, ω) denotes one realization of the stochastic process. The probability

space is defined as [	, A , P ] , where 	 is the sample space, A is a σ -algebra and P is the probability measure. The three

regions of the model are depicted in Fig. 1 . The tail of the queue l q ( t, ω) is marked by shockwave profiles. 

As a contribution of the paper the SPM ( Wu and Liu, 2011 ) is extended with the probabilistic nature of vehicle arrivals.

Stochasticity is injected into the model through the following assumptions. 

Assumption 1. Arrival rate distribution function The mean traffic inflow to the intersection, which is feeding the queue

is assumed to be known (from real-time measurement or historical data ( Daganzo and Lehe, 2016 )): Q A (t) = E[ Q A (t, ω)]

with known cumulative distribution function (CDF) F Q A (t, ϕ) = P (ω : Q A (t, ω) ≤ ϕ) . In addition, the distribution function is

truncated at zero flow and at peak capacity flow. When vehicles arrive from a link without traffic light or any obstacle that

would perturb their distribution of arrivals, Poisson or Binomial process can be assumed ( Heidemann, 1994 ), ( Mung et al.,

1996 ), with arrival rate Q A (t) . Otherwise, arrivals have generic truncated or discontinuous distributions. In addition, arrival

rates may not be independent from traffic flow on the preceding links. Although, the model can give a probabilistic measure

for queue spillover, it is assumed it does not occur. For brevity, in this paper, simple, independent distributions are used.

This assumption can be relaxed with the considerations introduced in Appendix A . 

Assumption 2. Ergodicity This assumption is the continuation of Assumption 1. In traffic engineering practice, traffic flow

Q A (t) is usually given in vehicles per hour, i.e. traffic signal program is planned based on hourly average traffic demand,

usually determined from historical traffic data. However, a traffic light cycle time is only a fraction of an hour, i.e. more

frequent sampling is needed. The hourly averaged traffic flow Q A (t) and the cycle averaged traffic flow are not necessarily

proportional, ergodicity of the traffic flow cannot be assumed. For example, 600 veh / h inflow and 60 s traffic light cycle does

not mean that exactly 10 veh arrives in each cycle). This uncertainty is grasped through the distribution function of Q A ( t, ω)

( F Q A (t, ϕ) ). 

Assumption 3. Fundamental diagram It is further assumed, that the link fundamental diagram (FD) is known in mean

value. In the paper it is assumed to be measured ( Chiabaut et al., 2009 ), ( Qu et al., 2015 ) ( Daganzo and Lehe, 2016 ),

( Qu et al., 2017 ), ( Seo et al., 2019 ). The link fundamental diagram describes the relation between the traffic flow states

in a mixed traffic environment where the controlled buses operate. The purpose of the link FD in this work is to describe

the traffic environment where the bus velocity control takes place. It is assumed that the network layout is such (e.g. mul-

tiple lanes, pull-in bus stops) and the frequency of the buses is so low that the repercussion of buses to the link FD is

minor ( Dakic et al., 2019 ). In addition, the bottleneck effect of the bus is minor if it is not significantly slower than the

other vehicles and the traffic density is not extremely high and can be overtaken ( Muñoz and Daganzo, 2002 ). In addition,

the purpose of the queuing model is to be included into a predictive framework, where it is used to estimate queue lengths

ahead the controlled bus. Vehicles downstream the bus shouldn’t be affected by the bottleneck effect of the bus. For the
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sake of simplicity, triangular link fundamental diagram is chosen ( Laval and Castrillón, 2015 ). With the help of the specific

points of the fundamental diagram (i.e. actual flow [ ρA ( t, ω ), Q A ( t, ω )], peak capacity [ ρC , Q C ] and jam density [ ρ J , 0]) the

shockwave velocities W i (t, ω)[ m 

s ] i = 1 . . . 4 can be computed analytically, see Fig. 2 . It is further assumed, that the traffic

flow is constant for short time intervals. The time-independent Q A ( ω) implies linear shockwave profiles. 

Assumption 4. Signal program It is assumed, that the location of the traffic light l l [ m ] and the signal program are

known. The signal program is represented by three variables: t cyc [ s ] is the cycle time, t 1, c [ s ] is the start of red phase and

t 2, c [ s ] is the end of red phase in the cycle. Subscript c denotes the c th traffic light cycle. The interrelation of the variables is

as follows: the red time is t red,c = t 2 ,c − t 1 ,c and the green time is t green,c = t cyc,c − t red,c . Therefore, t cyc,c = t red,c + t green,c . 

The model is capable of handling traffic responsive signal control too. There is a limitation though. The signal program

shall be frozen for the MPC prediction horizon. If the signal program changes drastically during this horizon, it can bias the

proposed velocity control algorithm. For brevity, the deductions and simulations in this paper employ static timing. 

2.2. Shockwaves at signalized intersections 

With the assumptions made in Section 2.1 , herewith, we describe the effect of randomness in the SPM. The model

distinguishes four shockwaves, depicted both in the link fundamental diagram ( Fig. 2 ) and time-space diagram ( Fig. 3 ).

Queuing shockwave velocity, W 1 ( t, ω) is formed by vehicles accumulating at the red light. Vehicles stopping at the tail

of the queue from their actual velocity to zero form a shockwave. This process is also stochastic due to the randomness of

vehicle arrivals affecting the queue length. 

W 1 (t, ω) = − Q A (t, ω) 

ρJ − ρA (t, ω) 
. (1)

Discharge shockwave velocity, W 2 is assumed to be deterministic, as it is not affected by vehicle arrivals. In the fundamen-

tal diagram the discharge shockwave velocity is the slope of the line connecting the jam density and the critical density.

W 2 = − Q C 

ρJ − ρC 

. (2)
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Table 1 

Boundaries of traffic states. 

Jam region ( R J ( t, ω)) 

Stop line during red 

(between t 1 ,c + ct cyc and t 2 ,c + ct cyc ) l l 
Pressure wave (if exists) l l + W 4 (t − (t 1 ,c + ct cyc )) 

Queuing wave l r,c−1 (t, ω) + W 1 (t, ω)(t − t r,c−1 (t, ω)) 

Discharge wave l l + W 2 (t − (t 2 ,c + ct cyc )) 

Discharge region ( R C ( t, ω)) 

Stop line during green 

(between t 2 ,c + ct cyc and min (t 1 + ct cyc , t r,c (t, ω)) ) l l 
Discharge wave l l + W 2 (t − (t 2 + ct cyc )) 

Departure wave l s,c (t, ω) + W 3 (t, ω)(t − t s,c (t, ω)) 

Pressure wave (if exists) l l + W 4 (t − (t 1 + ct cyc )) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Departure wave velocity W 3 ( t, ω) is generated as the queue dissipates as vehicles leave the intersection at green. It starts

at the intersection of the queuing and discharge shockwaves. In addition, newly arrived vehicles feed the queue hence 

W 3 (t, ω) = 

Q C − Q A (t, ω) 

ρC − ρA (t, ω) 
. (3) 

Assuming a triangular link FD, the departure wave velocity becomes deterministic, see Fig. 2 . 

Pressure wave velocity W 4 separates a critical density and a jam density region, and it has the same speed as the

discharge wave W 2 . The pressure wave is only present if there is a residual queue, i.e. the queue cannot fully discharge

during a green interval 

W 4 = − Q C 

ρJ − ρC 

. (4) 

Shockwave velocities can be represented in time-space diagram too, see Fig. 3 . Shockwave profiles represent the building and

dissipating of queues upstream a signalized intersection. The geometrical intersection point of the queuing and discharge

shockwaves is the point [ t s,c ( t, ω), l s,c ( t, ω )]. In addition, t r,c ( t, ω ) is the time instant when the queue starts growing again in

the next green phase. The residual queue length is l r,c ( t, ω). The shockwave intersection points [ t s,c ( t, ω), l s,c ( t, ω)] and [ t r,c ( t,

ω ), l r,c ( t, ω )] can be given analytically for c traffic light cycles ahead as: 

t s,c (t, ω) = 

−W 1 (t, ω) t r,c−1 (t, ω) + W 2 (t 2 ,c + ct cyc ) + l r,c−1 (t, ω) − l l 
W 2 − W 1 ( t, ω) 

, (5) 

l s,c (t, ω) = W 1 (t , ω)(t s,c (t , ω) − t r,c−1 (t, ω)) + l r,c−1 (t, ω) , (6)

t r,c (t, ω) = min 

(
t 1 ,c + ct cyc , 

−W 3 (t , ω) t s,c (t , ω) + W 4 (t 1 ,c + ct cyc ) + l s,c (t, ω) − l l 
W 4 − W 3 (t, ω) 

)
, (7) 

l r,c (t, ω) = min ( l l , W 3 (t , ω)(t r,c (t , ω) − t s,c (t, ω)) + l s,c (t, ω) ) . (8) 

The discontinuities with min ( · ) are introduced to limit shockwaves upstream the intersection l l . For brevity, ct cyc is used

to denote the time elapsed since an arbitrary initial time instant. In case of varying cycle lengths the notation modifies to


c t cyc,c . 

In Fig. 3 , the blue line depicts a vehicle trajectory with its velocity at each traffic phase, based on the SPM model.

Upstream the intersection the vehicle travels freely at its desired velocity v A ( t ). When it enters the queue it stops, the jam

velocity v J = 0 . In queue discharge vehicles assumed to travel with the equilibrium velocity at the critical density v C . 

To summarize, the space-time evolution of traffic phases in the SPM model can be given using the shockwave equations

presented above for c traffic cycles ahead, where the number of elapsed cycles is 

c = f loor 

(
t 

t cyc 

)
. (9) 

The regions in Fig. 3 can be described with the help of polygons made up of lines (assuming time independent vehicle

inflow). The boundaries of R J ( t, ω) and R C ( t, ω) are summarized (for the c th cycle) in Table 1 . These boundaries will be used

for introducing chance-constraints into the trajectory planning. 

Outside these regions, vehicles travel at their desired speeds v A ( t ). The stochastic process for the queue length is: 

l q ( t, ω ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

W 1 (t, ω)(t − t r,c−1 (t, ω)) + l r,c−1 (t, ω) , 
i f t r,c−1 (t, ω) ≤ t < t s,c (t, ω) (queuing) , 
max (l l , W 3 (t, ω)(t − t s,c (t, ω)) + l s,c (t, ω)) , 

(10) 
i f t s,c (t, ω) ≤ t < t r,c (t, ω) (departure ) . 
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2.3. Number of vehicles 

To be able to compare the SPM to other urban traffic flow models, the number of vehicles (in passenger car equiva-

lents, PCE) crossing the intersection in every cycle n ( c, ω) shall be determined. The number of arriving vehicles per cycle is

proportional to the slope of the arrival shockwave: 

n a (c, ω) = 

W 1 (t, ω) t cyc 

l PCE + l jam 

. (11)

The number of outflowing vehicles in cycle c is proportional to the decrement of queue length in the green phase l s,c ( ω). In

mathematical form: 

n d (ω) = min 

(
W 2 t green 

l PCE + l crit 

, n (c, ω) + 

W 1 (t, ω) t cyc 

l PCE + l jam 

)
, (12)

where l PCE is the PCE length, l crit is the average headway distance at the critical density (which is assumed to prevail in

the queue discharge region). l jam 

is the headway distance in jam. The green time interval is t green = t cyc − (t 2 − t 1 ) . n ( c, ω)

denotes the number of vehicles in traffic light cycle c . In the same vein, the queue length evolution (in PCE) over one cycle

c can be given as: 

n (c + 1 , ω) = n (c, ω) + n a ( c, ω ) − n d (c, ω) , (13)

within time period [ ct cyc , (c + 1) t cyc ] . This result in Eq. (13) is a discrete-time traffic model, similar to the store-and-forward

model ( Aboudolas et al., 2009 ), however the shockwave profile model is capable of handling undersaturated networks too.

Furthermore, this formula is needed to extend the SPM to multiple links, see Appendix A . 

2.4. CDF Of shockwaves 

Next, the stochastic shockwave profiles and their respective cumulative density functions (CDFs) are derived analytically.

First, the relationship of the CDFs of traffic flow F Q A (t, ϕ) and traffic density F ρA 
(t, ϕ) is derived, using Theorem 1 . 

Theorem 1. Let ξ ( ω) be a random variable with CDF F ξ ( ϕ) . Let η(ω ) = g(ξ (ω)) . The CDF of η( ω) can be given as: 

F η(ϕ) = 

{
F ξ (g −1 (ϕ)) , i f g(ϕ) is monotonical l y increasing, 

1 − F ξ (g −1 (ϕ)) , i f g(ϕ) is monotonical l y decreasing, 
(14)

and if g ( x ) has a unique inverse ( Arnold, 2013 ). 

Now, let’s analyze the relationship of the CDFs of traffic flow and traffic density. 

Given the vehicle arrivals Q A ( t, ω) and assuming mean-valued triangular link fundamental diagram ( Eq. (15) ), the traffic

density ρA ( t, ω) in the uncongested region can be determined: 

ρA (t, ω) = 

1 

v f 
· Q A (t, ω) , (15)

assuming free flow at the beginning of the link, with v f being the velocity at free flow. In addition, the distribution of Q A ( t,

ω) has to be truncated from both sides: it has to be greater than zero and smaller than Q C . F ρA 
(t, ϕ) in the free flow region

is given as: 

F ρA 
(t, ϕ) = F Q A (t, g −1 (ϕ)) , (16)

with g ( x ) being the relation in Eq. (15) . Therefore: 

F ρA 
(t, ϕ) = F Q A (t, v f · ϕ) . (17)

The next step in formulating the stochastic traffic flow model to describe the CDFs of the shockwaves. In the model, only

W 1 ( t, ω) and W 3 ( t, ω) depend on the random arrivals Q A ( t, ω) as: 

W 1 (t, ω) = 

Q J − Q A (t, ω) 

ρJ − ρA (t, ω) 
= − Q A (t, ω) 

ρJ − 1 
v f 

Q A (t, ω) 
. (18)

W 3 (t, ω) = 

Q C − Q A (t, ω) 

ρC − ρA (t, ω) 
= 

Q C − Q A (t, ω) 

ρC − 1 
v f 

Q A (t, ω) 
. (19)

Since F Q A (t, ϕ) is known, F W 1 
(t, ϕ) and F W 3 

(t, ϕ) can be formulated for the arrival and the departure wave velocities,

respectively, with the help of Theorem 1 again. The g −1 (ϕ) functions are the inverses of Eq. (18) and Eq. (19) , with Q ( t,
A 
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Fig. 4. Monte Carlo simulation of queue lengths. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ω) replaced by level ϕ. Note that in Eq. (18) W 1 ( t, ω) is a decreasing function of Q A ( t, ω). Likewise, W 3 ( t, ω) is increasing

function of Q A ( t, ω). With this in mind, the resulting CDFs become: 

F W 1 
(t, ϕ) = 1 − F Q A 

( 

t, −
ρJ − 1 

v f 
ϕ 

ϕ 

) 

, (20) 

F W 3 
(t, ϕ) = F Q A 

( 

t, 
ρC − 1 

v f 
ϕ 

ρC − ϕ 

) 

, (21) 

if Q A ( t, ω) is nonzero. Similarly, the CDF of the queue length F l q (t, ϕ) as a stochastic process can be computed. When the

expressions for the shockwave velocities and recursively calculated intersection points are substituted, the stochastic process

of the queue length becomes only Q A ( t, ω) dependent. The relation between Q A ( t, ω) and l q ( t, ω) is a piecewise, truncated,

first order rational function. With Theorem 1 , F l q (t, ϕ) can be computed even though the expression becomes very long and

we omit it for brevity. 

2.5. Example 

This section demonstrates how the proposed traffic model is capable of capturing the stochastic nature of queue lengths

at a traffic light. For simplicity, the arrival rate of vehicles is characterized by a homogeneous Poisson distribution with

constant λ = Q A = E[ Q A (ω)] arrival rate. 

Exploiting the linear property of the Poisson process, the arrival rate can be scaled down (e.g. 360 veh / h → 0.1 veh / s ) and

still have a Poisson process. Note: the resulting stochastic process is also a homogeneous Markov chain ( Karlin, 1957 ). The

shockwave model, however, is different from an M / M /1 service model. It also considers the temporal piecewise nature of

traffic signal phases (i.e. red and green phases) and distinguishes queuing and discharge sequences. 

Next, a numerical simulation example is given, in order to validate the proposed traffic model. A Monte Carlo simulation

was run in a microscopic traffic simulator VISSIM ( PTV, 2011 ). The simulation consisted of one link, ending with a traffic

light at 300 m . The link fundamental diagram was assumed to be known. The fixed-time traffic light cycle time is 60 s and

the green time was set to 30 s . Vehicles arrived at the traffic light with Poisson distribution with hourly rate λ = 500 v eh/h .

The simulation was 150 0 0 s long, resulting 250 traffic light cycles. Queue lengths were logged and compared against the

stochastic shockwave profile model. According to Fig. 4 , the average queue length and standard deviations in the queuing

phase were accurately estimated. The estimation error in the queuing phase was 5.6%. Standard deviations are overestimated

when two traffic states co-exist in the queue. The slope of the dissipation wave was well estimated too with 7.1% error but

the start of the dissipation phase was incorrectly modeled. The error stems from the randomness of vehicle arrivals and the

modeling error of the assumed link fundamental diagram. 
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3. Timetable tracking bus dynamics model 

In this section, a bus dynamics model is formulated for control design purposes. Buses operate on a route in mixed

traffic based on their timetable. When the schedule is tight, their trajectory shall be carefully planned. Hence, probabilistic

constraints will be added by adopting the stochastic SPM introduced in Section 2 . 

The proposed bus velocity control algorithm (referred hereafter as control algorithm) creates an optimal trajectory within

a predefined prediction horizon considering the schedule and red times at signalized intersections. The state-space repre-

sentation of the discrete-time longitudinal dynamics of the bus is: 

X(k +1) ︷ ︸︸ ︷ [
v (k + 1) 
x (k + 1) 

]
= 

A ︷ ︸︸ ︷ [
1 − �t 

τ 0 

�t 1 

] X(k ) ︷ ︸︸ ︷ [
v (k ) 
x (k ) 

]
+ 

B ︷ ︸︸ ︷ [
�t 
τ
0 

]
v des (k ) . (22)

Discrete-time differential equation system Eq. (22) is evaluated under time period [ k, k + 1]�t where k = 0 , 1 , 2 , . . .

is the time step index and �t = 2 s is the sampling interval. The system states of a bus are its velocity and position:

X(k ) = [ v (k ) , x (k )] T . τ is a relaxation parameter capturing the sensitivity of drivers’ to the change of their desired veloc-

ity. According to Helbing and Tilch (1998) it shall be calibrated between 1.25 s and 2.5 s. Too small or high values would

result in unrealistic accelerations or decelerations towards the desired velocity. The control input is the desired velocity

v des ( k ). The controller calculates an optimal velocity profile v des towards the subsequent bus stop, obeying constraints set

by the timetable and queues at intersections. The calculated control input can serve as a display to the driver or a strict

reference signal for autonomous driving to anticipate traffic states. Timetable tracking is incorporated into the model via an

error term: 

z tt (k ) = 

C ︷ ︸︸ ︷ [
0 −1 

] X(k ) ︷ ︸︸ ︷ [
v (k ) 
x (k ) 

]
+ x tt (k ) , (23)

where x tt ( k ) is an idealized reference trajectory based on the timetable of the bus. The timetable is a set of points in the

time-space diagram (i.e. the bus shall be at a given stop at a given time). 

The control oriented model is used as basis of a shrinking horizon MPC ( Maciejowski, 2002 ). The goal of the controller is

calculating an optimal velocity profile between its actual position and the next stop. At each time step, the MPC technique:

(i) predicts the traffic conditions along a future time window based on the system model; (ii) minimizes an a priori defined

network-related performance index by finding the appropriate control input; and (iii) applies only the first optimal decision

variable. 

The shrinking horizon MPC prediction length depends on the scheduled travel time to the next bus stop. The interval

between the time instant of the prediction (denoted by t 0 ) and the desired arrival time to the next stop (denoted by t ETA ,

i.e. expected time of arrival is split into N equidistant steps, see Fig. 5 . In every time step the prediction horizon decreases

by one. By the last time step the bus shall arrive at the desired stop. To avoid small or even negative horizon lengths (due
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to lateness or being close to the stop) a lower bound is introduced: N min = 5 . That is: 

N = max 

{ 

N min , 
t ETA − t 0 

�t 

} 

. (24) 

Consider the state space representation in Eq. (22) and tracking performances Eq. (23) and extend it for N horizon, see

Eq. (25) . The system state X ( k ) is measured at time step k . Then, for a finite horizon length N the future states X(k + i | k )
are calculated along with the corresponding control input v des (k + i − 1 | k ) and the external reference signal x tt (k + i − 1 | k ) .
Predicted states are denoted as X(k + i | k ) , where time step k at the right side within the parentheses denotes the current

time, and k + i at the left side the prediction step with running index i = 1 , 2 , . . . , N. The same notation applies for the

control input, the external signals and the performance output z tt (k + i | k ) , see Eqs. (25) - (26) . 

ˆ x ︷ ︸︸ ︷ ⎡ 

⎢ ⎢ ⎣ 

X (k + 1 | k ) 
X (k + 2 | k ) 

. . . 
X (k + N| k ) 

⎤ 

⎥ ⎥ ⎦ 

= 

A ︷ ︸︸ ︷ ⎡ 

⎢ ⎢ ⎣ 

A 

A 

2 

. . . 

A 

N 

⎤ 

⎥ ⎥ ⎦ 

x ︷ ︸︸ ︷ 
X (k | k ) + 

B ︷ ︸︸ ︷ ⎡ 

⎢ ⎢ ⎣ 

B 0 · · · 0 

AB B 0 

. . . 
. . . 

. . . 
. . . 

A 

N−1 B A 

N−2 B · · · B 

⎤ 

⎥ ⎥ ⎦ 

u ︷ ︸︸ ︷ ⎡ 

⎢ ⎢ ⎣ 

v des (k | k ) 
v des (k + 1 | k ) 

. . . 
v des (k + N − 1 | k ) 

⎤ 

⎥ ⎥ ⎦ 

(25) 

ˆ z tt ︷ ︸︸ ︷ ⎡ 

⎢ ⎢ ⎣ 

z tt (k + 1 | k ) 
z tt (k + 2 | k ) 

. . . 
z tt (k + N| k ) 

⎤ 

⎥ ⎥ ⎦ 

= 

C ︷ ︸︸ ︷ ⎡ 

⎢ ⎢ ⎣ 

C 0 · · · 0 

0 C 0 

. . . 
. . . 

. . . 
. . . 

0 0 · · · C 

⎤ 

⎥ ⎥ ⎦ 

ˆ x ︷ ︸︸ ︷ ⎡ 

⎢ ⎢ ⎣ 

X (k + 1 | k ) 
X (k + 2 | k ) 

. . . 
X (k + N| k ) 

⎤ 

⎥ ⎥ ⎦ 

+ 

D ︷ ︸︸ ︷ ⎡ 

⎢ ⎢ ⎣ 

1 0 · · · 0 

0 1 0 

. . . 
. . . 

. . . 
. . . 

0 0 · · · 1 

⎤ 

⎥ ⎥ ⎦ 

ˆ σ tt ︷ ︸︸ ︷ ⎡ 

⎢ ⎢ ⎣ 

x tt (k + 1 | k ) 
x tt (k + 2 | k ) 

. . . 
x tt (k + N| k ) 

⎤ 

⎥ ⎥ ⎦ 

. (26) 

4. Formulating the cost function 

In order to formulate a real-time optimization problem with chance-constraints (probabilistic constraints) the results of

Section 2 and 3 are merged. The optimization aims at solving a quadratic problem to control the velocity of individual buses

in signalized arterials in a predictive manner. 

4.1. Quadratic cost function 

The cost function to be minimized in the optimization is sought in the following standard quadratic form: 

J(k ) = 

1 

2 

[ 
ˆ z 

T 
tt Q ̂  z tt + u 

T R u 

] 
. (27) 

ˆ z tt and u denote stacked vectors of the predicted reference trajectory error and the control input (desired velocity) at ev-

ery time iteration. Q 

N×N and R 

N×N are positive definite, diagonal weighting matrices. Each value in Q and R belongs to

one time-step in the prediction. The higher values in Q means more emphasis on timetable tracking performance (i.e. the

predicted trajectory shall mimic the reference). R penalizes the control input. Selecting too small values for R would result

in saturated control signal and poor energy-efficiency. On the other hand, too high values in R yields slow response and

the desired performance criteria (timetable adherence) might not be met. A quadratic formula means that it penalizes both

positive and negative deviations from the reference (i.e. not only late but also early arrival). 

By inserting Eq. (25) into Eq. (26) , then the resulting expression into Eq. (27) and following some simple algebraic

steps, the cost function simplifies to: 

J(k ) = 

1 

2 

u 

T 
(
B 

T C T Q C B + R 

)
u 

+ 

(
x 

T A 

T C T Q C B + ˆ σ T D 

T Q C B 

)
u = 

1 

2 

u 

T �u + 	T u . (28) 

For detailed deduction steps, please refer to Varga et al. (2018) . 

Next, optimization constraints are considered. It is assumed that the control input is constrained: the lower limit v min =
0 km/h, since negative velocity is not allowed. The desired velocity has an upper bound too: it is either constrained by the

legal speed limit on the link (e.g. v lim 

= 50 km/h ) or if the link is congested, the bottleneck speed v btl ( k ) imposed by other

vehicles: v max = min (v btl (k ) , v lim 

) . In the rolling horizon framework, the velocity bound is assumed to be constant within

one horizon. The aim of the control algorithm is driving the vehicle to the next stop. It can be formulated with the help

of two constraints. At the final prediction step the absolute tracking error | z tt (k + N| k ) | shall be smaller than a threshold

ε ≈ 2 m (e.i. it shall be at the bus stop). In addition, the bus shall come to a full stop there. Finally, the effect of traffic signal

states is incorporated into the model as probabilistic constraints via the proposed stochastic shockwave profile model. 
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4.2. Chance-constraints 

If the controlled bus is in the queue upstream a traffic light R J ( t , ω), it cannot move. If it is in the queue discharge

R C ( t , ω), its velocity is constrained by the surrounding traffic. The stochastic nature of the regions R J ( t , ω) and R C ( t , ω) turns

the optimization into a chance-constrained MPC ( Campi et al., 2009 ). With the results in Table 1 , the controlled bus being

in either of the regions can be written: 

x (k ) ∈ R J (t, ω) i f 

⎧ ⎪ ⎨ 

⎪ ⎩ 

x (k ) < l l , 
x (k ) > l l + W 2 (t − (t 2 + ct cyc )) , 
x (k ) < l s,c (t s,c , ω) + W 3 (t, ω)(t − t s,c (t, ω)) , 
x (k ) > l l + W 4 (t − (t 1 + (c + 1) t cyc )) . 

(29)

Similarly, 

x (k ) ∈ R C (t, ω) i f 

⎧ ⎪ ⎨ 

⎪ ⎩ 

x (k ) < l l , 
x (k ) > l l + W 4 (t − (t 1 + ct cyc )) , 
x (k ) > l r,c−1 (t r,c , ω) + W 1 (t, ω)(t − t r,c−1 (t, ω)) , 
x (k ) < l l + W 2 (t − (t 2 + ct cyc )) , 

(30)

with k = f loor 
(

t 
�t 

)
being the discrete time step. The discrete time MPC takes samples from the continuous time shockwave

profile model. Note that stochasticity only arises in the third case which describes the tail of the queue in both Eq. (29) and

Eq. (30) , the other lines bounding the regions R J ( t , ω) and R C ( t , ω) are deterministic. This means that stochasticity is only

involved in the actual length of the queue, which was already calculated in Section 2 . 

The conditional probability P (·) of x ( k ) being in R C ( t , ω) can be written as follows: 

P { ω : x (k ) ∈ R C (t, ω) } 
= P {{ ω : l r,c−1 (t r,c , ω) + W 1 (t − t r,c−1 (t, ω)) > x (k ) }|{ x (k ) < l l } ∧ 

∧{ x (k ) > l l + W 4 (t − (t 1 + ct cyc )) } ∧ { x (k ) < l l + W 2 (t − (t 2 + ct cyc )) }} . (31)

Similarly, 

P { ω : x (k ) ∈ R J (t, ω) } 
= P {{ ω : l s,c (t s,c ω) + W 3 (t, ω)(t − t s,c (t, ω)) > x (k ) }|{ x (k ) < l l } ∧ 

∧{ x (k ) > l l + W 2 (t − (t 2 + ct cyc )) } ∧ { x (k ) > l l + W 4 (t − (t 1 + (c + 1) t cyc )) }} . (32)

The CDFs F x (k ) ∈ R J (t, ω) (ϕ) and F x (k ) ∈ R C (t, ω) (ϕ) for the probabilities of a point is within region R C ( t , ω) or R J ( t , ω) can be deter-

mined, since the properties of the stochastic processes are known. 

A continuous distribution for the queue length imposes infinite number of constraints on the optimization on the do-

main 	. Campi and Garatti (2011) provide a reformulation method for a chance-constrained optimization problem into its

sample-based counterpart. A continuous stochastic event can be replaced with a finite sample of independent instances

ω 

(1) , ω 

(2) , . . . , ω 

(M) ∈ 	, distributed according to P where 	 is the sample-space. The optimization is then solved for

M chance-constraints and the additional non-chance-constraints for every discrete time step k . In addition, Campi and

Garatti (2011) studies the effect of constraint removal: what is the trade-off between performance (cost value) and con-

straint violation (feasibility) if m constraints are removed. Sample-based problems are solved via Monte-Carlo simulations

by varying the probability level based on the distribution function ( Campi et al., 2009 ). Monte-Carlo simulation is used as

a tool for analysis: a probability level is sought where the predicted trajectory remains feasible without the control be-

ing too conservative. Feasibility means the existence of a control input that satisfies all the constraints of the optimization

( Stephen Boyd, 2019 ). 

Next, the probability sampling and discarding approach in Campi and Garatti (2011) is translated into the problem of

stochastic queue lengths in the trajectory optimization. The continuous stochastic shockwave profile model in Section 2 has

a natural discretization. Queue length discretization is done by discretizing the vehicle arrival rate Q A ( t, ω) according to

F Q A (t, ϕ) (i.e. discrete number of vehicles). Then, the continuous R J t, ω, R C t, ω regions turn into discrete ones denoted by

ˆ R J t, ω , ˆ R C t, ω respectively. 

Remark. The spatially discretized traffic flow state regions ˆ R J (t, ω) and 

ˆ R C (t, ω) impose finite number of nonlinear con-

straints on the optimization through fixed probability levels for every prediction step. 

Finally, the chance-constrained optimization can be written as follows: 

min 

u 

[ 
1 

2 

u 

T �u + 	T u 

] 
, (33)

subject to: 

v min ≤ v des (k ) ≤ v max , (34)
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| z tt (k + N| k ) | < ε, (35) 

| v (k + N| k ) | = 0 , (36) 

v (k + i | k ) = v J = 0 , i f x (k + i | k ) ∈ 

ˆ R J (t, ω) , ∀ i = 1 .N, (37) 

v (k + i | k ) = v c , i f x (k + i | k ) ∈ 

ˆ R C (t, ω) , ∀ i = 1 .N. (38) 

The objective function is quadratic and the constraints are nonlinear. This leads to a non-convex problem which is solved

with sequential quadratic programming (SQP). Furthermore, due to the varying horizon length N , computational demand

can vary. The speed of the optimization is evaluated with increasing prediction horizon length (i.e. increasing number of

equations to solve). The step time length of the discrete model is �t = 2 s . It is desired to solve the problem under this

value. According to Fig. 6 the algorithm can predict one minute ahead in real-time. Note that dedicated embedded hardware

can perform such calculations faster. 

The stochasticity in the constraints will inevitably propagate to the solution of the minimization problem (i.e. the pre-

dicted trajectory). Although the stochastic properties of the constraints are known, the explicit connection of stochastic

properties between the constraints and the solution fades away. In the following section this connection is interpreted via

numerical simulations by varying queue constraints for accurate prediction. 

5. Simulations 

The proposed model predictive controller is analyzed from two aspects. First, feasibility of the predicted trajectories from

a deterministic starting point is studied. Second, based on a microscopic traffic simulator the proposed chance-constrained

optimal velocity control is compared to other benchmark strategies. 

5.1. Feasibility study 

The goal of this analysis is finding a probabilistic measure to quantify the validity of the result. A confidence level is

sought where the predicted trajectory remains feasible without the control being too conservative. 

The bus predicts its trajectory towards the next stop from a given deterministic initial condition. There are three traffic

lights between the bus and the next stop. The signal timings and traffic flow rates upstream each traffic light is summarized

in Table 2 . 
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Table 2 

Signal program and vehicle flow upstream each traffic light. 

Light Location Cycle time Green time Switch time Mean arrival rate 

ID l l ( m ) t cyc ( s ) t green ( s ) t 1 ( s ) Q A (v eh/h ) 

#1 220 60 40 50 550 

#2 370 100 40 0 550 

#3 470 60 40 10 550 
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Fig. 7. Trajectory prediction distribution. Red areas indicate jam regions R J ( t , ω), yellow areas indicate queue discharge regions R C ( t , ω). Dashed lines at the 

shockwave profiles indicate the queue length distribution with ± 3 σ queue . (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The experimental network layout is as follows. The distance from the next stop is 500 m and the target arrival time is

70 s . Assuming �t = 2 s this results in N = 35 . 

The aim of this simulation is evaluating predicted trajectories when queue lengths are randomly generated in a Monte

Carlo simulation. That is, the inflow volumes Q A ( t, ω) are randomly chosen from their distribution function F Q A (t, ϕ) . To keep

the demonstration simple, vehicle inflows to the network follow independent Poisson distributions with constant (time-

independent) arrival rate 2 . By varying the magnitude of the input traffic volumes, shockwave profiles and traffic state

regions change too. The regions ˆ R J (t, ω) and 

ˆ R J (t, ω) play part in the trajectory prediction as chance constraints. Fig. 7

presents the set of predicted trajectories in the Monte Carlo simulation (with 10 0 0 runs). The planned trajectories arrive at

the desired position by the end of the prediction with some tolerance. The predicted desired velocities are zero at the jam

region and vehicles arrive at the destination on time, obeying the constraints imposed by the SPM. According to Fig. 7 , the

vehicles would slow down and wait upstream the queue and only enter it for a short time, resulting in somewhat counter-

intuitive trajectory shapes. Despite being counter-intuitive, the solutions are feasible, since there are infinitely many feasible

solutions. Note that, due to the sparse sampling ( �t = 2 s ) it is possible that the predicted trajectory does not stop exactly

upon arriving at a queue but slightly after. Furthermore, Fig. 7 also presents two trajectories: bus holding and an MPC that

does not consider traffic lights, thus they violate constraints. 

As a metric for analysis, the spatial standard deviations are calculated at every time instance and shown in Fig. 8 . The

prediction horizon is split in three intervals depending on the predicted position of the bus relative to traffic lights. In

time interval 0 − 32 s the standard deviation of the queue in front of the first traffic light, between 32 − 52 s the standard

deviation upstream the second traffic light are shown. Finally, between 52 − 68 s there are no random events considered so

the standard deviation is assumed to be 0. 

According to Fig. 8 there is correlation between the queue lengths and predicted trajectories. When the standard de-

viation of the queue length σ queue increases so does the standard deviation of the predicted trajectories σ traj . and peaks

when entering the queue. The uncertainty in the queue length prediction (i.e. larger variance) amplifies the variance of

the predicted trajectories too. When there is no stochastic queue (after 52 s ) the predicted trajectories converge and their

standard deviation decreases. In addition, the trajectory standard deviation starts decreasing upstream Light #2, since the

queue forces the vehicles to stop. Figs. 9 –10 suggest negative correlation between the queue length and the predicted tra-
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jectory samples. Resultantly, longer queues mean the bus is farther from the desired stop, as it tries to avoid the queue and

approach it slower. Next, the feasibility of the prediction is checked. Trajectories are predicted from a deterministic initial

position for different probability levels. The method is translated from the sampling and discarding approach in Campi and

Garatti (2011) . Selecting a fixed probability level means that constraints imposed by less likely events (i.e. queue lengths)

are discarded. The input flow has Poisson distribution with mean value 700 veh / h (per lane). One trajectory is predicted for

confidence levels: mean , mean − 2 σ, mean + 2 σ ( Fig. 11 ). The prediction horizon is 50 s long and the target distance is 150 m .

In the feasibility analysis it is checked if the results are feasible by calculating the relative constraint violation as follows: 

V = 

1 

N 

N ∑ 

k =1 

∣∣∣∣v des (k ) − v � (k ) 

v des (k ) 

∣∣∣∣, (39) 
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Fig. 10. Scatter plot of the queue length vs the instantaneous position samples at prediction time 35 s . 

Table 3 

Constraint violation metric V . Horizontal: actual arrival rate, vertical: presumed arrival rate. 

Volume 647 veh / h 700 veh / h 753 veh / h 

647 veh / h 0.132 0.202 0.354 

700 veh / h 0.059 0.163 0.323 

753 veh / h 0 0.148 0.254 

Table 4 

Signal program and mean traffic flow upstream each traffic light. 

Light Location Cycle Green Switch Mean arrival 

ID ( m ) time ( s ) time ( s ) time ( s ) rate ( veh / h ) 

#1 406 60 40 40 1000 

#2 556 60 20 45 900 

#3 650 60 40 10 1000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where v � ( k ) equals v des ( k ), v J , v C , depending on which region the k th step of the predicted trajectory is in. The value of V at

each test is summarized in Table 3 . The constraint violation value V is not zero in the tested cases. Results in Table 3 point

towards a trivial conclusion: when the actual (measured) queue length is larger than the queue length used for prediction,

prediction results tend to be less feasible and vice versa. When the queue length used for prediction is larger than actual

queue lengths, it would cause unnecessary stops ( Figure 11 ). However, accounting for larger inflow rate (i.e. larger probability

than the actual queue length) leads to more robust results, more room for correction along the vehicle’s trajectory and more

reliable bus arrivals at a stop. 

Although, Table 3 suggests that predictions from a deterministic initial state are not feasible they are adequate. In the

rolling horizon MPC scheme only the first step of the prediction is used. Simulation results suggest that the first prediction

step is feasible if the constraints are not too restrictive for the trajectory planning. 

5.2. Microscopic traffic simulation 

In the followings, the proposed trajectory planning is tested in a microscopic traffic simulator VISSIM ( PTV, 2011 ). The

simulation scenario is a slightly modified version of that used in the Monte Carlo simulation. The queue lengths are es-

timated with 70%, i.e. the queue lengths will be overestimated for guaranteed avoidance of stopping. The model is based

on a real route section in Budapest’s XI th district, see Fig. 12 . The route section is 1 km long and has two bus stops with

three traffic lights in between. Signal programs and mean traffic flow volume in front of each traffic light is summarized in

Table 4 . The route has two lanes, no dedicated lanes and fixed-time signal program. The legal speed limit is 50 km/h on the

whole route. The time headway of the buses is 3 minutes. The proposed MPC algorithm is compared to three benchmark

controllers: 
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Fig. 11. Predicted trajectories for −2 σ (dotted line) - 700 (solid line) - +2 σ (dashed line) veh / h compared to the SPM at 647 (mean − 2 σ ) (top left) - 700 

(top right) - 753 (mean + 2 σ ) (bottom) veh / h . 
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i) bus holding strategy, 

ii) an MPC with only traffic signal state information, and 

ii) an MPC that does not consider traffic lights at all. 

The trajectories generated by the four control strategies in space-time diagram are presented in Fig. 13 . 

The holding strategy is greedy, as the set desired velocity for buses between bus stops is 50 km / h , thus they try to get to

the next stop as fast as possible. At stops, they wait until their scheduled departure time. Compared to other strategies there

are steeper decelerations and accelerations when entering or leaving queues, respectively. Steep accelerations decrease ride

comfort and increase energy consumption. In addition, buses following this strategy are more likely to be held in queues for

longer times. When not considering traffic lights at all, buses go slower and may miss the green traffic light window where it

has to cross the intersection in order to arrive on time. Therefore, for an urban velocity control strategy to work, it is crucial

to take into account upstream obstacles, such as traffic lights. The benchmark algorithm that operates without queue length

information can hold the timetable and be faster than the proposed chance-constrained MPC. The controller assumes there

are no queues at traffic lights and can cross the intersection right after the light turns green. Without assuming queues,
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Fig. 12. Modeled route with traffic lights, Budapest XI th district, GPS coordinates: 47.4754, 19.0401 (source: OpenStreetMap). 
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Fig. 13. Bus trajectories. A detailed section of this figure can be seen in Fig. 14 . 

 

 

 

 

 

 

it has to often come to a full stop at traffic lights. Finally, buses with the chance-constrained MPC take traffic light cycles

and queue lengths into account and drive accordingly. Buses slow down before entering the queue or even try to elude it,

avoiding coming at a full stop, saving energy ( Varga et al., 2019 ). 

In Fig. 14 , at the third traffic light the measured queue is shorter than the predicted. The queue length aware bus slows

down so it may avoid the predicted queue. This finding suggests that, it is not sufficient only to predict queue lengths,

queue lengths shall be continuously adjusted with the actual measured queue lengths if they are available. Without proper

traffic light information such velocity control algorithms may fail, as seen in the case of the “no queue MPC” or “no traffic
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Fig. 14. Bus trajectories - zoomed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

light MPC” velocity controllers. Chance-constraints are therefore adding efficient probabilistic guarantees to velocity control 

algorithms. 

6. Conclusions 

The paper presented a velocity control algorithm for public transport buses to enhance timetable reliability in a predictive

way. The proposed speed advisory system choses an optimal velocity profile towards the next bus stop. The model predictive

controller incorporates real-time traffic signalization and queue lengths explicitly in the model to improve the accuracy of

speed prediction. First, a traffic model, adequate to describe traffic states in front of signalized intersections - the shockwave

profile model was extended with stochastic vehicle arrivals. The CDF of the shockwave profiles and the queue length are

derived analytically. The model is capable of handling generic, truncated or discontinuous input distributions. Comparison

against a microscopic traffic simulator suggests that the model can adequately predict queue lengths, assuming constant

vehicle arrival rates. 

The proposed stochastic traffic model was incorporated into a model predictive control scheme, resulting in a chance-

constrained optimization. The viability of the resulting speed control algorithm was demonstrated via simulations. First,

fixed initial condition simulations were performed, fixing the initial conditions and varying queue lengths in a Monte Carlo

simulation. Results are feasible, however, counter-intuitive. Buses would rather not enter the queue but wait in front of it

and only cross the intersection after the queue has dissipated. Second, feasibility studies were ran. It was found that results

are more feasible if the controller overshoots the queue length (i.e. predicts longer queue lengths). However, the constraints

are not completely satisfied, the results are still acceptable, since in the MPC scheme only the first step of the prediction

is used, the rest is discarded. This means, some information about the queue lengths still propagates to the control input.

Finally, the controller was compared to a greedy, bus holding control algorithm and an MPC without information about

the traffic lights ahead in a microscopic traffic simulator. The proposed chance-constrained MPC controller has information

about the upcoming queue it slows down earlier and may even avoid coming to a complete stop, resulting in better energy

efficiency. Simulation results also suggest that in velocity control algorithms with fixed desired arrival time it is crucial to

consider traffic lights as sources of delays. In addition, it is important to continuously adjust queue length predictions with

the actual, measured queue lengths. 

As a future research direction, three directions are envisioned. First, we plan to use generic queue length distributions

with conditional probabilities, since preceding intersections and junctions perturb vehicle arrival patterns. Second, combin- 

ing the controller with real-time measurements of the queue lengths can enhance the accuracy of the proposed algorithm.

Third, a combined control incorporating responsive traffic lights, spillover and trajectory control will be formulated. 
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Appendix A. Network SPM 

The stochastic SPM can be further extended to handle more than a single link for queue length estimation, by taking

into consideration the adjacent links, i.e. a traffic network can be modeled by SPM. Throughout the paper, unconditional

distribution for traffic inflow Q A ( t, ω) was assumed. The SPM model can recursively applied for upstream links. This assumes

that the inflows (and their respective CDF) in the perimeter of the network are known. 

First, determine the stochastic process for the inflow Q A ( t, ω) to link A for the network in Fig. A.15 . The number of out-

flowing vehicles from a link per traffic light cycle can be computed with the help of Eq. (13) in Section 2.3 . The computed

outflow n ( c, ω) can be scaled up with the help of cycle times t cyc to compute the total outflow Q B ( t, ω) for link B and so

on. Next, assume the turning rates αB , αC , αD at every intersection are known. This is a common, practical assumption for

network-level traffic models (e.g. Aboudolas et al. (2009) , Lin et al. (2010) ). Then, the stochastic process for Q A ( t, ω) can be

given as: 

Q A (t, ω) = Q B (t , ω) αB + Q C (t , ω) αC + Q D (t , ω) αD . (A.1)

Next, the method for obtaining the CDF of the inflow F Q A (t, ϕ) is given. If the inflows Q B ( t, ω ), Q C ( t, ω ), Q D ( t, ω ) are inde-

pendent, 

F Q A (t, ϕ) = F Q B (t, ϕ B ) ∗ F Q C (t, ϕ C ) ∗ F Q D (t, ϕ D ) (A.2)

as convolution is an associative operation. If the flows are not independent, their joint probability shall be known

( Arnold, 2013 ). 

After obtaining Q A ( t, ω) and F Q A (t, ω) from the aforementioned steps, the computation of traffic states and queue lengths

in a probabilistic sense can be performed as described in Section 2.4 . 
Fig. A.15. Shockwave profile model based queues at on network level. 
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In an urban network, in case of heavy congestion, blocking or queue spillover can occur. Similarly to Chow et al. (2015) ,

it is handled by bounding the queue length on a given link: 

ˆ l q (t, ω) = min (l q (t, ω) , L A ) , (A.3) 

where L A is the length of Link A , defined between two intersections. 

Supplementary material 

Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.trb.2020.06.005 . 
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