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Abstract 

A flexible offline probabilistic (FOP) algorithm is designed to aggressively accommodate random bandwidth traffic demands 

in long-haul networks. Compared to algorithms that configure demands according to their maximum bandwidth, the FOP 

algorithm can save 15% of the spectrum used, accommodating over 99% of the throughput demand.

1 Introduction 

Robust flexible grid optical fiber networks are needed to 

satisfy growing heterogeneous traffic demands where traffic 

data-rates can change significantly within hours [1]. Resource 

planning for continental-scale networks needs to (a) be long-

term stable so that existing connections are not disrupted, (b) 

provide reliable network accessibility, and yet (c) aggressively 

allocate resources to prevent wasteful over-provisioning.  

Offline resource allocation algorithms solve the first two of the 

requirements stated above, yet severely over-provision 

available resources. Long-haul networks are modeled as 

having a slow variability (in terms of months or longer). These 

so-called static algorithms pre-assign fixed spectrum and 

routing for all demands. Traffic is configured according to the 

maximum bandwidth it may need and thus the control plane 

accommodates all traffic in fixed spectrum slots (referred to as 

a fixed spectrum assignment) [2]. 

Online algorithms are dynamic and respond to known 

changing traffic real-time, or at least within a short time delay 

(minutes or hours).  The control plane may assign resources 

for one or more time periods, and so the spectrum assignment 

is said to be flexible [2]. If well designed, these methods satisfy 

requirements (b) and (c) above. However, dynamic resource 

reallocation can lead to severe spectrum fragmentation and can 

disrupt established lightpaths network-wide. 

Recent offline algorithms proposed in [2-5] suggest a flexible 

resource allocation based on online dynamic assignment 

considering multiple time periods, i.e., allowing time as an 

extra optimization dimension. In [3,4], a statistical network 

assignment process (SNAP) algorithm relying on Monte Carlo 

simulations of randomly selected data-rate demands is used to 

obtain expected network states. In each simulation trial of a 

time period, randomly selected demands are optimized as 

inputs to a static network planning algorithm. Network 

infrastructure (regeneration nodes) is assigned considering all 

simulated time periods. For these algorithms, there are so 

many variables that an astronomically large number of 

simulation trials would be required to observe all possible 

network states.  

In this paper, we consider a static resource allocation algorithm 

for time-varying traffic. To avoid disrupting ongoing services, 

the resources are fixed for a long time (weeks or months), 

whereas demands can change on a time scale of hours. Such a 

scenario calls for an entirely new type of resource allocation 

algorithm, one that can achieve a satisfactory performance 

over time as the traffic varies. We present the first algorithm 

of this type and characterize its performance. The proposed 

algorithm is named the flexible offline probabilistic (FOP) 

algorithm.  

The FOP algorithm models the demands and the spectrum 

resources needed by these demands in a probabilistic way, and  

provisions  resources based on these probabilistic models so 

that overall network resources are saved. Since the FOP 

algorithm does not utilize time-consuming Monte Carlo 

simulations, its computational complexity is low, on the order 

of a single simulation trial of SNAP. Compared with standard 

provisioning (reserving spectrum for the maximum expected 

traffic bandwidth), our proposed FOP algorithm saves 

considerable spectrum usage while accommodating almost all 

of the requested throughput. 

Hardware infrastructure elements, such as regeneration nodes, 

can only be efficiently deployed if a comprehensive offline 

algorithm, such as the one proposed, is used. Our approach 

accounts for physical layer impairments (PLIs) and the 

resulting required regenerator placement using statistical 

traffic bandwidth information. We propose a probabilistic 

spectrum Gaussian noise (PSGN) model, based on the 

standard GN (Gaussian noise) model [6], that can be used in a 

mixed integer linear programming (MILP) solver to optimally 

assign regeneration nodes to the network. Through simulation 

studies, we find that the proposed algorithm saves about a third 

of the regeneration nodes needed compared with the traditional 

transmission reach (TR) based PLI model.  

In order to save maximum spectrum resources, the FOP 
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Fig. 1 (a) CDF of demand 𝑑  denoted as 𝑃𝛥
(𝑑)

(𝛿) , and (b) 

corresponding frequency occupancy distribution 𝑆(𝑑)(𝑓). 

 

algorithm assigns spectrum aggressively, allowing the 

maximum spectrum allocated to adjacent demands to overlap 

with a low probability of occurrence. This spectrum 

overlapping is envisioned as manageable for two types of 

optical networks: sliced spectrum wavelength-division 

multiplexing (WDM) optical networks [7] and orthogonal 

frequency-division multiplexing (OFDM) based optical 

networks [8]. For sliced spectrum WDM networks, multiple 

independent 2.5-10 Gb/s sub-channels are groomed and 

transmitted as super-channels of ≥ 40 Gb/s [7]. When super-

channels collide, overlapping sub-channels are corrupted, but 

the non-overlapping sub-channels are not affected. For OFDM 

based optical networks, overlapping subcarriers are corrupted, 

but the collision will not affect the transmission of the 

nonoverlapping subcarriers. Systems that share full 

provisioning information may filter the signals instead of 

allowing them to overlap, further reducing the effects of 

allocated-spectrum overlapping. 

2 Flexible Offline Probabilistic Algorithm 

The FOP algorithm comprises three steps, described below and 

in Algorithm 1. It first step is to route the random-bandwidth 

demands using the shortest path algorithm and execute a 

probabilistic spectrum assignment. To account for cross-layer 

effects, the PSGN model of the PLIs, described below, is then 

applied after the routing and spectrum assignment. Lastly, an 

optimal MILP algorithm assigns regeneration nodes globally. 

 The goal of FOP is to define  a frequency range [𝑓𝑚𝑖𝑛
(𝑑)

, 𝑓𝑚𝑎𝑥
(𝑑)

] 

and a bandwidth distribution within this range for each demand 

𝑑. The cumulative probability function (CDF) of the 

bandwidth of demand 𝑑 is assumed given and denoted as 

𝑃𝛥
(𝑑)

(𝛿), where 𝛥 is the random bandwidth with realization 

𝛿 ∈ [𝛿𝑚𝑖𝑛 , 𝛿𝑚𝑎𝑥]. For every 𝛿, a starting frequency 𝑓𝑠𝑡𝑎𝑟𝑡
(𝑑)

(𝛿) 

is selected by FOP within the spectrum assigned for 𝑑, i.e., 

𝑓𝑠𝑡𝑎𝑟𝑡
(𝑑)

(𝛿) ∈ [𝑓𝑚𝑖𝑛
(𝑑)

, 𝑓𝑚𝑎𝑥
(𝑑)

]. The probability that a frequency 𝑓 is 

occupied by demand 𝑑, 𝑆(𝑑)(𝑓) , is shown in Fig. 1. Let 

𝐼(𝑑)(𝑓) indicate the presence of traffic demand 𝑑 at frequency 

𝑓; then 𝑃𝑟[𝐼(𝑑)(𝑓) = 1] = 𝑆(𝑑)(𝑓)is demand 𝑑’s occupancy 

distribution. 

 

 

 

 

 

 

 

Often 𝑆(𝑑)(𝑓) has long low-probability tails. To maximally 

preserve as much data as possible without sacrificing spectrum 

resources and hardware devices, we assign the spectrum 

aggressively so that there is a small probability 𝑇 that the 

spectrum used by adjacent connections overlaps. As 

mentioned above, for popular candidate optical network 

architectures, spectrum collisions only affect the overlapped 

sub-channels (subcarriers) while maintaining the data 

transmission of non-overlapped sub-channels (subcarriers). 

The overlapping probability at frequency 𝑓  is defined as 

𝑃𝑜𝑙(𝑓) = 𝑃𝑟[∑ 𝐼(𝑑)(𝑓) > 1𝑑 ] = 1 − ∏ 𝑆(𝑑)(𝑓)𝑑 −

∑ 𝑆(𝑑)(𝑓)𝑑 ∏ 𝑆(𝑙)(𝑓)𝑙≠𝑑 .  We design the FOP so that 𝑃𝑜𝑙(𝑓) ≤
𝑇,  ∀𝑓.  

The traditional GN model was not designed to estimate the 

cross-channel interference for random bandwidth traffic where 

connections have been provisioned over overlapping spectral 

resources. Thus, a PSGN is proposed to calculate the average 

PLIs based on the GN model in a probabilistic way. Define the 

spectrum occupancy probability at frequency 𝑓  for all 

demands as 𝑃𝑜𝑐𝑐(𝑓) = 𝑃𝑟[∑ 𝐼(𝑑)(𝑓)𝑑 > 0] = 1 − ∏ [1 −𝑑

𝑆(𝑑)(𝑓)]. The PSGN computes the expected nonlinear noise 

on a channel of interest caused by other random bandwidth 

demands. If 𝐺𝑁(𝑑)(𝛿)  is the noise caused by interfering signal 

d with bandwidth 𝛿, the PSGN computes 𝐸[∑ 𝐺𝑁(𝑑)(𝛿)𝑑 ]. It 

does this by accumulating the noise contributed by a signal at 

frequency f  times 𝑃𝑜𝑐𝑐(𝑓).  

Lastly, regeneration nodes containing regeneration circuits 

need to be assigned optimally, which in this paper is done 

using an MILP algorithm. The optimization objective is the 

total number of regeneration nodes. Each regeneration circuit 

serves one lightpath, and an upper bound on the number of 

circuits per regeneration node is set to 𝐶𝑚𝑎𝑥.  
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Fig. 2 Trade-off between spectrum usage and throughput as a 

function of |𝔻|.  

Fig. 3 Throughput penalty as functions of overlapping 

threshold 𝑇 for 150 and 300 demands. 

Fig. 4 Number of regeneration nodes needed as functions of |𝔻| 
with the TR and PSGN models. 

3 Simulation Settings and Numerical Results 

We simulate the performance of our algorithm on the NSF-24 

network [9]. Demand distributions are based on the statistical 

population and time-varying data rates provided in [1,10]. We 

consider three realizations for each demand's bandwidth: large, 

medium, and small (the values of which depend on the 

population served by each node), with probability 
5

24
,

12

24
, and 

7

24
, respectively. We simulate our FOP algorithm 

with three overlapping thresholds 𝑇 =  5%, 15%, and 30%. 

The total network throughput is calculated by a path-based 

algorithm with respect to each demand. We consider two 

benchmark spectrum allocation methods: standard static 

provisioning that uses the maximum bandwidth for each 

demand (equivalent to  𝑇 = 0%), and a provisioning method 

that accommodates only the mean value of the bandwidth for 

each demand (independent of 𝑇 ). The same time-varying 

demands are used for all algorithms to test the performance. 

Demands are sorted in descending order of their medium 

bandwidths; we then provision up to 300 of the largest-

bandwidth demands (out of the 24 x 23 = 552 node-to-node 

demands for the NSF-24 network), covering the largest and 

most significant data-transmissions in the network. In our 

simulations, all demands use polarization-multiplexed 

quadrature phase-shift keying with a required SNR ≥ 8.47 dB. 

𝐶𝑚𝑎𝑥 is set to 16 circuits per node.  

 

 

 

 

 

 

 

 

 

 

 

Figs. 2 and 3 show the trade-off between spectrum usage, 

network throughput, and  𝑇. The FOP algorithm with 𝑇 = 5% 

balances the spectrum usage and the network throughput. 

Compared to standard planning (𝑇 = 0%), the FOP algorithm 

with 𝑇 = 5% saves 15% of the spectrum used for 300 demands 

with only 684 Gbps (less than 1%) throughput loss out of 68.64 

Tbps. When 𝑇 increases, the spectrum usage and the network 

throughput both decrease. Compared to FOP with 𝑇  = 5%, 

mean-value provisioning saves 29% of spectrum usage for 300 

demands; however, it suffers a 18% throughput penalty, which 

is unacceptable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 shows that using the PSGN model, a state-dependent 

PLI model, compared with a worst-case constraint such as the 

traditional TR, can significantly reduce the number of 

regeneration nodes required. The regeneration nodes 

assignment using the TR model is generated using the same 

parameters as for the PSGN model in order to make the 

comparison fair. For 300 demands, the number of regeneration 

nodes required by PSGN is 37.5% less than that of the 

traditional TR. Using PSGN, the number of regeneration nodes 

required by the mean-value planning is less than that of the 

other four scenarios. However, applying time-varying 

bandwidth demands to the planning results (assigned 

regeneration nodes), the mean-value provisioning algorithm 

leads to 3% required-SNR violations due to excessive PLIs (in 

addition to its 18% throughput penalty).  

4 Conclusions and Acknowledgements 

The static FOP algorithm is able to accommodate variable 

bandwidth demands while saving network resources. The FOP 

algorithm with 𝑇 = 5%  can provision 300 time-varying 

demands and save 15% of the network resources with 

negligible throughput penalty. In addition, the proposed PSGN 

model saves 37.5% in the number of regeneration nodes 

required compared to the traditional TR model.  

This work was supported in part by NSF grant CNS-1718130. 
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