Unsteady-state brush theory
Artikel i vetenskaplig tidskrift, 2020

This paper deals with unsteady-state brush tyre models. Starting from tyre-road contact theory, we provide a full analytical solution to the partial differential equations (PDEs) describing the bristle deformation in the adhesion region of the contact patch. We show that the latter can be divided in two different regions, corresponding to two different domains for the solution of the governing PDEs of the system. In the case of constant sliding speed inputs, the steady-state solution coincides with the one provided by the classic steady-state brush theory. For a rectangular contact patch and parabolic pressure distribution, the time trend of the shear stresses is investigated. For the pure interactions (longitudinal, lateral and camber), some important conclusions are drawn about the relaxation length. Finally, an approach to derive simplified formulae for the tangential forces arising in the contact patch is introduced; the tyre formulae obtained by using the proposed approach are not based on the common slip definition, and can be employed when the rolling speed approaches zero. The outlined procedure is applied to the cases of linear tyre forces and parabolic pressure distribution.

brush model

transport equation

nonlinear dynamics

Tyre dynamics

tyre model

Författare

Luigi Romano

Chalmers, Mekanik och maritima vetenskaper, Fordonsteknik och autonoma system

Fredrik Bruzelius

Chalmers, Mekanik och maritima vetenskaper, Fordonsteknik och autonoma system

Bengt J H Jacobson

Chalmers, Mekanik och maritima vetenskaper, Fordonsteknik och autonoma system

Vehicle System Dynamics

0042-3114 (ISSN)

Vol. In Press

COVER – Bedömning av CO2 och energieffektivitet hos fordon i verklig användning

VINNOVA, 2018-01-01 -- 2021-12-31.

Energimyndigheten, 2018-01-01 -- 2021-12-31.

Ämneskategorier

Teknisk mekanik

Farkostteknik

DOI

10.1080/00423114.2020.1774625

Mer information

Senast uppdaterat

2020-10-19