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Abstract—In this paper, a predictive method to detect voltage
instability using an artificial neural network is presented. The
proposed method allows transmission system operators to predict
long-term voltage instability far before the system voltage stabil-
ity has been degraded, allowing swift and cost-effective control
actions. The predictor is tested and trained on the Nordic32 test
system for a wide range of different contingencies. The predictor
proves to be accurate in providing early warnings of impending
voltage instability, allowing 96.3 % of all test cases being
correctly classified only seconds after a contingency. The method
is proposed to be used as an effective tool for supplementary
voltage instability detection for transmission system operators.

Index Terms—Voltage instability prediction, artificial neural
networks, voltage stability, synchronized phasor measurements,
emergency control

I. INTRODUCTION

Ensuring and maintaining voltage stability are challenges
that transmission system operators (TSOs) continuously face
in their daily activities. The ability for TSOs to act quickly
and with the correct control measures is imperative during an
event causing voltage instability. Due to equipment in electric
power systems, such as overexcitation limiters (OELs), load
tap changing transformers (LTCs), and other load restoration
dynamics, the time frame of a typical voltage collapse can
range from a few seconds up to even a couple of minutes [1].

In the literature, there has been a significant development of
different kinds of voltage stability indices (VSIs) suitable for
real time assessment [2]. In general, VSIs aimed for preventive
applications calculate stability margins and precontingency
security limits ensuring that the system can handle a credible
set of contingencies, thus meeting the N-1 stability criterion
[2]. VSIs aimed for corrective applications are instead used
for voltage instability detection (VID) and they are intended
to be used when a contingency has occurred or if the system
has drifted close to the instability region, allowing TSOs to as
soon as possible detect an impending voltage collapse.

Machine learning (ML) has for several years been proposed
to be used in the field of voltage stability assessment. One
of the major advantages of using ML in voltage stability
assessment is that high effort computations and training of
the algorithm can be performed off-line, allowing almost
instantaneous estimations once the algorithm is trained. In for
example [3] and [4], ML algorithms are used to allow accurate

estimation of the N-1 voltage stability margins in real-time.
Using conventional methods for estimating voltage stability
margins will require a high computational effort, resulting in
the estimations not being possible to perform in real-time.
In an other paper [5], ML techniques are used for VID,
where accurate although more time consuming VSIs can be
computed in real-time, allowing more accurate detection of
voltage instability than using other more simplified VSIs.

In case the preventive VSIs fails, or larger contingencies in
the system occurs, the TSOs have to rely on corrective VSIs.
For most corrective VSIs presented in the literature, the aim
is to, as soon as possible, detect when the system has become
unstable. However, when instability is detected, the system is
often already severely degraded and the time until a voltage
collapse may be either too short for TSOs to act, or the related
costs with controlling the system back into stable operation
may have significantly increased.

The evolution of a typical bus voltage at a transmission bus
is illustrated in Fig. 1 for different severity of contingencies.
For the case leading to a system collapse, the voltage insta-
bility is gradually developed, driven by components such as
LTCs and OELs. At some point, the mechanism of load power
restoration has caused the system to deteriorate to such a point
that the total total power consumed in the system is reduced
instead of restored [1]. Thus, Fig. 1 illustrates the problem of
VID: that when the system stability has started to degrade, it
evolves quickly and the time for TSOs to react and control
the system back into stable operation is highly limited.

The most optimal VID method should allow prediction of
voltage instability instantaneously after a contingency has oc-
curred. That would allow TSOs to, directly after a contingency,
get a notification whether the system is under too large stress
and allow quick and effective control responses to steer the
system back into stable operation. An early prediction method
based on that approach was presented in [6], where a decision
tree (DT) approach was used to predict unstable situations,
just after a disturbance. The decision tree approach has been
further developed in several papers, such as in [7]–[9].

However, despite the fact DTs are both intuitive and easily
interpreted, the accuracy is generally not the highest of all ML
algorithms. Artificial neural networks (ANNs) are not new in
VIP [10]–[12], but their advantages have been reduced by large
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Fig. 1. Evolution of a voltage collapse for different contingencies

requirements of training data. Due to the rapid development
of computational power, the popularity of using ANNs in
various applications has increased significantly in the last
decade [13]. Although generally requiring more training data,
they should theoretically allow more accurate modeling of
arbitrary non-linear functions, resulting in a higher accuracy
of the classification, provided that sufficient data is available.

This paper develops a new approach of voltage instability
prediction using a single hidden layer feedforward ANN.
The method, in this paper denoted as the on-line voltage
instability prediction method (O-VIP), will allow TSOs to not
only predict voltage instability, but also to pinpoint where
the weakest areas in the system are located, allowing local
and more cost-effective control measures. Further, the paper
suggests suitable parameters and input data for the architecture
and training of the ANN, and provides a procedure to generate
the training data using the dynamic simulations.

The paper is organized as follows. In Section II, the pro-
posed method is presented along with the relevant theory and
the steps of developing the training data and the training of the
ANN. In Section III, the results of the method is presented.
Section IV discusses possible applications and practical as-
pects, while concluding remarks are presented in section V.

II. METHOD FOR ON-LINE PREDICTIVE VOLTAGE
INSTABILITY DETECTION

The O-VIP is based on performing off-line training of an
ANN with the aim to, within only a few seconds after a
disturbance, be able to predict whether that disturbance is
going to cause a voltage collapse in the near future. The
method is based on the notion that it is possible to deduct, from
measuring the system states just after a disturbance, whether
the system will end up being stable, in an alert state, or cause
a system collapse. Due to the dynamics of voltage instability
(mainly caused by OELs, LTC, etc.), the system may appear
to be in a stable condition for a rather long time before a more
rapid degradation of the system stability occurs.

A. ANN overview

Feedforward ANNs, also known as multilayer perceptrons,
are the foundation of deep learning methods [13]. The strength
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Fig. 2. Architecture of an ANN with a single layer of hidden neurons

of these methods, from here on denoted as ANNs, lies in
their capability of accurately learning and approximating non-
linear functions (f∗) from a set of training data without
requiring any prior information. Thus, from a set of inputs
(xn) and corresponding target values (yn) the ANN is capable
of estimating the weights (w), or the parameters, mapping the
inputs to the target values.

In Fig. 2, the structure of an ANN with a single layer of
hidden units is presented. Between each layer there is a set of
weights (w(1) & w(2)) connecting each node in the system.
A deeper architecture, i.e. more layers with hidden units, is
often used in applications with more complicated functions
and input-output mappings. Each of the nodes in the hidden
layer consists of activation functions, such as the sigmoid-
function or the rectified linear unit-function, simulating the
response of real neurons in the human brain.

The learning of the ANN is performed using an algorithm
called backpropagation, which iteratively adjusts the weights
between each node and layer based on the adjustments that
minimizes a cost function. The cost function is defined as
the error between the estimated output and the actual target
value. Once either the cost function has been minimized, or
other stopping criteria has been met (for example maximum
number of iterations reached), the ANN is fully trained.

B. Generating training data

The simulated system in this paper is the Nordic32 test
system which has been tested and used in several previous
voltage stability simulations [14]. The method is based on
generating a large set of data using dynamical simulations,
which will be the training base for the ANN. The steps of
the method is illustrated as a flowchart in Fig. 3 and can be
summarized as follows:

1) Randomly chosen power flows: To simulate a large number
of possible power flow states in the system, the system
power flows are randomly initiated. For these simula-
tions, the loads are first randomly chosen from a uniform
distribution around the original loads (90 % of original
load as lower limit, 105 % of load as upper limit). The
change in load is then distributed randomly among all the
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Fig. 3. Flowchart of the procedure of generating data and training the ANN

generators in the system. More configurations are possible,
for instance, different levels of reactive compensation and
different topologies, but this is not simulated in this paper.
All power flow calculations and the dynamical moderation
simulations in this paper are performed using PSS®E
version 34.2.0 with its in-built dynamical models [15].

2) Solve and check for feasibility: The randomly generated
system is solved with a power flow simulator, which serves
as a starting point for the dynamical simulation. If the load
flow does not converge, the initial operating condition is
re-initialized.

3) Start dynamic simulation and introduce contingency: A
dynamic simulation is then started, including all relevant
dynamic models of the system. For the simulations in this
paper, only line faults are examined. To illustrate a possible
contingency, a line fault is applied for 0.1 s, which is then
cleared by tripping the faulted line. Any of the lines in the
Nordic32 system is randomly chosen for the contingency.

4) Sample inputs xn for the ANN: Before the inputs to the
ANN is sampled, the initial oscillations caused by the fault
should be allowed to dissipate. If not, the inputs may be
inconclusive and cause a more uncertain classification of
the system state. To reduce the impact of small oscillations,
the inputs are filtered using the mean value of three
different samples registered with a few seconds interval
10 seconds after the fault is cleared.

5) Run until convergence or collapse: The dynamic simulation
is then continued, and runs either until the system con-
verges or crashes. The transmission bus voltage magnitudes
are then sampled as a base for generating the target
values/classification of the different cases.

6) Classification of data: The data is classified into different
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Fig. 4. One-line diagram of Nordic32 test system with new subareas

categories according to the severity and location of the
system degradation. The system stability is defined as
stable if all transmission bus voltage magnitudes in the
system are above 0.95, in an alert state if any transmission
bus voltage magnitude ranges between 0.9 - 0.95 pu, and
in an emergency state if any transmission bus voltage
magnitude is below 0.9 pu:

Stable : |Vmag| ≥ 0.95pu

Alert : 0.9 ≤ |Vmag| ≤ 0.95pu

Emergency : |Vmag| ≤ 0.9pu

The cases are also classified according to where in the
system the lowest bus voltage magnitude is found at the
end of the performed dynamic simulation. The Nordic32
system has therefore been divided into different regions,
as illustrated in Fig. 4. The regions "North" and "Eq."
are more stable regions and no alert events nor emergency
events were found in these regions for any of the simulated
cases. Thus, for the classification, only the other four
regions (C1, C2, C3, S1) were used. The classification for
each of the simulations belongs consequently to one of
9 different classes: either the whole system is stable or,
an alert or an emergency state is identified in one of the
four regions where the lowest occurring transmission bus
voltage is identified. The classification is further illustrated
in the result section in Table I.

7) Re-iterate until sufficient data set is generated: The steps



should be reiterated and the inputs and target values should
be saved until a sufficient data set is generated. The
required amount of data is highly dependent on the range
of possible states in the system and the number of different
contingencies being taken under consideration. A more
thorough discussion regarding the need of a large data set
is given in section IV.

C. Training and architecture of the ANN

Once a sufficient amount of training data is generated, the
ANN is trained. For the results in this paper, an ANN with
a single layer of hidden neurons is used, developed in the
MATLAB Neural Network Toolbox [16]. The optimization is
performed using the scaled conjugate gradient backpropaga-
tion. The training was terminated when either a maximum
of 1000 epochs was reached, the training mean-squared error
falls below 1e-6, or until 10 validation checks are performed.
A validation check is given when the validation performance
fails to decrease, which is a method to avoid overfitting.

To find the best combinations of inputs to the ANN, 5
different input features sets are tested. These cases include:
Case 1: Voltage mag.
Case 2: Voltage mag. & generated power (P & Q)
Case 3: Voltage mag. & phase angle
Case 4: Voltage mag., P & Q branch flow
Case 5: Voltage mag., P & Q branch flow & phase angle

A total of 100 000 dynamical simulation samples are
generated for each feature set. The data is divided into an
80-10-10 % training, validation, and test set, respectively. The
most appropriate number of hidden neurons with respect to
accuracy, over-fitting, and computation time was found to
be 16 hidden neurons. This number is based on the results
presented in section III. Due to random sampling and different
initializations of the weights in the ANN, the performance
varies slightly when training the ANN multiple times. To find
the lowest test error, the ANN was trained for a total of ten
times, and only the best performance is presented in the paper.

III. SIMULATION RESULTS

A. Performance of the O-VIP

The lowest test error achieved in the simulations was 3.7
% using 16 neurons in the hidden layer and inputs according
to case 4. In Table I, the classification test results are repre-
sented by a confusion matrix for case 4. Each column in the
table represents instances of the predicted classes, and each
row represents the instances of the actual classes. The total
accuracy is presented in the lower right corner of the table.

According to the table, the accuracy of the O-VIP in the
case of stable states is 96.2 %, and 3.8 % of all stable cases
were thus misclassified to belong in the alert state. None of
the actual stable states were classified as emergency states. All
of the misclassification for the emergency states were either
for other regions, or ended up being classified as an alert state
but in the correct region. A 100 % accuracy was achieved for
the classification of emergency state in S1, although only a

single sample were generated for this class. This region of
the Nordic32 test system was thus significantly less prone
to voltage instability compared to other regions. The lowest
accuracy were for the alert state in S1, 85.2 %, where several
samples were misclassified as being in a stable state.

It is likely that for a majority of all cases being misclassified
as stable, although actually being in an alert state, the O-VIP
would be able to classify these correctly if the measurement
values were sampled a longer time after the contingency
occurred, allowing the system to degrade slightly more. Hence,
there exists a balance between a fast classification and ac-
curacy. Specific threshold values could be applied such that
only a certain amount of falsely positive classified cases are
accepted, or that only classifications with a certain probability
are accepted.

B. Choice of input features

Five different set of input feature combinations were tested
to find the best suitable. The performance for each of the
five cases are presented in Table II. The best performance
is achieved for case 4, where the input data consists of bus
voltage magnitudes and active and reactive branch flows. Thus,
in contrast to what is presented in [4], the voltage magnitude
and the phase angles do not present the best input to the
ANN for this application. One explanation for this outcome
could be the fact that during faults, the angle difference for
certain buses may vary significantly depending on the actual
contingency, providing somewhat inconclusive information to
the ANN. Thus, if branch power flows are used instead of
phase angles, the ANN is provided with more conclusive data
and allows a better classification. Another advantage of using
branch flow as inputs is that these provide information if a
branch is out of service, as the flow always reduces to zero.
In case phase angles are used, the ANN will have no indirect
information that a certain branch is no longer in service.

For case 5, the error is somewhat larger than for case 4. It is
an interesting result, since more input values should at least not
increase the error. The probable main explanation is the impact
of random sampling of the test set, different initializations of
the weights, and that the network might slightly overfit on the
training data.

C. Choice of neurons and training set size

The so-called hyperparameters of an ANN, such as the
number of neurons in the hidden layer, or the depth of the net-
work, control the learning of the algorithm and must be chosen
before the actual learning process has begun. The design and
choice of such parameters is often an iterative process, and
will often have to be tuned and changed repeatedly in order
to achieve a desirable performance. In the scope of this paper,
the sensitivity of all available hyperparameters is not feasible
to present, and the focus has instead been to examine a suitable
number of neurons in the hidden layer and how the training
set size affects the performance of the predictor.



TABLE I
PREDICTION RESULTS AND ACCURACY OF THE O-VIP ALGORITHM (CONFUSION TABLE)

Predicted states
Stable state Alert state Emergency state Accuracy

Classification All areas C1 C2 C3 S1 C1 C2 C3 S1

A
ct

ua
l

st
at

es

Stable state All areas 4527 62 0 1 117 0 0 0 0 96.2%

Alert state

C1 77 2359 1 0 6 1 13 0 0 96.0%
C2 0 0 0 0 0 0 0 0 0 -
C3 2 2 0 1268 0 0 0 4 0 99.4%
S1 63 7 0 0 402 0 0 0 0 85.2%

Emergency state

C1 0 0 0 0 0 1 0 0 0 100%
C2 0 7 0 0 0 3 262 0 0 96.3%
C3 0 0 0 3 0 0 0 83 0 96.5%
S1 0 0 0 0 0 0 0 0 725 100%

Accuracy 97.0% 96.8% 0% 99.7% 76.6% 20% 95.3% 95.4% 100% 96.3%

TABLE II
PERFORMANCE OF ANN WITH DIFFERENT INPUT FEATURE SETS

Feature case Case 1 Case 2 Case 3 Case 4 Case 5

Test error [%] 5.0 4.4 4.7 3.7 4.0

1) Choosing number of neurons in hidden layer:
To find the most suitable number of neurons in the hidden

layer, an iterative algorithm was adopted that trained the
system with an increasing number of neurons. In Fig. 5, the
training, validation, and test error for a range of different
numbers of neurons in the hidden layer are presented for
case 4. According to the figure, the test error decreases
significantly with an increasing amount of neurons up until 16
neurons, where the lowest test error is found. By increasing the
number of neurons even further, the test training error keeps
decreasing, while both the validation and the test error are in-
creasing, indicating an increased overfitting of the parameters.
The suitable number of neurons are highly depending on the
application and a different number of neurons for other sizes
and configurations of grids is possibly more accurate.

2) Impact of training data size: The impact of a suffi-
ciently large training set is illustrated in Fig. 6, where the
training, validation, and test error is plotted for case 4, this
time with an increasing amount of training data on the x-
axis. Generally, an ANN increases its performance with an
increasing amount of training data, up to a certain point when
the performance converge. As can be seen in the figure, the test
performance increases significantly with an increasing amount
of data. However, as the training data approaches a larger
value, the test error stabilizes at around 4 %.

The training error should converge to a value close zero with
an increasing amount of data, given that the provided input
values contains sufficient information to differentiate between
the post-contingency states. Since this is not fully the case,
it is likely that the provided input data is not sufficient to
allow accurate classification in the more difficult cases. If other
information, such as dynamic values and states of OELs and
LTCs, could have been provided to the ANN, the harder cases
could possibly be correctly classified as well.
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Fig. 5. Training, validation, and test error with varying number of neurons
in hidden layer

The requirement of a large data set is also affected by the
range of different pre-contingency load flows of the system
and the set of credible contingencies taken into account. A
system with minor variations in its configurations and its load
flows would thus require a smaller set of training data than a
system with large variations.

IV. APPLICATIONS AND LIMITATIONS

A. Applications and usefulness

The O-VIP could present a powerful tool for TSOs and it
is proposed to mainly be used as a supplementary system and
to act as a complement to other voltage instability warning
systems. For the predictor to be effective, measurement up-
dates should be available in the range of a few seconds (1-10
s), as otherwise too long time between the assessments would
occur. Measurements from SCADA systems filtered through
a conventional state estimator could thus be too slow to be
effective, and preferably, the O-VIP would instead be based on
measurements from wide-area phasor measurements, filtered
through a (linear) state estimator.

The application can serve as a direct warning system
to TSOs, allowing them time to perform suitable control
measures to control the system back into stable operation.
Alternatively, the application itself could be used to initiate
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system protection schemes to automatically restore stability to
the system. Such automatic schemes would in most cases only
be used after significant testing and most likely only for the
detection and aversion of emergency states.

Another advantage of using an ANN is that it is highly
suitable for on-line applications. Using training methods such
as stochastic gradient descent, the ANN can gradually increase
its performance as more training data is being generated.
Connecting an on-line training scheme of the O-VIP with,
for example, the SCADA system could allow the method to
gradually increase its accuracy while ensuring that no changes
in the system are neglected.

B. Measurement and model errors

The performance of any VSI will be affected by both
measurement errors and by errors in the model that the VSI is
based on. The trueness and precision of measurements in the
power system is dependent on both the quality of measurement
devices and the level of measurement redundancy in the
system. A high level of measurement redundancy increases the
accuracy of state estimation algorithms and reduces the impact
of such errors significantly, which in turn would increase
the accuracy of VID systems. However, it is most likely
that the model errors that will affect the accuracy of the
O-VIP the most. Not only has regular system parameters,
such as line reactance and line resistance to be modeled
accurately, but also each dynamic model in the system has to
be modeled with sufficient accuracy. This includes modeling
of parameters for OELs, time-steps for LTCs, time-delays in
different relay equipment, and various load restoring systems.
One of the greatest challenges is to verify that the O-VIP is in
fact accurate. Voltage collapses, although a phenomenon that
TSOs always have to plan and take into account, occurs very
seldom. Hence, it would prove difficult to, in practice, test
the system. Since such tests of the O-VIP would be difficult,
the requirement of careful assessment of all different dynamic
models in the system becomes increasingly important.

V. CONCLUSION

This paper presents a new approach for on-line prediction
of voltage instability based on training an ANN. The results

presented in this paper is highly encouraging, showing high
accuracy (96.3 %) of predicting whether a voltage collapse
will develop, only seconds after a contingency in the system.
The main benefits of the O-VIP are both the early prediction
of voltage instability and the possibilities to pinpoint where
in the system the instability is the most severe. This would
allow earlier and more cost-effective control actions to steer
the system back into stable operation again. The system can be
applied and trained using on-line measurement data from the
SCADA system, but for real-time detection of voltage instabil-
ity, measurement from wide-area phasor measurements would
be preferred. More studies should be performed regarding the
impact of measurement and model errors and how that would
affect the accuracy of the O-VIP.
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