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In this paper we study Dixmier traces of powers of Hankel 
operators in Lorentz ideals. We extend results of Engliš-Zhang 
to the case of powers p ≥ 1 and general Lorentz ideals starting 
from abstract extrapolation results of Gayral-Sukochev. In 
the special case p = 2, 4, 6 we give an exact formula for the 
Dixmier trace. For general p, we give upper and lower bounds 
on the Dixmier trace. We also construct, for any p and any 
Lorentz ideal, examples of non-measurable Hankel operators.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

The construction of Dixmier traces goes back to work of Dixmier [7] who was mo-
tivated by the problem of finding a non-normal trace on the von Neumann algebra of 
bounded operators. Since then Dixmier traces have taken a prominent role in Connes’ 
program for noncommutative geometry [4] and found applications in the analysis of rough 
structures such as Julia sets [5], limit sets of quasi-Fuchsian groups [6] and in complex 
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geometry [10,13,14]. The non-normality of the Dixmier trace and the non-separability 
of its domain of definition makes computations and estimates of Dixmier traces a chal-
lenging problem. In this paper we propose a methodology to estimate Dixmier traces of 
powers of Hankel operators, building on work of Gayral-Sukochev [12].

The inspiration for this work is a paper by Engliš-Zhang [11] where Dixmier traces of 
Hankel operators in the Lorentz ideal M1,∞ were estimated by means of Besov norms. 
Recent work in fractal geometry [5,6] and the questions posed in [11, Section 7.3] lead us 
to ask for an extension of the estimates in [11] to powers p ≥ 1 and more general Lorentz 
ideals. The approach we take in this paper differs from that of [11]. Our method consists 
of a rather straightforward application of extrapolation results of Gayral-Sukochev [12].

In the classical examples, naturally appearing physical and geometrical operators are 
measurable, that is all Dixmier traces take the same value on such operators. An example 
of a non-measurable pseudo-differential operator with symbol of Hörmander type (1, 0)
can be found in [17, Proposition 11.3.22]. Engliš-Zhang [11, Theorem 4] constructed a 
non-measurable Hankel operator from M1,∞. We show that there are non-measurable 
Hankel operators in any (p-convexified) Lorentz ideal.

Let us summarize our main results in a theorem. For a function f on the circle S1, 
we let Hf̄ denote the associated Hankel operator on the Hardy space H2(S1) (see more 

below in Section 3 below). We let M(p)
ψ denote the p-convexification of the Lorentz 

ideal Mψ and M(p)
ψ,0 its separable subspace (see more in Subsection 2.1 below), and 

let Trω,ψ : Mψ → C be the Dixmier trace associated with an exponentiation invariant 
extended limit ω. We write A ∼ B if there is a universal constant C > 0 such that 
C−1A ≤ B ≤ CB. When saying universal, we still allow for a dependence on p and ψ.

Theorem 1.1. Let p ≥ 1, (‖ · ‖
B

1/q
q,q ,∗)q≥p a family of norms on the Besov spaces B1/q

q,q (S1)
for q ≥ p satisfying the conditions of Corollary 3.3, and ψ : [0, ∞) → [0, ∞) be 
an increasing concave function with regular variation of index 0 satisfying ψ(0) = 0, 
limt→∞ ψ(t) = ∞ and the conditions (1) and (2). Then for any holomorphic function f
the following holds:

I) Hf̄ ∈ M(p)
ψ if and only if supq>p

1
ψ(e(q−p)−1 )

‖f‖q
B

1/q
q,q ,∗

< ∞.
II) For any exponentiation invariant extended limit ω,

Trω,ψ(|Hf̄ |p) ∼ lim
q−p→ω̃

1
ψ(e(q−p)−1)

‖f‖q
B

1/q
q,q ,∗

.

Here ω̃ is defined as in Equation (3) (see page 5).
III) It holds that

dMψ
(|Hf̄ |p,Mψ,0) := inf

A∈M
‖|Hf̄ |p −A‖Mψ

∼ lim sup 1
ψ(e(q−p)−1)

‖f‖q
B

1/q
q,q ,∗
ψ,0 q↘p
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Moreover, if ψ satisfies that Aψ(α) 	= 1 for some α > 1 (see Equation (1)), there are 
holomorphic functions f ∈ ∩q>pB

1/q
q,q (S1) such that |Hf̄ |p ∈ Mψ is non-measurable.

Since we only consider p:th powers of operators, our results extend mutatis mutandis 
to 0 < p < 1. We restrict our attention to p ≥ 1 in order to avoid quasi-normed Banach 
spaces.

In Section 2 we provide an overview of the theory of Lorentz ideals from an extrapola-
tion point of view. The general form of Theorem 1.1 will be considered in Section 3. We 
consider the special case p = 2, 4, 6 of Theorem 1.1 in Section 4 where a result of Janson-
Upmeier-Wallsten allows us to give exact formulas for the Dixmier trace Trω,ψ(|Hf̄ |p). 
Finally, in Section 5 we construct holomorphic functions f ∈ ∩q>pB

1/q
q,q (S1) such that 

|Hf̄ |p ∈ Mψ is non-measurable.

Acknowledgements: We are grateful to Genkai Zhang for interesting discussions and 
particularly for introducing the work [15] to us. We thank Fedor Sukochev and Ev-
geniy Semenov for helpful comments on the distance formula to the separable part of 
a Lorentz ideal. We also thank the anonymous referee for numerous helpful comments 
and suggestions. We also acknowledge support from the Swedish Research Council Grant 
2015-00137 and Marie Sklodowska Curie Actions, Cofund, Project INCA 600398. This 
work was finalized at the Erwin Schrödinger Institute in Vienna during the program on 
“Bivariant K-theory in Geometry and Physics”.

2. Lorentz spaces and extrapolation

We will in this section provide an overview of Lorentz ideals and Hankel operators. 
Most results in this section can be found in the literature, and the remainder of the 
results in this section are variations on well known results.

2.1. Operator ideals

The operators we will consider in this paper will in general belong to some ideal 
of operators on a Hilbert space. The general theory of operator ideals is well defined 
starting from a semi-finite von Neumann algebra. While this introduces some additional 
technicalities, it will allow us to treat ideal of operators on the same footing as Lp-spaces 
on a measure space. We will not go through this theory beyond its salient points. The 
reader is referred to [17] for a more thorough presentation.

Let N denote a semi-finite von Neumann algebra and τ a normal, faithful, semi-finite 
tracial weight on N . The two main examples to keep in mind are N = B(H) – the 
bounded operators on a separable Hilbert space – with τ being the operator trace and 
N = L∞(X, μ) with τ(a) :=

∫
X
adμ for a σ-finite measure space (X, μ). By definition, 

a von Neumann algebra is a weak operator closed ∗-subalgebra of B(H) for a Hilbert 
space H. We will tacitly assume that N has a separable pre-dual, which is equivalent to 
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H being separable. For any closed densely defined positive operator T affiliated with N , 
we define its singular value function

μT (t) : = inf{‖PT‖N : P ∈ N a projection with τ(1 − P ) ≤ t} =

= inf{s ≥ 0 : τ(χ[s,∞)(T )) ≤ t}

There is a rich theory of so called symmetrically normed operator ideals, see more in 
[17, Chapter 3], which carries over to the theory of ideals in L∞(0, ∞) by means of the 
singular value function. We are mainly interested in the following two classes.

Lp-spaces. The noncommutative Lp-space Lp is defined as the set of operators affili-
ated with N such that μT ∈ Lp(0, ∞). The space Lp is a symmetrically normed operator 
ideal, in particular a Banach space, in the norm

‖T‖Lp := ‖μT ‖Lp(0,∞).

In the case that N = B(H), we write Lp(H) for the associated noncommutative 
Lp-space. The space Lp(H) coincides with the p:th Schatten ideal with the same norm.

In the case that N = L∞(X, μ) with τ(a) :=
∫
X
adμ for a σ-finite measure space 

(X, μ), it holds that Lp = Lp(X, μ) with the same norm.

Lorentz ideals. Let ψ : [0, ∞) → [0, ∞) be an increasing concave function with ψ(0) =
0, limt→∞ ψ(t) = ∞. For later purposes of Dixmier trace computations, we often assume 
a condition which is slightly stronger than that in the original Dixmier paper. This 
condition is that the limit

Aψ(α) := lim
t→∞

ψ(tα)
ψ(t) exists for all α > 1. (1)

Since ψ is increasing, Aψ(α) ≥ 1 for all α. Condition (1) guarantees that ψ has regular 
variation of index 0. Recall that a function ψ has regular variation of index ρ ∈ R if

lim
t→∞

ψ(λt)
ψ(t) = λρ, ∀λ > 0.

By [1, Theorem 1.8.2] we can without restrictions assume that ψ is smooth. For the 
purpose of extrapolation results, the following condition on ψ often comes into play:

‖ψ′‖p ≤ Cψ(e
1

p−1 ), ∀p > 1. (2)

We define the Lorentz ideal Mψ to consist of operators affiliated with N such that

‖T‖Mψ
:= sup

t>0

1
ψ(t)

t∫
μT (s)ds < ∞.
0
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The norm ‖ · ‖Mψ
makes Mψ into a symmetrically normed operator ideal.

If the function ψ satisfies condition (1), the ideal Mψ carries a plethora of singular 
traces, with Dixmier traces being those of most relevance to this paper. For α ≥ 1 we 
define Pα : L∞(0, ∞) → L∞(0, ∞) by Pαf(t) := f(tα). If ω ∈ L∞(0, ∞)∗ is a state 
satisfying that ω(f) = 0 if limt→∞ f(t) = 0 we say that ω is an extended limit at ∞. 
By an abuse of notation, we write limt→ω f(t) := ω(f) for an extended limit ω and 
f ∈ L∞(0, ∞). If ω = ω ◦ Pα for all α ≥ 1, we say that ω is an exponentiation invariant 
extended limit. Associated with an exponentiation invariant extended limit ω there is a 
Dixmier trace Trω,ψ : Mψ → C defined by

Trω,ψ(T ) := lim
t→ω

1
ψ(t)

t∫
0

μT (t)dt,

for positive T ∈ Mψ and extending to Mψ by linearity (see [12, Proposition 1.12] for 
the proof).

The p:th convexification M(p)
ψ is defined as the set of operators T for which |T |p ∈ Mψ; 

it is normed by ‖T‖M(p)
ψ

:= ‖|T |p‖1/p
Mψ

. The separable part M(p)
ψ,0 is defined as the closure 

in M(p)
ψ of the finite trace operators in N .

The most studied example of Lorentz ideals comes from the function ψ(t) := log(1 +t). 
In this case, one often writes M1,∞ := Mψ and Mp,∞ := M(p)

ψ . The reader should note 
that in [11], the Lorentz ideal M1,∞ associated with N = B(H) is denoted by SDixm.

2.2. Technical results on extrapolation and Dixmier traces

The following result takes its starting point in work of Gayral-Sukochev [12]. The first 
statement is found in [12, Theorem 3.3] and the second statement in [12, Proposition 
2.17]. The third statement will be proven below, and is inspired by work of Engliš-Zhang 
[11].

Theorem 2.1. Let ψ : [0, ∞) → [0, ∞) be an increasing concave function satisfying (1)
and (2), ψ(0) = 0, limt→∞ ψ(t) = ∞. We set kψ := log(Aψ(e)).

(i) For any exponentiation invariant extended limit ω ∈ (L∞)∗ and T ∈ M(p)
ψ , the 

formula

Trω,ψ(|T |p) = 1
Γ(1 + kψ) · lim

h→ω̃

1
ψ(e1/h)

‖T‖p+h
p+h

holds where ω̃ ∈ (L∞)∗ is the extended limit at 0 given by

lim x(t) := lim x( 1 ). (3)

h→ω̃ t→ω log(t)



6 M. Goffeng, A. Usachev / Journal of Functional Analysis 279 (2020) 108688
(ii) For any T ∈ N ,

‖T‖M(p)
ψ

∼ sup
h>0

1
ψ(e1/h)

‖T‖p+h
p+h.

In particular, T ∈ M(p)
ψ if and only if ‖T‖p+h

p+h = O(ψ(e1/h)).
(iii) Assume that N is atomic. For any T ∈ M(p)

ψ , we have that

lim sup
h↘0

1
ψ(e1/h)

‖T‖p+h
p+h ≤ dMψ

(|T |p,Mψ,0) ≤ e lim sup
h↘0

1
ψ(e1/h)

‖T‖p+h
p+h.

Before proving the third statement of this theorem, we need two lemmas. The following 
result is an extension of [11, Proposition 7].

Lemma 2.2. Let ψ : [0, ∞) → [0, ∞) be an increasing concave function satisfying the 
conditions (1) and (2) and moreover that ψ(0) = 0, limt→∞ ψ(t) = ∞. For a function 
f ∈ ∩0<h<δL

p+h(0, ∞) for some δ > 0 we define the quantities

‖f‖p,lim sup := lim sup
h↘0

‖f‖1+h
p+h

p

√
ψ(e 1

h )
and ‖f‖p,limψ := lim sup

t→∞
p

√√√√√ 1
ψ(t)

t∫
0

|f(s)|pds

It then holds that

‖f‖p,limψ ≤ ‖f‖p,lim sup ≤ e‖f‖p,limψ.

Proof. If ψ satisfies the conditions (1) and (2), then so does ψ1/p for any p ≥ 1. Indeed 
condition (1) is readily verified for ψ1/p and condition (2) for ψ1/p follows from that ψ
has regular variation of index 0 and [12, Proposition 2.17 and 2.23]. We can therefore 
replace f by H := |f |p ≥ 0 and ψ by ψp, and thusly assume that p = 1. For any 
C > ‖H‖1,lim sup there is q0 > 0 such that

‖H‖1+h

ψ(e 1
h )

< C, for 0 < h < q0.

Using the Hölder inequality, for any 0 < q < q0 we obtain

t∫
0

H(s)ds ≤

⎛
⎝ t∫

0

H(s)1+qds

⎞
⎠

1
1+q

⎛
⎝ t∫

0

ds

⎞
⎠

q
1+q

≤ C · ψ(e
1
q ) · t

q
1+q ≤ C · ψ(e

1
q ) · tq.
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If t > e1/q0 (that is, q0 > 1/ log t), one can take q = 1/ log t. Thus,

t∫
0

H(s)ds ≤ Ce · ψ(t), for t > e1/q0 .

Therefore,

‖H‖1,limψ ≤ e‖H‖1,lim sup.

Conversely for C > ‖H‖1,limψ there exists t0 > 0 such that

1
ψ(t)

t∫
0

H(s)ds ≤ C, ∀t ≥ t0. (4)

Equivalently,

t∫
0

H(s)ds ≤
t∫

0

Cψ′(s)ds, ∀t ≥ t0.

For the function

G(t) :=
{
H(t), t ≥ t0

min{H(t), Cψ′(t)}, t < t0,

we clearly have

t∫
0

G(s)ds ≤
t∫

0

Cψ′(s)ds, ∀t > 0.

This means that the function G is submajorised by the function Cψ′ (in the sense of 
Hardy-Littlewood). Thus, for every h > 0 one has

∞∫
0

G(s)1+hds ≤
∞∫
0

(Cψ′(s))1+hds.

Since the function ψ satisfies (2), it follows that

∞∫
G(s)1+hds ≤ C1+h(ψ(e 1

h ))1+h,
0
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or, equivalently,

lim sup
h↘0

‖G‖1+h

ψ(e 1
h )

≤ C. (5)

First,

1
ψ(e 1

h )

⎛
⎝ t0∫

0

G(s)1+hds

⎞
⎠

1
1+h

≤ 1
ψ(e 1

h )

⎛
⎝ t0∫

0

(Cψ′(s))1+hds

⎞
⎠

1
1+h

−→
h↘0

0,

since ψ(∞) = ∞ and ψ′ ∈ L1+h(0, ∞) for every h > 0.
Second, by Lebesque Monotone Convergence Theorem and (4) we obtain

⎛
⎝ t0∫

0

H(s)1+hds

⎞
⎠

1
1+h

−→
h↘0

t0∫
0

H(s)ds ≤ Cψ(t0).

Therefore,

lim sup
h↘0

1
ψ(e 1

h )

⎛
⎝ t0∫

0

G(s)1+hds

⎞
⎠

1
1+h

= lim sup
h↘0

1
ψ(e 1

h )

⎛
⎝ t0∫

0

H(s)1+hds

⎞
⎠

1
1+h

= 0.

Since H(t) = G(t) for t ≥ t0, it follows from (5) that

lim sup
h↘0

‖H‖1+h

ψ(e 1
h )

≤ C.

This proves that

‖H‖1,lim sup ≤ ‖H‖1,limψ. �
The following result is well-known at least in the commutative setting (see e.g. [8, 

Proposition 2.1]. For the convenience of the reader we provide a short proof.

Lemma 2.3. Let ψ : [0, ∞) → [0, ∞) be an increasing concave function satisfying the 
conditions (1) and (2) and moreover that ψ(0) = 0, limt→∞ ψ(t) = ∞. Assume that N
is atomic. For any T ∈ M(p)

ψ , we have that

dMψ
(|T |p,Mψ,0) = lim sup

t→∞

1
ψ(t)

t∫
μT (s)pds.
0
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Let M′
ψ,0 denote the norm closure of the space of elements T ∈ Mψ with compactly 

supported singular value function. The assumption that N is atomic ensures that Mψ,0 =
M′

ψ,0. Our proof will in fact consist of showing that for a general N , it holds that

dMψ
(|T |p,M′

ψ,0) = lim sup
t→∞

1
ψ(t)

t∫
0

μT (s)pds, ∀T ∈ M(p)
ψ (6)

for any function ψ additionally satisfying limt→0
t

ψ(t) = 0. Since the original statement 
is for atomic N , we can always guarantee that this condition holds.

Proof. It follows from [3] that for every T ∈ M(p)
ψ there exists a rearrangement-

preserving (and thus, isometric) embedding iT of M(p)
ψ (0, ∞) into M(p)

ψ such that 
iT (μ(T )) = T . Thus, following the argument in [2, Page 267], it is sufficient to prove the 
formula (6) for every x = μ(x) ∈ M(p)

ψ (0, ∞).
For every x = μ(x) ∈ M(p)

ψ (0, ∞) and every n ∈ N the function xpχ(0,n) ∈
M′

ψ,0(0, ∞). Hence, for every n ∈ N we have

dMψ(0,∞)(xp,M′
ψ,0(0,∞)) = dMψ(0,∞)(xpχ[n,∞),M′

ψ,0(0,∞)).

Therefore,

dMψ(0,∞)(xp,M′
ψ,0(0,∞)) ≤ lim

n→∞
‖xpχ[n,∞)‖Mψ(0,∞)

= lim
n→∞

sup
t>0

1
ψ(t)

t∫
0

μ(xpχ[n,∞))(s) ds

= lim
n→∞

sup
t>0

1
ψ(t)

t∫
0

(x(s + n))p ds

= lim
n→∞

sup
t>0

1
ψ(t)

t+n∫
n

(x(s))p ds.

By the definition of supremum for every n ∈ N there exists tn > 0 such that

sup
t>0

1
ψ(t)

t+n∫
n

(x(s))p ds ≤ 1
ψ(tn)

tn+n∫
n

(x(s))p ds + 1
n
.

Denote for brevity

a := lim sup
t→∞

1
ψ(t)

t∫
(x(s))pds.
0
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1. If lim supn→∞ tn = ∞, then

dMψ(0,∞)(xp,M′
ψ,0(0,∞)) ≤ lim

n→∞
sup
t>n

1
ψ(t)

t+n∫
n

(x(s))p ds ≤ a,

since x = μ(x).
2. If 0 < lim infn→∞ tn ≤ lim supn→∞ tn < ∞, then

1
ψ(tn)

tn+n∫
n

(x(s))p ds ≤ tn(x(n))p

ψ(tn) −→
n→∞

0,

since x = μ(x) and x(n) → 0 as n → ∞. Hence, dMψ(0,∞)(xp, M′
ψ,0(0, ∞)) = 0 ≤ a.

3. If 0 = lim infn→∞ tn ≤ lim supn→∞ tn < ∞, then

1
ψ(tn)

tn+n∫
n

(x(s))p ds ≤ tn(x(n))p

ψ(tn) −→
n→∞

0,

since x is bounded and t
ψ(t) → 0 as t → 0. Hence, dMψ(0,∞)(xp, M′

ψ,0(0, ∞)) = 0 ≤ a.
On the other hand, for every x = μ(x) ∈ M(p)

ψ (0, ∞) and ε > 0 there is a y ∈
M′

ψ,0(0, ∞) such that by [16, Theorem II.3.1] we have

dMψ(0,∞)(xp,M′
ψ,0(0,∞)) + ε = ‖xp − y‖Mψ(0,∞) ≥ ‖μ(xp) − μ(y)‖Mψ(0,∞)

≥ lim sup
t→∞

1
ψ(t)

t∫
0

(μ(xp) − μ(y))(s)ds

= lim sup
t→∞

1
ψ(t)

t∫
0

μ(xp)(s)ds,

since y ∈ M′
ψ,0(0, ∞). This proves the assertion. �

Proof of third statement in Theorem 2.1. Set f = μT . Assuming that N is atomic, 
Lemma 2.3 ensures that dMψ

(|T |p, Mψ,0) = ‖f‖pp,limψ. By definition,

lim sup
h↘0

1
ψ(e1/h)

‖T‖p+h
p+h = ‖f‖pp,lim sup.

We conclude the inequality stated in the third statement of Theorem 2.1 from 
Lemma 2.2. �
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The aspect of Theorem 2.1 relevant to this paper lies in its implications on Hankel op-
erators. To formalize this, we state an immediate corollary of Theorem 2.1. If (Xh)h∈[0,1]
is a family of Banach spaces with Xh ⊆ Xh′ continuously for h < h′, we define the 
extrapolation space Xψ ⊆ ∩h∈(0,1]Xh to be the set of all elements x ∈ ∩h∈(0,1]Xh for 
which

‖x‖Xψ
:= sup

h>0

1
ψ(e1/h)

‖x‖1+h
Xh

< ∞.

Corollary 2.4. Let ψ : [0, ∞) → [0, ∞) be an increasing concave function satisfying the 
conditions (1) and (2) and moreover that ψ(0) = 0, limt→∞ ψ(t) = ∞. Consider the 
following data:

• A family of Banach spaces (Xh)h∈[0,1] with Xh ⊆ Xh′ continuously for h < h′.
• A mapping T : X1 → Lp+1 restricting to a continuous mapping Th := T |Xh

: Xh →
Lp+h, for h ∈ [0, 1], such that there are measurable functions

c0, c1 : [0, 1] → [r,R], for some 0 < r ≤ R < ∞,

with

c0(h)‖x‖Xh
≤ ‖Th(x)‖Lp+h ≤ c1(h)‖x‖Xh

, ∀h ∈ [0, 1], x ∈ Xh.

Then T defines a continuous mapping T : Xψ → M(p)
ψ such that

A) For any exponentiation invariant extended limit ω ∈ (L∞)∗

lim
h→ω̃

c0(h)p

ψ(e1/h)
‖x‖p+h

Xh
≤ Trω,ψ(|T (x)|p) ≤ lim

h→ω̃

c1(h)p

ψ(e1/h)
‖x‖p+h

Xh
,

where ω̃ is defined as in Equation (3). In particular, if limh→0
c0(h)
c1(h) = 1, then

Trω,ψ(|T (x)|p) = lim
h→ω̃

c0(h)p

ψ(e1/h)
‖x‖p+h

Xh
.

B) For any x ∈ Xψ we have that

r‖x‖Xψ
≤ ‖T (x)‖M(p)

ψ
≤ R‖x‖Xψ

.

C) Assume that N is atomic. For any x ∈ Xψ we have that

r lim sup 1
ψ(e1/h)

‖x‖p+h
Xh

≤ dM(p)
ψ

(|T (x)|p,Mψ,0) ≤ eR lim sup 1
ψ(e1/h)

‖x‖p+h
Xh

.

h↘0 h↘0
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Remark 2.5. In the setup of Corollary 2.4, we note that the norms ‖x‖′Xh
:= ‖T (x)‖Lp+h

on Xh are equivalent to the norms ‖ · ‖Xh
. After this change of norms, we can take 

c0 = c1 = 1 in which case Corollary 2.4 is a trivial reformulation of Theorem 2.1. The 
relevance of Corollary 2.4 lies in that it is often possible to estimate the norms ‖x‖Xh

in 
situations where it is not possible to estimate ‖T (x)‖Lp+h . We will utilize this fact below 
for Hankel operators.

Remark 2.6. In part A of Corollary 2.4, we can obtain equivalences that are independent 
of ω. Indeed the upper and lower bounds on c0 and c1 implies that under the assumptions 
of Corollary 2.4,

r lim
h→ω̃

1
ψ(e1/h)

‖x‖p+h
Xh

≤ Trω,ψ(|T (x)|p) ≤ R lim
h→ω̃

1
ψ(e1/h)

‖x‖p+h
Xh

3. Hankel operators and Peller’s characterization

We now turn our focus to Hankel operators on the Hardy space. The reader can recall 
that the Hardy space H2(S1) ⊆ L2(S1) is defined as the subspace of functions with a 
holomorphic extension to the interior of the unit disc. We here consider S1 to be the 
boundary of the unit disc in the complex plane. The orthogonal projection P : L2(S1) →
H2(S1) is called the Szegö projection. For f ∈ L∞(S1), the associated Hankel operator 
is defined as

Hf := (1 − P )fP.

Clearly, if f is the restriction of holomorphic function in the unit disc, Hf = 0. In fact, 
Hf is a well defined bounded operator for f ∈ BMO(S1). The space of symbols f for 
which Hf ∈ Lp(L2(S1)) has been characterized in terms of Besov spaces by Peller [18]. 
We let B1/p

p,p (S1) denote the Besov space on S1, we will review this space and various 
equivalent norms on this space below.

For now we fix a particular choice of norms on the scale of Besov space defined in 
terms of Littlewood-Paley theory. Let W0 := 1 and for n ∈ N+ we define

Wn(z) :=
2n+1∑

k=2n−1

min
(

k − 2n−1

2n − 2n−1 ,
2n+1 − k

2n+1 − 2n

)
(zk + z−k).

The polynomials Wn are characterized by the property that their Fourier coefficients 
(Ŵn(k))k∈Z is linearly interpolating between Ŵn(2n−1) = Ŵn(2n+1) = 0, Ŵn(2n) = 1
and Ŵn(k) = Ŵn(−k). In particular, 

∑∞
n=0 Ŵn(k) = 1 for any k. For a function f on 

S1, we define

Φn(f) := Wn ∗ f.
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A well known result from Littlewood-Paley theory guarantees that for any function f on 
S1,

‖f‖Lp(S1) ∼ ‖(Φnf)n∈N‖Lp(S1×N).

Definition 3.1. We define

‖f‖
B

1/p
p,p (S1) := ‖(2n/pΦnf)n∈N‖Lp(S1×N).

Theorem 3.2 (Peller [18]). Let f be a function on S1 extending holomorphically to the 
unit disc with f(0) = 0. Then Hf ∈ Lp(L2(S1)) if and only if f ∈ B

1/p
p,p (S1). Moreover, 

for any p0 > 1 there is a constant C > 0 such that

C−1‖f‖
B

1/p
p,p (S1) ≤ ‖Hf‖Lp(L2(S1)) ≤ C‖f‖

B
1/p
p,p (S1), ∀p ∈ [1, p0].

The reader can note that the statement in [18, Chapter 6.2, Theorem 2.1] does not give 
a uniform constant, but existence of a uniform constant follows from the fact that the 
proof is by interpolation. We shall use Peller’s theorem to compute and estimate Dixmier 
traces. To do so, it will be important to keep track of the norms used on the Besov 
spaces. Let us state a general result regarding the estimates of Dixmier traces of Hankel 
operators. This statement is a direct consequence of Corollary 2.4 and Theorem 3.2.

Corollary 3.3. Let p ≥ 1, and ψ: be a function as in Corollary 2.4. Assume that (‖ ·
‖
B

1/q
q,q ,∗)q≥p is a family of norms on the Besov spaces B1/q

q,q (S1) for q ≥ p such that there 
is a p0 > p and a constant C0 > 0 such that

C−1
0 ‖f‖

B
1/q
q,q ,∗ ≤ ‖f‖

B
1/q
q,q

≤ C0‖f‖B1/q
q,q ,∗, ∀q ∈ [p, p0].

Then for any holomorphic function f ,

Hf̄ ∈ M(p)
ψ ⇔ sup

q>p

‖f‖q
B

1/q
q,q ,∗

ψ(e(q−p)−1)
< ∞.

Moreover, there is a constant C > 0 (independent of f) such that for any exponentiation 
invariant extended limit ω,

C−1 lim
q−p→ω̃

1
ψ(e(q−p)−1)

‖f‖q
B

1/q
q,q ,∗

≤ Trω,ψ(|Hf̄ |p) ≤ C lim
q−p→ω̃

1
ψ(e(q−p)−1)

‖f‖q
B

1/q
q,q ,∗

.

Finally, for any holomorphic function f ∈ ∩q>pB
1/q
q,q (S1)

dMψ
(|Hf̄ |p,Mψ,0) ∼ lim sup 1

ψ(e(q−p)−1)
‖f‖q

B
1/q
q,q ,∗
q↘p
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Corollary 3.3 can be applied to a variety of different norms on the scale of Besov spaces. 
Let f be a function on S1 extending holomorphically to the unit disc and p ∈ [1, ∞). By 
an abuse of notation, we identify f with its holomorphic extension f : D → C, where D
denotes the unit disc. Let μ denote the measure on D given by dμ(z) = (1 −|z|2)−2dm(z)
where m denotes the Lebesgue measure.

Definition 3.4. We define

‖f‖
B

1/p
p,p ,D

:= ‖(1 − |z|2)2f ′′‖Lp(D,μ).

The next result can also be found in [18, Appendix 2.6].

Proposition 3.5. For any p0 > 1 there is a constant C > 0 such that for all holomorphic 
f with f(0) = f ′(0) = 0

C−1‖f‖
B

1/p
p,p ,D

≤ ‖f‖
B

1/p
p,p (S1) ≤ C‖f‖

B
1/p
p,p ,D

, ∀p ∈ [1, p0].

We remark that the condition f(0) = f ′(0) = 0 plays no role once going to the 
extrapolation space because we can write any f = f0 + g0 where f0(0) = f ′

0(0) = 0 and 
g0 = −f ′(0)z − f(0) satisfies that Hḡ0 is finite rank.

For a holomorphic f ∈ ∩q>pB
1/q
q,q (S1) we define Ff ∈ ∩q>pL

q(0, ∞) as the decreasing 
rearrangement of the function (1 −|z|2)2f ′′ on D with respect to the measure μ. We also 
define Φf ∈ ∩q>pL

q(0, ∞) as the decreasing rearrangement of the function S1 × N �
(θ, n) �→ Wn ∗ f(eiθ) with respect to the weighed product measure ν =

∑
n∈N m × 2nδn

on S1 × N. Here m denotes the Lebesgue measure on S1. It is follows from the well 
known fact that Lq-norms of functions coincides with the Lq(0, ∞)-norm of its decreasing 
rearrangement that for q > p

‖f‖
B

1/q
q,q (S1) = ‖Wn ∗ f‖Lq(S1×N,ν) = ‖Φf‖Lq(0,∞) and

‖f‖
B

1/q
q,q ,D

= ‖(1 − |z|2)2f ′′‖Lq(D,μ) = ‖Ff‖Lq(0,∞).

Theorem 3.6. Let p ≥ 1 and ψ be a function as in Corollary 2.4. Assume that f is 
holomorphic. Then the following assertions are equivalent:

(1) lim suph↘0

(
1

ψ(e
1
h )

∫
D |f ′′(z)|p+h(1 − |z|2)2p+2h−2dz

) p
p+h

< ∞;

(2) lim supt→∞
1

ψ(t)
∫ t

0 Ff (s)pds < ∞;

(3) lim suph↘0

(
1

ψ(e
1
h )

∫
T×N |f ∗Wn)(eiθ)|p+hdν(θ, n)

) p
p+h

< ∞;

(4) lim supt→∞
1

ψ(t)
∫ t

0 Φf (s)pds < ∞;
(5) Hf ∈ M(p)

ψ .
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The quantities in (1)-(4) are all equivalent to dMψ
(|Hf |p, Mψ,0).

The proof of this result is a straightforward repetition of that of [11, Theorem 1] with 
the replacement of log t, p − 1 and the use of [11, Proposition 7] by ψ(t), ψ(e 1

h ) and the 
use of Proposition 2.2, respectively. Again, as in Proposition 2.2 we can reduce the proof 
to p = 1. For a nonincreasing function H ∈ Lp(0, ∞), we define its distribution function 
by

λH(t) := sup{x : H(x) > t}.

The reader should note that H is a left inverse to λH . For a function H ∈ Lp(0, ∞), we 
let H∗ denote its decreasing rearrangement.

Proposition 3.7. Let ψ satisfy (1). Let H = H∗ ∈ Lq(0, ∞) for all 1 < q < 1 +δ for some 
δ > 0. Let ω be an exponentiation invariant extended limit on L∞(0, ∞) and ω̂ := ω◦exp.

(a) For every α > 1, there is a Cα > 0 such that for sufficiently large t > 0 one has 
λH(1/t) ≤ Cαt

α;
(b) One has

lim
t→ω

1
ψ(t)

t∫
0

H(s)ds = lim
t→ω

1
ψ(t)

λH(1/t)∫
0

H(s)ds;

(c) One has

lim
r→ω̂

‖H‖1+1/r

ψ(er) = lim
t→ω

1
ψ(t)

t∫
0

H(s)ds.

Proof. (a) Denote for brevity a := λH(1/t). For sufficiently large t > 0 we have

cH := sup
t>2

1
ψ(t)

t∫
0

H(s)ds ≥ 1
ψ(a)

a∫
0

H(s)ds ≥ aH(a)
ψ(a) = a

tψ(a) ,

since H is nonincreasing and H(λH(1/t)) = 1/t. Since the function ψ is slowly varying, 
it follows that for every 0 < ε < 1 there exists a C > 0 such that ψ(t) ≤ Ctε for all 
t > 0. Hence,

cH ≥ a

tCaε
= a1−ε

Ct
.

Therefore,

λH(1/t) ≤ (CcHt)
1

1−ε .
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Since this inequality holds for every 0 < ε < 1, it follows that for every α > 1 there is 
a Cα > 0 such that for sufficiently large t > 0 one has λH(1/t) ≤ Cαt

α.
(b) For sufficiently large t > 0 one has

t∫
0

H(s)ds ≤
λH(1/t)∫

0

H(s)ds + 1 ≤
Cαtα∫
0

H(s)ds + 1,

where the first inequality was proved in [11, Proposition 8] and the second one was proved 
above.

Dividing by ψ(t) and applying extended limits, yields

lim
t→ω

1
ψ(t)

t∫
0

H(s)ds ≤ lim
t→ω

1
ψ(t)

λH(1/t)∫
0

H(s)ds ≤ lim
t→ω

1
ψ(t)

Cαtα∫
0

H(s)ds. (7)

Since ψ satisfies (1), it follows from the property of extended limits that

lim
t→ω

1
ψ(t)

Cαtα∫
0

H(s)ds = lim
t→ω

ψ(Cαt
α)

ψ(t)
1

ψ(Cαtα)

Cαtα∫
0

H(s)ds

= lim
t→ω

ψ(tα)
ψ(t)

1
ψ(Cαtα)

Cαtα∫
0

H(s)ds

= Aψ(α) lim
t→ω

1
ψ(Cαtα)

Cαtα∫
0

H(s)ds.

In the second last equality we used that ψ has regular variation of index 0 and in the 
last equality the definition (1) (see page 4) of Aψ(α). Since ω is exponentiation invariant, 
and therefore also dilation invariant, it follows that

lim
t→ω

1
ψ(t)

Cαtα∫
0

H(s)ds = Aψ(α) lim
t→ω

1
ψ(t)

t∫
0

H(s)ds. (8)

Combining (7) and (8), we obtain that

lim
t→ω

1
ψ(t)

t∫
0

H(s)ds ≤ lim
t→ω

1
ψ(t)

λH(1/t)∫
0

H(s)ds ≤ Aψ(α) lim
t→ω

1
ψ(t)

t∫
0

H(s)ds

holds for every α > 1. It follows from [12, Lemma 1.3] that Aψ(α) → 1 as α ↘ 1. This 
proves part (b).
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(c) The proof of part (c) is a straightforward repetition of [11, Proposition 8 (c)] with 
the only difference that instead of the classical Karamata theorem one has to use its 
generalisation proved in [12, Proposition 3.2]. �
Theorem 3.8. Let p ≥ 1, ψ be a function as in Corollary 2.4 and ω an exponentiation 
invariant extended limit on L∞(0, ∞). Assume that f ∈ ∩q>pB

1/q
q,q (S1) is holomorphic. 

The following quantities are equivalent:
(1)

lim
h→ω̃

⎛
⎝ 1
ψ(e 1

h )

∫
D

|f ′′(z)|p+h(1 − |z|2)2p+2h−2dz

⎞
⎠

p
p+h

= lim
t→ω

1
ψ(t)

t∫
0

Ff (s)pds;

(2)

lim
h→ω̃

⎛
⎝ 1
ψ(e 1

h )

∫
T×N

|f ∗Wn(eiθ)|p+hdν(θ, n)

⎞
⎠

p
p+h

= lim
t→ω

1
ψ(t)

t∫
0

Φf (s)pds;

(3) Trω,ψ|Hf |p.

Here ω̃ is defined as in Equation (3).

The proof of this result is a straightforward repetition of that of [11, Theorem 2] with 
the replacement of log t, 1/r and the use of [11, Proposition 8] by ψ(t), ψ(e1/h) and the 
use of Proposition 3.7, respectively.

Let us place the result Theorem 3.8 in context. Let B1/q+
q,q (S1) denote the subspace of 

B
1/q
q,q (S1) consisting of holomorphic functions. By the results above, we can define two 

continuous linear mappings

TLP : B1/q+
q,q (S1) → Lq(S1 ×N, ν), TLP f(z, n) := Wn ∗ f(z), and

TD : B1/q+
q,q (S1) → Lq(D, μ), TDf(z) := (1 − |z|2)2f ′′(z).

We define the spaces M(p)
ψ (S1 × N, ν) ⊆ ∩q>pL

q(S1 × N, ν) and M(p)
ψ (D, μ) ⊆

∩q>pL
q(D, μ) from the families (Lq(S1 × N, ν))q>p and (Lq(D, μ)q>p, respectively, by 

means of extrapolation. For any exponentiation invariant extended limit ω, we can define 
Dixmier traces trω,ψ : Mψ(S1 ×N, ν) → C and trω,ψ : Mψ(D, μ) → C. We write trω,ψ

to emphasize that the Dixmier trace is defined on a commutative von Neumann algebra. 
Applying Corollary 2.4, we can reformulate Theorem 3.8 as the statement that

Trω,ψ|Hf |p ∼ trω,ψ(|TLP f |p) ∼ trω,ψ(|TDf |p).
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4. The special case p = 2, 4, 6

A beautiful result of Janson-Upmeier-Wallstén [15] computes the operator trace of 
|Hf |p for p = 2, 4, 6 in terms of a particular Besov norm. Indeed, [15, Theorem 1] states 
that for p = 2, 4, 6 and f holomorphic in D we have that

Tr(|Hf |p) = cp

∫
S1×S1

|f(z) − f(w)|p
|z − w|2 dV (z, w), (9)

where c2 = 1, c4 = 1
2 and c6 = 1

6 . Here dV denotes the normalized Lebesgue measure on 
S1 × S1. In fact, [15, Theorem 1] states that p = 2, 4, 6 are the only possible values for 
which an identity of this type could hold true. We note that cp = 1

Γ(p/2+1) for p = 2, 4, 6.

Definition 4.1. For p > 1 we define

‖f‖
B

1/p
p,p ,SI

:=

⎛
⎝ ∫
S1×S1

|f(z) − f(w)|p
|z − w|2 dV (z, w)

⎞
⎠

1/p

.

The reader should note that Equation (9) is equivalent to the identity

‖Hf‖
p
Lp(L2(S1)) = cp‖f‖p

B
1/p
p,p ,SI

, for p = 2, 4, 6.

The following norm equivalence is found in [18, Appendix 2.6].

Proposition 4.2. For any p0 ≥ q0 > 1 and there is a constant C > 0 such that

C−1‖f‖
B

1/p
p,p

≤ ‖f‖
B

1/p
p,p ,SI

≤ C‖f‖
B

1/p
p,p

, ∀p ∈ [q0, p0].

The result of Janson-Upmeier-Wallstén together with Theorem 3.2 and Proposition 4.2
allow us to deduce the following proposition.

Proposition 4.3. There are constants 0 < r < R < ∞ and measurable functions c0, c1 :
[3/2, 8] → [r, R] such that

c0(p)‖f‖B1/p
p,p ,SI

≤ ‖Hf‖Lp(L2(S1)) ≤ c1(p)‖f‖B1/p
p,p ,SI

.

Moreover, we can choose c0 and c1 so that

lim
h→0

c0(p + h)
1
p = lim

h→0
c1(p + h)

1
p = cp for p = 2, 4, 6.

For p > 1 and the scale of spaces (B1/q
q,q (S1))q∈[p,p+1] we let Bp,ψ(S1) denote the 

associated extrapolation space (see the paragraph preceding Corollary 2.4). Using Corol-
lary 2.4, we deduce the following theorem from Proposition 4.3.
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Theorem 4.4. For p = 2, 4, 6, and a holomorphic f ∈ Bp,ψ(S1), we have that

Trω,ψ(|Hf |p) = cp lim
h→ω̃

1
ψ(e1/h)

∫
S1×S1

|f(z) − f(w)|p+h

|z − w|2 dV (z, w),

where c2 = 1, c4 = 1
2 and c6 = 1

6 .

Remark 4.5. The special case p = 2 and f ∈ C1/2(S1) was considered in [14], where 
explicit formulas for Trω(|Hf |2) was given in terms of the Fourier series of f .

5. Non-measurability

The estimates for Dixmier traces will allow us to construct an abundance of non-
measurable Hankel operators by means of lacunary Fourier series. Our approach is based 
on results from [11, Section 6]. For p ∈ [1, ∞) and c ∈ �∞(N) we define the function γp,c
on S1 by

γp,c(z) :=
∞∑
j=0

2−j/pcjz
2j

.

The function γp,c is holomorphic in D. We can compute that

Φ(t) = 2−j/pcj , t ∈ [2j − 1, 2j+1 − 1).

Therefore, ‖γp,c‖B1/p
p,p

∼ ‖Φ‖Lp(0,∞) ∼ ‖c‖�p(N). Moreover, we can as in [11, Page 351]
compute that for t ∈ [2j − 1, 2j+1 − 1)

∑j−1
k=0 |ck|p

ψ(2j − 1) � 1
ψ(t)

t∫
0

Φ(t)pdt �
∑j

k=0 |ck|p
ψ(2j+1 − 1) . (10)

Define the function ψ̃(t) := ψ(2t − 1). This is again an increasing function with 
ψ̃(0) = 0 and limt→∞ ψ̃(t) = ∞. If ψ satisfies (1), then ψ̃ has regular variation of index 
kψ := logAψ(e). We write m(p)

ψ̃
(N) := M(p)

ψ̃
(�∞(N)). The inequalities (10) imply that

‖c‖p
m

(p)
ψ̃

∼ sup
t>0

1
ψ(t)

t∫
0

Φ(t)pdt ∼ ‖γp,c‖pBp,ψ
,

so the map c �→ γp,c defines a continuous mapping

γ : m(p)
˜ (N) → Bp,ψ.
ψ
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It follows from Theorem 3.8 and the inequalities (10) that for any exponentiation 
invariant extended limit ω we have

Trω,ψ(|Hγp,c
|p) ∼ lim

t→ω

1
ψ(t)

t∫
0

Φ(t)pdt ∼ lim
t→ω

∑	log2 t

k=0 |ck|p

ψ(2	log2 t
+1 − 1)

= lim
t→ω◦log2

∑	t

k=0 |ck|p

ψ(2	t
+1 − 1)
= lim

t→ω◦log2

∑	t

k=0 |ck|p

ψ̃(t)
.

Denote

trω◦log2,ψ̃
(x) := lim

t→ω◦log2

∑	t

k=0 xk

ψ̃(t)
, x ∈ mψ̃(N)+. (11)

Here we note that trω◦log2,ψ̃
extends to a singular linear functional on mψ̃(N) because 

it is the Dixmier trace trω,ψ on mψ(N) pulled back along the isometric order preserving 
embedding mψ̃(N) ↪→ mψ(N) defined by b = (bn)n∈N �→ (blog2(n)χ2N (n))n∈N . Here 
2N = {1, 2, 4, 8, 16, . . .} denotes the dyadic natural numbers. It should be pointed out 
that the ideal mψ̃(N) supports Dixmier traces defined directly from ψ̃ if and only if 
Aψ(e) = 1 (in which case ψ̃ has regular variation of index kψ = 0).

Summing up, there are constants α0, α1 > 0 such that for any exponentiation invariant 
extended limit ω, and c ∈ m

(p)
ψ̃

α0trω◦log2,ψ̃
(|c|p) ≤ Trω,ψ(|Hγp,c

|p) ≤ α1trω◦log2,ψ̃
(|c|p). (12)

For a function g ∈ L∞(0, ∞) define the function ḡ ∈ L∞(0, ∞) by the formula

ḡ(t) :=
	t
+1∫
	t


g(s)ds.

Set C := − lim inft→∞ g(t) and define

cn :=
(
|ḡ(n) + C| · ψ̃′(n)

)1/p
, n ≥ 0. (13)

It is easy to see that c = |c| ∈ m
(p)
ψ̃

(N).

Lemma 5.1. Assume that g ∈ L∞(0, ∞) for some β > 0 satisfies that

g(t) − ḡ(t) = O(t−β), as t → ∞. (14)

For c = (cn)n∈N ∈ m
(p)
˜ (N) defined as in Equation (13), it holds that

ψ
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trω◦log2,ψ̃
(|c|p) = lim

t→ω◦log2

1
ψ̃(t)

t∫
0

g(s) · ψ̃′(s)ds + C,

where C = − lim inft→∞ g(t).

Proof. By the definition of liminf, we have that g + C − |g + C| = o(1). It follows that 
the function

1
ψ̃(t)

t∫
0

∞∑
j=0

|ḡ(j) + C| · ψ̃′(j)χ(j,j+1](s)ds−
1

ψ̃(t)

t∫
0

∞∑
j=0

(ḡ(j) + C) · ψ̃′(j)χ(j,j+1](s)ds

is o(1) as → ∞. We therefore have

trω◦log2,ψ̃
(|c|p) = lim

t→ω◦log2

1
ψ̃(t)

t∫
0

∞∑
j=0

|cj |pχ(j,j+1](s)ds

= lim
t→ω◦log2

1
ψ̃(t)

t∫
0

∞∑
j=0

|ḡ(j) + C| · ψ̃′(j)χ(j,j+1](s)ds

= lim
t→ω◦log2

1
ψ̃(t)

t∫
0

∞∑
j=0

(ḡ(j) + C) · ψ̃′(j)χ(j,j+1](s)ds.

The function ψ̃ has regular variation, so [1, Theorem 1.5.11] implies that ψ̃
′(t)

ψ̃(t) = o(1)
as t → ∞. In particular,

1
ψ̃(t)

t∫
0

∞∑
j=0

(ḡ(j) + C) · ψ̃′(j)χ(j,j+1](s)ds−
1

ψ̃(t)

t∫
0

(ḡ(s) + C) · ψ̃′(s)ds = o(1).

Consider ∣∣∣∣∣∣
1

ψ̃(t)

t∫
0

(ḡ(s) + C) · ψ̃′(s)ds− 1
ψ̃(t)

t∫
0

(g(s) + C) · ψ̃′(s)ds

∣∣∣∣∣∣
≤ 1

ψ̃(t)

t∫
0

|g(s) − ḡ(s)|ψ̃′(s)ds.

Since |g(t) − ḡ(t)| ≤ ρt−β for t ≥ t0 for some t0 > 0 and constant ρ, it follows that
∣∣∣∣∣∣

1
ψ̃(t)

t∫
(ḡ(s) + C) · ψ̃′(s)ds− 1

ψ̃(t)

t∫
(g(s) + C) · ψ̃′(s)ds

∣∣∣∣∣∣

0 0



22 M. Goffeng, A. Usachev / Journal of Functional Analysis 279 (2020) 108688
≤ 2‖g‖L∞ ψ̃(t0)
ψ̃(t)

+ ρ

ψ̃(t)

t∫
t0

s−βψ̃′(s)ds.

Since ψ̃ has regular variation of index kψ, it follows that ψ̃′ has regular variation of index 
kψ − 1 and by [1, Theorem 1.5.11] we have

lim
t→∞

∫ t

t0
s−βψ̃′(s)ds
t1−βψ̃′(t)

= 1
kψ − β

. (15)

Of course, β can be chosen to be less than kψ. Hence,
∣∣∣∣∣∣

1
ψ̃(t)

t∫
0

(ḡ(s) + C) · ψ̃′(s)ds− 1
ψ̃(t)

t∫
0

(g(s) + C) · ψ̃′(s)ds

∣∣∣∣∣∣
= o(1) + O

(
t1−βψ̃′(t)

ψ̃(t)

)
.

Since kψ 	= 0, it follows from (15) that the latter estimate is, in fact, o(1) and we 
conclude that condition (14) on g ensures that

1
ψ̃(t)

t∫
0

(ḡ(s) + C) · ψ̃′(s)ds− 1
ψ̃(t)

t∫
0

(g(s) + C) · ψ̃′(s)ds = o(1),

as t → ∞.
Using the properties of extended limits, we obtain

trω◦log2,ψ̃
(|c|p) = lim

t→ω◦log2

1
ψ̃(t)

t∫
0

(g(s) + C) · ψ̃′(s)ds

= lim
t→ω◦log2

1
ψ̃(t)

t∫
0

g(s)ψ̃′(s)ds + C. �

Let Lip[0, ∞) denote the space of Lipschitz continuous functions on [0, ∞). We define 
the space

W :=
{
h ∈ L∞(0,∞) ∩ Lip[0,∞) : h′(t) = O

(
1
t

)
, as t → ∞

}
.

Proposition 5.2. Let ψ : [0, ∞) → [0, ∞) be a smooth increasing concave function satis-
fying the conditions (1) and (2) and moreover that ψ(0) = 0, limt→∞ ψ(t) = ∞. Assume 
that Aψ(e) 	= 1 (see (1)). Then h ∈ W if and only if h ∈ L∞(0, ∞) and there exists a 
function g ∈ L∞(0, ∞) such that
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h(t) = 1
ψ̃(t)

t∫
0

g(s)ψ̃′(s)ds for a.e. t. (16)

If h ∈ W there is a unique solution g ∈ L∞(0, ∞) to Equation (16).

As remarked above, it poses no restriction to assume that ψ is smooth by [1, Theorem 
1.8.2].

Proof. Uniqueness of solutions is clear. If h solves Equation (16) then

g(t) = (ψ̃ · h)′(t)
ψ̃′(t)

= h(t) + ψ̃(t) · h′(t)
ψ̃′(t)

If g ∈ L∞, we conclude that Equation (16) has a solution h ∈ L∞ if and only if h ∈
Lip[0, ∞) and

h′(t) = O

(
ψ̃′(t)
ψ̃(t)

)
.

Note that Aψ(α) 	= 1 for some α if and only if Aψ(α) 	= 1 for all α. Moreover, ψ̃ has 
regular variation of index kψ := logAψ(e). By [1, Theorem 1.5.11], we have

ψ̃′(t)
ψ̃(t)

= kψ
t

+ o

(
1
t

)
, as t → ∞.

In particular, if kψ 	= 0 then h ∈ L∞(0, ∞) ∩ Lip[0, ∞) satisfies that h′(t) = O
(

ψ̃′(t)
ψ̃(t)

)
if 

and only if h ∈ W. �
Let C1,1[1, ∞) denote the space of functions h ∈ C1[0, ∞) such h′ ∈ Lip[0, ∞). For 

β > 0, we define the space

Wβ :=
{
h ∈ W ∩ C1,1[0,∞) : h′′(t) = O(t−1−β), as t → ∞

}
.

Proposition 5.3. Let h ∈ L∞[0, ∞), β ∈ [0, 1] and ψ a function as in Proposition 5.2. The 
equation (16) has a solution g ∈ Lip[0, ∞) with g′(t) = O(t−β) if and only if h ∈ Wβ. In 
particular, if h ∈ Wβ and g solves the equation (16) then g fulfils Condition (14).

Proof. We compute that

g′(t) = 2h′(t) + ψ̃(t)
˜′ h′′(t) − ψ̃(t)ψ̃′′(t)

˜′ 2
h′(t).
ψ (t) ψ (t)
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Since (16) has a solution, h′(t) = O(t−1) by Proposition 5.2. Moreover, by the same 

argument as in Proposition 5.2, ψ̃(t)
ψ̃′(t) = O(t) whenever kψ 	= 0 and since ψ̃′ has regular 

variation, we can also conclude that ψ̃
′′(t)

ψ̃′(t) = O(t−1). In particular,

g′(t) = ψ̃(t)
ψ̃′(t)

h′′(t) + O(t−1) = O(t)h′′(t) + O(t−1).

It follows that g′(t) = O(t−β) if and only if h ∈ Wβ .
Finally, the mean value theorem for integrals guarantees that for some ξ ∈ [�t�, �t� +1], 

ḡ(t) = g(ξ). The mean value theorem for derivatives guarantees that if g satisfies g′(t) =
O(t−β) then

|ḡ(t) − g(t)| ≤ sup
s∈[	t
,	t
+1]

|g′(s)| = O(t−β). �
For b > 1, we write expb(x) := bx with the obvious notation exp = expe. For any 

translation invariant extended limit η on L∞ we define the extended limit ω by

ω(f) := η(f ◦ exp ◦ exp2), f ∈ L∞.

Recall the notation (Pαf)(t) = f(tα) for α ≥ 1. We also consider the operator Tl :
L∞ → L∞, (Tlf)(t) = f(t + l) defined for l > 0. We say that η is translation invariant 
if η ◦ Tl = η for all l > 0. For every α ≥ 1 we have

ω(Pαf) = η((Pαf) ◦ exp ◦ exp2) = η(σα(f ◦ exp) ◦ exp2) (17)

= η(Tlog2 α(f ◦ exp ◦ exp)).

Hence, ω is exponentiation invariant if and only if η is translation invariant.
We define the space

E := {h ∈ L∞(0,∞) : h(t + l) − h(t) = o(1), t → ∞, ∀l > 0}.

The reader should note that we have the inclusion W ⊆ E . Moreover, E ⊆ L∞(0, ∞) is 
by definition a closed subspace.

Proposition 5.4. For any h ∈ E there are translation invariant extended limits η1 and η2
such that

lim
t→η1

h(t) = lim inf
t→∞

h(t), and lim
t→η2

h(t) = lim sup
t→∞

h(t).

Proof. By the Hahn-Banach theorem we can find singular states η′1, η′2 ∈ E∗ such that

η′1(h) = lim inf h(t), and η′2(h) = lim suph(t).

t→∞ t→∞
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The action by translations preserves E and acts trivially modulo the closure of the com-
pactly supported elements of L∞(0, ∞). Therefore, the invariant Hahn-Banach theorem 
(see e.g. [9, Theorem 3.3.1]) implies that η′1, η′2 ∈ E∗ extend to translation invariant 
extended limits η1, η2 ∈ L∞(0, ∞)∗ with η′1 = η1|E and η′2 = η2|E . The proposition 
follows. �

Let us summarize the outcome of the above results on Dixmier traces.

Proposition 5.5. Let p ∈ [1, ∞) and let ψ : [0, ∞) → [0, ∞) be an increasing concave 
function satisfying the conditions (1) and (2) and moreover that ψ(0) = 0, limt→∞ ψ(t) =
∞. Assume that kψ 	= 0.

Let β ∈ (0, 1] and assume that h ∈ Wβ satisfies that h ◦ exp ∈ E and take c = (cn)n∈N
given as in (13) by

cn := (|ḡ(n) + C| · ψ̃′(n))1/p,

where g solves (16) and C := − lim inft→∞ g(t). Then there are exponentiation invariant 
extended limits ω1, ω2 ∈ L∞(0, ∞)∗ such that

trωj◦log2,ψ̃
(|c|p) =

⎧⎪⎪⎨
⎪⎪⎩

lim inft→∞ h(t) − lim inft→∞ g(t), j = 1,

lim supt→∞ h(t) − lim inft→∞ g(t), j = 2.

Proof. We note that g exists by Proposition 5.2. Since h ∈ Wβ for a β > 0, g satisfies 
that ḡ(t) − g(t) = O(t−β) by Proposition 5.3. By Lemma 5.1, for any exponentiation 
invariant extended limit ω,

trω◦log2,ψ̃
(|c|p) = lim

t→ω◦log2
h(t) + C. (18)

Since h ◦ exp ∈ E we can take translation invariant extended limits η1 and η2 as in 
Proposition 5.4 such that

lim
t→η1◦exp

h(t) = lim inf
t→∞

h(et) = lim inf
t→∞

h(t), and (19)

lim
t→η2◦exp

h(t) = lim sup
t→∞

h(et) = lim sup
t→∞

h(t).

Define the extended limits ωj := ηj ◦ exp ◦ exp2, j = 1, 2, which are exponentiation 
invariant because η1 and η2 are translation invariant. We conclude the proposition from 
combining the two statements (18) and (19) with the fact that ωj ◦ log2 = ηj ◦ exp. �
Lemma 5.6. Let ψ : [0, ∞) → [0, ∞) be an increasing concave function satisfying the 
conditions (1) and (2) and such that ψ(0) = 0, limt→∞ ψ(t) = ∞, kψ 	= 0. For every 
h0 ∈ C1,1[0, ∞) such that h0, h′

0, h
′′
0 ∈ L∞(0, ∞), the function
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h(t) := h0(log(1 + log(1 + t))), t > 0

belongs to W1 and satisfy the following:

• h ◦ exp ∈ E,
• lim inft→∞ h(t) = lim inft→∞ g(t).

Here g denotes the solution to (16).
Moreover, the function h0 is not convergent as t → ∞ if and only if

lim sup
t→∞

h(t) > lim inf
t→∞

g(t).

Proof. Since

h′(t) = h′
0(log(1 + log(1 + t))) 1

log(1 + t)
1

1 + t
,

we have that h ∈ W. Moreover,

h′′(t) = h′′
0(log(1 + log(1 + t))) 1

(log(1 + t))2
1

(1 + t)2

− h′
0(log(1 + log(1 + t)) 1

(1 + t)2

(
1

(log(1 + t))2 + 1
log(1 + t)

)
= O(t−2),

so h ∈ W1.
Since

(h ◦ exp)′(t) = h′
0(log(1 + log(1 + et))) 1

1 + log(1 + et)
et

1 + et = O(1
t
),

it follows that h ◦ exp ∈ W ⊆ E . Solving equation (16) for g, we obtain

g(t) = (ψ̃ · h)′(t)
ψ̃′(t)

= h(t) + ψ̃(t)
ψ̃′(t)

h′(t).

Since kψ 	= 0, we have ψ̃(t)
ψ̃′(t) = O(t). Thus, the fact that h′(t) = o(t−1) implies that 

g(t) = h(t) + o(1). Therefore

lim inf
t→∞

g(t) = lim inf
t→∞

h(t) = lim inf
t→∞

h0(t).

It is clear that

lim suph(t) = lim suph0(t).

t→∞ t→∞
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We can conclude that the function h0 is not convergent as t → ∞ if and only if 
lim supt→∞ h(t) > lim inft→∞ g(t). �
Theorem 5.7. Let p ∈ [1, ∞), ψ : [0, ∞) → [0, ∞) be as in Proposition 5.5 and assume 
that h0 ∈ C1,1[0, ∞) is such that h0, h′

0, h
′′
0 ∈ L∞(0, ∞) and the function h0 is not 

convergent as t → ∞. Define the holomorphic function

f(z) :=
∞∑

n=0
2−n/pcnz

2n

,

where c = (cn)n∈N is given as in (13) from the solution g to (16) for h(t) := h0(log(1 +
log(1 + t))). Then f ∈ Bp,ψ(S1) and moreover |Hf |p ∈ Mψ is non-measurable. More 
precisely, f satisfies that there are exponentiation invariant extended limits ω1 and ω2
such that

Trω1,ψ(|Hf |p) = 0 and Trω2,ψ(|Hf |p) > 0.

Proof. By Lemma 5.6 h ∈ W1 satisfies that h ◦ exp ∈ E and g satisfies that 
lim inft→∞ h(t) = lim inft→∞ g(t) and lim supt→∞ h(t) > lim inft→∞ g(t). It follows 
from Proposition 5.5 that there are exponentiation invariant extended limits ω1, ω2 ∈
L∞(0, ∞)∗ such that

trω1◦log2,ψ̃
(|c|p) = 0 and trω2◦log2,ψ̃

(|c|p) > 0.

By positivity of the Dixmier trace and (12), we have that

0 ≤Trω1,ψ(|Hf |p) ≤ α1trω1◦log2,ψ̃
(|c|p) = 0 and

Trω2,ψ(|Hf |p) ≥ α0trω2◦log2,ψ̃
(|c|p) > 0. �

Remark 5.8. Theorem 5.7 extends [11, Theorem 4] to general p and general ψ with 
kψ 	= 0. Our proof is longer. The length is not just due to the reason that we are in 
a more general setting. The reason for the length of the proof is two-fold. Firstly, we 
wanted to better understand the mechanism that creates non-measurability in terms 
of functions h as in Proposition 5.5. Secondly, we wanted to improve the construction 
of the two exponentiation invariant extended limits ω0 and ω1 that realizes the non-
measurability as is done in Proposition 5.5.

The construction in the proof of [11, Theorem 4] starts from an extended limit η ∈
�∞(N)∗ and is used to construct two different extended limits ω1 and ω2 on L∞(0, ∞). 
The process of going from sequences to function is delicate when it comes to extended 
limits. In [11], starting from a translation invariant extended limit η ∈ �∞(N)∗ and the 
mapping bj : N → R+, bj(n) := a(2k+j)π for an a > 1 and j = 1, 2, Engliš-Zhang [11]
defined extended limits
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ωj(f) := η(((M(f ◦ exp)) ◦ bj), for f ∈ L∞(0,∞).

Here M denotes the logarithmic Cesaro mean. Since η is only invariant for translations by 
natural numbers, a computation as in Equation (17) shows that ωj need only satisfy ωj ◦
Pα = ωj for α in the multiplicative subgroup of R+ generated by a2. To our knowledge, 
one needs full exponentiation invariance in order for a relation as in Theorem 2.1 part 
i) to hold. It is unclear to us how the conclusion [11, Theorem 4] is reached from only 
knowing invariance with respect to Pa2 . Proposition 5.5 above circumvents this problem.
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