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Abstract
We analyze an exchange algorithm for the numerical solution total-variation regular-
ized inverse problems over the spaceM(Ω) of Radon measures on a subset Ω of Rd .
Our main result states that under some regularity conditions, the method eventually
converges linearly. Additionally, we prove that continuously optimizing the ampli-
tudes of positions of the target measure will succeed at a linear rate with a good
initialization. Finally, we propose to combine the two approaches into an alternating
method and discuss the comparative advantages of this approach.

Keywords Total variation minimization · Inverse problems · Superresolution ·
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1 Introduction

1.1 The problem

The main objective of this paper is to develop and analyze iterative algorithms to solve
the following infinite dimensional problem:
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inf
μ∈M(Ω)

J (μ)
def.= ‖μ‖M + f (Aμ), (P(Ω))

where Ω is a bounded open domain of Rd , M(Ω) is the set of Radon measures on
Ω , ‖μ‖M is the total variation (or mass) of the measure μ, f : Rm → R ∪ {+∞} is
a convex lower semi-continuous function with non-empty domain and A :M(Ω) →
R
m is a linear measurement operator.
An important property of problem (P(Ω)) is that at least one of its solutions μ�

has a support restricted to s distinct points with s ≤ m (see e.g. [3,14,33]), i.e. is of
the form

μ� =
s∑

i=1
α�
i δξi , (1)

with ξi ∈ Ω and α�
i ∈ R. This property motivates us to study a class of exchange

algorithms. They were introduced as early as 1934 [26] and then extended in various
manners [25]. They consist in discretizing the domain Ω coarsely and then refining
it adaptively based on the analysis of so-called dual certificates. If the refinement
process takes place around the locations (ξi ) only, these methods considerably reduce
the computational burden compared to a finely discretized mesh.

Our main results consist in a set of convergence rates for this algorithm that depend
on the regularity of f and on the non-degeneracy of a dual certificate at the solution.
We also show the linear convergence rate for first order algorithms that continuously
vary the coefficients αi and xi of a discrete measure. Finally, we show that algorithms
alternating between an exchange step and a continuous method share the best of
both worlds: the global convergence guarantees of exchange algorithms together with
the efficiency of first order methods. This yields a fast adaptive method with strong
convergence guarantees for total variation minimization and related problems.

1.2 Applications

Our initial motivation to study the problem (P(Ω)) stems from signal processing
applications. We recover an infinite dimensional version of the basis pursuit problem
[6] by setting

f (x) = ι{y}(x) =
{
0 if x = y

+∞ otherwise.

Similarly, the choice f (x) = τ
2‖x − y‖22, leads to an extension of the LASSO [29]

called Beurling LASSO [8]. Both problems proved to be extremely useful in engi-
neering applications. They got a significant attention recently thanks to theoretical
progresses in the field of super-resolution [5,8,12,28]. Our results are particularly
strong for the quadratic fidelity term.

Another less popular application in approximation theory [14], which was revived
recently [31], is “generalized” total variation minimization. Given a surjective Fred-
holm operator L : B(Ω) →M(Ω), where B(Ω) is a suitably defined Banach space,
we consider the following problem
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inf
u∈B(Ω)

‖Lu‖M + f (Au). (2)

The solutions of this problem can be proved to be (generalized) splines with free knots
[31]. Following [15] and letting L+ denote a pseudo-inverse of L , solving this problem
can be rephrased as

inf
μ∈M(Ω),uK∈ker(L)

‖μ‖M + f (A(L+μ+ uK )), (3)

which is a variant of (P(Ω)) that can also be solved with the proposed algorithms.

1.3 Numerical approaches in signal processing

The progresses on super-resolution [5,8,12,28] motivated researchers from this field
to develop numerical algorithms for the resolution of problem (P(Ω)). By far the
most widespread approach is to use a fine uniform discretization and solve a finite
dimensional problem. The complexity of this approach is however too large if one
wishes high precision solutions. This approach was analyzed from a theoretical point
of view in [12,27] for instance. The first papers investigating the use of (P(Ω)) for
super-resolution purposes advocated the use of semi-definite relaxations [5,28], which
are limited to specific measurement functions and domains, such as trigonometric
polynomials on the 1D torusT. The limitationswere significantly reduced in [9], where
the authors suggested the use of Lasserre hierarchies. These methods are however
currently unable to deal with large scale problems. Another approach suggested in
[4], consists in adding one point to a discretization set iteratively, where a so-called
dual certificate is maximal. The weights of a measure supported on the set of added
points are then updated using an ad-hoc rule. The authors refer to this algorithm as a
mix between a Frank–Wolfe (or conditional gradient) algorithm and a LASSO type
method. More recently, [30] began investigating the use of methods that continuously
vary the positions (xi ) and amplitudes (αi ) of discrete measures parameterized asμ =∑s

i=1 αiδxi . The authors gave sufficient conditions for a simple gradient descent on the
product-space (α, x) to converge. In [2] and [10], this method was used alternatively
with a Frank-Wolfe algorithm, the idea being to first add Dirac masses roughly at the
right locations and then to optimize their locations and position continuously, leading
to promising numerical results. Surprisingly enough, it seems that the connection
with the mature field of semi-infinite programming has been ignored (or not explicitly
stated) in all the mentioned references.

1.4 Some numerical approaches in semi-infinite programming

A semi-infinite program [17,25] is traditionally defined as a problem of the form

min
q∈Q

c(x,q)≤0,x∈Ω

u(q) (SIP[Ω])
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whereQ andΩ are subsets ofRm andRn respectively,u : Q → R and c : Ω×Q → R

are functions. The term semi-infinite stems from the fact that the variable q is finite-
dimensional, but it is subject to infinitely many constraints c(x, q) ≤ 0 for x ∈ Ω .
In order to see the connection between the semi-infinite program (SIP[Ω]) and our
problem (P(Ω)), we can formulate its dual, which reads as

sup
q∈Rm ,‖A∗q‖∞≤1

− f ∗(q). (D(Ω))

This dual will play a critical role in all the paper and it is easy to relate it to a SIP by
setting Q = R

m , u = f ∗ and c(x, q) = |(A∗q)(x)| − 1.
Many numerical methods have been and are still being developed for semi-infinite

programs and we refer the interested reader to the excellent chapter 7 of the survey
book [25] for more insight.We sketch below two classes of methods that are of interest
for our concerns.

1.4.1 Exchange algorithms

A canonical way of discretizing a semi-infinite program is to simply control finitely
many of the constraints, say c(x, q) ≤ 0 for x ∈ Ω0 ⊆ Ω , where Ω0 is finite.
The discretized problem SIP[Ω0] can then be solved by standard proximal methods
or interior point methods. In order to obtain convergence towards an exact solution
of the problem, it is possible to choose a sequence (Ωk) of nested sets such that⋃

k Ωk is dense in Ω . Solving the problems SIP[Ωk] for large k however leads to a
high numerical complexity due to the high number of discretization points. The idea
of exchange algorithms is to iteratively update the discretization sets Ωk in a more
clever manner than simply making them denser. A generic description is given by
Algorithm 1.

Algorithm 1 A Generic Exchange Algorithm
1: Input: Objective function u, Constraint function c, Constraint sets Ω and Q, Initial discretization set

Ω0.
2: while Not converged do
3: Set qk ∈ argmin

q∈Q
c(x,q)≤0,x∈Ωk

u(q)

4:
5: Set Ωk+1 = Update_Rule(Ωk , qk , k).
6: end while
7: Output: The last iterate q∞.

In this paper, we consider Update_Rules of the form

Ωk+1 ⊂ Ωk ∪ {x1k , . . . , x pk
k },

where the points xik are local maximizers of c(·, qk). At each iteration, the set of
discretization points can therefore be updated by adding and dropping a few prescribed
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points, explaining the name ’exchange’. The simplest rule consists of adding the single
most violating point, i.e.

Ωk+1 = Ωk ∪ argmax
x∈Ω

c(x, qk). (4)

It seems to be the first exchange algorithm and it first appeared under a less general
form as the Remez algorithm in the 30’s [26]. It also shares similarities with the
Frank-Wolfe (a.k.a. conditional gradient) method [16], which iteratively adds a point
at a location where the constraint is most violated. It however differs in the way the
solution qk is updated. The connection was discussed recently in [13] for problems
where the total variation term is used as a constraint. The use of the Frank-Wolfe
algorithm for penalized total variation problems was also clarified recently in [10]
using an epigraphical lift.

The update rule (4) is sufficient to guarantee convergence in the generic case and to
ensure a decay of the cost function in O

( 1
k

)
, see [20]. Although ’exchange’ suggests

that points are both added and subtracted, methods for which Ωk ⊆ Ωk+1 are also
coined exchange algorithms. The use of such rules often leads to easier convergence
analyses, since we get monotonicity of the objective values u(qk) for free [17]. Other
examples [18] include only adding points if they exceed a certainmargin, i.e. c(x, y) ≥
εk , or all local maxima of c(qk, ·). In the case of convex functions f , algorithms
that both add and remove points can be derived and analyzed with the use of cutting
plane methods. All these instances have their pros and cons and perform differently on
different types of problems. Since a semi-infinite programbasically allows tominimize
arbitrary continuous and finite dimensional problems, a theoretical comparison should
depend on additional properties of the problem.

1.4.2 Continuous methods

Every iteration of an exchange algorithm can be costly: it requires solving a con-
vex program with a number of constraints that increases if no discretization point
is dropped. In addition, the problems tend to get more and more degenerate as the
discretization points cluster, leading to numerical inaccuracies. In practice it is there-
fore tempting to use the following two-step strategy: i) find an approximate solution
μk = ∑pk

i=1 αi
kδxik

of the primal problem (P(Ω)) using k iterations of an exchange
algorithm and ii) continuously move the positions X = (xi ) and amplitudes α = (αi )

starting from (αk, Xk) to minimize (P(Ω)) using a nonlinear programming approach
such as a gradient descent, a conjugate gradient algorithm or a Newton approach.

This procedure supposes that the output μk of the exchange algorithm has the right
number pk = s of Dirac masses, that their amplitudes satisfy sign(αi ) = sign(α�

i )

and that μk lies in the basin of attraction of the optimization algorithm around the
global minimum μ�. To the best of our knowledge, knowing a priori when those
conditions are met is still an open problem and deciding when to switch from an
exchange algorithm to a continuous method therefore relies on heuristics such as
detecting when the number of masses pk stagnates for a few iterations. The cost
of continuous methods is however much smaller than that of exchange algorithms
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since they amount to work over a small number s(d + 1) of variables. In addition,
the instabilities mentioned earlier are significantly reduced for these methods. This
observation was already made in [2,10] and proved in [30] for specific problems.

1.5 Contribution

Many recent results in the field of super-resolution provide sufficient conditions for a
non degenerate source condition to hold [5,11,23,28]. The non degeneracy means that
the solution q� of (D(Ω)) is unique and that the dual certificate |A∗q�| reaches 1 at
exactly s points, where it is strictly concave. The main purpose of this paper is to study
the implications of this non degeneracy for the convergence of a class of exchange
algorithms and for continuous methods based on gradient descents. Our main results
are as follows:

1. We show an eventual linear convergence rate of a class of exchange algorithms for
convex functions f with Lipschitz continuous gradient. More precisely, we prove
that after a finite number of iterations N the algorithm outputs vectors qk such that
the set

Xk
def.= {x ∈ Ω | x local maximizer of

∣∣A∗qk
∣∣ , |A∗qk |(x) ≥ 1} (5)

contains exactly s-points (x1k , . . . , x
s
k ).

Letting μ̂k = ∑s
i=1 αk

i δxki
denote the solution of the finite dimensional problem

infμ∈M(Xk ) ‖μ‖M+ f (Aμ), we also show the linear convergence rate of the cost
function J (μ̂k) to J (μ�) and of the support in the following sense: after a number N
of initial iterations, it will take no more that kτ = C log(τ−1) iterations to ensure
that the Hausdorff distance between the sets Xkτ+N and ξ is smaller than τ . A
similar statement holds for the coefficient vectorsαk . Of importance, let usmention
that similar results were derived under slightly different conditions by Pieper and
Walter in [22]. The two works were carried out independently at the same time.

2. We also show that a well-initialized gradient descent algorithm on the pair (α, x)
converges linearly to the true solution μ� and explicit the width of the basin of
attraction.

3. We then show how the proposed guarantees may explain the success of methods
alternating between exchange methods and continuous methods at each step, in a
spirit similar to the sliding Frank-Wolfe algorithm [10].

4. We finally illustrate the above results on total variation based problems in 1D and
2D.

2 Preliminaries

2.1 Notation

In all the paper,Ω designs an open bounded domain ofRd . The boundedness assump-
tions plays an important role to control the number of elements in the discretization
procedures. A grid Ωk is a finite set of points in Ω . Its cardinality is denoted by |Ωk |.
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The distance from a set Ω2 to a set Ω1 is defined by

dist(Ω1|Ω2) = sup
x2∈Ω2

inf
x1∈Ω1

‖x1 − x2‖2. (6)

Note that this definition of distance is not symmetric: in general .
We let C0(Ω) denote the set of continuous functions on Ω vanishing on the bound-

ary. The set of Radon measures M(Ω) can be identified as the dual of C0(Ω), i.e.
the set of continuous linear forms on C0(Ω). For any sub-domain Ωk ⊂ Ω , we let
M(Ωk) denote the set of Radon measures supported on Ωk . For p ∈ [1,+∞], the
L p-norm of a function u ∈ C0(Ω) is denoted by ‖u‖p. The total variation of a measure
μ ∈M(Ω) is denoted ‖μ‖M. It can be defined through duality as

‖μ‖M = sup
u∈C0(Ω)
‖u‖∞≤1

μ(u). (7)

The 
p-norm of a vector x ∈ R
m is also denoted ‖x‖p. The Frobenius norm of a

matrix M is denoted by ‖M‖F .
Let f : Rm → R ∪ {+∞} denote a convex lower semi-continuous function with

non-empty domain dom( f ) = {x ∈ R
m, f (x) < +∞}. Its subdifferential is denoted

∂ f . Its Fenchel transform f ∗ is defined by

f ∗(y) = sup
x∈Rm

〈x, y〉 − f (x).

If f is differentiable, we let f ′ ∈ R
m denote its gradient and if it is twice differentiable,

we let f ′′ ∈ R
m×m denote its Hessian matrix. We let ‖ f ′‖∞ = supx∈Ω ‖ f ′(x)‖2 and

‖ f ′′‖∞ = supx∈Ω ‖ f ′′(x)‖, where ‖ f ′′(x)‖ is the largest singular value of f ′′(x). A
convex function f is said to be l-strongly convex if

f (x2) ≥ f (x1)+ 〈η, x2 − x1〉 + l

2
‖x2 − x1‖22 (8)

for all (x1, x2) ∈ R
m ×R

m and all η ∈ ∂ f (x1). A differentiable function f is said to
have an L-Lipschitz gradient if it satisfies ‖ f ′(x1)− f ′(x2)‖2 ≤ L‖x1 − x2‖2. This
implies that

f (x2) ≤ f (x1)+〈 f ′(x1), x2− x1〉+ L

2
‖x2− x1‖22 for all (x1, x2) ∈ R

m ×R
m . (9)

We recall the following equivalence [19]:

Proposition 1 Let f : Rm → R ∪ {+∞} denote a convex and closed function with
non empty domain. Then the following two statements are equivalent:

– f has an L-Lipschitz gradient.
– f ∗ is 1

L -strongly convex.
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The linear measurement operators A considered in this paper can be viewed as
a collection of m continuous functions (ai )1≤i≤m . For x ∈ Ω , the notation A(x)
corresponds to the vector [a1(x), . . . , am(x)] ∈ R

m .

2.2 Existence results and duality

In order to obtain existence and duality results, we will nowmake further assumptions.

Assumption 1 f : Rm → R ∪ {∞} is convex and lower bounded. In addition, we
assume that either dom( f ) = R

m or that f is polyhedral (that is, its epigraph is a
finite intersection of closed halfspaces).

Assumption 2 The operator A is weak-∗-continuous. Equivalently, the measurement
functionals a∗i defined by

〈
a∗i , μ

〉 = (A(μ))i are given by

〈
a∗i , μ

〉 =
∫

Ω

aidμ,

for functions ai ∈ C0(Ω). In addition, we assume that A is surjective on R
m .

The following results relate the primal and the dual.

Proposition 2 (Existence and strong duality) Under Assumptions 1 and 2, the follow-
ing statements are true:

– The primal problem (P(Ω)) and its dual (D(Ω)) both admit a solution.
– The following strong duality result holds

min
μ∈M(Ω)

‖μ‖M(Ω) + f (Aμ) = max
q∈Rm ,‖A∗q‖∞≤1

− f ∗(q). (10)

– Let (μ�, q�) denote a primal-dual pair. They are related as follows

A∗q� ∈ ∂‖·‖M(μ�) and − q� ∈ ∂ f (Aμ�). (11)

Proof The stated assumptions ensure the existence of a feasiblemeasureμ. In addition,
the primal function is coercive since f is bounded below. SinceM(Ω) can be viewed
as the dual of the Banach space C0(Ω), we further have that bounded sets in M(Ω)

are compact in the weak-∗-topology (this is the the Banach-Alaoglu theorem). Using
these three facts, a standard argument now allows one to deduce the existence of a
primal solution. The existence of a dual solution stems from the compactness of the
set {q ∈ R

m, ‖A∗q‖∞ ≤ 1} (which itself follows from the surjectivity of A) and the
continuity of f ∗ on its domain. The strong duality result follows from [1, Thm 4.2].
The primal-dual relationship directly derives from the first order optimality conditions.

��
The left inclusion in equation (11) plays an important role, which is well detailed in

[12]. It implies that the support of μ� satisfies: supp(μ�) ⊆ {x ∈ Ω, |A∗q�(x)| = 1}.
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3 An exchange algorithm and its convergence

3.1 The algorithm

We assume that an initial grid Ω0 ⊆ Ω is given (e.g. a coarse Euclidean grid). Given
a discretization Ωk , we can define a discretized primal problem (P(Ωk))

inf
μ∈M(Ωk )

‖μ‖M + f (Aμ), (P(Ωk))

and its associated dual (D(Ωk))

sup
q∈Rm ,|A∗q(x)|≤1, ∀x∈Ωk

− f ∗(q). (D(Ωk))

In this paper, we will investigate the exchange rule below:

Ωk+1 = Ωk ∪ Xk where Xk is defined in (5). (12)

The implementation of this rule requires finding Xk , the set of all the local maximizers
of |A∗qk | exceeding 1.

3.2 A generic convergence result

The exchange algorithm above converges under quite weak assumptions. For instance,
it is enough to assume that the function f is differentiable.

Assumption 3 The data fitting function f : R
m → R is differentiable with L-

Lipschitz continuous gradient.

Alternatively, we may assume that the initial set Ω0 is fine enough, which in par-
ticular implies that |Ω0| ≥ m.

Assumption 4 The initial set Ω0 is such that A restricted to Ω0 is surjective.

We may now present and prove our first result.

Theorem 1 (Generic convergence)Under Assumptions 1, 2 and 3 or 4, a subsequence
of (μk, qk) will converge in the weak-∗-topology towards a solution pair (μ�, q�) of
(P(Ω)) and (D(Ω)), as well as in objective function value. If the solution of (P(Ω))
and/or (D(Ω)) is unique, the entire sequence will converge.

Proof First remark that the sequence (‖μk‖M+ f (Aμk))k∈N is non-increasing since
the spacesM(Ωk) are nested. Due to the boundedness below of f , the same must be
true for (‖μk‖M). Hence there exists a subsequence (μk), which we do not relabel,
that weak-∗ converges towards a measure μ∞.

Now, we will prove that the sequence of dual variables (qk)k∈N is bounded. If
Assumption 3 is satisfied, then f ∗ is strongly convex and since 0 is a feasible point,
we must have qk ∈ {q ∈ R

m, f ∗(q) ≤ f ∗(0)}, which is bounded. Alternatively,
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if Assumption 4 is satisfied, notice that 1 ≥ ‖A∗kqk‖∞ ≥ ‖A∗0qk‖∞. Since A0 is
surjective, the previous inequality implies that (‖qk‖2)k∈N is bounded. Hence, in both
cases, the sequence (qk)k∈N converges up to a subsequence to a point q∞.

The key is now to prove that ‖A∗q∞‖∞ ≤ 1. To this end, let us first argue that the
family (A∗qk)k∈N is equicontiuous. For this, let ε > 0 be arbitrary. Since the functions
ai ∈ C0(Ω) all are uniformly continuous, there exists a δ > 0 with the property

‖x − y‖2 < δ ⇒ |ai (x)− ai (y)| < ε

supk ‖qk‖1
for all i .

Consequently,

‖x − y‖2 < δ ⇒ ∣∣(A∗qk)(x)− (A∗qk)(y)
∣∣

=
∣∣∣∣∣

m∑

i=1
(ai (x)− ai (y))qk(i)

∣∣∣∣∣ ≤
m∑

i=1
|ai (x)− ai (y)| |qk(i)|

<
ε

supk ‖qk‖1
m∑

i=1
|qk(i)| ≤ ε. (13)

Due to the convergence of (qk)k∈N, the sequence (A∗qk)k∈N is converging strongly
to A∗q∞. We will now prove that ‖A∗q∞‖∞ ≤ 1. If for some k, ‖A∗qk‖∞ ≤ 1, we
will have A∗q
 = A∗qk for all 
 ≥ k, and in particular q∞ = qk and thus ‖A∗q∞‖ ≤ 1.
Hence, we may assume that ‖A∗qk‖∞ > 1 for each k, i.e. that we add at least one
point to Ωk in each iteration.

Now, towards a contradiction, assume that ‖A∗q∞‖∞ = 1+ 2ε for an ε > 0. Set δ
as in (13). For each k ∈ N, let x�

k be the element in argmaxx |(A∗qk)(x)|which has the
largest distance to Ωk . Due to a
 ∈ C0(Ω) for each k, there needs to exist a compact
subset C ⊆ Ω such that (x�

k )k ⊆ C . Indeed, there exists for each 
 = 1, . . . ,m a C


such that |a
(x)| ≤ (supk ‖qk‖1)−1 for all x /∈ C
. Now, if x /∈ C
def.= ⋃m


=1 C
, we
get

∣∣A∗qk(x)
∣∣ =

∣∣∣∣∣

m∑

i=1
ai (x)qk(i)

∣∣∣∣∣ ≤
m∑

i=1
|ai (x)| |qk(i)| < 1

supk ‖qk‖1
m∑

i=1
|qk(i)| ≤ 1

for every k. Since
∣∣A∗qk(x�

k )
∣∣ > 1, we conclude (x�

k )k ⊆ C . Consequently, a subse-
quence (which we do not rename) of (x�

k ) must converge. Thus, for some k0 and every
k > k0, we have ‖x�

k − x�
k0
‖2 < δ. We then have

‖A∗qk‖∞ = ∣∣(A∗qk)(x�
k )
∣∣ <

∣∣(A∗qk)(x�
k0)

∣∣+ ε ≤ 1+ ε.

In the last estimate, we used the constraint of (D(Ωk)) and the fact that x�
k0
∈ Ωk .

Since the last inequality holds for every k ≥ k0, we obtain

‖A∗q∞‖∞ = lim
k→∞‖A∗qk‖∞ ≤ 1+ ε,
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where we used the fact that (A∗qk)k converges strongly towards A∗q∞. This is a
contradiction, and hence, we do have ‖A∗q∞‖∞ ≤ 1.

Overall, we proved that the primal-dual pair (μ∞, q∞) is feasible. It remains to
prove that it is actually a solution. To do this, let us first remark that ‖μ∞‖M +
f (Aμ∞) ≥ − f ∗(q∞) by weak duality. To prove the second inequality, first notice
that theweak-∗-continuity of A implies that Aμk → Aμ∞. Assumption 1 furthermore
implies that f is lower semi-continuous. As a supremum of linear functions, so is f ∗.
Since also qk → q∞, we conclude

f ∗(q∞)+ f (Aμ∞) ≤ lim inf
k→∞ f ∗(qk)+ f (Aμk).

Assumptions 1 and 2 together with Proposition 2 imply exact duality of the discretized
problems. This means f ∗(qk)+ f (Aμk) = −‖μk‖M. Since the norm is weak-∗-l.s.c.
, we thus obtain

lim inf
k→∞ f ∗(qk)+ f (Aμk) = lim inf

k→∞ −‖μk‖M ≤ − lim inf
k→∞ ‖μk‖M ≤ −‖μ∞‖M.

Reshuffling these inequalities yields‖μ∞‖M+ f (Aμ∞) ≤ − f ∗(q∞), i.e., the reverse
inequality. Thus,μ∞ and q∞ fulfill the duality conditions, and are solutions. The final
claim follows from a standard subsequence argument. ��

Remark 1 Let us mention that the convergence result in Theorem 1 and its proof, is
not new, see e.g. [24]. The proof technique can be applied to prove similar statements
for other refinement rules. For instance, the result still holds if we add the single most
violating point:

Ωk+1 ⊇ Ωk ∪ {xk} with xk ∈ argmax
x∈Ω

|A∗qk |. (14)

The result that we have just shown is very generally applicable. It however does
not give us any knowledge of the convergence rate. The next section will be devoted
to proving a linear convergence rate in a significant special case.

3.3 Non degenerate source condition

The idea behind adding points to the grid adaptively is to avoid a uniform refinement,
which results in computationally expensive problems (D(Ωk)). However, there is a
priori no reason for the exchange rule not to refine in a uniformmanner. In this section,
we prove that additional assumptions improve the situation. First, we will from now
on work under Assumption 3. It implies that the dual solutions qk are unique for every
k, since Proposition 1 ensures the strong convexity of the Fenchel conjugate f ∗. We
furthermore assume that the functions a j are smooth.

Assumption 5 (Assumption on the measurement functionals) The measurement func-

tions a j all belong to C20 (Ω)
def.= C0(Ω) ∩ C2(Ω) and their first and second order
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derivatives are uniformly bounded on Ω . We hence may define

κ
def.= sup

‖q‖2≤1
‖A∗q‖∞ = sup

x∈Ω

‖A(x)‖2, κ∇
def.= sup

‖q‖2≤1
‖(A∗q)′‖∞,

κhess
def.= sup

‖q‖2≤1
‖(A∗q)′′‖∞.

We also assume the following regularity condition on the solution q� of (D(Ω)),
and its corresponding primal solution μ�.

Assumption 6 (Assumption on the primal-dual pair) We assume that (P(Ω)) admits
a unique s-sparse solution μ� supported on ξ = (ξi )

s
i=1 ∈ Ωs :

μ� =
s∑

i=1
α�
i δξi . (15)

Let q� denote the associated dual pair. We assume that the only points x for which
|A∗q�(x)| = 1 are the points in ξ , and that the second derivative of |A∗q�| is negative
definite in each point ξi . It follows that there exists τ0 > 0 and γ > 0 such that

|A∗q�|′′(x) � −γ Id and |A∗q�|(x) ≥ γ τ 20

2
for x with ≤ τ0. (16)

∣∣(A∗q�)(x)
∣∣ ≤ 1− γ τ 20

2
for x with ≥ τ0. (17)

We note that if Equations (16) and (17) are valid for some (γ, τ0), they are also valid
for any (γ̃ , τ̃0) with γ̃ ≤ γ and τ̃0 ≤ τ0.

Assumption 6 may look very strong and hard to verify in advance. Recent advances
in signal processing actually show that it is verified under clear geometrical conditions.
First, therewill always exists atmostm-sparse solutions to problem (P(Ω)), [3,14,33].
Therefore, the main difficulty comes from the uniqueness of the primal solution and
from the two regularity conditions (16) and (17). These assumptions are called non-
degenerate source condition of the dual certificate A∗q� [12]. Many results in this
direction have been shown for f = ξ{b} or f (·) = L

2 ‖ · −b‖22, where b = Aμ0 with
μ0 a finitely supported measure. The papers [5,11,28] deal with different Fourier-type
operators, whereas [23] provides an analysis for arbitrary integral operators sampled
at random.

3.4 Auxiliary results

In this and the following sections, we always work under Assumptions 1, 2, 3 without
further notice. We derive several lemmata that are direct consequences of the above
assumptions. The first two rely strongly on the Lipschitz regularity of the gradient of
f .
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Lemma 1 (Boundedness of the dual variables) Let q̄ = argminq∈Rm f ∗(q) denote the
prox-center of f ∗. For all k ∈ N, we have

‖qk‖2 ≤
√
2L( f ∗(0)− f ∗(q̄))+ ‖q̄‖2 def.= R. (18)

Proof of Lemma 1 For all k ∈ N, we have 0 ∈ {q ∈ R
m, ‖A∗kq‖∞ ≤ 1}, hence

f ∗(qk) ≤ f ∗(0). By strong convexity of f ∗ and optimality of q̄ and qk , we get:

f ∗(0) ≥ f ∗(qk) ≥ f ∗(q̄)+ 1

2L
‖qk − q̄‖22. (19)

Therefore ‖qk − q̄‖2 ≤ √
2L( f ∗(0)− f ∗(q̄)) and the conclusion follows from a

triangle inequality. ��
Proposition 3 Let q� be the solution of (D(Ω)). Let

ρ
def.=

√
sup

w∈∂ f ∗(q�)

−L 〈w, q�〉.

Then for any q, we have

f ∗(q�)− f ∗(q)+ 1

2L
‖q − q�‖22 ≤ ρ2L−1(sup

x∈ξ

|A∗q|(x)− 1).

Proof Let M = {q ∈ R
m, f ∗(q) ≤ f ∗(q�)} denote the sub-level set of f ∗ and

D = {
q ∈ R

n | supx∈ξ |A∗q|(x) ≤ 1
}
. We first claim that M and D only have the

point q� in common. Indeed μ� solves the problem P(ξ) and by strong duality of
the problem restricted to M(ξ), q� solves D(ξ). By strong convexity of f , q� is the
unique solution D(ξ), this exactly means M ∩ D = {q�}.

The fact that M ∩ D = {q�} implies that there exists a separating hyperplane there.
Since the hyperplane must be tangent to M , it can be written as {q | 〈w, q〉 = 〈w, q�〉}
for a w ∈ ∂ f ∗(q�), with D ⊂ {q | 〈w, q〉 ≥ 〈w, q�〉}. Consequently, letting ε =
supx∈ξ |A∗q(x)| − 1, we have

(1+ ε)D ⊂ {
q | 〈w, q〉 ≥ (1+ ε)

〈
w, q�

〉} = {
q | 〈w, q − q�

〉 ≥ ε
〈
w, q�

〉}
.

Now, the strong convexity of f ∗ implies for every q ∈ (1+ ε)D ∩ M ,

f ∗(q)≥ f ∗(q�)+ 〈
w, q − q�

〉+ 1

2L
‖q − q�‖22 ≥ f ∗(q�)+ε

〈
w, q�

〉+ 1

2L
‖q − q�‖22.

Rearranging this, we obtain

−ε
〈
w, q�

〉 ≥ f ∗(q�)− f ∗(q)+ 1

2L
‖q − q�‖22.

which is the claim. ��
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Before moving on, let us record the following proposition:

Proposition 4 We have

‖A(x)− A(y)‖2 ≤ κ∇‖x − y‖2 and ‖A′(x)− A′(y)‖F ≤ κhess‖x − y‖2. (20)

Proof The proof of the first inequality of (20) is a standard Taylor expansion :

‖A(x)− A(y)‖2 = sup
q∈Rm

‖q‖2=1
〈q, A(x)− A(y)〉 = sup

q∈Rm

‖q‖2=1

∣∣(A∗q)(x)− (A∗q)(y)
∣∣

≤ sup
q∈Rm

‖q‖2=1
sup

z∈[x,y]
〈
(A∗q)′(z), x − y

〉

≤ sup
q∈Rm

‖q‖2=1
‖(A∗q)′‖∞‖x − y‖2 ≤ κ∇‖x − y‖2.

The proof of the second part of (20) follows the same lines as the first part and is left
to the reader. ��

The next two lemmata aim at transferring bounds from the geometric distances of
the sets Xk , Ωk and ξ to bounds on |A∗qk(ξ)|. Using Proposition 3, we may then
transfer these bounds to bounds on the errors of the dual solutions and the dual (or
primal) objective values.

Lemma 2 The following inequalities hold

‖A∗qk‖∞ ≤ 1+ Rκhess

2
dist(Ωk |Xk)

2,

f ∗(q�)− f ∗(qk) ≤ Rκhessρ
2

2L
dist(Ωk |Xk)

2,

‖qk − q�‖2 ≤ dist(Ωk |Xk)
√
Rκhessρ. (21)

Proof of Lemma 2 To show (21), first notice that

‖A∗qk‖∞ ≤ 1+ ‖(A∗qk)′′‖∞ dist(Ωk |Xk)
2

2
. (22)

Indeed, by definition, the global maximum z of |A∗qk | lies in Xk and satisfies
(A∗qk)′(z) = 0. Furthermore, by construction, all points x in Ωk satisfy |A∗qk(x)| ≤
1. Using a Taylor expansion, we get for all x ∈ Ω

∣∣A∗qk(x)− A∗qk(z)
∣∣ ≤ ‖(A∗qk)′′‖∞ ‖x − z‖22

2
.

Taking x as the point in Ωk minimizing the distance to z leads to (22). In addition,
we have ‖(A∗qk)′′‖∞ ≤ Rκhess by Lemma 1, so that ‖A∗qk‖∞ ≤ 1 + ε with ε =
Rκhess

dist(Ωk |Xk )
2

2 .
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Now, letting C = {q | ‖A∗q‖∞ ≤ 1}, we have just proven that qk ∈ (1 + ε)C .
Furthermore, due to the optimality of qk for the discretized problem and to the fact
that q� is feasible for that problem, we will have f ∗(qk) ≤ f ∗(q�), i.e., qk is included
in the f ∗(q�)-sub-level set of f ∗: M = {q ∈ R

m | f ∗(q) ≤ f ∗(q�)}. An application
of Proposition 3 now yields the result. ��
Lemma 3 Suppose that dist(Xk |ξ) ≤ δ and dist(Ωk |ξ) ≤ δ. Then

f ∗(q�)− f ∗(qk) ≤ 2Rκhessρ
2

L
· δ dist(Ωk |ξ)

‖qk − q�‖2 ≤ ρ
√
2Rκhess

√
δ · dist(Ωk |ξ).

Proof Let yik (resp. x
i
k) be the point closest to ξi in Ωk (resp. Xk). By assumption, we

have ‖xik − yik‖2 ≤ 2δ. For all i , we have

|A∗qk(ξi )| ≤ |A∗qk(yik)| + sup
z∈[yik ,ξi ]

‖(A∗qk)′(z)‖2‖ξi − yik‖2

≤ 1+ sup
z∈[yik ,ξi ]

‖(A∗qk)′(z)‖2‖ξi − yik‖2. (23)

Then, for all z ∈ [yik, ξi ], using the fact that (A∗qk)′(xik) = 0, we get

‖(A∗qk)′(z)‖2 ≤ Rκhess‖z − xik‖2 ≤ 2δRκhess.

Hence, we have |A∗qk(ξi )| ≤ 1+ 2δRκhess‖ξi − yik‖2 ≤ 1+ 2δRκhess dist(Ωk |ξ). To
conclude, we use Proposition 3 again. ��

The last assertion takes full advantage of Assumption 6 and the fact that the function
|A∗q�| is uniformly concave around its maximizers. It allows to transfer bounds from
‖qk − q�‖2 to bounds on the distance from Xk to ξ .

Proposition 5 Define cq = γ min

(
τ 20
2κ , τ0

κ∇ , 1
κhess

)
and assume that ‖qk − q�‖2 < cq ,

then

dist(ξ |Xk) ≤ κ∇
γ
‖qk − q�‖2.

Moreover, for each i , if Bi is the ball or radius τ0 around ξi , then Xk contains at
most one point in Bi and A∗qk has the same sign as A∗q�(ξi ) in Bi .

Proof Define τ = κ∇
γ
‖qk − q�‖ and note that τ < τ0. By Proposition 4, we have for

each x ∈ Ω

∣∣(A∗qk)(x)− (A∗q�)(x)
∣∣ ≤ ‖A∗(qk − q�)‖∞ ≤ κ‖qk − q�‖2 <

γτ 20

2
‖(A∗qk)′(x)− (A∗q�)′(x)‖2 ≤ ‖(A∗(qk − q�))′‖∞ ≤ κ∇‖qk − q�‖2 = γ τ

‖(A∗qk)′′(x)− (A∗q�)′′(x)‖2 ≤ ‖(A∗(qk − q�))′′‖∞ ≤ κhess‖qk − q�‖2 < γ.
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The above inequalities together with Assumption 6 imply the following for all 1 ≤
i ≤ s:

(i) For x with ‖x − ξi‖2 ≤ τ0, we have sign(A∗qk)(x) = sign(A∗q�)(x) =
sign(A∗q�)(ξi ).

(ii) For x with ‖x − ξi‖2 ≤ τ0, we have (|A∗qk |)′′(x) ≺ (|A∗q�|)′′(x)+ γ id ≺ 0.

(iii) For x with ‖x − ξi‖2 ≥ τ0, we have |(A∗qk)(x)| < |(A∗q�)(x)| + γ τ 20
2 ≤

1− γ τ 20
2 + γ τ 20

2 = 1.
(iv) For x with τ < ‖x−ξi‖2 ≤ τ0,wehave‖(A∗qk)′(x)‖2 ≥ ‖(A∗q�)′(x)‖2−γ τ >

0.

The estimate ‖(A∗q�)′(x)‖2 > γτ deserves a slightly more detailed justification
than the others. Define w = x − ξi and g(θ) = 〈

(A∗q)′(ξi + θw),w
〉
for θ ∈ (0, 1).

We may apply the mean value theorem to conclude that

g(1)− g(0) = g′(θ̂) =
〈
(A∗q)′′(ξi + θ̂w)w,w

〉

for some θ̂ ∈ (0, 1). Since g(0) = 〈
(A∗q�)′(ξi ), w

〉 = 〈0, w〉 = 0, and〈
(A∗q�)′′(ξi + θ̂w)w,w

〉
≤ −γ ‖w‖22, due to (|A∗q�|)′′ � −γ id in {x ∈ Ω, ‖x −

ξi‖2 ≤ τ0}, we obtain

‖(A∗q�)′(x)‖2 ≥ 1

‖w‖2
∣∣〈(A∗q�)′(x), w

〉∣∣ = |g(1)|
‖w‖2 ≥ γ ‖w‖22

‖w‖2 > γτ,

since ‖w‖2 = ‖x − ξi‖2 > τ by assumption. The last estimate was the claim (iv).
This implies a number of things. First, any local maximum of |A∗qk |with |A∗qk | ≥

1 must lie within a distance of τ from the set ξ (since for all other points, we have
|A∗qk | < 1—via (i i i)—or (Aqk)′ �= 0—via (iv)). Since |A∗qk | is locally concave on
the τ0-neighborhoods of the ξi—this follows from (i i)—at most one local extremum
furthermore exists in each such neighborhood. This is the claim. ��

3.5 Fixed grids estimates

In this section, we consider a fixed grid Ω0 and ask what we need to assume about it
in order to guarantee that the set of local maxima of |A∗q0(x)| is close to true support
ξ . We express our result in terms of a geometrical property that we can control, the
width of the grid dist(Ω0|Ω).

Theorem 2 Assume that dist(Ω0|Ω) ≤ cq
ρ
√

κhess
, then

dist(ξ |X0) ≤ κ∇
√
Rκhessρ

2γ
dist(Ω0|Ω)

‖q0 − q�‖2 ≤ ρ
√
Rκhessdist(Ω0|Ω)

inf(P(Ω0)) ≤ inf (P(Ω))+ Rκhessρ
2

2L
dist(Ω0|Ω)2
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Proof It is trivial that dist(Ω0|X0) ≤ dist(Ω0|Ω). Applying Lemma 2, we immedi-
ately obtain the bound on ‖q0 − q�‖2. By the same lemma,

inf(P(Ω0)) = sup(D(Ω0)) = − f ∗(q0) ≤ − f ∗(q�)+ Rκhessρ
2

2L
dist(Ω0|X0)

2

= sup (D(Ω))+ Rκhessρ
2

2L
dist(Ω0|Ω)2

= inf (P(Ω))+ Rκhessρ
2

2L
dist(Ω0|Ω)2.

In order to obtain the first bound, remark that ‖q0− q�‖2 ≤ cq and use Proposition 5.

Remark 2 Note that Theorem 2 allows to control dist(ξ |X0) but not dist(X0|ξ). Indeed
each x ∈ X0 is guaranteed to be close to a ξi , but not every ξi needs to have a point in
X0 closeby. Note however that the bounds on the optimal value indicates that in this
case the missed ξi is not crucial to produce a good candidate for solving the primal
problem. We will provide more insight on this, in the case of f being strongly convex,
in Sect. 4.

3.6 Eventual linear convergence rate

In this section, we provide an asymptotic convergence rate for the iterative algorithm.
As a follow-up to Remark 2, the proof of convergence relies on the fact that the
distances will eventually dist(Xk |ξ) and dist(ξ |Xk) become equal. To prove that this
is the case is exactly the purpose of the next proposition.

Proposition 6 Let Bi = {x ∈ Ω, ‖x − ξi‖2 < τ0}. There exists a finite number of
iterations N, such that for all k ≥ N, Xk has exactly s points, one in each Bi . It
follows that . Moreover if Sk is the set of active points of D(Ωk), that is

Sk = {z ∈ Ωk s.t. |A∗qk(z)| = 1},

then Sk ⊂ ∪i Bi and for each i , Bi ∩ Sk �= ∅.
Proof We first prove that Bi contains a point in Sk . To this end, define the set of
measures M− = {μ ∈M(Ω), ∃i ∈ {1, . . . , s}, supp(μ) ∩ Bi = ∅} and

J+ = min
μ∈M−

‖μ‖M + f (Aμ).

By Assumption 6, J+ > J �. Since (J (μk))k∈N converges to J (μ�), there exists
k2 ∈ N such that ∀k ≥ k2, J (μk) < J+. Hence μk must for each 1 ≤ i ≤ s have
points zik ∈ Ωk such that μk has non-zero mass at zik . Consequently, |A∗qk(zik)| = 1,
hence, each Bi contains at least one point in Ωk such that |A∗qk(zik)| = 1.

Notice that qk converges to q� by Theorem 1. Hence there a finite number of
iterations k1 such that ‖qk − q�‖ < cq for all k ≥ k1. By item (i i i) of the proof of
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Proposition 5, |A∗qk | < 1 outside ∪i Bi , and by item (i i), |A∗qk | is strictly concave
in each Bi . Hence each Bi contains exactly one maximizer of |A∗qk | exceeding one.

��
We nowmove on to analyzing our exchange approach. Before formulating themain

result, let us introduce a term: δ-regimes.

Definition 1 We say that the algorithm enters a δ-regime at iteration kδ if for all k ≥ kδ ,
we have dist(ξ |Xk) ≤ δ. In particular it means that only points with a distance at most
δ from ξ are added to the grid.

Lemma 4 Let τ̄0 = κ∇
γ
cq and A = 2d+1dd/2

(
ρ
√
Rκhessκ∇

γ

)3d
. Let N be as in Propo-

sition 6.

1. For any τ , the algorithm enters a τ -regime after a finite number of iterations.
2. Assume that N iterations have passed and that the algorithm is in a τ -regime with

τ ≤ τ̄0. Then for every α ∈ (0, 1) it takes no more than
⌈

A
α2d

⌉
+ 1 iterations to

enter an ατ -regime.

Proof Note that for any δ ≤ τ̄0, if there exists p ∈ N such that

‖qk − q�‖2 ≤ γ

κ∇
δ for all k ≥ p, (24)

we will enter an δ-regime after iteration p by applying Proposition 5.
To prove (1), note that we without loss of generality can assume that τ ≤ τ̄0 (since

entering a τ -regime means in particular entering a τ ′-regime for any τ ′ ≥ τ .) Then,
since ‖qk − q�‖2 tends to zero as k goes to infinity, (24) with δ = τ is true after a
finite number of iterations.

To prove (2), we proceed as follows: Proposition 6 ensures that in each iteration,
exactly one point is added in each ball {x ∈ Ω, ‖x − ξi‖2 ≤ τ }. Let k0 be the
actual iteration, a covering number argument [32] ensures, for any � that after δ0 =⌈
2dd/2

(
τ
�

)d⌉ iterations, each point in Xk needs to lie at a distance at most � from

Ωk , i.e., dist(Ωk |Xk) ≤ �.

Now, if we choose � =
(

γ

κ∇ρ
√
Rκhess

)3
α2τ
2 , Lemma 2 together with Proposition 5

imply

dist(Ωk0+δ0+1|ξ) ≤ dist(Xk0+δ0 |ξ)

≤κ∇
γ

ρ
√
Rκhess dist(Ωk0+δ0 |Xk0+δ0) ≤

(
γα

κ∇ρ

)2
τ

2Rκhess

Since Ωk+1 ⊂ Ωk for all k, the distance dist(Ωk |ξ) is non-increasing. As a result

dist(Ωk |ξ) ≤
(

γα
κ∇ρ

)2
τ

2Rκhess
for all k ≥ k0 + δ0 + 1. Since we are in τ -regime, we

know that dist(Xk |ξ) ≤ τ and dist(Ωk |ξ) ≤ τ . Hence we can apply Lemma 3 to
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obtain that

‖qk − q�‖2 ≤
√
2Rκhessτ · dist(Ωk |ξ)ρ ≤ γ

κ∇
ατ.

Then inequality (24) is satisfied with δ = ατ and the algorithm enters a ατ -regime.
��

The main result will tell us how many iterations we need to enter a τ -regime.

Theorem 3 Let τ ≤ τ̄0
def.= κ∇

Rγ
cq and k0 be the iteration on which the algorithm enters

a τ̄0-regime. Then k0 < ∞, and the algorithm will enter a τ -regime after no more
than k0 + kτ iterations, where

kτ :=
⌈
e2d+1dd/2

(
ρ
√
Rκhessκ∇

γ

)3d

+ 1

⌉⌈
2d log

(
τ̄0

τ

)⌉
.

Additionally, we will have

‖qk − q∗‖2 ≤ τ
√
2Rκhessρ

inf (P(Ωk)) ≤ inf (P(Ω))+ 2Rκhessρ
2

L
· τ 2 (25)

for k ≥ k0 + kτ + 1. In other words, the algorithm will eventually converge linearly.

Proof The fact that k0 < ∞ is the first assertion of Lemma 4. As for the other part,
we argue as follows: Fix α ∈ (0, 1). Since we have entered a τ̄0-regime at iteration

k0, Lemma 4 implies that it will take no more than
⌈

A
α2d

⌉
+ 1 additional iterations to

enter a ατ̄0. Repeating this argument, we see that after no more than

n ·
(⌈

A

α2d

⌉
+ 1

)

iterations, we will have entered a αn τ̄0 regime. Choosing α = e−1/2d and n =
�2d log (τ̄0/τ)�, we obtain the first statement.

The second statement immediately follows from Lemma 3 (as in the proof of
Theorem 2) and the fact that entering a τ -regime exactly amounts to that dist(Xk |ξ) ≤
τ for all future k, and therefore in particular dist(Ωk+1|ξ) ≤ τ . ��
Remark 3 Let us give some insights on Theorem 3.

1. Notice that the value kτ depends exponentially on the ambient dimension d. This
property cannot be improved with the current proof based on a covering number
argument. We are unsure as if the exponential growth really is an artefact of the
proof, or if it can be removed.
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2. A popular variant of the algorithm consists in adding the single most violating
maximizer, which can then be regarded as a variant of the conditional gradient
descent. It is yet unclear whether the current proof can be adapted to this set-
ting since our proof relies on systematically adding one point around every Dirac
mass of the solution. We however believe that adding all the violating maximiz-
ers arguably makes more sense from a computational point of view. Indeed, all
violating maximizers have to be explored to select the global maximizer. Hence
some information is lost by adding only one point. For instance, in the context
of super-resolution imaging, we will see that a variant of the proposed algorithm
converges in a single iteration, while a similar variant of the conditional gradient
would require s iterations.

3. An alternative proof covering the case of adding a single point and removing
some was proposed in a work produced independently and roughly at the same
time by Pieper and Walter [22]. In there, the authors consider a similar but more
general framework allowing for vector valued total variation regularizers. Under
an additional assumption of strong convexity of f , the authors also prove an
eventual linear convergence rate. The proofs share a few similarities, but also
some differences reflected by the additional assumption. In particular, the covering
number argument does not appear. It is currently unclear to the authors which proof
leads to the better rate.

On a practical level, the algorithm contains two main difficulties: (i) computing
the dual solution qk and (ii) finding the local maximizers of |A∗qk |. As for i), the
Lipschitz continuity assumption on ∇ f makes the dual problem strongly convex.
This is a helpful feature that allows to certify the precision of iterative algorithms:
we can generate points q̃k within a prescribed distance to the actual solution qk . With
some additional work, this could most probably lead to certified algorithms with an
inexact resolution of the duals D(Ωk). Point ii) is arguably more problematic: unless
the measurement functions ai have a specific structure such as polynomials, certifying
that the maximizers Xk are well evaluated is out of reach. Unfortunately, forgetting
points in Xk canbreak the convergence to the actual solution. In practice, this evaluation
proved to require some attention, but well designed particle flow algorithms initialized
with a sufficiently large amount of particles seemed to solve any instance of the super-
resolution experiments provided later.

The inequality (25) is an upper-bound on the cost function for the problem (P(Ωk)).
Unfortunately, the numerical resolution of this problem is hard since Ωk contains
clusters of points and in practice it is beneficial to solve the simpler discrete problem

μ̂k = argmin
μ∈M(Xk )

‖μ‖M + f (Aμ) (P(Xk))

For this measure, we also obtain an a posteriori estimate of the convergence rate.

Proposition 7 Define μ̂k as the solution of (P(Xk)), if dist(Xk |ξ) ≤ τ , we have

J (μ̂k) ≤ J (μ�)+
(
‖α�‖1 κhess‖q�‖2

2
+ L

2
‖α�‖21κ2∇

)
τ 2. (26)
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Proof For any i , denote xik a point in Xk closest to ξi and define μ̃k = ∑s
i=1 α�

i δxik
.

We have J (μ̂k) ≤ J (μ̃k) and ‖μ̃k‖M ≤ ‖μ�‖M. Furthermore, we have

f (Aμ̃k) ≤ f (Aμ�)+ 〈∇ f (Aμ�), Aμ̃k − Aμ�〉 + L

2
‖Aμ̃− Aμ�‖22.

The last term in the inequality is dealt with the following estimate:

‖Aμ̃− Aμ�‖2 ≤
s∑

i=1
|α�

i |‖A(xik)− A(ξi )‖2 ≤
s∑

i=1
|α�

i |κ∇‖xik − ξi‖2 ≤ ‖α�‖1κ∇τ.

As for the penultimate term, remember that q� = −∇ f (Aμ�). This implies

〈∇ f (Aμ�), Aμ̃k − Aμ�
〉 = 〈

A∗q�, μ� − μ̃k
〉 =

s∑

i=1
α�
i

(
(A∗q�)(ξi )− A∗q�(xik)

)

By making a Taylor expansion of A∗q� in each ξi , utilizing that the derivative van-
ishes there, and that ‖(A∗q�)′′(x)‖ ≤ κhess‖q�‖2 for each x ∈ Ω , we see that∣∣(A∗q�)(xik)− (A∗q�)(ξi )

∣∣ ≤ κhess‖q�‖2
2 ‖xik − ξi‖22 for each i . This yields

〈∇ f (Aμ�), Aμ̃k − Aμ�
〉 ≤ ‖α�‖1 κhess‖q�‖2τ 2

2
.

Overall, we obtain

J (μ̂k) ≤ J (μ̃k) = ‖μ̃k‖M + f (Aμ̃k) ≤ J (μ�)+ ‖α�‖1 κhess‖q�‖2τ 2
2

+ L

2
‖α�‖21κ2∇τ 2.

��

4 Convergence of continuousmethods

In this section, we study an alternative algorithm that consists of using nonlinear
programming approaches to minimize the following finite dimensional problem:

G(α, X)
def.= J

( p∑

i=1
αiδxi

)
= ‖α‖1 + f

(
A

(
∑

i

αiδxi

))
, (27)

where X = (x1, . . . , xp). This principle is similar to continuous methods in
semi-infinite programming [25] and was proposed specifically for total variation min-
imization in [2,7,10,30]. By Proposition 6, we know that after a finite number of
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iterations, Xk will contain exactly s points located in a neighborhood of ξ . This moti-
vates the following hybrid algorithm:

– Launch the proposed exchange method until some criterion is met. This yields a
grid X (0) = Xk and we let p = |Xk |.

– Find the solution of the finite convex program

α(0) = min
α∈Rp

G(α, X (0)).

– Use the following gradient descent:

(α(t+1), X (t+1)) = (α(t+1), X (t+1))− τ∇G(α(t), X (t)), (28)

where τ is a suitably defined step-size (e.g. defined using Wolfe conditions).

We tackle the following question: does the gradient descent algorithm converge to
the solution if initialized well enough?

4.1 Existence of a basin of attraction

This section is devoted to proving the existence of a basin of attraction of a descent
method in G. Under two additional assumptions, we state our result in Proposition 8.

Assumption 7 The function f is twice differentiable and �-strongly convex.

The twice differentiability assumption is mostly due to convenience, but the strong
convexity is crucial. The second assumption is related to the structure of the support
ξ of the solution μ�.

Assumption 8 For any x, y ∈ Ω denote K (x, y) = ∑

 a
(x)a
(y). The transition

matrix

T (ξ) =
[ [K (ξi , ξ j )]si, j=1 [∇x K (ξi , ξ j )

∗]si, j=1
[∇x K (ξi , ξ j )]si, j=1 [∇x∇yK (ξi , ξ j )

∗]si, j=1

]
∈ R

s+sd,s+sd .

is assumed to be positive definite, with a smallest eigenvalue larger than � > 0.

It is again possible to prove for many important operators A that this assumption is
satisfied if the set ξ is separated. See the references listed in the discussion about
Assumption 6. The following proposition describes the links between minimizing G
and solving (P(Ω)).

Proposition 8 Let μ� =∑s
i=1 α�

i δξi �= 0 be the solution of (P(Ω)). Under Assump-
tion 7 and 8, (α�, ξ) is the global minimum of G. Additionally, G is differentiable with
a Lipschitz gradient and strongly convex in a neighborhood of (α�, ξ).

Hence, there exists a basin of attraction around (α�, ξ) such that performing a
gradient descent on G will yield the solution of (P(Ω)) at a linear rate.

123



On the linear convergence rates of exchange…

The rest of this section is devoted to the proof of Proposition 8. Let us begin by
stating a simple auxiliary result.

Lemma 5 Let U and V be vector spaces and C : V → V be a linear operator with
C � λ idV for a λ ≥ 0. Then, for any B : U → V

B∗CB � λB∗B.

Proof If B∗CB − λB∗B is positive semidefinite, the claim holds. Since for v ∈ U
arbitrary

〈
(B∗CB − λB∗B)v, v

〉 = 〈C(Bv), Bv〉 − λ 〈Bv, Bv〉 ≥ λ‖Bv‖2V − λ‖Bv‖2V = 0,

the former is the case. ��

Let us introduce some notation that will be used in this section: for an X =
(x1, . . . , xp) ∈ Ω p for some p, A(X) denotes the matrix [ai (x j )]. Analogously,
A′(X) and A′′(X) denote the operators

A′(X) : (Rd)p → R
m, (vi )

p
i=1 �→

( p∑

i=1
∂xa j (xi )vi

)

j

,

A′′(X) : (Rd × R
d)p → R

m, (vi , wi )
p
i=1 �→

p∑

i=1
A′′(xi )[vi , wi ]

respectively. Note that for q ∈ R
m and X ∈ Ω p,

A(X)∗q = ((A∗q)(xi ))
p
i=1

def.= (A∗q)(X) ∈ R
p

A′(X)∗q = (∇(A∗q)(x1), . . . ,∇(A∗q)(xp)) ∈ (Rd)p

A′′(X)∗q = ((A∗q)′′(x1), . . . , (A∗q)′′(xp)) ∈ (Rd × R
d)p

Wewill also use the shorthands μ =∑
i αiδxi , G f (α, X) = f (Aμ), and, for α ∈ R

p,
D(α) denotes the operator

D(α) : (Rd)p → (Rd)p, (vi )
p
i=1 �→ (αivi )

p
i=1.

We have

∂G f

∂α
(α, X)β = 〈∇ f (Aμ), A(X)β〉

∂G f

∂X
δ = 〈∇ f (Aμ), A′(X)D(α)δ

〉
,
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so that in points (α, X) with αi �= 0 for all i , and in particular in a neighborhood of
(α�, ξ), G is differentiable and its gradient is given by :

R
p × (Rp)d  ∇G(α, X) = (

sign(α)− (A∗q)(X),−D(α)(A∗q)′(X)
)
,

with q = −∇ f (Aμ). (29)

As for the second derivatives, we have

∂2G f

∂2α
(α, X)[β, γ ] = f ′′(Aμ)(A(X)β, A(X)γ )

∂2G f

∂α∂X
(α, X)[β, δ] = f ′′(Aμ)(A(X)β, A′(X)D(α)δ)+ 〈∇ f (Aμ), A′(X)D(β)δ

〉

∂2G f

∂2X
(α, X)[δ, ε] = f ′′(Aμ)(A′(X)D(α)δ, A′(X)D(α)ε)+ 〈∇ f (Aμ), A′′(X)(D(α)δ, ε)

〉
.

We may now prove our claims.

Proof 8 First, let us note that due to the optimality conditions of (P(Ω)), we know
that

q� = −∇ f (Aμ�).

Now, |A∗q�| has local maxima in the points ξi , so that (A∗q�)′(ξ) = 0. In these points,
we furthermore have that sign(α�

i ) = A∗q�(ξi ), so that the gradient of G given in (29)
vanishes.

To prove the rest, it is enough to show that the Hessian of G f is positive definite in
a neighborhood around (α�, ξ). For this, it is fruitful to decompose it into two parts.
Letting q = −∇ f (Aμ), we have G ′′

f = H1 + H2, with

H1(α, X) =
[

A(X)∗ f ′′(Aμ)A(X) A(X)∗ f ′′(Aμ)A′(X)D(α)

D(α)∗A′(X)∗ f ′′(Aμ)A(X) D(α)∗A′(X)∗ f ′′(Aμ)A′(X)D(α)

]

H2(α, X)[(β, δ), (γ, ε)] = −
s∑

i=1
βi (A

∗q)′(xi )εi + γi (A
∗q)′(xi )δi + αi (A

∗q)′′(xi )[δi , εi ],

Let (α, X) be arbitrary. H1 is an operator of the form M∗
1M2(X)∗LM2(X)M1, with

L = f ′′(Aμ) : Rm → R
m and

M1 =
[
id 0
0 D(α)

]
: Rp × (Rd)s → R

s × (Rd)s,

M2(X) = [
A(X) A′(X)

] : Rs × (Rd)s → R
m .

Due to the �-strong convexity of f , L � � id. We furthermore have

M∗
1M1 =

[
id 0
0 D(α)∗D(α)

]
� min

1≤i≤n |αi |2 · id �
min1≤i≤n

∣∣α�
i

∣∣2

2
· id
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in some neighborhood U of α� �= 0.
Let us now turn to M2(X)∗M2(X). If we define M2(ξ) = [

A(ξ) A′(ξ)
]
, we have

M2(ξ)∗M2(ξ) =
[
A(ξ)∗A(ξ) A(ξ)A′(ξ)∗
A′(ξ)∗A(ξ) A′(ξ)∗A′(ξ)∗

]
= T (ξ) � � id

by Assumption 8. Since, by Assumption 5, both A(X) and A′(X) are continuously
dependent on X , we even have

M∗
2 (X)M2(X) ≥ �

2

for X in some neigborhood V of ξ . We may now apply Lemma 5 twice to conclude

H1(α, X) �
��min1≤i≤n

∣∣α�
i

∣∣2

4
id (30)

for (α, X) ∈ U × V .
It remains to analyze H2. We again begin by evaluating the expression in (α�, ξ).

The Assumption 6 implies that

(A∗q)′(xi ) = 0

αi (A
∗q)′′(xi ) � 0

for each i . We therefore obtain

H2(α
�, ξ)[(β, δ), (β, δ)] = −

s∑

i=1
βi (A

∗q)′(ξi )δi + βi (A
∗q)′(ξi )δi + αi (A

∗q)′′(ξi )[δi , δi ]

= −
s∑

i=1
αi (A

∗q)′′(xi )[δi , δi ] ≥ 0

Hence, the bidual form H2(α
�, ξ) is positive semidefinite. Due to the assumptions that

themeasurement functions ai aremembers of C20 , and that∇ f is Lipschitz continuous,
H2 depends continuously on α and x . Consequently,

‖H2(α, X)‖ ≤ ��min1≤i≤n
∣∣α�

i

∣∣2

8
(31)

for (α, X) in some neighborhood W of (α�, ξ).
Combining (30) and (31), we obtain

H1(α, X)+ H2(α, X) �
��min1≤i≤n

∣∣α�
i

∣∣2

8
id

for all (α, X) ∈ (U × V ) ∩W , which was to be proven. ��
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4.2 Eventually entering the basin of attraction

The following proposition shows that (α̃, Xk) defined as the amplitudes and positions
of the Dirac-components of the solution μ̂ of (P(Xk)), (α̃, Xk) will lie in the basin
described by Proposition 8. This result is stated in Corollary 1, the rest of this section
is dedicated to proving it.

Proposition 9 Assume that Assumptions 7 and 8 are true. Consider an s-sparse mea-
sure

μ̃ =
s∑


=1
α̃
δx̃


for some α̃ ∈ R
s and (x̃
)
=1...s pairwise different points of Ω . We then have

‖α̃ − α�‖2 ≤ 1√
�

(
κ∇‖μ̃‖M sup

1≤
≤s
‖ξ
 − x̃
‖2 +

√
2

�
(J (μ̃)− J (μ�))

)
.

Proof Let A(ξ)† be the Moore-Penrose inverse of A(ξ) = [A(ξ1), . . . , A(ξs)]. Due
to Assumption 8, A(ξ)† has full rank and has an operator norm no larger than �−1/2.
Since

α̃ = α� + A(ξ)†(A(ξ)α̃ − Aμ̃)+ A(ξ)†(Aμ̃− A(ξ)α�),

bounds on A(ξ)α̃ − Aμ̃ and Aμ̃ − A(ξ)α� will therefore transform to a bound on
α̃ − α�.

Let us begin with the former. We have

‖A(ξ)α̃ − Aμ̃‖2 ≤
s∑


=1
|α̃
| ‖A(ξ
)− A(x̃
)‖ ≤

s∑


=1
κ∇ |α̃
| ‖ξ
 − x̃
‖2

= κ∇‖α̃‖1 sup
1≤
≤s
α̃
 �=0

‖ξ
 − x̃
‖2,

where we used the Cauchy-Schwarz inequality in the last step.
To bound the latter, recall that �-strong convexity of f means that

f (Aμ̃) ≥ f (Aμ�)+ 〈∇ f (Aμ�), Aμ̃− Aμ�
〉+ �

2
‖Aμ̃− Aμ�‖22. (32)

The optimality conditions for (P(Ω)) tell us that q� = −∇ f (Aμ�), and hence

〈∇ f (Aμ�), Aμ̃− Aμ�
〉 = 〈

A∗q�, μ� − μ̃)
〉

=
s∑


=1
α�


(A
∗q�)(ξ
)− α̃
(A

∗q�)(x̃
) ≥ ‖α�‖1 − ‖α̃‖1,
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where we in the last step used that ‖A∗q�‖∞ ≤ 1. Plugging the above inequality in
(32) yields

�

2
‖Aμ̃− Aμ�‖22 ≤ J (μ̃)− J (μ�).

The claim follows. ��
Corollary 1 By Proposition 6, if k is large enough then Xk contains exactly s points.
In this case, let μ̂k =∑s

i=1 α̂iδx̂ ki
be the solution of (P(Xk)). Applying Proposition 9,

recalling that maxi ‖ξi − x̂ ki ‖2 ≤ dist(Xk |ξ) and using the bound (26), we obtain :

‖α̂ − α�‖2 ≤ dist(Xk |ξ)√
�

(
κ∇‖μ̂k‖M +

√
2

�

(
‖α�‖1 κhess‖q�‖2

2
+ L

2
‖α�‖21κ2∇

))
.

Since dist(Xk |ξ) is guaranteed to eventually converge to zero by Theorem 3 and
‖μ̂k‖M are bounded (e.g. by lower boundedness of f and upper boundedness of
J (μ̂k)) , (̂α, Xk) will eventually lie in the basin of attraction of G.

5 Description of the hybrid approach

To conclude this paper, we propose a method alternating between an exchange step
and a continuous gradient descent. It is detailed in Algorithm 2. The idea is, after each
iteration of an exchange algorithm, to start a gradient descent of G initialized at the
solution μ̂k of (P(Xk)). If this gradient descent converges to a measure μ̄k , we can
subsequently test if it is an optimal point by checking if q̄k = −∇ f (Aμ̄k) fulfills the
stopping criterion ‖A∗q̄k‖∞ ≤ 1+ ε, where ε is a user defined stopping criterion (the
latter is justified by Proposition 3). If so, we may output μ̄k , and if not, we may instead
continue our exchange algorithm, possibly after adding also the support points of μ̄k .
Its behavior is described in the following theorem.

Theorem 4 (Convergence guarantees for the alternating method) Algorithm 2 comes
with the following guarantees: ��
1. (Theorem 1) Under Assumptions 1, 2 and 3, it is guaranteed to stop after a finite

number of iterations for any stopping criterion ε > 0.
2. (Theorem 3) If in addition Assumptions 5 and 6 are satisfied, then the algo-

rithm eventually converges linearly: k ≥ N + kτ with kτ � log(τ−1), we have
dist(Ωk |ξ) ≤ τ .

3. (Proposition 8, Theorem 3 and Proposition 9) If in addition Assumptions 7 and 8
are satisfied, then - for large enough k - the low complexity gradient descent (28)
method converges linearly : ‖(α(t), X (t))−(α�, ξ)‖2 ≤ ct‖(α(0), X (0))−(α�, ξ)‖2
for some 0 ≤ c < 1.

Overall, this method has many desirable properties: the continuous method should
be used whenever the exchange method reaches its basin of attraction since its per iter-
ation cost is much cheaper. However, it is unclear in general that this basin even exists.
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In that case, the exchange method should be preferred since it eventually converges
linearly under quite mild assumptions. The proposed algorithmic scheme somehow
captures the best of all methods. Let us notice that it is very similar in spirit to the
sliding Frank-Wolfe algorithm proposed in [10], apart from the fact that we suggest
adding all the points Xk violating the constraints, while the single most violating point
is added in [10]. We believe that the proposed analysis sheds some light on the good
numerical performance of this method.

Arguably the most complicated step in this algorithm is to evaluate Xk , the set of
local maximizers of A∗qk exceeding 1. This is an impossible task for an arbitrary
function A∗qk . However, a simple heuristic described in the next section provided
rather satisfactory results for the measurement functions considered in this paper
(trigonometric polynomials and Gaussian convolution).

Apart from this, let us outline that the subproblems in this algorithm are well
suited for numerical resolution. In the exchange algorithm, we only solve the dual
problems D(Ωk) which are strongly convex. Hence first-order methods for instance
come with guarantees of convergence to qk in 
2-norm. Recovering the masses α̂k ,
solutions of P(Xk) is also stable since Xk (the local maximizers of A∗qk) is typically
a well separated set of low cardinality. The gradient descent (or alternative nonlinear
programming approach) on G(α, X) is performed over a low dimensional set. If the
convergence is not satisfactory (e.g. the norm of ∇G doesn’t decay fast enough), it
can be stopped, and we can switch back to the exchange algorithm.

Algorithm 2 Alternating method
1: Input: Operator A, data fitting term f , stopping criterion ε > 0.
2: Set q0 = 0, k = 0, Ω0 = ∅
3: Evaluate X0 in 5 and ‖A∗q0‖∞ ! Nonconvex - Possibly complicated
4: while ‖A∗qk‖∞ > 1+ ε do
5: k = k + 1
6: Set Ωk = Ωk−1 ∪ Xk
7: Solve D(Ωk ) to retrieve qk ! Convex - Stable
8: Evaluate Xk in 5 and ‖A∗qk‖∞ ! Nonconvex - Possibly complicated
9: Solve P(Xk ) to retrieve α̂k ! Convex - Low dimensional
10: Gradient descent on G(α, X) in (27) starting from (̂αk , Xk ) ! Nonconvex - Low dimensional
11: if Gradient descent converged to (ᾱk , X̄k ) then

12: Define qk = −∇ f (Aμ̄k ) with μ̄k =
∑|Xk |

i=1 ᾱk (i)δX̄k (i)
13: Evaluate Xk in 5 and ‖A∗qk‖∞ ! Nonconvex - Possibly complicated
14: (Optional) Define Ωk = Ωk ∪ X̄k .
15: end if
16: end while
17: Solve P(Xk ) to retrieve αk ! Convex - Low dimensional

18: Output: μk =
∑|Xk |

i=1 αk (i)δXk (i) and qk = −∇ f (Aμk ).
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6 Numerical experiments

To test our theory,we have implemented our algorithm inMATLAB.Before displaying
the results of the experiments, let us discuss a few key steps in the implementation.
In the entire section, we assume that Ω = [0, 1]d for d = 1 or 2 for simplicity. Note
that this is no true restriction: we can always by scaling and translation ensure that
Ω ⊆ [0, 1]d , and trivially extend the measurement functions by 0 to the entirety of
[0, 1]d .
Evaluating Xk Each iteration of the exchange algorithm requires the exact calculation
of the local maximizers of A∗qk exceeding 1. This is, in general, an impossible task.
We resort to the following heuristic method: Given a qk , we first evaluate |A∗qk | on
a fixed rectangular grid G = ((n)−1[0, . . . , n])d , and determine all of the discrete
peaks, i.e. points in which {A∗qk} is larger than all of its neighbors in the grid, and
where A∗qk exceeds 1− ε1 for a threshold ε1 > 0. Next, we start a gradient descent in
each of these points, stopping them once ‖(A∗qk)′‖2 is lower than another threshold.
Since it is possible that several of these gradient descents land in the same point x ,
we subsequently check if the set contains sets of points which are too close to each
other—if this is the case, we discard all but one of them in such a group. We finally
remove any point in which |A∗qk | is not larger than 1− ε2, for a small ε2 > 0.

Solving the Discrete Problems We have chosen to solve the problems (D(Ωk)) and
(P(Xk)) using an accelerated proximal gradient descent [21].

6.1 Example 1: super-resolution from Fourier measurements in 1D

We start by testing our algorithm on a popular instance of problem (P(Ω)): super-
resolution of a measure μ ∈M(0, 1) from finitely many of its Fourier moments

yk = 〈ak, μ〉 =
∫ 1

0
exp(−ikx)dμ,−m/2 ≤ k ≤ m/2− 1.

We use a quadratic data fidelity term f (z) = L
2 ‖z− y‖22. This example is well studied

by the signal processing community [5,12,23,28].
We chosem to be equal to 30, and a vector y generated as Aμ0, whereμ0 is chosen

at randomas a 5-sparse atomicmeasurewith amplitudes close to 1 or−1. The positions
of the Dirac masses were chosen as a small random perturbation from a uniform grid.
The initial grid Ω0 was chosen as a uniform grid with 8 points, i.e. [0, 1

8 , . . . ,
7
8 ]. We

made 100 experiments, with 20 iterations of the exchange algorithm. The evolution
of μk and qk for the first iterations for a typical iteration is displayed in Fig. 1. We
see that after already 8 iterations, A∗qk appears to be very close to A∗q�. Before this
iteration, the algorithm ’chooses’ to add points relatively uniformly to the grid, but
after that, new points are only added close to ξ . This is further emphasized by Fig. 2,
in which Xk is plotted for each iteration, along with size of Ωk .

To track the success of the algorithm a bit more systematically, we chose to track
the evolution of dist(ξ |Xk), dist(Ωk |Xk) and dist(Ωk |ξ). The median over the 100
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Fig. 1 Above: μk for k = 0, 2, 4, 6, 8, 20 along one run of the algorithm. Below: A∗qk for k =
0, 2, 4, 6, 8, 20 along the same run. Note that the range of the first plot is different from the others
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Fig. 2 Left: The set Xk of added points for each iteration along a run of the algorithm. Right: The total
number of points in Ωk along the same run

iterations, along with confidence intervals covering all experiments but the top and
bottom 5% are plotted in Fig. 3. We see that all of the quality measures seem to
converge linearly to 0.

Finally, we performed the same analysis for the optimum gap min (P(Ωk))–
min(P(Ω)), the error ‖qk − q�‖2 and the sizes of the grids Ωk . (min(P(Ω)) was
in each case chosen as the lowest value of min(P(Ωk)) over all iterations k, and q�

as the corresponding dual solution). We see that the optimum gap seems to converge
exponentially to 0 right from the first iteration, wheras the error ‖qk − q�‖2 initially
does not. The ’two-phase’-effect is also easy to spot: After about 5–6 iterations, the
algorithm switches from adding many points to adding only few points close to ξ .
Interestingly, the plateau of the q-errors seems to be simultaneuos with the ’phase-
transition’ (Fig. 4).
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Fig. 3 Logarithmic plot of dist(ξ |Xk ), dist(Ωk |Xk ) and dist(Ωk |ξ). Shown is the median value (oblique
line) along with confidence intervals (dashed) covering all but the top and lower 5% values
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Fig. 4 Plot of the evolution optimum gap, q-error and grid sizes. The top two plots are logarithmic, while
the bottom one is not. The oblique lines are represent the median iterations, the dashed ones are confidence
intervals covering all but the top and bottom 5% values

6.2 Example 2: super-resolution from Gaussianmeasurements in 2D

Next, we perform a study in a two-dimensional setting. We consider Ω = [−1, 1]2
and measurement functions of the form

ai (x) = exp

(
−‖x − xi‖2

2σ 2

)
,
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Fig. 5 Measurements y
associated to a super-resolution
experiment. A sparse measure is
convolved with a Gaussian
kernel and Gaussian white noise
is added

where the points xi live on a Euclidean grid of size 64× 64, restricted to the domain
[−0.5, 0.5]2. We then add white Gaussian noise to the measurements, leading to
pictures of the type shown in Fig. 5. Here, the true underlying measure contains 11
Dirac masses with random positive amplitudes and random locations on [−0.4, 0.4]2.

6.2.1 Exchange algorithm

The evolution of the grids Ωk and of the dual certificates |A∗qk | is shown in Fig. 6. As
can be seen, points are initially added anywhere in the domain, but after a few iterations,
they all cluster around the true locations, as expected from the theory. To further stress
this phenomenon and illustrate our theorems and lemmata, we displaymany quantities
of interest appearing in our main results in Fig. 7. the distance from Xk to ξ (where ξ

is estimated as X40) on Fig. 7c, the distance from Ωk to ξ on Fig. 7b, the evolution of
J (μ̂k)− J (μ̂40) on Fig. 7a, ‖A∗qk‖∞−1 on Fig. 7e. Finally, the number of maxima of
|A∗qk | is shown on Fig. 7f. As can be seen, the number of maxima quickly stabilizes,
suggesting that we reached a τ0-regime. Then all the quantities (cost function, distance
from ξ , violation of the constraints) seem to converge to 0 linearly. This is not true
after iteration 15, and we suspect that this is solely due to numerical inaccuracies
when computing the solution of the discretized problems. Notice however that the
accuracy of the Dirac locations drops below 10−3 after 14 iterations, and that this
accuracy is more than enough for the particular super-resolution application. Notice
that if we wished to reach this accuracy with a fixed grid, we would need a Euclidean
discretization containing 106 points, while we here needed only 152 (|Ω14| = 152). In
addition, the 
1 resolution is stable since it is accomplished on a grid X14 containing
only 11 points.

6.2.2 Continuous method

In this experiment, we evaluate the behavior of the gradient descent (28) depending
on the initialization (α(0), X (0)) and on the number of iterations. We use the same
setting as in the previous section. The left graph of Fig. 8 illustrates that the gradient
descent typically converges linearly when initialized close enough to the true min-
imizer (α�, ξ). This was predicted by Theorem 8. In this case (and actually all the
others related to this experiment), it converges to machine precision in less than 1000
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(a) |A∗q1| (b) |A∗q2| (c) |A∗q4|

(d) Grid 1 (e) Grid 2 (f) Grid 4

(g) |A∗q8| (h) |A∗q10| (i) |A∗q12|

(j) Grid 8 (k) Grid 10 (l) Grid 12

Fig. 6 Evolution of the dual certificate and of the grid through the 12 first iterations. This is a contour plot
with the levels from 1 to the maximum of |A∗qi | indicated
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(a) J(μ̂k) − J(μ40) (b) dist(Ωk|ξ) (c) dist(Xk|ξ)

(d) ‖qk − q40‖2 (e) ‖A∗qk‖∞ − 1 (f) |Xk|

Fig. 7 Plot of several quantities of interest along the exchange algorithm’s iterates

iterations. This is remarkable since the gradient descent is a simple algorithm that can
be easily improved by using e.g. Nesterov acceleration (we proved that the function
is locally convex) or other optimization schemes such as L-BFGS.

In order to evaluate the size of the basin of attraction around the globalminimizer,we
start from randompoints of the form (α(0), X (0)) = (α�, ξ)+(�α,�X ), where�α and
�X are random perturbations with an amplitude set as ‖(�α,�X )‖2 = γ ‖(α�, ξ)‖2,
with γ in [0, 1]. We then run 50 gradient descents with different realizations of
(α(0), X (0)) and record the success rate (i.e. the number of times the gradient descent
converges to (α�, ξ) with an accuracy of at least 10−6). We plot this success rate with
respect to γ in Fig. 8b. As can be seen, the success rate is always 1 when the rela-
tive error γ is less than 5%, showing that for this particular problem, a rather rough
initialization suffices for the gradient descent to converge to the global minimizer.

6.2.3 Alternating method

The alternating method suggested in Algorithm 2 turns out to converge in a single
iteration when applied to the setting described above. We therefore apply it to a more
challenging scenario with 30 Dirac masses instead of 11 and more noise. The mea-
surements y are shown in Fig. 9. We compare three implementations: a pure exchange
method, an alternating method as in Algorithm 2 without line 14 and an alternating
method as in in Algorithm 2 with line 14. The conclusions are as follows:

– All methods rapidly conclude that the underlying measure contains 30 Dirac
masses. (The pure exchange algorithm after 10 iterations, the alternating method
with line 14 already after the first).
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(a) G(α(t), X(t)) − G(α�, ξ) (b) Success rate VS starting point

Fig. 8 Left: Typical convergence curve in logarithmic scale when the initial guess (α(0), X (0)) is good
enough. Right: Success rate of the continuous descent method over 50 runs of the algorithm, depending on
the relative amplitude of the perturbation

(a) Measurements y (dense)

0
0.5

0.5

0.5

1

0
0

1.5

-0.5 -0.5

(b) Ground truth and recovered solution

Fig. 9 Left: measurements associated to a denser measure with more noise. Right: 3D illustration of the
recovery results. The blue vertical bars with circles indicate the locations and amplitude of the ground truth.
The red bars with crosses indicated the recovered measures. Apart from a slight bias in amplitude due to
the 
1-norm, the ground truth is near perfectly recovered (color figure online)

– The pure exchange algorithm quickly gets to a point close to the optimum. The
positions then slowly converge to the tue locations. It does however eventually
find the basin of attraction of G (in this example, it needed 10 iterations).

– Line 14 in the alternating method improves the convergence significantly. In fact,
omitting it, we need 10 iterations to find the basin of attraction, whereas the version
with the line finds it directly. Investigating this effect more closely is an interesting
line of future research.
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