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Since the discovery of penicillin, natural products and their derivatives have been a
valuable resource for drug discovery. With recent development of genome mining
approaches in the post-genome era, a great number of natural product biosynthetic
gene clusters (BGCs) have been identified and these can potentially be exploited for the
discovery of novel natural products that can find application as pharmaceuticals. Since
many BGCs are silent or do not express in native hosts under laboratory conditions,
heterologous expression of BGCs in genetically tractable hosts becomes an attractive
route to activate these BGCs to discover the corresponding products. Here, we highlight
recent achievements in cloning and discovery of natural product biosynthetic pathways
via intact BGC capturing, and discuss the prospects of high-throughput and multiplexed
cloning of rational-designed gene clusters in the future.

Keywords: natural product, biosynthetic gene cluster, heterologous expression, sequence-independent cloning,
direct cloning

INTRODUCTION

Natural products produced by plant, bacteria, and fungi have served as a crucial source
of pharmaceuticals, therapeutic agents and industrially useful compounds, such as antibiotic,
antitumor, and anti-infective drugs (Nielsen, 2019). Since the discovery of penicillin in the
early 1940s, the identification and bioprospection of natural product biosynthetic gene clusters
(BGCs) has attracted much attention (Mullis et al., 2019). With the development of sequencing
technologies, the costs of genome sequencing has been reduced, and hereby metagenomics
has emerged as a strategic approach to explore unculturable microbes through the sequencing
and analysis of environmental DNA. Hereby massive DNA sequence information has become
accessible. Moreover, many bioinformatic tools have been developed to uncover putative BGCs,
such as antiSMASH 5.0 (Blin et al., 2019), BiG-SCAPE (Navarro-Muñoz et al., 2019), PRISM 3
(Skinnider et al., 2017), MIBiG 2.0 (Kautsar et al., 2019), RODEO (Tietz et al., 2017), and genome-
scale metabolic models (Nielsen and Nielsen, 2017). However, there are many technical challenges
to translate these putative BGCs into specialized chemicals, resulting in a huge gap in the natural
product discover pipeline (Dejong et al., 2016).

Advances in genetics, molecular biology and synthetic biology have been successfully used
for natural product discovery (Zhang J. J. et al., 2019; Zhao et al., 2019). It has been estimated
that more than 99% of environmental microbes are unculturable under the defined conditions
using routine techniques and hard to study using classical experimental approaches (Daniel,
2005). Moreover, a large number of BGCs are not or weakly expressed in native hosts

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 1 June 2020 | Volume 8 | Article 526

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2020.00526
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fbioe.2020.00526
http://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2020.00526&domain=pdf&date_stamp=2020-06-05
https://www.frontiersin.org/articles/10.3389/fbioe.2020.00526/full
http://loop.frontiersin.org/people/977009/overview
http://loop.frontiersin.org/people/89511/overview
http://loop.frontiersin.org/people/904807/overview
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00526 June 4, 2020 Time: 19:7 # 2

Lin et al. Bioprospecting Through Cloning Whole BGCs

under laboratory conditions, known as ‘silent’ or ‘cryptic’
gene clusters. Thus, besides the traditional screening and
characterization methods, such as phenotype screening,
insertional mutagenesis, co-culture and elicitor screening (Cacho
et al., 2015; Tomm et al., 2019; Zhang X. et al., 2019), cloning
and refactoring the putative BGCs in well-defined hosts become
attractive approaches for natural product discovery, achieving
functional expression of uncharacterized potentially-valuable
natural product biosynthetic pathways (Cook and Pfleger, 2019;
Xu et al., 2020). While E. coli, Streptomyces, yeast and Aspergillus
are often used for heterogeneous expression of BGCs, their
applications are still limited by the incompatibility of different
transcript regulatory systems and codon preferences among
organisms, lack of post-translational protein modifications,
insufficient supplies of precursors and co-factors, toxicity
of intermediates or final products, and poor assembly of
natural products with novel structure (Luo et al., 2016;
Nielsen, 2019; Pham et al., 2019). Unlike prokaryotic gene
clusters, heterogeneous expression for eukaryotic gene clusters
or individual genes introduces additional challenges for
heterologous expression, such as intron splicing, insertion of
promoters and terminators in upstream and downstream of each
coding region, etc. (Alberti et al., 2017; Harvey et al., 2018; Qiao
et al., 2019). Many alternative methods have been developed and
comprehensively reviewed elsewhere (Baker et al., 2018; Xiong
et al., 2019; Deng et al., 2020).

Over the past decade, many approaches have been developed
to clone intact BGCs for heterologous expression. However,
cloning long genome segments of large gene clusters (range
from 20 to ∼200 kb) remains challenging (Fayed et al., 2015).
Thus, it’s necessary to develop appropriate vector systems and
methods for cloning large-size gene clusters and transfer these
genetic segments between different hosts (Liao et al., 2019). In
this review, we will focus on recent developments of cloning
intact gene clusters from complex genome sequence for natural
products discovery, including sequence-independent methods
and direct cloning methods, and prospect on high-throughput
multiplexed cloning of BGCs.

SEQUENCE-INDEPENDENT METHODS
FOR HETEROGENEOUS EXPRESSION
OF BGCs

Sequence-independent method constructs expression libraries on
sheared genomes from a mixed population (e.g., environmental
DNA) or a pure culture, and screens for natural products.
Key technologies in sequence-independent methods include
high-quality high-molecular-weight DNAs isolation, DNA
fragmentation and library construction. This method is
particularly useful for scenarios when the genomic information
of native hosts is under-characterized. Sequence-independent
methods have the advantage to prospect the entire genetic
materials, and is possible to cover all the BGCs in the sample
and discover novel structural natural products (Zhang J. J.
et al., 2019). The approach does, however, require highly
efficient screening assays as the library will have a very low

fraction of positives. Many groups have successfully used
sequence-independent library cloning based on different library
construction strategies [e.g., cosmids, fosmids, bacterial artificial
chromosomes (BACs), phage artificial chromosomes (PACs)]
for natural product discovery (Table 1) (Deng et al., 2017;
Nara et al., 2017).

Isolation of High-Quality
High-Molecular-Weight DNAs
Biosynthetic gene clusters are often 10s of kilobase and even
over 100 kb. Thus, methods for preparing high-quality and high-
molecular-weight DNAs are critical for successful cloning of
intact BGCs. Zhang et al. (2010) reported a method of extracting
high-molecular-weight DNAs from a variety of biological
materials using CTAB (cetyl trimethyl ammonium bromide)
extraction buffer for extraction, followed by phenolchloroform
extraction and/or ethanol precipitation. However, this method
often causes long DNA molecules shearing, and is used for
extracting genomic DNAs up to ∼10 kb. To prepare megabase-
size genomic DNA, cellulase and pectinase were firstly used to
hydrolyze the cell wall before isolating DNAs from organisms
having a cell walls (Zhang et al., 2012). Unlike conventional
genomic DNA isolation methods, the protoplast, cells, or the
nuclei are embedded in low-melting-point agarose gel matrix
to protect large DNA fragments from mechanical shearing
during the isolation step (Zhang et al., 2012). Alternatively,
for rapid extraction of high-molecular-weight genomic DNA
(range from ∼20 to ∼130 kb) from bacteria, plants, and animals,
Mayjonade et al. (2016) developed a method that grounds
the cell into a fine powder in liquid nitrogen, lyses the cell
with SDS-base buffer and finally uses carboxylated magnetic
beads to purify the DNA. For more information on the topic
of isolating high-quality DNAs, please refer to recent reviews
elsewhere (Mohamad Roslan et al., 2017; Green and Sambrook,
2018). Commercial kits for extracting high-molecular-weight
DNA are also available (e.g., QIAGEN, Macherey Nagel).
A detailed comparison of each method can be found in
Supplementary Table S1.

DNA Fragmentation
Methods available for DNA fragmentation in library construction
include enzymatic digestion, sonication, and hydrodynamic
shearing (Ignatov et al., 2019). Enzymatic digestion, such as
using site-directed restriction enzyme Sau3AI to partial digest
purified DNA (Clos and Zander-Dinse, 2019), sonication, such
as using ultrasound to generate > 120 kb fragments (Bhushan
et al., 2011), and hydrodynamic shearing, such as repeatedly
passing DNA through a syringe needle (Liu C. et al., 2016),
have been widely used for constructions of large-fragment
libraries. Compared with enzymatic shearing, sonication and
hydrodynamic shearing, which are mechanical fragmentation
methods, are more random and enable better control of
the size distribution (Li et al., 2017). After fragmentation,
DNA samples can be analyzed by fragment analyzer or
horizontal agarose gel electrophoresis to test the extent of
the yield fragments. Desired size of fragmented DNAs can
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TABLE 1 | Different strategies for intact natural product BGCs cloning.

Class Strategies Principles Capacity Advantages Disadvantages BGCs

Sequence-
independent
libraries cloning

Cosmid/
fosmid
libraries

• Fragmentation, gel-fractionated,
ligation and phage packaging

<50 kb • Not requiring genome sequence data;
• Capable of generating natural product

with novel structure;
• Capable of covering the complete

genetic material;
• Suitable for cloning environmental

DNA.

• Untargeted;
• Laborious and time consuming;
• Packaging;
• Large BGCs maybe spanned into

separatebd clones.

Omnipeptin (Libis et al., 2019)
Anisomycin (Zheng et al., 2017)
Ashimides (Shi et al., 2019)
Frigocyclinone (Mo et al., 2019)
Locillomycins (Luo et al., 2019)

PAC/BAC
libraries

• Fragmentation, gel-fractionated, and
ligation

<300 kb • Not requiring genome sequence data;
• Capable of generating natural product

with novel structure;
• Capable of covering the complete

genetic material.

• Untargeted;
• Laborious and time consuming;
• Technically challenging for large

fragment cloning and DNA extraction.

Atratumycin (Yang et al., 2019)
Neoabyssomicin/abyssomicin (Tu
et al., 2018)
Avermectins (Deng et al., 2017)
Murayaquinone (Peng et al., 2018)

FAC
libraries

• Random fragmentation, adaptors
ligation, gel-fractionated and ligation

10–200 kb • Unbiased library;
• Not requiring genome sequence data;
• Capable of generating natural product

with novel structure;
• Suitable for fungal BGCs cloning.

• Untargeted;
• Laborious and time consuming.

Sesterterpenoid (Clevenger et al.,
2017)
Benzomalvin A/D (Clevenger et al.,
2018)
Diketomorpholines (Robey et al.,
2018)

Direct cloning TAR • In vivo homologous recombination of
Saccharomyces cerevisiae

<100 kb • Cas9-facilitated high efficiency
cloning;

• Suitable for cloning large genomic
regions.

• Technically challenging to use yeast
spheroplasts for highly transformation
efficient;

• Some false positives;
• Requires careful preparation and/or

manipulation of gDNA.

Plipastatin (Hu et al., 2018)
Scleric acid (Alberti et al., 2019)
Brasiliquinones (Herisse et al., 2019).

LLHR • RecET-mediated linear-plus-linear
homologous recombination in E. coli

< ∼52 kb • Technically easier;
• Suitable for cloning small- and mid-

BGCs;
• Simply for using short recombination

homologous arms.

• False positive;
• Difficult to clone large-size BGCs;

• Require highly specialized capturing
vectors;
• Multi-rounds selection.

Luminmide A/B (Fu et al., 2012)
Bacillomycin (Liu Q. et al., 2016)
Streptoketides (Qian et al., 2020)

ExoCET • CRISPR/Cas9 digestion, T4
polymerase for in vitro annealing and
RecET mediated homologous
recombination

<∼102 kb • Technically easier;
• Simply for using short recombination

homologous arms.

• Low efficiency for clone large-size
BGCs;

• Require pathway specialized vectors;
• False positive.

Salinomycin (Wang et al., 2018)
Spinosad (Song et al., 2019)

CATCH • Cas9-assisted site-specific cleavage
and Gibson assembly

< ∼150 kb • Suitable for cloning large genomic
regions.

• Require carefully prepare the target
DNA in gel.

Bacillaene (Jiang et al., 2015)
Mutanocyclin/SNC1-465 (Hao et al.,
2019)

DiPaC • Q5 hi-fidelity PCR amplication and
Gibson assembly

<22 kb
per round

• Technically easier;
• Extremely efficient for cloning small- to

mid-size BGCs.

• Introduction of new mutations during
PCR;

• Impractical for large BGCs.

Phenazine fontizine A5 (Greunke
et al., 2018)
Sodorifen (Duell et al., 2019)
Hapalosin (D’Agostino et al., 2018)
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be separated and extracted using multi-rounds of pulsed
field gel electrophoresis (PFGE) with different ramped pulse
times (Clos and Zander-Dinse, 2019). Compared to mechanical
fragmentation methods, the unevenly distributed restriction sites
in the genome may cause inherently biased and incomplete
library with enzyme methods.

Cloning Strategies
After fragmentation and purification, the desired size of
fragmented DNAs can be separated by multi-rounds PFGE.
The size-selected fragments were end-repaired and ligated to
the digested and dephosphorylated vector, such as cosmid,
fosmid, BAC, or PAC (Table 1) (Liu et al., 2018; Tu et al.,
2018; Clos and Zander-Dinse, 2019). Total ligation products
can be transformed into E. coli or packaged into a phage for
infecting bacteria. The insert size of cosmid/fosmid libraries
usually is limited to ∼50 kb, thus, large gene clusters are often
split into multiple fragments and reassemble into the whole
cluster (Wolpert et al., 2008). Alternatively, PACs can clone
inserts ranging in size from 60 to 150 kb, while BACs have a
capacity to accommodate and propagate DNA fragments with an
average insert size ∼150 kb (Bilyk et al., 2016). Several of these
technologies have been turned into products, commercialized by
a variety of companies such as Agilent, Bio S&T, and Epicentre
Biotechnologies. For unbiased fungal artificial chromosome
(FAC) library construction, fragmented DNAs was end-repaired
and ligated with BstXI adaptors and after for separating desired
sizes DNA by PFGE (Bok et al., 2015). Purified large DNA
fragments were ligated into the BstXI-digested shuttle vector-
FAC. The average inserts size of FAC libraries was about 150 kb,
which can cover most fungal BGCs.

Successful Applications
The above-mentioned DNA assembly methods were developed
in the past decades, and there are already many successful
applications (Table 1). For example, Libis et al. (2019) have
screened a 10 million cosmid library from soil metagenomic
DNA samples using Co-occurrence Network Analysis of
Targeted Sequences (CONKAT-seq), and identified omnipeptin.
Moreover, Bok et al. (2015) have constructed a novel Aspergillus–
E. coli shuttle FAC expression vector coupling a BAC vector
backbone with an autonomous fungal replicating element AMA1
from Aspergillus nidulans. Clevenger et al. (2017) had then
optimized the FAC-cloning method, and developed fungal
artificial chromosomes with metabolomic scoring (FAC-MS)
platform for the discovery of fungal specialized metabolites.
Utilizing this approach, researchers have screened fragmented
genome DNA containing uncharacterized fungal BGCs from
A. terreus, A. aculeatus, and A. wentii, and discovered 17
compounds including 15 unreported compounds (Clevenger
et al., 2017), including benzomalvin A/D (Clevenger et al., 2018),
diketomorpholines (Robey et al., 2018).

In summary, sequence-independent library cloning can
generate libraries for both un-sequenced and sequenced DNAs,
with each clone harboring 10 to ∼200 kb inserts, promoting
the natural product discovery. However, sequence-independent
library cloning is usually laborious and time consuming. For
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example, to reliably cover the whole genome, researchers usually
need to generate 10–20 folds genome coverage to obtain the
clones harboring BGCs (Bok et al., 2015). This will require
optimization of the whole cloning process, for example, the
genome extraction should not result in too much genomic
fragmentation, the assembly including the transformation step
should be highly efficient to generate the required library size,
etc. Moreover, desired BGCs may be split into different clones,
especially when using cosmid/fosmid libraries to screen and
identify large gene clusters.

DIRECT CLONING METHODS FOR
HETEROGENEOUS EXPRESSION OF
BGCs

Direct cloning methods rely on precise bioinformatics to predict
BGCs with targeted functions and use specialized cloning method
to capture target sequence for expression and/or identification
of secondary metabolites. The development of sequencing
technologies has resulted in a dramatic reduction of sequencing
cost, thus the genome or metagenome information can be
easily generated. Meanwhile, several bioinformatic tools have
been developed and successfully applied to identify BGCs with
potential functions, including PRISM 3 (Skinnider et al., 2017),
BiG-SCAPE (Navarro-Muñoz et al., 2019), and antiSMASH
(Blin et al., 2019). Direct cloning methods aim to bypass
the conventional library generation and screening process and
directly isolate gene clusters of interest. Several groups have
developed different approaches for direct capture of the BGCs
(Figure 1 and Table 1) (Hu et al., 2018; Alberti et al., 2019).

DNA Isolation and Fragmentation
Methods of DNA isolation and fragmentation for direct
cloning are similar with methods used in sequence independent
strategies. For DNA fragmentation, physical methods maybe
caused target BGCs shearing into fragments. Moreover, the
target BGCs are usually too large to find appropriate restriction
enzymes that are capable to digest flank homologous regions
without also digesting internal targets. To simplify the capture
of BGCs, Greunke et al. (2018) developed the direct pathway
cloning (DiPaC) method that utilizes long-amplicon PCR to
generate target region and Gibson assembly to construct
expression plasmids in vitro, as shown in Figure 1B. This
method is capable of direct cloning small- to mid-sized BGCs
(up to < 22 kb per round), resulting in discovery of phenazine
fontizine A5 (Greunke et al., 2018), sodorifen (Duell et al.,
2019), and heterologous production of anabaenopeptin and
erythromycin (Greunke et al., 2018).

The development of advancing genome editing tools,
such as clustered regularly interspaced short palindromic
repeat–CRISPR-associated protein (CRISPR-Cas) system, has
substantially accelerated the process of direct cloning and made
it possible to isolate the exact sequence of target BGCs in vitro
(Lee et al., 2015; Wang et al., 2018; Tao et al., 2019). For
example, Jiang et al. (2015) developed Cas9-Assisted Targeting of
Chromosome (CATCH) using CRISPR/Cas9 to generate double

strand breaks at both ends of target BGCs in vitro, and cloned
a 78-kb bacillaene gene cluster from Bacillus subtilis using
Gibson assembly. The concentration of extracted BGCs from
target genome or metagenome without enrichment may be too
low to yield efficient cloning, and spheroplasts can be used to
increase transformation efficiency in transformation-associated
recombination (TAR) (Kouprina et al., 2020).

Cloning Strategies
The development of synthetic biology tools have enhanced
cloning of intact BGCs in heterologous hosts (Table 1). Some
of these methods are based on exonucleases to “chew back”
one of the strands of double-stranded DNAs, thereby exposing
complementary single-stranded DNA sequences that can anneal
to each other in vitro (Figures 1A,B), such as Gibson isothermal
assembly (Jiang et al., 2015; Greunke et al., 2018), sequence-
and ligation-independent cloning (SLIC) (D’Agostino et al.,
2018). Blunt-end ligation have also been emplyed to ligate the
CRISPR/Cas9 digested product into a universal vector for λ

packaging into phage and transfecting into E. coli (Tao et al.,
2019) (Figure 1A).

This “chew-back and repair” mechanism has also been
applied to clone intact BGCs leveraging on in vivo homologous
recombination (Figure 1C and Table 1). Several hosts have
been widely used for cloning purpose, such as the TAR method
in Saccharomyces cerevisiae (Kouprina and Larionov, 2019),
linear-linear homologous recombination (LLHR) or linear plus
circular homologous recombination (LCHR) in E. coli (Fu et al.,
2012), and exonuclease combined with RecET recombination
(ExoCET) (Wang et al., 2018). In these methods, partially
digested or randomly sheared DNA was co-transformed into
the recombinant host with linearized and pathway-specific
vectors containing homology arms that flank the upstream and
downstream of the target BGCs. Also, ExoCET can be used
to promote homologous recombinations between a linear DNA
molecule and a circular plasmid (Fu et al., 2012).

Another type of approach employs site-direct recombination
to clone intact BGCs by first integrating specific-vector with
the integrase recognition sites in the native host, then the
targeted BGCs together with the integrated vector are captured
and circularized for heterologous expression (Figures 1D,E and
Table 1). This approach requires the native host to have high
efficiency of homologous recombination. For example, Dai et al.
(2015) intergrated plasmid pEry-up and pEry-down with the
BT1 integrase recognition sites BattP and BattB via single- or
double- crossover at both ends of erythromycin BGC, after
which genome DNA was carefully isolated and treated with the
BT1 integrase to circularize at att recombination sequences as
a plasmid via in vitro site-specific recombination. Similarily,
iCatch intergrates homing endonucleases I-SceI and PI-PspI
recognition sites flanking the region of interest, after which the
genome is isolated and digested with I-SceI or PI-PspI and
then self-ligated to clone the target BGC in vitro (Wang et al.,
2019). Moreover, several groups have developed methods that
express recombinases to extract DNA fragments between two
integrase recognition sites and circularize the plasmid in vivo
(Figure 1D), such as phage φBT1 integrase-mediated site-specific
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FIGURE 1 | Intact BGC capturing for natural products discovery. (A) Direct cloning method based on enzyme digestion and ligation, including ligation or Gibson
assembly-based cloning of BGCs, such as CATCH. (B) Direct cloning method based on long-amplicon PCR and ligation, such as the DiPaC method.
(C) Linear–linear homologous recombination (LLHR) mediated by full RecET in E. coli or transformation-associated recombination (TAR) in yeast for cloning BGCs.
(D) Site-direct recombination for cloning BGC in vivo, including φBT1 integrase-mediated in vivo site-specific recombination, Cre/loxP plus BAC. (E) Site-direct
recombination for cloning BGC in vitro, including iCatch, φBT1 integrase-mediated in vitro recombination.
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recombination (Du et al., 2015), Cre/loxP plus BAC (Hu et al.,
2016). These plasmids can then be isolated from the native host
for heterologous expression.

As shown in Table 1, compared with in vivo methods (e.g.,
TAR, LLHR), in vitro cloning methods (e.g., DiPaC, CATCH,
iCatch) require carefully preparation of DNA via pre-treatment
and purification. Moreover, site-directed recombination methods
are suitable for the host with high efficient homologous
recombination system. Direct cloning are clearly valuable
methods that are well-suited for mining the vast amount of
genome for applications in natural product discovery.

Successful Applications
Over the past decade, direct cloning methods have made great
advances and there are already many successful applications
(Table 1). For example, Wang et al. (2018) developed a method
where exonuclease was combined with ExoCET using the
CRISPR/Cas9 cleavage system to digest the target genome and
T4 polymerase to pre-anneal linear vector and target DNA before
cotransforming into E. coli, resulting in cloning of the 106 kb
salinomycin cluster and a 79 kb artificial gene cluster (Song et al.,
2019). Moreover, TAR has been employed for identification of
several novel natural products including orphan cosmomycin
(Larson et al., 2017), thiostreptamide S4 (Frattaruolo et al., 2017),
and scleric acid (Alberti et al., 2019).

In summary, direct cloning methods can clone intact clusters
of interest accurately, and can substantially save time and efforts
compared with sequence independent methods. It can also be
combined with other modified methods to activated or refactor
BGCs in heterologous host. However, current direct cloning
methods rely heavily on the quality of genome sequencing and
annotation techniques, and have been limited to capture and
analyze only one or two clusters each reaction. With the rapidly
developed synthetic biology tools available, it will be interesting
to see whether these methods can be extended to directly clone
all putative BGCs from a give genome in a single reaction.

CONCLUSION AND FUTURE
PERSPECTIVES

In the past decades, the developments in synthetic biology,
sequencing technology, and bioinformatics have greatly
promoted the discovery of BGCs and corresponding products.
We can now easily generate vast genome sequences via next-
generation sequencing, and annotate them for potential BGCs

using defined bioinformatic tools. These predictive BGCs, most
of which are putative and do not fall in any known class of BGCs,
can be cloned using sequence-independent methods to screen
1000s of clones in one round, or direct cloning methods to clone
and analyze targeted BGCs one by one. However, with current
technologies it is still challenging to combine the advantages
of both methods, and to use direct cloning methods to test all
predictive BGCs from an entire genome in a single reaction.
Limitations include that high-quality and high-molecular weight
DNAs for generating large BGCs is still difficult to isolate, efficient
methods for seperating multi-fragments from digested DNA
mixture are still missing, highly effective approaches for library
construction of targeted BGCs are still limited. The cloning
strategies cited in this review will need to be further optimized
for BGCs identification and characterization.

In conclusion, with advancements in synthetic biology along
with powerful genome mining techniques, we envision a new
era of natural product discovery in which BGC cloning will be
highly multiplexable, efficient and accurate in a high-throughput
manner, leading to the discovery of numerous novel natural
products with important biological activities.
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