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Abstract

The automotive trends of vehicles with lower aerodynamic drag and
more powerful drivetrains have caused increasing concern regarding
stability issues at high speeds, since more streamlined bodies show
greater sensitivity to crosswinds. This is especially pronounced for
high vehicles, such as sports utility vehicles. Besides, the competi-
tiveness in the automotive industry requires faster development times
and, thus, a need to evaluate the high speed stability performance in an
early design phase, preferable using simulation tools. The usefulness
of these simulation tools partly relies on realistic boundary conditions
for the wind and quantitative measures for assessing stability without
the subjective evaluation of experienced drivers. This study employs
an on-road experimental measurements setup to define relevant wind
conditions and to find an objective methodology to evaluate high speed
stability. The paper focuses on the events in proximity to the drivers’
subjective triggers of instability. Wind direction andmagnitude, vehicle
motion response, along with the subjective event triggering were mea-
sured at different conditions of the natural wind. A statistical approach
was utilized to analyze the correlation between the vehicle response and
subjective triggers together with the wind conditions. A correlation was
established between the subjective triggers and a rapid change in lat-
eral acceleration and yaw velocity response. The paper also proposes
a set of four crosswind gust profiles of interest for driving stability,
combining results from previous research and the experimental data of
the natural wind obtained in this study. These findings can be used as
objective measures for virtually assessing stability performance and as
realistic boundary conditions for simulating wind gusts.

Introduction

The term high speed stability is often used to describe the driving stabil-
ity performance of a vehicle traveling in a straight line above 100 km/h.
Poor high speed stability performance will quickly fatigue the driver
and reduce the vehicle’s comfort level. In extreme wind conditions,
poor stability performance has been shown to increase road vehicle
accidents, especially for high vehicles such as trucks and vans [1].
Nevertheless, the straight line drivability may still be affected without
any crosswinds [2]. High speed stability can thus be divided into cross-
wind sensitivity and straight line drivability, and there is no simple
answer to whether these two attributes are affected by the same vehicle
characteristics. The assessment of high speed stability is often done
subjectively by test drivers at designated test tracks or on public roads,
such as the Autobahn in Germany.

The elementary explanation of why driving stability performance dete-
riorates at high speeds is both that the aerodynamic forces and moments
increase combined with a higher dynamic sensitivity of the vehicle. As
shown in Equation 1, the aerodynamic side force, �( , increases expo-
nentially with flow velocity, +mag. The density of air, d, and frontal
area, �, can be set as the constant  1 to simplify the expressions. The

coefficient of side force, �( , is a function of the incoming flow angle,
k. So, the forces’ and moments’ quadratic increase with flow velocity
holds for a constant flow angle. However, as the incoming flow angle
decreases with increasing vehicle velocity, EG , see Figure 1, a more
realistic setting for high speed driving is to keep the side wind velocity,
FH , constant. This scenario, without head- or tail wind (FG = 0),
can demonstrate the simplified expression of the side force coefficient
in Equation 2. Howell and Panigrahi [3] presented that the first ap-
proximation, in Equation 2, with the side force coefficient directly
proportional to the flow angle has been seen for many vehicle models.
This linearization is presented using a constant,  2. The second ap-
proximation of small angles, together with the assumption of Reynolds
number independent aerodynamic coefficients, implies that the vehicle
velocity is high, e.g. above 100 km/h, which is in the range of interest
for high speed stability. The resulting side force expression in Equa-
tion 3 shows an approximately linear increase with vehicle speed and
side wind velocity. Hence, doubling the driving speed will double the
side force, even though the side wind magnitude is kept constant. The
same approximations can be done for the aerodynamic yaw moment,
"I . In summary, this simplified example shows that the increase in
side force and yawmoment occur simultaneously as the yaw dampening
of the vehicle is decreasing with increasing speed, making the vehicle
more yaw sensitive at high speeds. These two facts exemplify why high
vehicle velocity affects the stability performance of a road vehicle.

Early analytical work on driving stability concluded that the center of
pressure should be located behind the neutral steering point for a vehicle
to be aerodynamically stable [4, 5]. However, this is not the case for
typical passenger cars, meaning that a crosswind yaws the vehicle so
that the relative flow angle is increased. Stabilizing fins has been
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Figure 1: Schematics of how the flow angle, k, and flow velocity, +mag, relate
to the vehicle velocity, EG , and the horizontal wind components, FG and FH .



suggested to move the center of pressure rearwards at crosswinds [6],
but have not been realized due to manufacturing and aesthetic reasons.
Milliken et al. [7] introduced a static stability index in 1976, based on
a bicycle model with a linear tire model. The negative values of the
index were defined as stable. It was shown that the value of the index
increased with the vehicle velocity, agreeing with the decreased yaw
dampening at higher velocities (an oversteered vehicle would reach
a stability index of zero at its critical velocity). The stability index
has been used in parametric studies, showing that a positive pitching
aerodynamic moment increases the stability of the vehicle [8]. This
correlation has also been found in subjective on-road driving studies by
Howell and Le Good [9, 10], indicating that the aerodynamic lift forces
are important properties for the stability of the vehicle. The positive
pitching is given by lower lift forces at the rear axle compared to the
front. Nevertheless, the stability index is a static measure and cannot
describe the dynamic on-road behavior of vehicles.

A vehicle traveling on the road is subjected to unsteady flow conditions
due to the turbulence in the natural wind, flow disturbances caused by
other vehicles and obstacles at the road side [11]. An important aspect
of driving into crosswinds is that there is a time delay between the cross-
wind flow at the front and rear of the vehicle, causing overshoots in the
aerodynamic yaw moment, as discussed by Chadwick et al. [12]. This
was also presented by Hucho and Emmelmann [13], using slender body
theory. Experimental studies have shown that the on-road turbulence
affects the aerodynamics of road vehicles significantly, where recorded
turbulence intensities of up to 15 %were seen in freeway traffic [14–16].
A review based on these results showed that this difference compared
to the low turbulence intensity of most wind tunnels could change the
optimum design of, e.g., the backlight angle of a vehicle [17]. Fur-
thermore, the driver reaction will attempt to correct for the deviations
caused by the wind gusts in the unsteady flow, but it has been demon-
strated that the driver response might amplify the vehicle’s deviation
and instability at a frequency range of 0.5 – 2 Hz [18]. At frequencies
<0.5 Hz, the driver can correct for the slow changes and at frequencies
>2 Hz, the changes are too rapid for the driver reaction [18], and the
spectral energy of the flow is also low at these frequencies [11, 19].

To enhance the reproducibility of the vehicle response to a crosswind
gust, test tracks with crosswind generators have been utilized [5, 20–
22]. The International Standard ISO 12021:2010 [23] has been for-
mulated for experiments at these facilities. The guidelines in the
ISO 12021:2010 standard include a methodology where a vehicle is
driven into a zone of 20 m/s crosswind, resulting in a flow angle of
k = 35.8 deg at a vehicle velocity of 100 km/h. The wind profile expe-
rienced by the vehicle driving through a zone of strong crosswind has
been mathematically formulated by Favre and Efraimsson [24], and is
graphically presented in Figure 2 and mathematically formulated in-
Equation 4. This, and similar gust profiles have since been utilized
in several numerical studies of crosswind sensitivity [25–28]. These
extreme winds of 20 m/s create high aerodynamic forces and a distinct
motion response of the vehicle, useful for measuring differences be-
tween vehicles and configurations. However, it has also been shown
that these crosswinds are too extreme to represent most real driving
scenarios [14–16, 19, 29], and are more likely investigations of ex-
treme crosswind sensitivity, rather than the actual high speed stability
performance. When conducting on-road measurements of wind gust in
Germany, Theissen and Wojciak [19, 29] found that the typical mag-
nitude of the crosswind generated flow angles between 2 – 10 deg, and
that a zero-crossing of the flow angle occurred in 72 % of the gusts.
MacAdam et al. [5] demonstrated that the implication of a zero-crossing
of the crosswind has a large influence on driving stability and subjec-
tive rating. By placing crosswind fans on alternating sides of the test
track it was found that the same fan output power doubled the lateral
g-force on the driver which resulted in worse subjective ratings, com-
pared to placing the fans on one side of the test road as usually done at
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Figure 2: Crosswind profile for driving through a zone of strong crosswind,
built from Equation 4 formulated by Favre and Efraimsson [24].
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crosswind facilities. Furthermore, the final assessment of high speed
stability performance is often done by experienced test drivers at test
tracks. Their subjective judgment of the vehicle has proven to be re-
liable and reproducible. However, their subjective evaluation cannot
directly be used in any virtual vehicle dynamics computer simulation
and there is a need to correlate the subjective assessment to objective
quantities of the vehicle motion. Some studies have found correlations
between the total subjective evaluation of drivability at high speed to
objective measures [2, 30]. Other studies at crosswind facilities have
indicated that the vehiclemotions; yaw velocity, lateral acceleration and
head-rest acceleration (including roll velocity) give the best correlation
to the subjective ratings [5, 31].

Although a relatively large amount of work is available in the literature,
there is still need for a better understanding of how wind conditions
affect high speed stability, and how to quantitatively measure the sta-
bility performance. The first goal of this experimental study focuses on
correlating events of stability issues to the wind conditions, to examine
the relevant loads for high speed stability. A description of the technical
system is sketched in Figure 3. Furthermore, the paper expands on the
knowledge of realistic crosswind gusts and proposes a mathematical
formulation of these real-world inspired profiles, in similarity with the
work by Favre and Efraimsson [24], to facilitate appropriate boundary
conditions for flow simulations.

The second part of the paper aims to conclude the relevant vehicle
motions specifically related to high speed stability, and to find quan-
titative objective assessment criteria for the stability performance, see
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Figure 3: System description for high speed stability. The purple arrows repre-
sent the two analysis conducted in this study. The first to find realistic crosswind
conditions and the second to find objective measure for high speed stability.

process (b) in Figure 3. To do so, the study analyzes the short events
where experienced test drivers triggered for stability issues, to mon-
itor the vehicle motion before each trigger event to conclude what
quantitative measures that best represents the poor high speed stability
performance. The two-way interaction via the steering wheel angle,
XSW, and torque, )SW, is not assessed in this paper, since the purpose
of objective quantification was to find measures independent of the
driver steering response.

Methodology

This section describes the experimental setup used to conduct the test
track measurements and the subsequent post-processing and analysis
of the test data.

Experimental Setup

The experimental testing was conducted during six weeks with varying
wind conditions. All tests were performed on dry asphalt by experi-
enced drivers.

Test Vehicle

A compact sports utility vehicle (SUV) was used as the test vehicle in
this study, see Figure 4. The vehicle was front wheel driven, had a total
length of 4.51 m, a height of 1.60 m, a width of 1.86 m and a wheel base
of 2.73 m. The curb weight of the vehicle was 1856 kg, with 56 % of

Figure 4: The vehicle model used in the experimental study.

371451

1970
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Figure 5: Schematics of the placement of the 7 hole probe, the Prandtl tube and
the inertial measurement unit (IMU).

the static load on the front axle. The vehicle was fitted with new 235/50
R19 tires. The suspension system consisted of a MacPherson front
suspension and a 4-link trailing arm rear suspension. Coil springs and
passive dampers control the suspension system. The steering system
has a steering rack with an electrical power-assisted servo function.

The test vehicle was equipped with a special rear spoiler that had proven
to cause issues with high speed stability.

Instrumentation

The instrumentation setup was designed to enable measurements of the
aerodynamic flow conditions together with the dynamic motion of the
vehicle. All data were synchronized in a 24-bit Dewesoft Sirius HD
STG-S module used as the data acquisition (DAQ) system. All data
were sampled at 500 Hz. The equipment used for the measurements is
presented in Table 1.

The local flow magnitude and angle subjected to the vehicle were
measured using a 7 hole probe, with a conical tip of 3.18 mm. The
probe had a flow cone angle of receptivity of 70 deg and an accuracy of
±1 deg [32]. The probe was placed 371 mm above the roof to measure
the undisturbed flow, see Figure 5. The probe holder was mounted
in place of the shark fin antenna, to minimize the effect on the flow
over the rear spoiler. The probe’s pressure tubes were connected to
SensorTechnics HCLA0025DB pressure sensors sampling at 2500 Hz
(although downsampled to 500 Hz for the final analysis). The pressure
sensors measured the pressure difference between the holes at the tip
of the 7 hole probe and a reference pressure. The atmospheric pressure
was used as the reference pressure. This was done by mounting a
Prandtl tube 80 mm above the 7 hole probe, see Figure 5, and using the
static pressure port of the Prandtl tube as the reference pressure for the
sensors. The flow magnitude, +mag, and angle, k, was calculated using
the probe’s calibration map with the port pressures as the input. The
static port pressure of a Prandtl tube is slightly affected by yawed flow,
but the pressure error was assumed to be <2 % for flow angles below
10 deg [33], and this did not affect the flow angle calibration only the
slight variation in the flow magnitude calibration.

Table 1: Instrumentation setup.

Equipment Measurement

•7-hole probe
Flow magnitude and angle•Prandtl tube

•Pressure sensors

•Subjective trigger Instability events

•GPS-RTK Positioning and speed

•IMU Vehicle motion response
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To enable analyzes of the short events where particularly substantial
stability problems were noted, a subjective trigger was installed in the
cabin. The button on the trigger could be pressed by the driver while
driving, generating a time mark in the data. The drivers were instructed
to only focus on the most prominent high speed stability issues.

TwoGPS antennasweremounted inside the vehicle, on the center line at
the wind shield and at the rear of the vehicle. The GPS positioning was
enhanced by a real-time kinematic (RTK) system, giving a positioning
accuracy of ±0.01 m and velocity accuracy of ±0.1 m/s [34].

The vehicle motions were measured using a Dewesoft DS-IMU2 mod-
ule, an inertial measurement unit (IMU) that combines gyroscopes
and accelerometers with measurement accuracies of ±0.033 deg/s and
±0.032 m/s2, respectively [34]. The unit was firmly mounted to the
structure of the vehicle, close to the center of gravity (CoG), see Fig-
ure 5. Exact measurements at the CoG could be done utilizing the IMU
software to translate the acceleration values to any point in reference
to the IMU. A reference point at the position of the lower back of the
seated driver was used in this study to measure motions experienced by
the driver.

Test Track and Test Procedure

All tests were conducted at Hällered Proving Ground, on an oval test
track used for high speed testing. Three drivers participated in the study.
Before the data acquisition, a co-driving session was conducted where
all drivers independently could trigger at events of substantial stability
issues. As all drivers marked the same events and it was concluded
that the data from all three drivers could be used in the study. The data
were automatically acquired, starting and stopping at the same GPS
coordinates, for the two 1.1 km straight runs on the oval test track.

The test drivers were instructed to drive in a straight line and to keep
the steering wheel fixed. Other vehicles were present on the test track,
occasionally causing driver interventions or major overtaking flow dis-
turbances. In these cases, the experiments were aborted and the data
disregarded. Less obvious interference by other vehicles could not be
addressed. The test procedure started with driving a couple of laps on
the test track to monitor that the measurement equipment was working
and that the tires had reached operational temperature. The testing
was then conducted at four different velocities; 140 km/h, 155 km/h,
170 km/h and 185 km/h. Each velocity was held constant for three
runs at each of the two straights, before changing velocity. To ensure
significant results in an environment of low repeatability, a large data
set of 407 straight line recordings (448 km) were collected, including
255 subjective trigger events.

Post-processing

The flow and vehicle motion data were analyzed at the subjective trigger
events and compared with the complete data set to find exceptional
trends in the trigger data. This section also describes the predictive
classification filter that was used to find objective measures to be used
in a quantitative assessment of high speed stability. All test data were
filtered using a Hamming low pass filter of order 500 with a cut-off
frequency of 5 Hz. Higher frequencies of the wind and vehicle motion
were disregarded for the high speed stability analysis. The longitudinal
and lateral wind components, FG and FH , were calculated from the
flow magnitude, +mag, flow angle, k, and vehicle velocity, EG , as in

FG = +mag cos (k) − EG , FH = +mag sin (k) . (5)
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Figure 6: Example of trigger events and visualization of the regions of instability.

Subjective Trigger Event Analysis

The time marks from the drivers’ subjective triggers were used to ana-
lyze the data before the instability events. Figure 6 shows examples of
two trigger events as red vertical lines during a test run. A window of
3 s before each trigger was marked as the region of instability. It was
assumed that the cause of the subjective perception of stability issues
would be found within these time intervals, both in terms of the vehicle
motion response and crosswind conditions.

The data before the trigger events were analyzed using variousmethods.
The most robust and fruitful was bymeasuring the maximum amplitude
difference between peaks within the regions of instability. This was
done both for the aerodynamic flowmeasurements, to determine typical
crosswind conditions before the subjective triggers, see (a) in Figure 3,
and for the motion responses experienced by the drivers, to correlate
their subjective assessment to quantitative objective measures, see (b)
in Figure 3. The amplitude (peak-to-peak) values were then sorted into
intervals to present the distribution of their frequency of occurrence.

All Data Analysis

The data at the subjective trigger events were compared to the complete
data set, to find exceptional trends in the trigger data. The comparisons
were made by using a similar analysis methodology for the complete
data set. A sliding window of 3 s, with 1 s stepping, was applied to
all the data. The maximum amplitude difference between peaks was
measured at each step. The amplitude values was then sorted into
intervals to present the distribution of their frequency of occurrence, so
that it could be compared to the trigger data.

Predictive Classification Filter of Subjective Triggers

To further investigate the structures in the vehicle motion data that
could explain the drivers’ subjective triggers, a predictive filter was
designed. The filter intended to describe the filter parameters in terms
of objective measures and to examine what parameters and parameter
limits that could best predict the subjective trigger events, based on the
objective data. When a good prediction was found, the filter parameters
themselves would give information on suitable objective measures for
high speed stability.
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Figure 7: The moving filter, predicting event triggers based on the signal ampli-
tude within the sliding window. The thick blue line indicates that the amplitude
limit parameter of the filter was exceeded and that the change happened within
the time duration limit parameter.

The prediction filter ended up with two parameters, where the first was
a minimum limit of the signals’ maximum amplitude within a time
duration window. The duration was the second filter parameter, shown
in Figure 7. If the measured amplitude within the window exceeded
the amplitude limit, the data between the peaks were predicted to have
stability problems (blue in Figure 7). The time duration window was
sliding over the signals, measuring maximum amplitudes within the
window. By decreasing the time duration, the filter would limit the ve-
hicle motions to only predict triggers when the signals changed rapidly.
It was assumed that both the amplitude and the rate of change caused a
subjective assessment of poor high speed stability performance.

A set of rules was established to evaluate the accuracy of the filter
predictions. If the predictions of instability occurred within the region
of instability, i.e. within 3 s before a real event trigger, they were
counted as true positive (TP) predictions. If several predictions were
found within the region of instability, they would still count as one
true positive. If no prediction was found within a region of instability
it counted as a false negative (FN). If predictions were found outside
any region of instability, they were counted as false positives (FP).
Furthermore, to penalize outcomes where all data were predicted to
have stability issues, any prediction longer than 4 s was counted as two
predictions and longer than 8 s as three, and so on. Figure 8 shows
an example of a signal including one real subjective trigger event and
three predicted motions of stability issues. The first two predictions
fall within the region of instability and were thus counted as one true
positive. The third prediction was longer than 4 s and was therefore
counted as two false positives. No false negative prediction occurred,
where a region of instability was found without any predictions within.
The confusionmatrix for the example in Figure 8 can be seen in Table 2.

The values in the confusion matrix were used to optimize the filter
parameters. A loss function, 5! , was balanced to promote the true

Table 2: Confusion matrix for the example in Figure 8, with one true positive
(TP), no false negatives (FN) and two false positives (FP). The true negative
(TN) is not applicable in this method.

Predicted

Trigger No trigger

Re
al Trigger TP = 1 FN = 0

No trigger FP = 2
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Figure 8: Example of a data recording including one subjective trigger event
(red). The filter predicts three events of stability issues (blue), whereas the first
two occur within the region of instability and were counted as one true positive
(TP). The last predicted event was longer than 4 s and was thus counted as two
false positives (FP).

positive triggers and to penalize the false negative and false positive
triggers, as

5! = −1.5 · TP + 1 · FN + 0.25 · FP. (6)

The loss function would take its minimum (best) value when no false
triggers occured and all real triggers were predicted by the filter, in
this study a value of −304.5. An optimization strategy, using differen-
tial evolution [35], for minimizing the loss function value by varying
the magnitude and duration limits of the filter was employed. The
optimization methodology was conducted on the six vehicle motions;
longitudinal acceleration, lateral acceleration, vertical acceleration, roll
velocity, pitch velocity, and yaw velocity seperately.

Results

Wind Gust Conditions

The varying wind intensity between and throughout the days of data
acquisition gave a broad perspective on the crosswind influence on high
speed stability. Results are first presented where the wind conditions
before the subjective event triggers were analyzed and compared with
the overall crosswind intensity. Proposals of three new crosswind
profiles are then formulated, based on the test data.

Crosswind Correlation to High Speed Stability

Crosswinds are often assumed to influence high speed stability perfor-
mance, but there have also been discussions that issueswith straight-line
stability can occur regardless of wind conditions. This study shows that
crosswinds were the dominant condition for causing stability issues, al-
though the data show a few recordings of issues in still wind condition.

Table 3: The frequency of triggers in intervals on the crosswind change corre-
sponding to levels on the Beaufort scale, compared to the complete data set.

Gust conditions Percentage

Beaufort scale Side wind change, ΔFH , [m/s] Triggers All data

0, 1 & 2 0 – 3.3 16 % 42 %
3 3.4 – 5.4 35 % 44 %
4 5.5 – 7.9 41 % 12 %
5 8.0 – 10.7 7 % 2 %
6 10.8 – 13.3 1 % 0 %

100 % 100 %
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Figure 9: The distribution of the change in crosswind magnitude, for the trigger
data and the complete data set.

The test data from the weeks of data acquisition showed that the vehicle
was subjected to crosswind which mainly varied between 0 to 3 on
the Beaufort wind scale, corresponding to wind changes between 0 –
5.4 m/s, see All data in Table 3. The subjective evaluation of the test
drivers resulted in 255 trigger events when substantial stability issues
were experienced. The wind conditions were analyzed in the 3 s time
interval before each trigger. It is evident from Table 3 that stronger
crosswinds were more common at these trigger events, compared to the
complete data set of the crosswind. The distribution of the data was
also presented in Figure 9, where the dark brown color represents the
overlapping data between the two data sets. The discrepancy between
the wind conditions at the triggers and the complete data set indicates
that changes in crosswind was an underlying factor for issues with high
speed stability performance in this study. Half of all triggers occur
in crosswinds with level 4 or above on the Beaufort scale, which only
represents 14 % of the total wind data. This statistically correlates a
varying crosswind with decreased high speed stability performance.
However, it should also be noted that 16 % of the triggers occur in
conditions with no or little wind (0, 1 & 2 on the Beaufort scale). It
must, therefore, be assumed that driving stability issues might occur
without any crosswind, even though these results show that the majority
of the instabilities occur in changing crosswind conditions.

The resulting relative flow angle, k, is dependent on the vehicle speed,
EG , and the wind components, FG and FH , as presented in Figure 1 and
Equation 5. When driving at 140 km/h without any head- or tailwind,
a change in crosswind of 7 m/s results in a relative flow angle change
of 10 deg. Table 4 shows the frequency of occurrence of the flow angle
change during the 3 s interval, at the triggers and for the complete data
set. It is evident that Tables 3 and 4 display overlapping information.
However, since the test procedure included different vehicle velocities

Table 4: The frequency of triggers in intervals on the flow angle change, com-
pared to the complete data set.

Percentage

Flow angle change, Δk, [deg] Triggers All data

0 – 4 18 % 36 %
4 – 6 23 % 39 %
6 – 8 34 % 16 %
8 – 10 11 % 5 %
10 – 12 9 % 3 %
>12 5 % 1 %

100 % 100 %
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Figure 10: The distribution of the change in flow angle, for the trigger data and
the complete data set.

the resulting flow angles could be of interest, at least for comparison
with other studies. Only one-fourth of the complete data set had a
varying flow angle above 6 deg, but 59 % of the triggerswere recorded at
these flow conditions. Nevertheless, Table 4 indicates that gusts above
10 deg were rare, but often causing stability issues. The distributions
are presented in Figure 10, where the trigger data of the flow angle show
a smaller discrepancy from the complete data set than the crosswind
magnitude in Figure 9. The change in crosswind magnitude was, thus,
the more relevant measure, of the two different lateral flow quantities.

Figure 11 presents the distribution for the change in headwind, ΔFG .
Although the discrepancy between the trigger data and the complete
data set was small, a change in magnitude above 5 m/s showed an
increased occurrence of subjective trigger events.

A frequent occurrence of zero-crossings in wind gusts has been seen
in previous studies [29]. Likewise, by focusing on the triggers with
gusty crosswind conditions (Beaufort scale ≥ 3), it was found that the
incoming flow angle changed sign and surpassed zero with at least
1 deg in 83 % of the triggers, during the 3 s interval before the trigger
events, see Table 5. Moreover, according to [19] zero-crossing has
been found to result in overshoots in forces and moments. This together
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Figure 11: The distribution of the change in headwind magnitude, for the trigger
data and the complete data set.
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Table 5: The zero-crossing frequency for the wind gusts at the event triggers
with levels on the Beaufort scale ≥ 3.

zero-crossing
No Yes

17 % 83 %

with the statistical evidence presented in Table 5 can thus demonstrate
the importance of including a zero-crossing of the flow angle to fully
evaluate high speed stability performance in gusty wind conditions.
However, when analyzing the complete set of wind data above 3 on the
Beaufort scale, the same ratio of zero-crossing gusts as the trigger data
in Table 5 was found. No discrepancy between the trigger data and the
complete data set implies that the zero-crossing does not increase the
frequency of a subjective trigger. However, Table 5 still indicates that
a realistic crosswind gust usually includes a zero-crossing.

Crosswind Gust Profiles

The natural wind is turbulent and highly stochastic, meaning that none
of the crosswind gusts measured at the trigger events were identical.
Nevertheless, certain patterns could be observed and a broad classifi-
cation was done in terms of gust profiles. The profiles were defined
mathematically, to enable adoption in numerical flow simulations and
the opportunity to conduct studies with equal boundary conditions.

The piecewise function of crosswind gust, inspired by Favre and
Efraimsson [24], can be seen in Equation 7 and Figure 12. The function
has a parameter for the initial value of the crosswind, Fstart

H , and an end
value, Fend

H . Many of the on-road measurements indicated that these
parameters should be set to zero, but there were also instances where
the vehicle was subjected to a constant crosswind and a rapid change
from that steady-state condition caused a subjective trigger event. The
equation was therefore designed so that profiles could be created where
the initial value of the crosswind could be chosen. The other two pa-
rameters of the crosswind magnitude were the maximum, Fmax

H , and
the minimum, Fmin

H , values. The crosswind magnitude starts to change
from the initial starting value at the time C0 and the parameter of the
build-up time, ΔC1 , determines how fast the maximum value is reached.
The pausing time at the maximum and minimum crosswind magnitude
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Figure 12: Example gust profile, built using Equation 7, with dimensions for the
equation parameters of magnitude and time.

is set by the parameter ΔC? and the time of the drop between the max-
imum and minimum values is determined by ΔC3 . The pausing and
build-up times are symmetrical for the first and second half of the gust.

An example gust, built from Equation 7, can be seen in Figure 12.
The parameters give the function flexibility to represent many different
crosswind gust profiles. The start, maximum, minimum and end values
can freely be chosen between positive and negative numbers without
breaking the function.

The crosswind gust function has been defined in the time domain.
However, it could be of interest to describe the crosswind in space
(FH (G)). This can be done by substituting time with distance and
vehicle velocity, C = G/EG , and similarly with the time durations, ΔC8 =
ΔG8/EG , in Equation 7. Moreover, to design a gust profile of desired
vehicle lengths, =!, the distances can be set using G = =! and in the
time domain, C = =!/EG .

The measured wind data in proximity to the subjective event triggers
were classified into four profiles (A-D), and will be discussed next. All
profiles were build using Equation 7.

wy (t)



= wstart
y

for C < C0

= wstart
y +

wmax
y −wstart

y

2

(

1 − cos
(

0
�tb
(t − t0)

))

for C0 < C < C0 + ΔC1

= wmax
y

for C0 + ΔC1 < C < C0 + ΔC1 + ΔC?

= wmax
y −

wmax
y −wmin

y

2

(

1 + cos
(

0
�td

(

t − t0 − �tb − �tp
)

))

for C0 + ΔC1 + ΔC? < C < C0 + ΔC1 + ΔC? + ΔC3

= wmin
y

for C0 + ΔC1 + ΔC? + ΔC3 < C < C0 + ΔC1 + 2ΔC? + ΔC3

= wend
y +

wmin
y −w

end
y

2

(

1 + cos
(

0
�tb

(

t − t0 − �tb − 2�tp − �td
)

))

for C0 + ΔC1 + 2ΔC? + ΔC3 < C < C0 + 2ΔC1 + 2ΔC? + ΔC3

= wend
y

for C > C0 + 2ΔC1 + 2ΔC? + ΔC3

(7)
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Figure 13: Profile A, using Equation 7 with Fstart
H = Fend

H = 0, Fmax
H = Fmin

H =

5.00 m/s, C0 = 0.10 s, ΔC1 = 0.20 s, ΔC? = 0.29 s and ΔC3 = 0. The profile is
compared with experimental data.

Profile A: ISO Standard

Gust profile A is characterized by the quick ramp-up and ramp-down of
the crosswind and a relatively long magnitude pause at the maximum
crosswind magnitude without any zero-crossing, see Figure 13. The
gust profile starts and ends with no crosswind and is the profile that
best represents the crosswind sensitivity testing at crosswind facilities,
described in ISO 12021:2010 [23]. This type of crosswindwas however
rare during the experimental on-road testing at the test track.

Profile B: Sine Wave

Gust profile B is characterized by a continuously changing crosswind,
with a zero-crossing between two peak values, see Figure 14. This type
of crosswind gusts was one of the most frequent in the experimental
data, at the subjective trigger events. The regularly changing crosswind
implies that the drop time is longer than the build-up time, ΔC3 > ΔC1 .
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Figure 14: Profile B, using Equation 7 with Fstart
H = Fend

H = 0, Fmax
H =

−Fmin
H = 4.50 m/s, C0 = 0.25 s, ΔC1 = 1.00 s, ΔC? = 0 and ΔC3 = 1.30 s. The

profile is compared with experimental data.
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Figure 15: Profile C, using Equation 7 with Fstart
H = −Fend

H = Fmax
H = −Fmin

H =

3.50 m/s, C0 = 0.45 s,ΔC1 = ΔC? = 0 andΔC3 = 2.00 s. The profile is compared
with experimental data.

Profile C: Ramp/step

Gust profile C is characterized by a simple transition between two levels
in the magnitude of the crosswind. The example in Figure 15 includes
a zero-crossing, but the experimental data also showed examples of
a quick ramp down from a constant crosswind to no crosswind. The
build-up and pause times are set to zero in this profile, ΔC1 = ΔC? = 0,
and the initial crosswind magnitude equals the maximum magnitude,
Fstart
H = Fmax

H , and the end and minimum magnitudes are also equal,
Fmin
H = Fend

H . A step function of the crosswind can be created by
decreasing the drop time duration towards zero, ΔC3 → 0.

Profile D: Build-up and Rapid Drop

Gust profile D is characterized by a slow build-up time and a rapid drop
including a zero-crossing, see Figure 16. This quick change, including
a zero-crossing was noted to cause substantial stability issues. The
profile is similar to profile B, except that the drop time is shorter than
the build-up time, ΔC3 < ΔC1 .
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Figure 16: Profile B, using Equation 7 with Fstart
H = Fend

H = 0, Fmax
H =

−Fmin
H = 3.50 m/s, C0 = 0.25 s, ΔC1 = 1.25 s, ΔC? = 0 and ΔC3 = 0.25 s. The

profile is compared with experimental data.
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Table 7: The ratio between the four gust profiles based on the wind gusts at the
event triggers with levels on the Beaufort scale ≥ 3.

Gust profile
A B C D Other

6.0 % 22.7 % 23.1 % 13.0 % 35.2 %

All gusts with crosswind variations above 3 on the Beaufort scale
were visually inspected and sorted into this classification. Table 7
shows the frequency of occurrence for the gust profiles. The least
common profile (A) was included because of use in previous studies
and association with the ISO standard. Profile B and C occurred most
frequently in the test data. The fourth profile (D) did not occur as
frequently. However, trigger events with these types of slow-to-rapidly
changing wind conditions were often particularly noted by the drivers
to have stability issues. Profiles C and D can be seen as variants of a
common base profile and that their combined ratio would be 36.1 %.
However, it is evident that the wind data were highly irregular since
35.2 % of the crosswind gusts did not fit into any of the four profiles.
Nevertheless, this classification of gust profiles enhances the possibility
to use real-world inspired crosswind gust profiles in virtual simulations.

Quantitative Assessment

Formulating quantitative objective measures for subjective evaluation
often proves to be a difficult task. In this study, a statistical correlation
using the subjective event triggers provided by the drivers at instances
of substantial issues with high speed stability was implemented. The
correlation focuses on discrepancies between measured data close to
the trigger events and the complete data set to indicate the exceptional
vehicle motion responses experienced by the drivers right before they
pressed the trigger button.

The statistical correlation is followed by an attempt to use a method-
ology for predicting the locations of the subjective triggers based on
the objective data, using the predictive filter. The filter setup provides
information about quantitative measures to be used to assess high speed
stability performance.

Vehicle Motion Correlation to High Speed Stability

The driver constantly gathers information from the human senses when
driving. The motion of the vehicle acts on the driver via the seat and
the steering wheel provides certain feedback. Sight is vital during any
driving scenario and hearing gives information on wind and weather,
road surface and vehicle speed. All these senses are combined in the
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Figure 17: The distribution of the change in longitudinal acceleration, for the
trigger data and the complete data set.

subjective assessment of high speed stability. This section focuses on
the correlation between the vehicle motion response and the subjective
evaluation, using the trigger events recorded by the drivers.

The six degrees of freedom (DoF) were measured during the testing,
three accelerations in the local coordinate system of the vehicle and
three angular velocities around the coordinate axes. The driver’s lower
back was used as the reference point for the accelerations, to capture the
motion of the vehicle body experienced by the drivers. A time interval
of 3 s before each subjective event trigger was classified as the region of
instability, in similarity with the wind analysis in the previous section.
The maximum magnitude was measured for the six signals in each of
the triggers’ regions of instability. These values are placed in intervals
that can be seen in Table 6. The percentage of values at the intervals
for the triggers, can be compared to the values of the complete data set,
see All data in Table 6. Large discrepancies between the trigger data
and the complete data set indicate that those vehicle motion conditions
were extraordinary for the trigger events.

When analyzing the change in longitudinal acceleration, Δ0G , during
the 3 swindow, it is evident that the spread was lowwith 60 % of all data
in the interval of 0.1 – 0.2 m/s2, see Table 6. This was also the case for
the trigger data. However, the table shows a small discrepancy between
trigger data and the complete data set for the longitudinal acceleration.
Figure 17 presents the distribution, where the small discrepancy can be
seen.

In general, the change in lateral acceleration, Δ0H , proved to be greater

Table 6: The percentage of triggers in intervals for the vehicle’s 6 DoF, compared to the complete data set.

Δ0G [m/s2 ] Δ0H [m/s2 ] ΔlI [deg/s] ΔlG [deg/s] ΔlH [deg/s] Δ0I [m/s2 ]
Interval Triggers All data Triggers All data Triggers All data Interval Triggers All data Triggers All data Triggers All data

0 – 0.1 3 % 18 % 0 % 0 % 0 % 0 % 0 – 0.3 0 % 0 % 0 % 0 % 0 % 0 %
0.1 – 0.2 60 % 60 % 0 % 1 % 0 % 0 % 0.3 – 0.6 0 % 0 % 1 % 0 % 25 % 24 %
0.2 – 0.3 23 % 11 % 1 % 11 % 0 % 1 % 0.6 – 0.9 0 % 1 % 8 % 7 % 29 % 23 %
0.3 – 0.4 6 % 3 % 5 % 26 % 1 % 6 % 0.9 – 1.2 2 % 4 % 17 % 15 % 15 % 14 %
0.4 – 0.5 2 % 1 % 19 % 26 % 2 % 15 % 1.2 – 1.5 18 % 18 % 19 % 15 % 9 % 12 %
0.5 – 0.6 1 % 1 % 26 % 17 % 7 % 21 % 1.5 – 1.8 24 % 22 % 14 % 12 % 6 % 9 %
0.6 – 0.7 2 % 1 % 18 % 8 % 12 % 19 % 1.8 – 2.1 16 % 16 % 11 % 12 % 6 % 7 %
0.7 – 0.8 0 % 1 % 14 % 4 % 15 % 15 % 2.1 – 2.4 13 % 16 % 11 % 12 % 3 % 5 %
0.8 – 0.9 1 % 1 % 7 % 1 % 19 % 10 % 2.4 – 2.7 10 % 12 % 8 % 12 % 4 % 1 %
0.9 – 1.0 0 % 1 % 4 % 1 % 11 % 5 % 2.7 – 3.0 9 % 7 % 7 % 9 % 1 % 1 %
>1.0 2 % 2 % 6 % 5 % 33 % 8 % >3.0 8 % 4 % 4 % 6 % 2 % 4 %

100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 %
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Figure 18: The distribution of the change in lateral acceleration, for the trigger
data and the complete data set.

compared to the longitudinal acceleration. Hence, the driver is sub-
jected to higher variations in lateral acceleration at normal straight-line
driving. Also, the discrepancy between trigger data and the complete
data set was greater for the lateral acceleration, indicating that this ve-
hicle motion can be correlated to high speed stability performance, see
Figure 18. For example, only 36 % of the complete data magnitude
variations above 0.5 m/s2 while the number was 75 % for the data at
the trigger events.

The yaw velocity, lI , and lateral acceleration, 0H , are motions in
the road plane and they have a high correlation between themselves.
Table 6 and Figure 19 show that there was an even larger discrepancy
between triggers and all data for the change in yaw velocity,ΔlI , where
33 % of the trigger data varies >1.0 deg/s (compared to only 8 % of
the complete data set). Hence, high changes in lateral acceleration
and yaw velocity both seem to correlate with low high speed stability
performance. These vehicle motion responses can thus be used to
formulate quantitative measures for high speed stability.

The roll velocity, lG , pitch velocity, lH , and vertical acceleration, 0I ,
had higher variations at normal straight-line driving compared to yaw
velocity, longitudinal and lateral acceleration. Larger intervals were
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Figure 19: The distribution of the change in yaw velocity, for the trigger data
and the complete data set.
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Figure 20: The distribution of the change in roll velocity, for the trigger data
and the complete data set.

therefore used inTable 6 to capture their spread. According to Figure 20,
the change in roll velocity, ΔlG , had almost no discrepancy between
trigger data and the complete data set. Hence, it could be concluded,
using this analysis method, that large changes in roll velocity were not
the cause for the drivers’ subjective triggers.

Similarly, no discrepancies could be seen for either the change in pitch
velocity, ΔlH , or vertical acceleration, Δ0I , see Figures 21 and 22,
indicating that these were two other vehicle motions that were not
related to the drivers’ subjective assessment of substantial stability
issues. So, even though the roll velocity, pitch velocity, and vertical
acceleration generally had higher magnitude variations compared to
the other three vehicle motions, they did not correlate with poor high
speed stability performance. The oscillating and vibrating motions
from the road are expected by the driver and were thus not evaluated as
something exceptional.

Prediction of Event Triggers

The predictive filter, using the amplitude and duration of signal peak-
to-peak values to predict regions of stability issues, could not find
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Figure 21: The distribution of the change in pitch velocity, for the trigger data
and the complete data set.
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Figure 22: The distribution of the change in vertical acceleration, for the trigger
data and the complete data set.

any good prediction for longitudinal and vertical acceleration, roll and
pitch velocity, in similarity with the results presented above. The
optimization strategy was designed to minimize the loss function, 5! ,
(Equation 6). The loss function was based on the confusion matrices
produced by the prediction filter. The optimization was done on the
two filter input parameters: signal peak amplitude and peak duration.
The best (lowest) results of the loss function is presented in Table 8,
where it is evident that the prediction filter performs best on the lateral
acceleration and yaw velocity signals.

The confusion matrices for lateral acceleration and yaw velocity can
be seen in Tables 9 and 10, respectively. The filter was able to predict
the majority of the real trigger events, for both signals. However, the
tables also show that most of the predicted triggers were false positives.
It was expected that the filter would predict many false triggers due
to the uncertainty of the test drivers’ subjective assessment and noise
in the test track data. Nevertheless, the fact that lateral acceleration
and yaw velocity were the only two motions that could predict the
majority of the real triggers without having thousands of false positive
predictions again indicate that they show correlation with the subjective
assessment. Furthermore, the prediction filter for these signals gave
useful information on quantitative objective measures for high speed
stability:

• A change in lateral acceleration higher than Δ0H > 0.58 m/s2,
within a time interval of ΔC = 2.85 s was the solution found using
optimization which resulted in the prediction accuracy presented
in Table 9.

• A change in yaw velocity higher than ΔlI > 0.84 deg/s, within
a time interval of ΔC = 2.68 s was the solution found using op-
timization which resulted in the prediction accuracy presented in
Table 10.

Table 8: Loss function, 5! , results.

5!

Longitudinal acceleration, 0G 77.75
Lateral acceleration, 0H -7.50
Vertical acceleration, 0I 201.75
Roll velocity, lG 206.50
Pitch velocity, lH 202.00
Yaw velocity, lI -33.00

Table 9: Confusion matrix of the prediction filter outcome, for the lateral
acceleration signal.

Predicted

Trigger No trigger

Re
al Trigger 144 59

No trigger 598

Table 10: Confusion matrix of the prediction filter outcome, for the yaw velocity
signal.

Predicted

Trigger No trigger

Re
al Trigger 150 53

No trigger 556

Conclusions

The purpose of this study has been to define relevant wind conditions
and to find an objective methodology to evaluate high speed stability.
Due to the subjective nature of the study along with the repeatability of
the test track environment, it was difficult to quantify the total measure-
ment uncertainties accurately. However, based on the extensive data
set, the following conclusions could be drawn:

• The majority of the issues related to high speed stability occurred
in gusty wind conditions. Hence, the analysis of high speed stabil-
ity should include a realistic varying crosswind. The magnitude
of the fluctuating crosswind component should exceed 5 m/s.

• A zero-crossing of the flow angle was seen in 83 % of the cross-
wind gusts above 3 on the Beaufort scale. Although the zero-
crossing did not increase the frequency of subjective trigger events,
it was concluded that this property should be included in flow sim-
ulations to represent realistic wind conditions.

• A mathematical function of the crosswind gust profile was for-
mulated and used to classify the experimental data into four wind
profiles. The profiles showed a close representation of the data
and can be used as boundary conditions in virtual simulations.

• The lateral acceleration and the yaw velocity were the only two
vehicle motions that showed a statistical correlation between high
variations and an increased frequency of stability issues. The
change in longitudinal acceleration had a small yet uncertain cor-
relation, and the roll velocity, pitch velocity, and vertical accelera-
tion showed no correlation between the magnitude variations and
stability issues.

• The predictive filter could predict the majority of the real triggers
using the lateral acceleration and yaw velocity signals. However,
the predictions resulted in more false positive than true positive
triggers. Some of the false triggers could be a result of the differ-
ence in subjective evaluation between drivers and days of driving,
and the uncertainty of the test track data. Nevertheless, it must be
concluded that the filter does not capture the complete subjective
assessment objectively, but that it can be used as a guiding tool to
virtually assess high speed stability.

• The optimization of the prediction filter input parameters resulted
in a solution where a trigger could best be predicted if the change
in lateral acceleration was higher than Δ0H > 0.58 m/s2, within
a time interval of ΔC = 2.85 s, and similarly if the yaw velocity
was higher than ΔlI > 0.84 deg/s, within a time interval of ΔC =
2.68 s. Hence, these values can be used as objective measures to
quantitatively assess high speed stability.

11



References

[1] Baker, C. J. and Reynolds, S. "Wind-induced accidents of road
vehicles". In: Accident Analysis & Prevention 24.6 (1992),
pp. 559–575. doi: 10.1016/0001-4575(92)90009-8.

[2] Kumar, A., Sebben, S., Sällström, E., Jacobson, B. J. H., and
Broniewicz, A. "Analysis of Subjective Qualitative Judgement
of Passenger Vehicle High Speed Drivability due to Aerodynam-
ics". In: Energies 12.14 (2019). doi: 10.3390/en12142839.

[3] Howell, J. and Panigrahi, S. "Aerodynamic Side Forces on Pas-
senger Cars at Yaw". Conference Paper. 2016. doi: 10.4271/
2016-01-1620.

[4] Hucho,W.-H. "Aerodynamics of RoadVehicles". Fourth edition.
SAE International, 1998.

[5] MacAdam, C. C., Sayers, M. W., Pointer, J. D., and Gleason,
M. "Crosswind Sensitivity of Passenger Cars and the Influence
of Chassis and Aerodynamic Properties on Driver Preferences".
In: Vehicle System Dynamics 19.4 (1990), pp. 201–236. doi:
10.1080/00423119008968942.

[6] Barth, R. "Effect of Unsymmetrical Wind Incidence on Aerody-
namic Forces Acting on Vehicle Models and Similar Bodies".
Conference Paper. 1965. doi: https://doi.org/10.4271/
650136.

[7] Milliken, W. F., Dell’Amico, F., and Rice, R. S. "The Static Di-
rectional Stability and Control of the Automobile". Conference
Paper. 1976. doi: 10.4271/760712.

[8] Buchheim, R., Maretzke, J., and Piatek, R. "The Control of
Aerodynamic Parameters Influencing Vehicle Dynamics". In:
SAE Paper (1985), pp. 850279–850279. doi: 10.4271/850279.

[9] Howell, J. and Le Good, G. "The Influence of Aerodynamic Lift
on High Speed Stability". In: SAE Technical Paper SeriesTech-
nial 01.0651 (1999), pp. 8–8. doi: 10.4271/1999-01-0651.

[10] Windsor, S. and Le Good, G. "The Influence of Aerodynamic
Lift on High Speed Stability". In: Autotech 93. Vol. 01, pp. 8–8.

[11] Sims-Williams, D. "Cross Winds and Transients: Reality, Sim-
ulation and Effects". In: SAE International Journal of Passen-
ger Cars - Mechanical Systems 4.1 (2011), pp. 172–183. doi:
10.4271/2011-01-0172.

[12] Chadwick, A., Garry, K., andHowell, J. "Transient Aerodynamic
Characteristics of Simple Vehicle Shapes by the Measurement
of Surface Pressures". In: SAE Technical Paper Series (2000).
doi: https://doi.org/10.4271/2000-01-0876.

[13] Hucho, W. H. and Emmelmann, H. J. "Theoretical Prediction
of the Aerodynamic Derivatives of a Vehicle in Cross Wind
Gusts". In: SAE Technical Paper Series 730232 (1973), pp. 892–
900. doi: 10.4271/730232.

[14] Cooper, K. R. andWatkins, S. "TheUnsteadyWind Environment
of Road Vehicles, Part One: A Review of the On-road Turbulent
Wind Environment". In: SAE Technical Paper Series. doi: 10.
4271/2007-01-1236.

[15] Wordley, S. and Saunders, J. W. "On-road Turbulence". In: SAE
Int. J. Passeng. Cars – Mech. Syst. 1.1 (2008), pp. 341–360. doi:
https://doi.org/10.4271/2008-01-0475.

[16] Wordley, S. and Saunders, J. W. "On-road Turbulence: Part 2".
In: SAE International Journal of Passenger Cars - Mechanical
Systems 2.1 (2009), pp. 111–137. doi: 10.4271/2009-01-
0002.

[17] Watkins, S. andCooper, K. R. "TheUnsteadyWind Environment
of Road Vehicles, Part Two: Effects on Vehicle Development and
Simulation of Turbulence". In: SAE Technical Paper Series. doi:
10.4271/2007-01-1237.

[18] Wagner, A. and Wiedemann, J. "Crosswind Behavior in the
Driver ’s Perspective". In: SAE Technical Paper Series 724
(2002). doi: 10.4271/2002-01-0086.

[19] Theissen, P. “Unsteady Vehicle Aerodynamics in Gusty Cross-
wind”. PhD thesis. Technical University of Munich, 2012.

[20] Fukagawa, T., Shimokawa, S., Itakura, E., Nakatani, H., and
Kitahama,K. "Modeling of TransientAerodynamic Forces based
on Crosswind Test". In: SAE Int. J. Passeng. Cars - Mech. Syst.
9.2 (2016), pp. 572–582. doi: https://doi.org/10.4271/
2016-01-1577.

[21] Nakasato, K. et al. "Coupled 6DoF Motion and Aerodynamic
Crosswind Simulation Incorporating Driver Model". In: SAE
Int. J. Passeng. Cars - Mech. Syst. 10.2 (2017), pp. 662–670.
doi: https://doi.org/10.4271/2017-01-1525.

[22] Lewington, N., Ohra-aho, L., Lange, O., and Rudnik, K. "The
Application of a One-Way Coupled Aerodynamic and Multi-
Body Dynamics Simulation Process to Predict Vehicle Response
during a Severe Crosswind Event". Conference Paper. 2017. doi:
https://doi.org/10.4271/2017-01-1515.

[23] "ISO 12021:2010 Road vehicles – Sensitivity to lateral wind
– Open-loop test method using wind generator input". Interna-
tional Organization for Standardization, 2010.

[24] Favre, T. and Efraimsson, G. "An Assessment of Detached-Eddy
Simulations of Unsteady Crosswind Aerodynamics of Road
Vehicles". In: Flow, Turbulence and Combustion 87.1 (2011),
pp. 133–163. doi: 10.1007/s10494-011-9333-4.

[25] Favre, T. “Aerodynamics simulations of ground vehicles in un-
steady crosswind”. PhD thesis. Royal University of Technology,
2011.

[26] Forbes, D. C., Page, G. J., Passmore,M.A., andGaylard, A. P. "A
Fully Coupled, 6 Degree-of-Freedom, Aerodynamic and Vehi-
cle Handling Crosswind Simulation using the DrivAer Model".
In: SAE International Journal of Passenger Cars - Mechanical
Systems 9.2 (2016). doi: 10.4271/2016-01-1601.

[27] Carbonne, L., Winkler, N., and Efraimsson, G. "Use of Full
Coupling ofAerodynamics andVehicle Dynamics for Numerical
Simulation of the Crosswind Stability of Ground Vehicles". In:
SAE International Journal of Commercial Vehicles 9.2 (2016),
pp. 359–370. doi: 10.4271/2016-01-8148.

[28] Huang, T., Li, S., Wan, Z., and Gu, Z. "Investigation of ve-
hicle stability under crosswind conditions based on coupling
methods". In: Proceedings of the Institution of Mechanical En-
gineers, Part D: Journal of Automobile Engineering (2019). doi:
10.1177/0954407018822424.

[29] Wojciak, J. “QuantitativeAnalysis ofVehicleAerodynamics dur-
ing Crosswind Gusts”. PhD thesis. Technical University of Mu-
nich, 2012.

[30] Chandrasekaran, K., Rao, N., Palraj, S., Kurella, C., and Leb-
bai, M. n. "Objective Drivability Evaluation on Compact SUV
andComparisonwith SubjectiveDrivability". Conference Paper.
2017. doi: 10.4271/2017-26-0153.

[31] Willumeit, H. P., Müller, K., Dödlbacher, G., and Matheis,
A. "Method to Correlate Vehicular Behaviour and Driver’s
Judgement under Side Wind Disturbances". In: Vehicle Sys-
tem Dynamics 17 (1988), pp. 508–524. doi: 10 . 1080 /
00423118808969292.

[32] Aeroprobe Corporation. "Standard Probe User Manual, Docu-
ment No. 90001-02-UMN-02". 2015.

[33] Schuetz, T. "Aerodynamics of Road Vehicles". Fifth Edition.
2015. isbn: 978-0-7680-7977-7. doi: 10.4271/r-430.

12

https://doi.org/10.1016/0001-4575(92)90009-8
https://doi.org/10.3390/en12142839
https://doi.org/10.4271/2016-01-1620
https://doi.org/10.4271/2016-01-1620
https://doi.org/10.1080/00423119008968942
https://doi.org/https://doi.org/10.4271/650136
https://doi.org/https://doi.org/10.4271/650136
https://doi.org/10.4271/760712
https://doi.org/10.4271/850279
https://doi.org/10.4271/1999-01-0651
https://doi.org/10.4271/2011-01-0172
https://doi.org/https://doi.org/10.4271/2000-01-0876
https://doi.org/10.4271/730232
https://doi.org/10.4271/2007-01-1236
https://doi.org/10.4271/2007-01-1236
https://doi.org/https://doi.org/10.4271/2008-01-0475
https://doi.org/10.4271/2009-01-0002
https://doi.org/10.4271/2009-01-0002
https://doi.org/10.4271/2007-01-1237
https://doi.org/10.4271/2002-01-0086
https://doi.org/https://doi.org/10.4271/2016-01-1577
https://doi.org/https://doi.org/10.4271/2016-01-1577
https://doi.org/https://doi.org/10.4271/2017-01-1525
https://doi.org/https://doi.org/10.4271/2017-01-1515
https://doi.org/10.1007/s10494-011-9333-4
https://doi.org/10.4271/2016-01-1601
https://doi.org/10.4271/2016-01-8148
https://doi.org/10.1177/0954407018822424
https://doi.org/10.4271/2017-26-0153
https://doi.org/10.1080/00423118808969292
https://doi.org/10.1080/00423118808969292
https://doi.org/10.4271/r-430


[34] Dewesoft GmbH. "DS-IMU/Gyro User Manual". 2013.

[35] Feldt, R. "BlackBoxOptim.jl". https : / / github . com /
robertfeldt/BlackBoxOptim.jl. 2018.

Contact Information

Adam Brandt
Dept. of Mechanics and Maritime Sciences
Chalmers University of Technology
412 96 Gothenburg, Sweden
adam.brandt@chalmers.se

13

https://github.com/robertfeldt/BlackBoxOptim.jl
https://github.com/robertfeldt/BlackBoxOptim.jl

	Introduction
	Methodology
	Experimental Setup
	Test Vehicle
	Instrumentation
	Test Track and Test Procedure

	Post-processing
	Subjective Trigger Event Analysis
	All Data Analysis
	Predictive Classification Filter of Subjective Triggers


	Results
	Wind Gust Conditions
	Crosswind Correlation to High Speed Stability
	Crosswind Gust Profiles

	Quantitative Assessment
	Vehicle Motion Correlation to High Speed Stability
	Prediction of Event Triggers


	Conclusions
	Contact Information

