Direct nanoscopic observation of plasma waves in the channel of a graphene field-effect transistor
Artikel i vetenskaplig tidskrift, 2020

Plasma waves play an important role in many solid-state phenomena and devices. They also become significant in electronic device structures as the operation frequencies of these devices increase. A prominent example is field-effect transistors (FETs), that witness increased attention for application as rectifying detectors and mixers of electromagnetic waves at gigahertz and terahertz frequencies, where they exhibit very good sensitivity even high above the cut-off frequency defined by the carrier transit time. Transport theory predicts that the coupling of radiation at THz frequencies into the channel of an antenna-coupled FET leads to the development of a gated plasma wave, collectively involving the charge carriers of both the two-dimensional electron gas and the gate electrode. In this paper, we present the first direct visualization of these waves. Employing graphene FETs containing a buried gate electrode, we utilize near-field THz nanoscopy at room temperature to directly probe the envelope function of the electric field amplitude on the exposed graphene sheet and the neighboring antenna regions. Mapping of the field distribution documents that wave injection is unidirectional from the source side since the oscillating electrical potentials on the gate and drain are equalized by capacitive shunting. The plasma waves, excited at 2 THz, are overdamped, and their decay time lies in the range of 25–70 fs. Despite this short decay time, the decay length is rather long, i.e., 0.3-0.5 μm, because of the rather large propagation speed of the plasma waves, which is found to lie in the range of 3.5–7 × 10^6 m/s, in good agreement with theory. The propagation speed depends only weakly on the gate voltage swing and is consistent with the theoretically predicted 1414 power law.

Författare

Amin Soltani

Johann Wolfgang Goethe Universität Frankfurt am Main

Frederik Kuschewski

Technische Universität Dresden

Marlene Bonmann

Chalmers, Mikroteknologi och nanovetenskap (MC2), Terahertz- och millimetervågsteknik

Andrey Generalov

Chalmers, Mikroteknologi och nanovetenskap (MC2), Terahertz- och millimetervågsteknik

Andrei Vorobiev

Chalmers, Mikroteknologi och nanovetenskap (MC2), Terahertz- och millimetervågsteknik

Florian Ludwig

Johann Wolfgang Goethe Universität Frankfurt am Main

Matthias M. Wiecha

Johann Wolfgang Goethe Universität Frankfurt am Main

Dovilė Čibiraitė

Johann Wolfgang Goethe Universität Frankfurt am Main

Frederik Walla

Johann Wolfgang Goethe Universität Frankfurt am Main

Stephan Winnerl

Helmholtz-Zentrum Dresden-Rossendorf

Susanne C. Kehr

Technische Universität Dresden

Lukas M. Eng

Technische Universität Dresden

Jan Stake

Chalmers, Mikroteknologi och nanovetenskap (MC2), Terahertz- och millimetervågsteknik

Hartmut G. Roskos

Johann Wolfgang Goethe Universität Frankfurt am Main

Light: Science and Applications

2047-7538 (eISSN)

Vol. 9 97

Flexibla terahertz detektorer i grafen

Vetenskapsrådet (VR), 2018-01-01 -- 2021-12-31.

Styrkeområden

Informations- och kommunikationsteknik

Nanovetenskap och nanoteknik (SO 2010-2017, EI 2018-)

Fundament

Grundläggande vetenskaper

Ämneskategorier

Atom- och molekylfysik och optik

Annan fysik

Nanoteknik

Fusion, plasma och rymdfysik

Annan elektroteknik och elektronik

Infrastruktur

Nanotekniklaboratoriet

DOI

10.1038/s41377-020-0321-0

PubMed

32549977

Mer information

Senast uppdaterat

2020-07-17