
Experimental validation of a semi-distributed sequential quadratic
programming method for optimal coordination of automated vehicles at

Downloaded from: https://research.chalmers.se, 2024-03-13 10:58 UTC

Citation for the original published paper (version of record):
Hult, R., Zanon, M., Frison, G. et al (2020). Experimental validation of a semi-distributed sequential
quadratic programming method for
optimal coordination of automated vehicles at intersections. Optimal Control Applications and
Methods, 41(4): 1068-1096. http://dx.doi.org/10.1002/oca.2592

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

Received: 3 September 2018 Revised: 13 August 2019 Accepted: 10 February 2020

DOI: 10.1002/oca.2592

R E S E A R C H A R T I C L E

Experimental validation of a semi-distributed sequential
quadratic programming method for optimal coordination of
automated vehicles at intersections

Robert Hult1 Mario Zanon2 Gianluca Frison3 Sébastien Gros1,4 Paolo Falcone1

1Department of Electrical Engineering,
Chalmers University of Technology,
Gothenburg, Sweden
2IMT School of Advanced Studies, Lucca,
Italy
3Department of Microsystems
Engineering, University of Freiburg,
Freiburg, Germany
4Department of Engineering Cybernetics,
Norwegian University of Science and
Technology, Trondheim, Norway

Correspondence
Robert Hult, Department of Electrical
Engineering, Chalmers University of
Technology, Hörsalsvägen 11, Gothenburg
SE-41296, Sweden.
Email: robert.hult@chalmers.se

Summary
In this article, we study the optimal coordination of automated vehicles at inter-
sections. The problem can be stated as an optimal control problem (OCP), which
can be decomposed as a bi-level scheme composed by one nonlinear program
(NLP) which schedules the access to the intersection and one OCP per vehi-
cle which computes the appropriate vehicle commands. We discuss a practical
implementation of the bi-level controller where the NLP is solved with a tai-
lored semi-distributed sequential quadratic programming (SQP) algorithm that
enables distribution of most computation to the vehicles. Results from an exten-
sive experimental campaign are presented, where the bi-level controller and
the semi-distributed SQP are implemented on a test setup consisting of three
automated vehicles. In particular, we show that the vehicle-level controller can
enforce the scheduled intersection access beyond the accuracy admitted by the
sensor system, and that the bi-level controller can handle large perturbations
and large communication delays, which makes the scheme applicable in prac-
tical scenarios. Finally, the use of wireless communication introduces delays in
the outer control loop. To allow faster feedback, we introduce a real-time itera-
tion (RTI) like variation of the bi-level controller. Experimental and simulated
results indicate that the RTI-like variation offers comparable performance using
less computation and communication.

K E Y W O R D S

automated vehicles, distributed model predictive control, distributed nonlinear programming,
intersection coordination

1 INTRODUCTION

The current trend toward automation of road vehicles can be expected to continue, and eventually most vehicles will be
fully automated and communicating. This technology can be leveraged to obtain synergistic effects through cooperation
between the automated vehicles, and thereby enable drastic improvements to the traffic system. In this article, we discuss
an algorithm necessary for one such improvement: the automation of intersection crossings. With all vehicles automated,
communicating and cooperative, the traffic-lights, signs and rules used today could be removed and the vehicles could
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2020 The Authors. Optimal Control Applications and Methods published by John Wiley & Sons, Ltd.

1068 wileyonlinelibrary.com/journal/oca Optim Control Appl Meth. 2020;41:1068–1096.

https://orcid.org/0000-0002-1337-3880
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Foca.2592&domain=pdf&date_stamp=2020-04-08

HULT et al. 1069

instead rely on automated coordination controllers. As discussed in Reference 1, the potential benefits include increased
safety, increased energy efficiency and higher traffic throughput.

However, there are several challenges that must be addressed before coordination algorithms can be applied in prac-
tice. Most importantly, such controllers must be able to guarantee that no collisions occur, and in particular, the guarantees
must be applicable to scenarios with uncertainty. This includes handling unexpected events and the online recoordina-
tion of vehicles in the presence of new information. Furthermore, a useful coordination algorithm must be scalable to
be relevant for more than small scenarios. However, since finding the optimal collision free motion profiles for vehicles
crossing an intersection is a combinatorial problem, there are computational scalability issues. In fact, determining the
existence of even one collision free solution has been shown to be an NP-hard problem in the general case.2 Moreover,
it is a known problem that vehicle-to-vehicle (V2V) communication systems have capacity limits.3 A practically useful
coordination algorithm must therefore also scale well in terms of both how often communication is required and the data
volumes involved.

Although the application of intersection coordination algorithms lies in the future, a number of contributions have
been made during the last decade, many of which are surveyed in References 4 and 5. In the literature, various heuristics
are used to address the challenges of the problem: the motion profile is typically the result of a rule-based controller
which switches between discrete behavioral modes,6-9 or is obtained from a restricted space, for example, trapezoidal10 or
linear11 velocity profiles. On the other hand, a number of approaches based on optimal control (OC) formulations of the
coordination problem can be found in the literature, for example, References 12-22 and 23. In most cases, the selection of
a crossing order is separated from the computation of the optimal state and control trajectories to avoid the combinatorial
complexity of the solution space. For instance, in References 14,16,19 variations of “First-Come-First-Served” policies
are first used to produce a crossing order and OC problems constrained to satisfy this order are then solved. Using a
similar strategy,15 leverages results from polling-systems to compute the crossing order, while in References 24 and 23
mixed-integer quadratic programming (QP) is used to compute an approximately optimal crossing order. A different
approach is taken in Reference 12, where a heuristic gives a decision order rather than a crossing order. The vehicles
thereafter sequentially solve optimal control problems (OCPs), where each vehicle is constrained to avoid collisions with
the vehicles that precedes it in the decision order. The application of OC formulations to closed-loop control is considered
in References 13,21 and 25.

As discussed in Reference 1, the benefits of OC approaches in general include the ability to consider a wider range
of applicable motion profiles and include constraints. Given the severity of collisions, closed-loop control, that is, the
recalculation of control commands based on measurements of the system state, is a necessity to handle the uncertainty
that is present in real scenarios. In many cases, OC schemes can leverage well established theory to derive properties of
closed-loop control schemes, account for various forms of uncertainty and construct efficient solution algorithms.

In this article, we use the OC formulation of the coordination problem first presented in Reference 24 but focus on find-
ing the optimal solution for a given crossing order. With this formulation, the problem is given a hierarchical structure,
where optimal, collision free intersection occupancy time-slots are obtained as the solution to a nonlinear program (NLP),
and the optimal state and control trajectories as the solution to OCPs that are separable between the vehicles. This struc-
ture enables a bi-level model predictive control (MPC) architecture where coordination is separated from vehicle control.
In particular, the outer, intersection-level, controller computes and updates optimal, nonoverlapping time-slots based on
the current vehicle states, and the lower, vehicle-level, controllers compute the control commands for the vehicles, given
a time-slot and the current state.

In earlier work, we proposed a semi-distributed sequential quadratic programming (SQP) approach for the solu-
tion of the time-slot NLP.26 The algorithm was extended in Reference 27 where a convergence proof also was given. We
established the persistent feasibility of the bi-level MPC scheme and discussed robustness aspects in Reference 25, and pre-
sented experimental results. Extensions to economic nonlinear MPC were presented in Reference 22, and a comparison
of References 26 and 27 was given in Reference 28, supported by experimental data.

The SQP procedure of References 26 and 27 has the property that most computations can be performed on-board
the vehicles and the algorithm's internal message passing can be performed using V2V communication. Consequently,
the SQP procedure can be used to close the intersection-level control loop (repeatedly solve the time-slot NLP online) in
a semi-distributed manner. While such a scheme has several desirable properties, it is necessary to evaluate its useful-
ness in a practical setting. First, the algorithmic performance needs to be assessed for real scenarios where, in particular,
the effects of delays inherent to the use of real communication systems must be studied. Second, the effects of both
algorithmic performance and real-world perturbations on the performance of the bi-level controller must be investi-
gated and possible issues addressed. To this end, we describe a practical implementation of the bi-level controller in this

1070 HULT et al.

F I G U R E 1 A, Contains a
schematic illustration of the scenarios
considered in this article. B, Illustrates
how the intersection is modeled: the
arrows show the fixed paths of the
vehicles, and the red square illustrates
the zone inside the intersection where
collisions can occur [Colour figure can
be viewed at wileyonlinelibrary.com]

article, where the intersection-level control loop is closed using the SQP presented in References 26,27. In particular, we
detail the application of the bi-level controller on a test setup consisting of three automated vehicles, where the SQP is
solved in a semi-distributed fashion using V2V communication, and the vehicle-level control loop is closed using the
high-performance QP solver HPMPC.29 Furthermore, we introduce modifications to the bi-level controller that increase
the practical applicability of the scheme. First, a relaxation of the vehicle-level MPC problem is presented, which resolves
infeasibility issues inherent to the formulation in References 26,27. Second, two modifications to the intersection-level
controller are introduced to handle the large computational delays that can arise due to the execution of the SQPs over a
wireless network which introduces delays. In particular, we propose a scheme where the intersection-level control loop is
closed in a real-time iteration (RTI) like fashion30 to allow faster feedback. That is, instead of solving the NLP to conver-
gence, the intersection-level control loop consists of the time-slot updates resulting from one SQP iteration. Moreover, we
present results from an extensive experimental campaign where the implementation was evaluated. We discuss the algo-
rithmic performance and provide a detailed study of the SQP execution times, where the experimental data is compared
with ideal cases. Comparative data is provided for both experimental and simulated cases, where the system is subject to
both large and small perturbations.

The remainder of the article is organized as follows: The modeling and OC formulation of the problem are introduced
in Section 2, while the semi-distributed SQP and practical implementation are discussed in Sections 3 and 4, respectively.
The experimental results are presented in Section 5 and the article is concluded with a discussion in Section 6.

2 PROBLEM FORMULATION

In this section, we introduce the modeling and OC formulation of the intersection problem and discuss how the formula-
tion can be decomposed which enables a bi-level structure for closed-loop control. The computational and other practical
aspects, for example, what computation is performed where, is discussed in Section 3.

2.1 Modeling

We consider problems such as that shown in Figure 1A, where Na vehicles approach an intersection equipped with a
central coordinating unit. We assume that all involved vehicles are automated, cooperative and participate in the coordi-
nation procedure and that no noncooperative entities (eg, pedestrians and bicyclists) are present. For simplicity, we also
assume that no vehicles makes turns or change lanes, but note that such vehicles could be included using the methods
discussed in Reference 31.

We assume that the vehicles move along predefined paths and that the vehicle dynamics along the paths can be
described by

ẋi(t) = Ac
i xi(t) + Bc

i ui(t), (1)

http://wileyonlinelibrary.com

HULT et al. 1071

where xi(t) ∈ Rn, ui(t) ∈ Rm and Ac
i ∈ Rn×n, Bc

i ∈ Rn×m. Specifically, the state vector is such that xi(t) = (pi(t), yi(t)),
where pi(t) ∈ R is the position of the center of the vehicle on its path and yi(t) ∈ Rn−1 collects all non position
states (eg, velocity and acceleration). Moreover, the vehicle state and control trajectories are subject to constraints of
the form

Dixi(t) + Giui(t) ≥ bi, (2)

capturing, for example, actuation limitations and passenger comfort restrictions.
We consider only Di,Gi,Ac

i ,Bc
i such that ṗ(t) ≥ 0, that is, the dynamics and constraints are such that no vehicle can

reverse.
As shown in Figure 1, we define the intersection as an interval [pin

i , pout
i] on the path of each vehicle such that collisions

are avoided if pi(t) ∈ [pin
i , pout

i] ⇒ pj(t) ∉ [pin
j , pout

j] hold, for all vehicles i ≠ j *. Furthermore, we define the time-of-entry,
tin
i , and time-of-clearance, tout

i , of the intersection through,

pi(tin
i) = pin

i and pi(tout
i) = pout

i , (3)

respectively. Collision avoidance is thereby ensured if

tout
i ≤ tin

j (4)

for all vehicle pairs (i, j) such that vehicle i crosses the intersection before vehicle j. In the remainder of the article, we
denote Ti = (tin

i , tout
i) the time-slot of vehicle i, and state that a vehicle conforms to Ti if it only occupies the intersection

within [tin
i , tout

i].

2.2 OC formulation

With the objective

Ji(xi(t),ui(t)) = Vi,f (xi(tf)) + ∫
tf

0
𝓁i(xi(t),ui(t))dt, (5)

where Vi,f (xi(tf)) and 𝓁i(xi(t),ui(t)) are convex and quadratic, and tf is fixed, we state problem of optimally coordinating
the vehicles through the intersection as

min
T,x(t),u(t)

Na∑
i=1

Ji(xi(t),ui(t)) (6a)

s.t. xi(0) = x̂i,0, i ∈ I[1,Na], (6b)

ẋi(t) = Ac
i xi(t) + Bc

i ui(t), i ∈ I[1,Na], (6c)

Dixi(t) + Giui(t) ≥ bi, i ∈ I[1,Na], (6d)

pi(tin
i) = pin

i , pi(tout
i) = pout

i , i ∈ I[1,Na], (6e)

tout
i ≤ tin

i+1 i ∈ I[1,Na−1]. (6f)

where the vehicles are ordered such that vehicle i crosses before vehicle i + 1. Here, I[a,b] = {a,… , b} for
integers a < b, x(t) = (x1(t),… , xNa (t)), u(t) = (u1(t),… ,uNa (t)), T = (T1,… ,TNa) and x̂i,0 is the initial state of
vehicle i.

*We want to emphasize that the definition of the intersection easily can be subdivided into several mutual-exclusion zones, each with its own start
and stop position, as done in Reference 23. However, for simplicity of presentation, the article is developed with the single zone shown in
Figure 1.

1072 HULT et al.

2.2.1 Decomposition

It was shown in Reference 24 that the coordination problem can be decomposed in a hierarchical fashion, where the
time-slot schedule T is the solution of a NLP, and the vehicle state and control trajectories xi(t),ui(t) are the solution to
separable vehicle OCPs. The following NLP computes the optimal time-slot schedule T for a given order S

min
T

Na∑
i=1

Vi(x̂i,0,Ti) (7a)

s.t. Ti ∈ domain(Vi(x̂i,0,Ti)), i ∈ I[1,Na], (7b)

tout
i ≤ tin

i+1 i ∈ I[1,Na−1], (7c)

where Vi(x̂i,0,Ti) is defined as the optimal value function of the OCP of vehicle i

Vi(x̂i,0,Ti) = min
xi(t),ui(t)

Ji(xi(t),ui(t)) (8a)

s.t. xi(0) = x̂i,0, (8b)

ẋi(t) = Ac
i xi(t) + Bc

i ui(t), (8c)

Dixi(t) + Giui(t) ≥ bi, (8d)

pi(tin
i) = pin

i , pi(tout
i) = pout

i , (8e)

For the optimal Ti, (8) gives the optimal state and control trajectories xi(t),ui(t).

2.2.2 Discretization

For practical reasons, we consider piecewise constant inputs and discretize the vehicle dynamics using the sampling time
ts when we solve the vehicle problem (8). More precisely, we define xi,k = xi(tk) and u(t) = ui,k,∀t ∈ [tk, tk+1[, with tk = kts,
and the state update function xi,k+1 = Aixi,k + Biui,k, where Ai = i(ts) = exp(Ac

i ts), Bi = i(ts) = ∫ ts
0 exp(Ac

i (ts − s))Bc
i ds

and where xi,k = (pi,k, vi,k).
Since the discrete position is defined only at tk, (3) defines values of tin

i and tout
i that are integer multiples of ts in the

discrete time case. To allow tin
i and tout

i to assume continuous values, we define a continuous time representation of the
position using the discrete time state and control sequences as

pd
i (t,wi) = [1, 0n−1]

(i(t − tk)xi,k + i(t − tk)ui,k
)
, k = floor(t∕ts), (9)

where wi = (xi,0,ui,0,… , xi,N−1,ui,N−1, xi,N) and where tf = Nts. The discrete time statement of the objective function is

Jd
i (wi) = x⊤i,N Pixi,N +

N−1∑
k=0

1
2

[
xi,k
ui,k

]⊤
Qi

[
xi,k
ui,k

]
+ q⊤

i

[
xi,k
ui,k

]
(10)

whereby we have the discrete time formulation of the OCP (8) of each vehicle i as

Vi(x̂i,0,Ti) = min
wi

Jd
i (wi) (11a)

s.t. xi,0 = x̂i,0, (11b)

xi,k+1 = Aixi,k + Biui,k, k ∈ I[0,N−1], (11c)

Dixi,k + Giui,k(t) ≥ bi, k ∈ I[0,N−1], (11d)

pd
i (t

in
i ,wi) = pin

i , (11e)

pd
i (t

out
i ,wi) = pout

i , (11f)

HULT et al. 1073

which can be solved for real valued tin
i and tout

i in [0,Nts]. We note here that for wi which satisfies (11c), pd
i (t,wi) is K-times

continuously differentiable, where K is the relative degree of (1) with the position pi(t) as the output.26

2.2.3 Problem properties

The constraint set domain(Vi(x̂i,0,Ti)) in (7b) is implicitly defined as the set of Ti for which the optimization problem
(11) is feasible given the initial state x̂i,0. However, it was shown in Reference 24 that domain(Vi(x̂i,0,Ti)) can be
written as

hi(x̂i,0,Ti) =

⎡⎢⎢⎢⎢⎣
Lin(x̂i,0) − tin

i
tin
i − U in(x̂i,0)

U(x̂i,0, tin
i) − tout

i
tout
i − L(x̂i,0, tin

i)

⎤⎥⎥⎥⎥⎦
≥ 0, (12)

where Lin(x̂i,0), U in(x̂i,0), U(x̂i,0, tin
i), and L(x̂i,0, tin

i) are defined as the solutions to the NLPs

Lin(x̂i,0) = min
wi,t

t s.t. (11b), (11c), (11d), pd
i (t,wi) = pin

i , (13)

U in(x̂i,0) = max
wi,t

t s.t. (11v), (11c), (11d), pd
i (t,wi) = pin

i , (14)

L(x̂i,0, tin
i) = min

wi,t
t s.t. (11b), (11c), (11d), pd

i (t
in
i ,wi) = pin

i , pd
i (t,wi) = pout

i , (15)

U(x̂i,0, tin
i) = max

wi,t
t s.t. (11b), (11c), (11d), pd

i (t
in
i ,wi) = pin

i , pd
i (t,wi) = pout

i . (16)

That is, tin
i must lie between the earliest and latest time-of-entry that the vehicle can perform. Similarly, for a

specified time-of-entry tin
i , tout

i must lie between the earliest and latest time-of-clearance the vehicle can perform. More-
over, it was shown in Reference 26 that if a mild technical assumption holds, the optimal solutions to the linear
programs (LPs)

wub
i (x̂i,0, tin

i) = argmin
wi

pi,N s.t. (11b), (11c), (11d), pd
i (t

in
i ,wi) = pin

i , (17)

wlb
i (x̂i,0, tin

i) = argmax
wi

pi,N s.t. (11b), (11c), (11d), pd
i (t

in
i ,wi) = pin

i , (18)

are also solutions to (15) and (16), respectively. Consequently, (15) and (16) can be evaluated by first solving the LPs (17),
(18) and thereafter solving

pd
i
(

U(x̂i,0, tin
i),wub

i (x̂i,0, tin
i)

)
− pout

i = 0, (19)

pd
i
(

L(x̂i,0, tin
i),wlb

i (x̂i,0, tin
i)

)
− pout

i = 0 (20)

for U(x̂i,0, tin
i) and L(x̂i,0, tin

i). The bounds Lin(x̂i,0) and U in(x̂i,0) can be obtained similarly. For notational convenience,
in the remainder of the article we will only include the explicit dependence on x̂i,0 in hi(x̂i,0,Ti) and Vi(x̂i,0,Ti) when
necessary.

2.3 Receding horizon implementation

In order to reject perturbations and compensate for model inaccuracies, the solution to the optimal coordination problem
can be applied in a receding horizon fashion in a MPC. In particular, the decomposed formulation offers a natural sep-
aration between coordination and vehicle control. This enables a bi-level control structure: an outer, intersection-level,
control loop computes collision free time-slots by solving (7) at the current state, while inner, vehicle-level, control loops

1074 HULT et al.

compute the vehicle control command ui,0 for a given time-slot Ti at the current state through (11). Feedback is thereby
due to estimates of the current state in the inner control loops, and the cost function Vi(x̂i,0,Ti) and the constraint set
hi(x̂i,0,Ti) in the outer control loop. This scheme has the benefit that perturbations acting on one vehicle are counter-
acted by all vehicles, that is, the optimal time-slot of vehicle i at time k, Ti(Xk), is a function of the state of all vehicles
Xk = (x1,k,… , xNa,k) through (7).

In principle, the time-slot schedule could be computed once and the rejection of possible perturbations handled by the
inner control loops. However, by closing the outer control loop the system can (a) reject larger perturbations by adjusting
the time-slot schedule T and thereby provide collision avoidance in more demanding scenarios and (b) continuously
improve the solution. The bi-level controller is discussed further in Reference 25, where the closed-loop system is shown
to be persistently feasible and stable.

The computations required to close the inner, vehicle-level control loop (solution of QP (11)) can be performed inde-
pendently on each vehicle. However, closing the outer, intersection-level control loop involves the solution of NLP (7),
which requires information from all vehicles. In the following section, we discuss an algorithm which solves NLP (7),
where most computations are distributed and performed on-board the vehicles.

3 A SEMI-DISTRIBUTED SQP METHOD

Considering the intended application, an algorithm where much of the computations required to solve NLP (7) can be
performed on board the vehicles is desirable as it improves scalability. However, if computations are performed on board
the vehicles, the algorithm requires information exchange over the V2V network. As is reported in Reference 3, there are
scalability issues with the current V2V technology and frequent and large data exchange should be avoided. Consequently,
second-order optimization methods are preferable to first-order ones, as the former in general need fewer iterations to
find a solution to the problem. For this reason, a semi-distributed SQP algorithm was proposed in References 26,27. We
recall the details of the SQP algorithm in Section 3.1, discuss its application in a practical setting with semi-distributed
computation in Section 3.2, and present two different approaches to its application for closed-loop control
Section 3.3.

3.1 Sequential quadratic programming

Using the developments of Section 2.2.3, we rewrite NLP (7) as

min
T

V(T) s.t. h(T) ≥ 0, (21)

where V(T) =
∑Na

i=1 Vi(Ti) and we lumped constraints (7b)-(7c) in the function h(T). The associated Lagrangian
function is defined as (T, 𝜇) ∶= V(T) − 𝜇⊤h(T), where 𝜇 = (𝜇1,… , 𝜇Na , 𝜇s). Here, 𝜇i are the Lagrange multi-
pliers of the constraint hi(Ti) ≥ 0 and 𝜇s the multipliers of the precedence constraints (7c), which we write
as hs(T) ≥ 0

Starting from an initial guess z(0) = (T(0), 𝜇(0)), SQP iteratively updates the primal-dual solution candidate z(c) using

z(c+1) = z(c) + 𝛼(c)Δz(c), (22)

with 𝛼(c) ∈ (0, 1] and Δz(c) = (ΔT(c), �̃�(c) − 𝜇(c)). Here, (ΔT(c), �̃�(c)) is the primal-dual solution of the QP subproblem

min
ΔT

1
2
ΔT⊤H(c)ΔT + ∇TV(T(c))⊤ΔT (23a)

s.t. h(T(c)) + ∇Th(T(c))⊤ΔT ≥ 0, (23b)

where H(c) is a positive-definite approximation of the Lagrange function Hessian ∇2
T(T(c), 𝜇(c)). Variants of SQP differ

primarily in the computations of the step size 𝛼(k) and the Lagrangian Hessian approximation H(k). We describe next the
methods employed to solve (7). For more details on SQP see, for example, Reference 32.

HULT et al. 1075

3.1.1 Hessian approximation

To ensure that the QP subproblems (23) are convex, it is required that the reduced Hessian is positive-definite. While
there are several ways of enforcing positive-definiteness of the reduced Hessian, we adopt the strategy of adding enough
curvature in all negative-curvature directions to ensure that the full Hessian is positive-definite. In particular, we note
that NLP (21) is such that the Hessian has the block-diagonal form

∇2
T(T(c), 𝜇(c)) = diag(Li(T(c)

1 , 𝜇
(c)
1),… ,LNa (T

(c)
Na
, 𝜇

(c)
Na
)), (24)

where Li(T(c)
i , 𝜇

(c)
i) = ∇2

Ti
Vi(T(c)

i) + ⟨𝜇(c)
i ,∇2

Ti
hi(T(c)

i)⟩. We define a positive-definite approximation to ∇2
T(T(c), 𝜇(c)) as

H(c)
i = diag(H(c)

1 ,… ,H(c)
Na
), where H(c)

i = E(c)
i D(c)

i E(c)
i

⊤
. Here, D(c)

i is a diagonal matrix where the jth diagonal element is
d(c)

i,j = max(e(c)i,j , 𝜀), where ei,j is the jth eigenvalue of Li(T(c)
i , 𝜇

(c)
i) and 𝜀 > 0 is a constant. The columns of E(c)

i are the nor-
malized eigenvectors corresponding to the eigenvalues in Di. The required eigenvalue decomposition is cheap due to the
small size of the blocks Li(T(c)

i , 𝜇
(c)
i).

3.1.2 Step size selection

In order to guarantee convergence of SQP algorithms, the step-size 𝛼(c) must be selected such that progress toward a
solution to the problem is made. In this article, we employ a line search on the so-called 𝓁1 merit function, which is
defined as

M(T(c)) = V(T(c)) + 𝜌(c)||h−(T(c))||1, (25)

where h−(T(c)) = min(h(T(c)), 0) and 𝜌(c) is a parameter chosen so that 𝜌(c) > ||𝜇(c)||1. Progress toward a solution is ensured
when 𝛼(c) is selected such that the Armijo condition is satisfied:

M(T(c) + 𝛼(c)ΔT(c)) ≤ M(T(c)) + 𝛾DΔT(c)M(T(c))𝛼(c), (26)

where 𝛾 ∈ (0, 0.5] and DΔT(c)M(T(c)) is the derivative of M(T) in the direction of ΔT(c), evaluated at T(c). Provided that
ΔT(c) is a descent direction on (25), 𝛼(c) which satisfies (26) exists and can be found by so-called backtracking, that is, by
successively decreasing 𝛼(c) from 1 until (26) is satisfied.32

Since the constraint hi(Ti) ≥ 0 defines the set of feasible parameters for the parametric QP (11), and Vi(Ti)
is the optimal value function for the same QP, we note that Vi(Ti), and thereby M(T), is undefined when
hi(Ti) ≱ 0. We resolve this issue by using the projection-based method of Reference 27, where the merit
function is evaluated at (T(c)

i + 𝛼(c)ΔT(c)
i) rather than at T(c)

i + 𝛼(c)ΔT(c)
i . Here, (Ti) is a projection operator,

defined as

(Ti) ∶=
(

tin
i , min

(
U(tin

i),max
(

L(tin
i), tout

i
)))

. (27)

It was shown in Reference 27 that if ΔT(c) is a descent direction on (25), a small enough 𝛼(c) exists which satisfies (26),
such that one can perform backtracking based on M((T(c) + 𝛼(c)ΔT(c))). Note that with this modification, the 𝓁1 merit
function reads M((T)) = V((T)) + 𝜌||h−

s ((T))|| and the primal-dual update is

T(c+1)
i = (

T(c)
i + 𝛼(c)ΔT(c)

i

)
, i ∈ I[1,Na] (28a)

𝜇(c+1) = 𝜇(c) + 𝛼(c)Δ𝜇(c). (28b)

An alternative solution to the issue of nondefined M(T) is to soften the position constraints (11e) and (11f) with an
𝓁1 penalty as suggested in Reference 26. However, in doing so the objective in the quadratic subproblem (42) will be

1076 HULT et al.

dominated by the penalty term whenever it is evaluated at hi(Ti) ≱ 0 for one vehicle, and a sharp nonsmoothness appears
at points where the problem becomes feasible. The algorithmic performance of this method has been found to be worse
than the method based on (27).28

3.1.3 Calculation of derivatives

The first and second-order derivatives of the objective function components Vi(T(c)
i) and constraint components hi(T(c)

i)
are required to form the QP-subproblem (23). Since Vi(T(c)

i) is the optimal value function of the QP (11) and hi(T(c)
i) is

evaluated by solving the LPs (18), (17), the derivatives are obtained using results from parametric sensitivity analysis. In
particular, we have that

dVi(Ti)
dtin

i

= 𝜕i(wi(Ti), 𝜆i(Ti), 𝜈i(Ti))
𝜕tin

i

= 𝜈in
i (Ti)

𝜕pd
i

(
tin
i ,wi(Ti)

)
𝜕tin

i

, (29)

where i(wi, 𝜆i, 𝜈i) is the Lagrangian Function of the QP (11).33 Here, wi(Ti) is the primal solution of (11) for Ti,
𝜆i(Ti) is the dual solution corresponding to the constraints (11b)-(11d), and 𝜈i(Ti) = (𝜈in

i (Ti), 𝜈out
i (Ti)) is the dual solu-

tion corresponding to constraints (11e), (11f). The second-order derivatives can then be obtained using the chain rule,
for example,

d2Vi(Ti)

dtin
i

2 =
d𝜈in

i

dtin
i

𝜕pd
i

(
tin
i ,wi(Ti)

)
𝜕tin

i

+ 𝜈in
i (Ti)

(
𝜕2pd

i

(
tin
i ,wi(Ti)

)
𝜕tin

i
2 +

𝜕2pd
i

(
tin
i ,wi(Ti)

)
dtin

i 𝜕wi

dwi

dtin
i

)
. (30)

The derivatives of the constraints are obtained similarly, as is exemplified for U(tin
i) below. We have by definition that

pd
i (U(tin

i),wub
i (tin

i)) − pout
i = 0, (31)

where wub
i (tin

i) is the solution to (17) for tin
i . Differentiation w.r.t. tin

i then gives that

dU(tin
i)

dtin
i

= −

(
𝜕pd

i

(
tin
i ,wub

i (tin
i)

)
𝜕tin

i

)−1
𝜕pd

i

(
tin
i ,wub

i (tin
i)

)
𝜕wub

i

dwub
i

dtin
i

. (32)

The second-order derivative is obtained by applying the chain rule to (32), but the resulting expression is
rather large and is omitted here for brevity, and the interested reader can find it in Reference 26. It should be
noted that it includes the term d2wi∕dtin

i
2. The computation of the first and second-order derivatives of L(tin) is

identical.

3.1.4 Parametric sensitivity analysis

The expressions (29), (30), and (32) rely on the first and second-order sensitivity of the primal-dual solution with respect to
Ti, which acts as a problem parameter in the QP (11) and LPs (18),(17). Note that for the general parametric optimization
problem with free variable x and parameter p

min
x

q(x) s.t a(x, p) ≥ 0 (33)

the KKT conditions are satisfied at the solution, given that some constraint qualification hold. Denoting the primal-dual
solution to (33) z∗ = (x∗, 𝜆∗), the KKT conditions are

∇(z∗, p) = 0, a(x∗, p) ≥ 0, 𝜆∗ ≥ 0, a(x∗, p) ∗ 𝜆∗ = 0, (34)

HULT et al. 1077

where (z) = q(x, p) − 𝜆⊤a(x, p) and ∗ denotes element-wise multiplication. In particular, denoting the set of active
constraints at the solution aA(x∗, p) and the corresponding multipliers 𝜆∗

A
, we have that

r =

[∇(z∗, p)
aA(x∗, p)

aA(x∗, p) ∗ 𝜆∗
A

]
= 0, (35)

and note that the solution map z∗ ∶= z(p) must be such that dr(z(p),p)
dp

= 0. Evaluating the total derivative of r(z(p), p) w.r.t.
p, one obtains

dz
dp

= −
(
𝜕r
𝜕z

)−1
𝜕r
𝜕p

, (36)

and, using the chain rule,

d2z
dp2 = −

(
𝜕r
𝜕z

)−1 (d
dp

(
𝜕r
𝜕p

)
+ d

dp

(
𝜕r
𝜕z

)
dz
dp

)
. (37)

Both (36) and (37) exist if
(

𝜕r
𝜕z

)−1
exists, and the latter is guaranteed if linear independence constraint qualifi-

cation and the second-order sufficient conditions hold at the primal-dual solution of (33). The sensitivities required
to evaluate (29), (30), and (32) can thereby be obtained by solving (36) for the KKT conditions of the QP (11)
using the parameters Ti, and by solving (36) and (37) for the KKT conditions of the LPs (17), (18), using the
parameter tin

i .
Note that if the program (33) is solved using a second-order method, the solver performs iterations similar to

z(c+1) = z(c) − 𝛼(c)
(
𝜕r
𝜕z

)−1

r. (38)

This means that the solver will have factorized the matrix 𝜕r
𝜕z

at the solution z, whereby the evaluation of (36) can be
performed at little additional computational cost. Consequently, if a second-order method is used to evaluate Vi(Ti) and
hi(Ti) in the SQP, the derivatives are very cheap to compute.

3.2 Schematic algorithm

In a practical setting, the SQP procedure is performed as follows

1. In the central node, Initialize the primal-dual variables z(0) = (T(0), 𝜇(0)).
2. ∀ i: On each vehicle independently, solve QP (11) and LPs (18), (17) to get cost, constraints and derivatives.
3. In the central node, assemble and solve QP (23) to get Δz(c)

4. Perform Projection Line search according to Section 3.1.2:
a. ∀ i: On each vehicle independently, solve LPs (18), (17) at T𝛼

i = T(c)
i + 𝛼(c)ΔT(c)

i and compute i(T𝛼
i). Solve QP (11)

with i(T𝛼
i) to get Vi, ∇Vi, ∇2Vi, hi, ∇hi, ∇2hi.

b. In the central node, assemble M𝛼 =
∑Na

i=1 Vi(i(T𝛼
i) + 𝜌(c)||hs((T𝛼))||1

c. In the central node, check if condition (26) is fulfilled. If not, set 𝛼(c) = 𝛼(c)𝛽, 𝛽 ∈ (0, 1) and repeat from 44a.
5. In the central node, perform primal-dual update (28a). If a solution is not reached, increment c and repeat from 3.

The computations in steps 2 and 44a consist of the solution of QP (11) and LPs (17),(18) and the associated deriva-
tive computations detailed in Section 3.1.3. We emphasize that most computations are separable and can be performed
in parallel on board the vehicles. However, while the LPs (17)-(18) can be solved in parallel they must be solved before
the QP (11) due to the use of i(Ti). The nonparallelizable part of the algorithm is the formation and solution of the
QP-subproblem (23), which thereby necessitates a central network node. In the scenarios considered in this article, the

1078 HULT et al.

Data (Ti) Vi 𝛁Ti
Vi 𝛁2

Ti
Vi hi(Ti) 𝛁Ti

hi(Ti) 𝛁Ti
hi(Ti)

Floats 2 1 2 3 2 2 2

Note: The central node needs to send two floats to each vehicle: the current primal solution candidate T(c)
i .

T A B L E 1 The information
which needs to be sent from a
vehicle to the central node each
iterate

Coordinator shown in Figure 1A takes this role. Note that the SQP sub problem (23) has 2Na variables and 5Na − 1 con-
straints, and will be significantly smaller than the vehicle-level QP (11) in moderately sized scenarios and horizons N. In
such cases, the computational bottleneck will be the evaluation of Vi(T(c)

i) and hi(tin
i
(c)) and the associated derivatives.

A convergence proof for the SQP applied to (7) is given in Reference 27.

3.2.1 Communication aspects

The information that needs to be communicated from the central node to the vehicles is only the currently held primal
solution candidate, consisting of 2Na floats. The data a vehicle is required to communicate to the central node is listed in
Table 1. Consequently, each iterate will involve the communication of at least 14 floats per vehicle, and additional 14 for
each reduction of the step size 𝛼. This will increase the time per iterate, and can, depending on communication protocol
and implementation, constitute the bulk of the time required to solve the problem.

We note that it is only necessary to resend(T𝛼
i) and Vi((T𝛼

i)) to evaluate the merit function M𝛼 and check the Armijo
condition (26). The remaining information in Table 1 could then be sent after the primal-dual update. However, while
the amount of data transmitted would be less, two additional rounds of communication would be needed: one from the
central node, notifying the vehicles of step acceptance, and one from the vehicles containing the remaining information.
As practical communication systems include a significant overhead, the total time required by communication would be
notably higher. While this requires the vehicles to compute the derivatives of Vi(Ti) and hi(Ti) when not strictly needed,
the calculations can be made highly efficient and will have a small impact on the total solution time (c.f. Section 3.1.3).

Besides what is mentioned here, the algorithm will require the communication of a number of logical variables, for
example, commands for algorithm start and stop, step acceptance, and so on. However, the amount of such data per iterate
consists of a few bytes and, since it can be sent together with the other data, the additional time required is negligible.

3.3 Real-time implementation of the intersection-level controller

When the intersection-level control loop is closed using the SQP introduced in this section, it includes distributed com-
putation and wireless communication. In the ideal case, algorithmic overhead, computation and communication require
a negligible amount of time compared with the time scale of the system dynamics, and the current vehicle state xi,k (and
therefore Vi(xi,k,Ti) and hi(xi,k,Ti) can be considered constant during the time it takes to solve the SQP. However, non-
negligible delays can be expected in a real application, and the vehicle state might change significantly between the SQP
iterates. The use of wireless communication in particular is a source of comparatively large delays, as packet drops are
likely to occur and subsequent retransmissions of data often are necessary.

This raises what is known as the real-time dilemma:34 Should the NLP be solved to convergence when the resulting
T will be outdated w.r.t. the system state, or should an approximate solution T be sought using the most up-to-date
information? This consideration implies that the resulting control law T∗(xi,k) will be a suboptimal approximation of
the truly optimal solution feedback, regardless of how the dilemma is handled. In this article, we consider two different
solutions to the dilemma, which we present in the following.

3.3.1 Alternative 1: Solving the intersection-level NLP to convergence from a predicted
state

In the first solution, which we denote the Converged controller, we use a scheme similar to that of Reference 35 or 36, where
Vi(Ti), hi(Ti) are computed from a predicted future state xi,K rather than the current state xi,k, K > k, and the resulting
control law T∗(Xi,k) is not applied until time tK . The predicted state is obtained from the open-loop predictions of QP
(11) in the vehicle-level control loops, which are computed using a previous time-slot schedule T. A block diagram of the
scheme is shown in Figure 2A.

HULT et al. 1079

(A) (B)

(C)

F I G U R E 2 Schematic illustration of the two intersection-level controllers and locality of computation

If the evolution of the real system stays close to the predicted trajectories, that is, xi,K predicted at some k < K is
close to the actual state xi,K at K, the resulting intersection-level control-law will provide a good approximation T∗(Xi,k)
to T∗(Xi,k). However, the scheme will introduce a significant delay in the feedback of the intersection-level scheme. In
fact, denoting the update frequency of the intersection-level controller tO

s , we note that the reaction to a perturbation that
occurs between ktO

s and (k + 1)tO
s will not be applied to the system until (k + 2)tO

s .

3.3.2 Alternative 2: Approximate the intersection-level NLP in an RTI-fashion

The second solution, which we denote the 1-step controller, does not solve the SQP to convergence, and thereby
avoids long solution times. Instead, we adopt a strategy where the current state measurements are used to com-
pute Vi(Ti), hi(Ti) and their derivatives, but where only one full SQP step is taken in the solution of (7). The
resulting control law T(1)(Xk) = T(0) + ΔT(0)(Xk) is thereafter applied directly to the vehicles. While the control law
is approximate, it enables rapid feedback and reaction to perturbations to the vehicles. The procedure is shown in
Figure 2B.

This can be seen as an application of the RTI scheme for dynamic optimization,30 applied to the NLP (7). However, we
note that the dynamic optimization problems (11) that compute the vehicle control commands are solved to convergence
at all times.

The physical location of the solution of the optimization problems involved in the inner, vehicle-level control loop as
well as the two variations of the outer, intersection-level control loop is provided in Figure 2C.

1080 HULT et al.

4 EXPERIMENTAL VALIDATION

In this section, we describe an experimental setup which was used to validate the bi-level controller described in
Section 2.3. In particular, we detail an implementation of the semi-distributed SQP described in Section 3.1 in which
most computations are performed on board the vehicles and communicated to a central coordinating unit using V2V
communication. We also provide details on the hardware platform used.

4.1 Practical implementation of the vehicle-level control-loop

The vehicle-level control loop consists of solving problem (11) every time instant based on the current state xi,k, using
the time-slot Ti and applying the resulting optimal ui,k to the vehicle. However, problem (11) differs from standard MPC
formulations in that the position constraints (11e) and (11f) force the vehicle to be at a specific position at a given time. As
the vehicle gets closer to the intersection, the ability to affect when the intersection is entered and departed diminishes.
Moreover, in a real scenario, the closed-loop system is constantly exposed to perturbations in the form of plant-prediction
model mismatches, measurement noise and other external disturbances. It is therefore increasingly likely that problem
(11) is infeasible for (xi,k,Ti) as the vehicle gets closer to the intersection. To address this issue we first relax the equality
constraints (11e) and (11f) to the inequalities

pin
i − pd

i (t
in
i ,wi) ≥ 0, pd

i (t
out
i ,wi) − pout

i ≥ 0. (39)

With this relaxation, the vehicle is allowed to occupy the intersection within Ti rather than using the intersection
throughout all of Ti. While this ensures that the controller, for example, does not slow down the vehicle to stay longer in
the intersection in response to a perturbation, infeasibilities are still possible. We therefore introduce a softening of the
constraints (39) as

pin
i − pd

i (t
in
i ,wi) + 𝜎in

i ≥ 0, pd
i (t

out
i ,wi) − pout

i + 𝜎out
i ≥ 0, 𝜎in

i ≥ 0 and 𝜎out
i ≥ 0, (40)

and add the term Pi(𝜎i) = 1
2
𝜎⊤

i 𝜎i𝜙
q
i + 𝜙i1⊤𝜎i to the objective, where 𝜎i = (𝜎in

i , 𝜎out
i) and 𝜙

q
i > 0, 𝜙i > 0 are penalty weights.

The relaxed and softened vehicle MPC problem solved at time tk is thereby

min
wi,𝜎i

Ji(wi) + Pi(𝜎i) (41a)

s.t. xi,k = xi,k (41b)

xi,k+n+1 = Aixi,k+n + Biūi,k+n, n ∈ I[0,N−1], (41c)

Dixi,k+n + Eiūi,k+n(t) ≥ bi, n ∈ I[0,N−1], (41d)

pin
i − pd

i (t
in
i ,wi) + 𝜎in

i ≥ 0, (41e)

pd
i (t

out
i ,wi) − pout

i + 𝜎out
i ≥ 0, (41f)

𝜎in
i ≥ 0, 𝜎out

i ≥ 0. (41g)

Here, we differentiate the state and control of the vehicle xi,k, ui,k from the open-loop predictions xi,k, ūi,k. The control
command applied at time tk is the optimal open-loop control command ui,k = ū∗

i,k.
The softening of the constraints ensures that there will be no feasibility issues due to the position constraints (39). In

fact, Ti no longer affects the feasibility of the optimization problem (41). Note that if 𝜙i is chosen large enough, Pi(𝜎i)† is
a so-called exact penalty function.32 A well-known property of exact penalty functions is that the problem with softened
constraints will return a solution with 𝜎i = 0 whenever such a solution exists (see eg, 37, Theorem 14.3.1). Moreover, when
𝜙i is chosen large enough and no solution exists where 𝜎i = 0, the solution minimizes ||𝜎i||∞ and thereby the violations of

†The quadratic term in Pi(𝜎i) is added for numerical reasons, and the parameter 𝜙q is typically small.

HULT et al. 1081

the constraint (39).25 The quadratic term with parameter 𝜙q
i does not jeopardize the exact penalty property and is added

to ensure the numerical stability of the algorithm.

4.2 Efficient solution of the QPs and LPs

General purpose solvers are too slow to give real-time feasible solutions to the vehicle-level QP (41) and the LPs (18),
(17), and solvers tailored to the special structure of these optimization problems have to be considered. As discussed in
Section 3.1.3, in case second-order optimization methods are used to solve these QPs/LPs, the sensitivities of the cost
function and constraints can be easily and cheaply computed from the local optimization problems by reusing the KKT
matrix factorization available from the QPs/LPs solver. In this work, we used a version of the interior-point method (IPM)
called HPMPC29 which is tailored to allow the efficient computation of the tangential predictor at the solution. HPMPC
provides an implementation of a Mehrotra's predictor-corrector IPM tailored for the solution of QPs in the form of OCPs.
The IPM employs a backward Riccati recursion for the efficient computation of the search direction. As its linear algebra
framework, HPMPC makes use of BLASFEO,38 which provides a set of linear algebra routines tailored to provide high
computational performance for rather small matrix sizes, as typical in embedded optimization applications.

On the algorithmic side, the IPM in HPMPC is coupled with a partial condensing algorithm. Partial condensing39 is
a technique that allows one to control the level of sparsity of an OCP problem by trading off horizon length with input
vector size, by condensing block-wise the original OCP. It is possible to compute the theoretical optimal horizon length
based on the analysis of the flop count of the algorithm. In practice, however, other factors affect the optimal choice of
the horizon length, such as the performance of linear algebra routines.40 The QP (41) is a perfect example of that. Since
the state and input vector sizes are very small and the horizon length is long, partial condensing gives a QP reformulation
that HPMPC can solve much faster, since many operations on small matrices (where the linear algebra performs poorly)
are replaced with few operations on large matrices (where the linear algebra gives higher computational performance).

In this work, HPMPC has been modified to allow the efficient computation of sensitivities. Namely, the solver now
allows the reuse of the last KKT matrix factorization (where Lagrange multipliers and slack variables of inequality con-
straints are fixed at their value close to the solution) to cheaply compute the solution of other systems of linear equations
with different right-hand side. If there are no changes in the active set, this allows the efficient computation of the
tangential predictor around the current solution.41 Therefore, the sensitivities in (36) can be cheaply computed by per-
forming the partial condensing of the right-hand side and the solution of the KKT system reusing the cached KKT matrix
factorization. The computational cost of these operations is negligible with respect to the QP/LP solution, which com-
prises a complete partial condensing preprocessing step, plus a KKT matrix factorization and two KKT system solutions
per IPM iteration (which are typically in the range of 6-15 per QP/LP solution).

4.2.1 Efficient solution of the intersection-level problems

As noted in Section 3.2, the computational bottleneck of the SQP algorithm will commonly be the solution of the
vehicle-level QP (41) and the LPs (18), (17). This is due to the comparatively small size of the QP subproblem (23) in such
cases. General purpose QP solvers can therefore be fast enough and used to solve (23) in real-time. Due to this, MATLABs
QP-solver quadprog was used in the experimental validation. However, with an increasing number of vehicles, the time
required to solve the QP subproblem (23) with a general purpose solver will approach that required by HPMPC for the
solution of (41) and the LPs (18), (17). For large scenarios, solving (23) could therefore become a computational bottle-
neck of the SQP. It is therefore desirable to use efficient, structure exploiting solvers also for the QP subproblem (23). For
this reason, we propose the following reformulation of (23):

min
ΔT,ut

Na∑
i=1

1
2
ΔT⊤

i H(c)ΔTi + ∇Ti f (T
(c)
i)⊤ΔTi (42a)

s.t. tin
i
(c) + Δtin

i+1 = ut
i (42b)

ut
i − tout

i
(c) − Δtout

i ≥ 0 (42c)

hi(T(c)
i) + ∇Ti h(T

(c)
i)⊤ΔTi ≥ 0. (42d)

1082 HULT et al.

That is, the time-slot increments ΔTi are formulated as states in the dynamical system (42b), where the variable
ut = (ut

1,… ,ut
Na
) is introduced as a fictitious control. The precedence constraint (7c) is formulated as the path con-

straint (42c). The problem is thereby written on a stage-wise form for which efficient solvers such as HPMPC can
be deployed, and significant performance gains can be made. For instance, the typical time required to solve (23) for
a three vehicle scenario with quadprog is around 2 ms using a standard laptop. The time required by HPMPC for
the same problem using the same hardware lies around 40 𝜇s. Moreover, the time-complexity of HPMPC is linear in
the number of stages, and approximately 100𝜇s are required for a 30-vehicle scenario, where quadprog requires 7ms.
For a 300-vehicle scenario HPMPC requires approximately 850𝜇s to converge, while quadprog requires approximately
1second.

4.3 Algorithm

The procedures executed by the coordinator and the vehicles when the converged intersection controller is used are
summarized in Algorithms 1 and 2. Before the SQP is solved the first time, the central node requests the vehicles'
noncoordinated optimal time-slot Ti which serves as the primal initial guess. In subsequent solutions of the SQP,
the previous optimal solution is used instead. The solution is considered found when either ||(∇(z), h−(T))||∞ < 𝜀 or||(ΔT, h−(T))||∞ < 𝜀. On the vehicle side, the MPC problem (41), is solved every ts using the most recently commanded
time-slot T∗

i . When a request from the central node is registered, the vehicles evaluate and send the functions and
derivatives needed to solve the SQP.

Algorithm 1. Central Node. Here, i(Ti) = {Vi(Ti),∇Ti Vi(Ti), ∇2
Ti

Vi(Ti), hi(Ti), ∇Ti hi(Ti),∇2
Ti

hi(Ti)}, where the
dependence on the initial state x̂i,0 has been dropped for notational simplicity

1: Send coordination start state xstart
i and start time tstart.

2: Request T(0)
i from vehicles, initialize 𝜇(0), K = 0

3: loop
4: Wait until t == tstart + (K − 1)tO

s
5: Set tK = KtO

s , T = T∗, 𝜇 = 𝜇∗, r = 0
6: Broadcast T, tK , r and request i(Ti) computed at tK .
7: Wait until all vehicles has responded.
8: while exit conditions not fulfilled do
9: Set r = r + 1, Assemble and solve (23) for Δz, set 𝛼(c) = 1

10: loop
11: Broadcast T𝛼

i = T(c)
i + 𝛼(c)ΔT(c)

i and request i(T𝛼
i) and i(T𝛼

i)
12: Wait until all vehicles have responded.
13: M𝛼 = V((T𝛼)) + 𝜌(c)‖hs((T𝛼))‖1

14: if M𝛼 ≤ M(T(c)) + 𝛾DΔT(c)M(T(c))𝛼(c) then
15: T(c+1) = (T𝛼)
16: 𝜇(c+1) = 𝜇(c) + 𝛼(c)(�̃�(c) − 𝜇(c))
17: Exit loop.
18: else
19: 𝛼(c) = 𝛼(c)𝛽

20: end if
21: end loop
22: end while
23: Set T∗ = T(c) and send out time-slot to apply T∗.
24: K ← K + 1
25: end loop

HULT et al. 1083

Algorithm 2. Vehicle

1: loop
2: Estimate current state xi,0, Get synchronized time t
3: if Central node sends new time-slot to apply then
4: Receive T∗

i
5: Tlocal

i = T∗
i − t

6: end if
7: Solve (41) with (xi,0,Tlocal

i)
8: Apply optimal ui,0 to vehicle
9: if Central node request i(Ti) then

10: Receive Ti, tK , r
11: T̃i

local = Ti − tK
12: if r == 0 then
13: Store xi,K from prediction at tK − t computed on Line˜7
14: Solve LPs for Lin(xi,K) and U in(xi,K)
15: end if
16: Solve LPs (18), (17) and evaluate hi(T̃i

local), 𝛻Ti hi(T̃i
local), 𝛻2

Ti
hi(T̃i

local).
17: Compute i(T̃i

local) through (27).
18: Solve QP (11) with (xi,K ,i(T̃i

local)) and compute V(xi,K ,i(T̃i
local)), 𝛻Ti V(xi,K ,i(T̃i

local)) and
𝛻2

Ti
V(xi,K ,i(T̃i

local)).
19: Send i(T̃i

local) and i(i(T̃i
local)) to central node.

20: end if
21: end loop

4.3.1 Implementation restrictions and practical considerations

Due to implementation related details, the algorithm was executed at a sampling time of ts = 0.1 s. This restricted the
communication of new information from both the central node and the vehicles to occur at a maximum of 10 Hz. With
an ideal communication system, one iteration of the SQP (with 𝛼(c) = 1) therefore requires tss to broadcast T (line 11 of
Algorithm 1) and ts s for the vehicles to respond with i(i(T𝛼

i)) (line 12 of Algorithm 1), that is, the lowest time required
per SQP iterate is 2ts s. Moreover, for the converged intersection controller, each execution of the SQP commences tO

s s
before the resulting time-slots should be applied to the vehicles, which gives the algorithm tO

s s to converge and notify
the vehicles of the results. For simplicity, the period of the intersection-level control loop is set to tO

s s, which, due to the
long expected solve times, is set to tO

s = 3 s. Finally, to ensure that all vehicles are predicted to be before the intersection
when the new time-slots are applied, the SQP is only solved when no vehicle is close to the intersection. In particular,
for scenarios where the desired speed is vref = 50km∕h, the SQP is suspended when the first vehicle is 50 m away from
the intersection. We emphasize that this modification is done for simplicity of implementation and that the problem
formulation allows the SQP to be solved with a vehicle to be inside the intersection.

4.4 Test platform

The coordination controller was tested at the Asta Zero proving ground outside Gothenburg, Sweden. The test platform
consisted of the three different Volvo vehicles shown in Figure 3A: One Volvo S60 T5 Petrol Turbo sedan, one Volvo S60
D5 Turbo Diesel sedan and one Volvo XC90 T6 Petrol Turbo SUV. All cars were equipped with automatic gearboxes and
an interface for external control of the longitudinal motion. In particular, all vehicles were commanded by supplying a
desired longitudinal acceleration to a controller, which thereafter sent the appropriate commands to the engine, gear-box,
and friction brakes. The vehicles had an on-board sensor suite consisting of wheel encoders, inertial measurement units
and real-time kinematic GPS receivers. The latter was capable of providing positioning estimates with measurement error

1084 HULT et al.

F I G U R E 3 Photos of the experimental hardware platform. A, Shows the three vehicles used, B, shows the hardware installation in one
of the vehicles. The 3G router was used to provide an IP link for the real-time kinematic corrections used by the GPS receiver [Colour figure
can be viewed at wileyonlinelibrary.com]

standard deviations as low as 𝜎GPS = 0.05 m as well as global-time synchronization. To improve the positioning estimates
and handle sporadic GPS outages, Extend Kalman Filters based on that presented in Reference 42 were used in all vehicles
to fuse the available sensor data. The one-dimensional position pi,k was constructed by first projecting the estimate of the
global-position onto a reference path along the road and then taking pi,k as the geodesic distance along the path from the
projected point to the start of the intersection.

Moreover, each vehicle was equipped with ITS G5 compliant V2V communication equipment from RENDITS.43 On
each vehicle, the experiment software ran on two computational units that communicated with each other using UDP
over Ethernet: one MicroAutoBox II (MABx) real-time prototyping platform, interfacing with the vehicle, sensors, and
communication equipment which ran the algorithm logic and state estimation, and one MacBook Pro with an Intel i7
4770HQ CPU and 16 GB of RAM, on which the QPs (11), (41) and LPs (17), (18) were solved using HPMPC. The hardware
setup in one of the vehicles is shown in Figure 3B.

Finally, the experimental setup included a central coordinating unit, consisting of a MacBook Pro laptop with an Intel
i5 4308U CPU and 8 GB of RAM, together with a V2V communication device from RENDITS. The central coordinating
unit was used to control and monitor the experiments and executed the central parts of the SQP. The latter included
solution of the QP-subproblem (23) with quadprog in MATLAB/Simulink 2016b.

4.4.1 Prediction model, objective, and parameters

The prediction model used during the experiments was a simple double integrator, ṗi(t) = vi(t), v̇i(t) = ui(t), where the
acceleration is the input and xi(t) = (pi(t), vi(t)). For this dynamical system pd

i (t,wi) = pi,k + (t − kts)vi,k + 1
2
(t − kts)2ui,k,

with k = floor(t∕ts). Furthermore, we employed the objective function

Jd
i (wi) = (vi,N − vref

i)2Qf
i +

N−1∑
i=0

(vi,k − vref
i)2Qi + Riu2

i,k, (43)

where the desired speed vref
i , and the objective function weights Qi > 0 and Ri > 0 were varied between different instances

of the experiment. The state and control were constrained to vi,k ≥ 0 and ui,k ∈ [−4, 1.6]m∕s2, where the latter was due to
limitations in the vehicle actuation interfaces. The vehicle-level control loops were closed with ts = 0.1 s and the horizon
length was set to N = 200. The objective and prediction model were chosen due to their simplicity. In particular, the
dynamics do not include any parameters to identify, and the objective enables an intuitive understanding of how the
solution will change with variations to the penalty weights. However, we want to emphasize that these choices are not
restrictive and that other linear-quadratic models are possible. For instance, in Reference 22 a prediction model based on
a linearization of a nonlinear vehicle model is used together with a quadratic approximation of an economic objective
function obtained through the method presented in Reference 44.

http://wileyonlinelibrary.com

HULT et al. 1085

1 : XC90

2 : S60 1

3 : S60 2

Coordinator

(A) Aerial photo of the crossing configuration used in the experimental valida-

tion. The white lines before the square representing the intersection illustrates the

different safety margins employed.

inout

Coordinator

(B) Photo of the parallel configuration used in the experimental validation. The

white lines mark the beginning and end of the intersection, in and out , and colli-

sions are thereby avoided when only one vehicle is between the two white lines at a

given time.

F I G U R E 4 Photos of the two different configurations used in the experimental validation [Colour figure can be viewed at
wileyonlinelibrary.com]

5 RESULTS

In this section, we present and discuss the results from the experimental campaign, which demonstrate the performance
of the semi-distributed SQP and both the Converged and 1-step intersection-level controllers.

In total, more than 80 experiments were performed, where the initial conditions, objective function weights, and
other parameters were varied. In all experiment instances, the vehicles were first controlled to a predefined starting state,
typically one where a collision would occur if no action was taken, before the bi-level controller was initialized. The
experiments were performed in two different modes: in an actual intersection, as shown in Figure 4A and in a parallel
configuration where the approaching roads were laid out next to each other and the intersection was represented by a
segment on the road, as shown in Figure 4B. The latter was used to enable evaluation of the controller without risk of
collision, and is the primary source of the data reported in this section. However, the interested reader can find video
material from experiments performed in the crossing configuration at Reference 45.

For comparison, some simulation results of the closed-loop system are also provided in this section. In these cases,
the vehicles were simulated with the nominal model.

5.1 Evaluation of the semi-distributed SQP

In this subsection, we present and analyze data from the implementation of the semi-distributed SQP used in the exper-
iments. We focus on an experimental scenario with the objective function weights Qi = 1,Ri = 10, the reference speed
vref

i = 50 km∕h, ∀i, and where all vehicles are initiated at pi,0 = −200 with vi,0 = 50 km∕h. Data from the first SQP instance,
where the problem is solved from xi,0 = (pi,0, vi,0),∀i, is shown in Figure 5. In particular, Figure 5A,B show the solutions to
the vehicle-level problems corresponding to the iterates T(c) of the SQP. The two horizontal lines in Figure 5A represent
the beginning and end of the intersection, that is, collisions are avoided when at most one trajectory is between the lines
at all times, and the primal iterates T(c) are shown as vertical lines.

The solver is initialized at the uncoordinated solution, where all vehicles keep the constant velocity vref
i and therefore

occupy the intersection simultaneously. As can be seen in Figure 5A, the time-slots T satisfy the order constraints hi(T) ≥
0 already after the first iterate, whereby a collision free solution is available. The subsequent two iterations retain feasibility
and improve the solution. Full steps (𝛼 = 1) are taken in all iterates.

The algorithm progress measures shown in Figure 5C further illustrate this fact: feasibility is reached after the first
iterate (||h−

s (T)|| drops below the set tolerance). Note the relatively loose convergence threshold 𝜀 = 10−3, which is selected
in relation to the properties of the physical system. In particular, the GPS provides measurements with a positioning error
standard deviation around 𝜎GPS = 0.05 m. The standard deviation of the error between the commanded time-slot Ti and

http://wileyonlinelibrary.com

1086 HULT et al.

(A) (B) (C)

F I G U R E 5 Example of the progression of the sequential quadratic programming algorithm in one instance from the experimental
campaign. A, Shows the primal iterates T(c)

i as vertical bars and the position trajectory pi,k for the solutions to (11) corresponding to the
primal iterates, B, shows the corresponding velocity vi,k and input ūi,k sequences, and C, the corresponding algorithm progress measure,
where the dashed line is the termination tolerance. The data from the different vehicles in A and B are differentiated by color [Colour figure
can be viewed at wileyonlinelibrary.com]

that resulting from the closed-loop application of (11) using Ti will therefore be above one millisecond‡ for speeds around
50 km∕h. Enforcing constraint satisfaction or changes to the primal variables below 10−3 [s] will consequently have no
noticeable effect on the physical system.

The small impact of small changes in Ti on the vehicle trajectories is further shown in Figure 5A,B, where the solutions
of (11) corresponding to iteration 2 and 3 are indistinguishable. In fact, the difference in ūi,0 between iteration 2 and 3 is
below the resolution of the actuation interface, that is, the applied control command ūi,0 after iteration 2 and 3 would be
interpreted as identical by the vehicle.

5.1.1 Solution time analysis

The mean computation time was 1.664 ms with 𝜎 ≈ 1.263 ms (n = 52736) for the LPs, and 1.607 ms with 𝜎 ≈ 1.107 ms
(n = 246132) for the vehicle-level QPs. Since the SQP normally only required a few iterations to converge to a relevant
threshold, a solution to (7) should have been found within a few hundredths of a second. However, due to a rudimentary
implementation and hardware limitations this was not the case in during the experiments. Instead, the average time
required to solve the SQP was 1.740 s with 𝜎 ≈ 0.406 s (n = 130).

An example of how this time is spent is provided in Figure 6 which shows a timeline from the SQP instance shown
in Figure 5. In Figure 6, the width of the bars represents the time spent solving the LPs (18), (17) and the QP (11) for
the vehicles, corresponding to Lines 16 and 18 of Algorithm 2, and the time spent solving the QP-subproblem 23 in
the central node, corresponding to Line 9 of Algorithm 1. As the figure illustrates, only 55 ms, corresponding to 1.6%
of the total time 2.723 s, is spent in computations. The time required for the other operations relevant for the SQP in
Algorithms 1 and 2 is negligible, and the remaining 98.4%, that is, the white gaps of Figure 6A, is primarily spent in the
waiting states of Lines 7 and 12 in Algorithm 1. Possible explanations for the long delays are inefficient buffer handling in
the communication modules of the MABx and packet drops in the wireless links. To a smaller extent, the delays are due
to the low communication frequency used and the lack of synchronization between the vehicles and the central node,
discussed in Section 4.3.1. The impact of the slow update rate can be seen in a comparison between the computations
of vehicle 1 and 2: in iteration 1, occurring around t = −1.5 s in Figure 6A, vehicle 1 and 2 perform their computations
simultaneously. In iterations 0, 2, and 3, on the other hand, there is delay of ts = 0.1s between the vehicles. The explanation
is that a message is processed by Algorithm 2 at time (k + 1)ts or kts depending on when it is received relative to the ticks
of the local clock. Small variations in the reception time can therefore cause a variation of ts = 0.1 s in the relative time

‡This is true for the otherwise ideal case. In reality, other uncertainties are present as well and the performance is in practice therefore even worse.

http://wileyonlinelibrary.com

HULT et al. 1087

Iteration 0 Iteration 1 Iteration 2 Iteration 3

(A)

V2V
Vehicle 1
Vehicle 2
Vehicle 3

It. 0 It. 1 It. 2 It. 3

Central Node

(B)

0 1 2 3

Time Time

(C)

F I G U R E 6 Illustration of the time spent on computation in the of the sequential quadratic programming instance shown in of
Figure 5, The width of the bars corresponds to the time spent for the different parts of Algorithms 1 and 2. For the vehicles, it consists of the
time required to solve (18), (17), and (11) sequentially, and for the central node it consists of the time required to solve (23) with MATLABs
quadprog. The bars are shown with different heights to ease visualization. A, shows the timings recorded during the experiment, B, shows
the likely timings of an improved implementation, and C, illustrates the timings of an hypothetical ideal implementation which uses a
tailored communication protocol [Colour figure can be viewed at wileyonlinelibrary.com]

between the processing of a message in two cars. Moreover, the lack of synchronization can be observed when vehicle 2
and 3 are compared: the computations of vehicle 3 consistently occur around 0.07 s before those of vehicle 2. We want
to highlight that the long time required to solve the SQP is almost entirely related to our specific implementation, and
performance would improve dramatically with a few modifications of the implementation.

For comparison, we provide an example of the timeline for a more efficient implementation of the SQP in Figure 6B.
In this case, the long and unnecessary waits have been removed and the algorithm is synchronized between the vehicles,
but everything else is kept unchanged. The time marked as required by communication is taken from Reference 42, where
an empirical study is presented on the time performance of the communication system used during the experiment.
With such an implementation, the same problem instance would be solved in 0.074 s, where 48% would be spent on
communication, 38.5% on the solution of the vehicle-level LPs and QP, and 13.5% on solving the QP-subproblem (23).

Finally, it is reasonable to expect even lower solution times with improvements to both the algorithmic implementa-
tion and the equipment. For instance, the use of the reformulation of the QP-subproblem and its solution with HPMPC
would, as discussed in 4.2, significantly reduce the time required for the central computations. Furthermore, solving the
two LPs (18), (17) in parallel on each vehicle would shorten the time required for the vehicle-side computations. Finally,
while the general purpose V2V equipment requires around 4 ms for each transmission, a tailored communication proto-
col could be made significantly faster. For instance, it is reported in Reference 46 that the time to transmit data using the
802.11 p physical layer could be as low as tcom = 40 + ceil ((ndata bits + 22)∕48) 8 μs. Since all vehicles could use different
channels and transmit their data to the central node simultaneously, sending 12 floats per vehicle in double precision
would thereby take 176 𝜇s. The time-line for a solution of the same SQP instance in this hypothetical setting is shown in
Figure 6C, where the solution would be found in 0.0256 s.

5.1.2 Consistency

The algorithm consistently exhibited the same behavior as in Figure 5, with almost immediate feasibility followed by a
few optimality-improving iterations. The algorithm progress measures of a selection of the SQP instances are provided in

http://wileyonlinelibrary.com

1088 HULT et al.

(A) (B) (C)

F I G U R E 7 A and B, Show the development of the progress measure in a selection of sequential quadratic programming instances from
the experimental campaign. In both figures, the stars indicate cases when the algorithm was terminated due to only one progress measure
reaching the threshold. C, Shows the progress measure in a case where reduced steps are taken. In A to C, the dashed line is the tolerance
𝜀 = 10−3 [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 7 for illustration. In particular, the convergence to 𝜀 was achieved in two iterations in 7% of the instances, in three
iterations in 50%, in four iterations in 28%, and in five iterations in 15%.

Finally, we have noticed that reduced steps (𝛼 < 1) are required only in “hard” scenarios. Examples of “hard” sce-
narios include those where the coordination is initiated very close to the intersection for the initial vehicle velocity, and
those where a large number of vehicles need to cross the intersection simultaneously. For practical reasons we were not
able to perform sufficiently hard scenarios during the experimental campaign, due to which full steps were taken in all
experimental SQP instances. For illustration purposes, the progress measures of a three-vehicle scenario where reduced
steps were taken is given in Figure 7C. This scenario was particularly hard, since p1,0 = −45 m, vi,0 = 45 km∕h while
p2,0 = p3,0 = −40 m, v2,0 = v3,0 = 50 km∕h, such that the first and last vehicles were forced to perform very aggressive
maneuvers to avoid collision.

5.1.3 A larger example

To further demonstrate the behavior of the semi-distributed SQP, we present simulated results from a larger problem
instance in Figure 8. In this scenario, 12 vehicles are randomly generated at distances between 50 and 200 m from the
intersection at 50 km∕h. As Figure 8B illustrates, the algorithm exhibits the same behavior as in the smaller scenarios:
feasibility, and thereby collision avoidance is reached rapidly, in this case after the second iterate, and thereafter small
adjustments toward optimality are performed.

While the implementation of the SQP used in the experiments would require prohibitively long time to solve the
problem, it would be solved in 0.224 s with the improved implementation of Figure 6B, and attain feasibility in 0.037
s. Moreover, the problem would be solved in 0.089 s with the ideal implementation discussed in Section 5.1.1, where a
feasible solution would be available in 0.015 s.

5.2 Evaluation and comparison of controllers

In this subsection, we present and analyze both simulated and experimental data on the performance of the bi-level
closed-loop controller. In particular, we provide comparisons between the converged and 1-step formulations of the
intersection-level controller and study their ability to reject large perturbations.

5.2.1 Vehicle-level control loop

Regardless of how the time-slots T are computed, the accuracy with which the vehicles conform to the time-slots
determines whether or not the closed-loop system is collision free. Even though a simple dynamic model was used in

http://wileyonlinelibrary.com

HULT et al. 1089

(A) (B)

F I G U R E 8 Example scenario consisting of 12 cars in a four-way intersection. The positions of the vehicles are shown in A, where the
different colors differentiate different lanes. In B, the algorithm performance measures are displayed together with the cumulative number of
floating point numbers passed in the two-way communication between the central node and the vehicles [Colour figure can be viewed at
wileyonlinelibrary.com]

(A) (B) (C)

F I G U R E 9 Illustration of the vehicle-level model predictive control performance. Statistics on the difference between the commanded
and actual tin

i and tout
i is shown in A. In particular, only potentially dangerous violations such that tin Actual

i < tin
i or tout Actual

i > tout
i are

considered. The corresponding position trajectories are shown in B and C. Trajectories that satisfy and violate (41e) and (41e) and (41f) are
colored green and red, respectively. The gray area in A and B corresponds to the constraints (41e) and (41f), and are consequently not crossed
by safe trajectories. The data is obtained from all three vehicles during 75 experiments and all trajectories are shifted in pi,k and t to ease
visualization [Colour figure can be viewed at wileyonlinelibrary.com]

the vehicle-level MPC during the experiment and several nonmodeled nonlinearities were present, the ability of the
closed-loop system to satisfy the position constraints (41e) and (41f) was remarkable. In particular, the difference between
the commanded (Ti) and actual (TActual

i) time-slot was small in almost all cases. Combining the evaluation of tin
i

Actual − tin
i

and tout
i

Actual − tout
i for all three vehicles and all experiment runs, 450 constraint violation data-points were collected. The

error was on the potentially dangerous side, that is, vehicles entering the intersection too early (tin Actual
i < tin

i) or leaving
too late (tout Actual

i > tout
i), in 43.3% of the cases. The distribution of the error is shown in Figure 9A, and we emphasize that

for more than 90% of the potentially dangerous constraint violations, the errors were below 0.03 s. To illustrate how this
small error translates to collision risks, the corresponding trajectories in the time-position space are given in Figure 9B,C
for tin

i and tout
i , respectively.

As shown in Figure 9C, the most dangerous constraint violations occur for the out time constraint (41f), that is, such
that the vehicles leaves the intersection too late. Note, however, that the magnitude of violations only are such that a few
decimeters of the leaving vehicle remain inside the intersection when the following vehicle enters. That violations are
larger for the out time constraints is likely due to the (unmodeled) actuator dynamics being faster in deceleration than
in acceleration (c.f. friction brakes and internal combustion engine). Successful compensation of errors due to measure-
ment noise and prediction model inaccuracies can therefore be made closer to the intersection when these cause the
vehicle to enter early rather than leave late. It is expected that all constraint violations could be decreased by using a more
sophisticated prediction model in (41), more accurate sensors and a higher update frequency ts. Finally, we note that a

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

1090 HULT et al.

(A) (B) (C)

F I G U R E 10 Data from two experimental runs using the 1-step and converged intersection-level controllers, where Qi = 1, Ri = 10,
vref

i = 50 km∕h, ∀i. The position trajectories are shown in A and the velocity and acceleration trajectories in B. The upper plot of C shows the
output of the vehicle-level MPC controllers, whereas the lower plot illustrates the output of the intersection-level controller. To promote
visibility, the lower plot in C shows only changes in tin

i with respect to the initial schedule tin
i

0, which is the same for both controllers. For
both controllers, the time-slot schedule is frozen at t ≈ 10s. Due to substantial noise levels, the acceleration data in B has been smoothened
with a noncausal filter to promote visibility. Finally, the noise in the control signals of vehicle 2 and 3 seen in C, is due to a GPS problem. The
issue is thoroughly discussed in Reference 25 [Colour figure can be viewed at wileyonlinelibrary.com]

constraint tightening approach was proposed in Reference 25, with which collision avoidance can be guaranteed even
with potentially dangerous constraint violations.

5.2.2 Intersection-level control loop

To enable comparison, the same experiments were performed using both the converged and 1-step controller. Data from
the application of both controllers to one experimental scenario is shown in Figure 10, where the scenario parameters
were as in Section 5.1. As the figure illustrates, the difference between the two controllers is very small: the acceleration
and velocity profiles in Figure 10B show a high degree of similarity, and the position trajectories in Figure 10A are almost
indistinguishable. The differences are most clearly seen in the lower plot of Figure 10C, which shows the changes in tin

i
compared with the first coordinated solution at t = 0. Here, the smaller but more frequent changes to T by the 1-step
controller are clearly differentiated from the less frequent but larger adjustments performed by the converged controller.
Note that, while updates are more frequent for the 1-step controller, they are still significantly slower than the vehicle-level
update frequency of 10 Hz. The reason is that each adjustment first requires all vehicles to send the relevant information to
the central node, which thereafter can solve the QP subproblem (23) and send the updated time-slot back to the vehicles.
The process thereby involves the same type of waiting and delays as discussed in Section 5.1.1.

Note also that for both controllers, the initial time-slot schedule T is continuously pushed to later times. This is likely
caused by inaccuracies in the prediction model which cause the real system to lag slightly behind the predictions. This
explanation is consistent with the nature of the constraint violations discussed in Section 5.2.1, in particular those shown
in Figure 9C. The use of a more accurate prediction model is expected to positively affect the behavior.

We want to highlight that the magnitude of the input commands and acceleration as well as the resulting changes
in velocity are all small. For comparison, it has been shown that human drivers decelerate with down to −1.9 m∕s2

during intersection approaches without stops (light switching from red to green) and down to −4.5 m∕s2 for solid
red lights.47

To illustrate the effects of using a simple implementation and deploying the controller on a real system, results
from a simulation of both controllers in the same scenario as the experiments are provided in Figure 11. Since one
iteration of the SQP requires less than 20 ms in the ideal case, including two-way communication, the 1-step updates

http://wileyonlinelibrary.com

HULT et al. 1091

(A) (B) (C)

F I G U R E 11 Results from simulations where the converged and 1-step intersection controllers were used. Plots as in Figure 10 [Colour
figure can be viewed at wileyonlinelibrary.com]

are computed with the same frequency as the vehicle-level controllers (0.1 s) in simulation. The differences between
the controllers are even smaller in the simulated case, and are again most noticeable in the control output plot of
Figure 11C.

5.2.3 Rejection of perturbations

To investigate the ability to counteract large perturbations, experimental scenarios were performed where the drivers of
the vehicles overrode vehicle-level controllers for short periods of time by pressing the brake or accelerator pedals. Data
from two such experiments where the driver of the first vehicle presses the brake pedal is given in Figure 12. For compar-
ison, Figure 12 also shows the open-loop predictions made on the onset of the perturbation, which gives an indication of
what the unperturbed trajectories would look like.

Rejection of the perturbations is best handled by both feedback loops, that is, both the action of the vehicles and
the time-slot schedule should be adjusted. In particular, when the velocity of the first vehicle is reduced due to the
perturbation, the time-slot schedule should be adjusted so that the intersection entry of all vehicles is postponed.
Indeed, this is also what occurs in both the Converged and 1-step cases, shown in Figure 12A,B, respectively, where
the size of the adjustments in tin

i is shown in the lower plots and the perturbation is represented by the gray slab.
Note that since the perturbations are introduced manually by the driver, they differ in length and magnitude between
Figure 12A,B.

The benefit of the bi-level control structure is made visible in the middle plots of Figure 12A. Here it is clearly shown
that the application of a recomputed time-slot at t ≈ 7 reduces the magnitude of the control command of vehicle 1 and
increases that of vehicle 2, which effectively distributes the effort required to counter the perturbation among the two
vehicles.

A similar behavior, however, smaller in magnitude, can be observed for the 1-step controller in Figure 12B, which
causes the jagged behavior in the middle plot. Note that as predicted in Section 3.3, the reaction of the intersection-level
control loop is delayed for the converged controller, and the large adjustment to T is not performed until 2.5 s
after the perturbation. This is due to the relatively long cycle time of the intersection-level control loop, tO

s = 3s,
and the use of predicted future states as basis for the SQP, as discussed in Section 3.3.1, which prevents faster
reactions.

A perturbed scenario was also simulated to further highlight the benefits of the bi-level control structure and to enable
better comparison between the different intersection-level controllers. The result is shown in Figure 13, where we also
include the case where the time-slots are not adjusted and a highly idealized, unrealistic controller in which the SQP is
solved to convergence every ts = 0.1 s at the current state to serve as benchmarks.

http://wileyonlinelibrary.com

1092 HULT et al.

(A) (B)

F I G U R E 12 Data from experimental scenarios with parameters Q1 = 10, R1 = 100, Q2 = Q3 = 1, R2 = R3 = 10 and vref
i = 50 km∕h

where the driver of the first vehicle press the brake. To ease visualization, the data from Vehicle 2 has been removed from the presentation. A,
Shows the response using the converged intersection-level controller and B, the response using the 1-step controller. The plots show from top
to bottom the velocity, the acceleration commanded by the vehicle-level MPC and the change between consecutive computations of tin

i , 𝛿tin
i .

In all plots, the gray bar illustrates the time during which the automated system of the first vehicle is overridden by the driver. The dashed
lines in the velocity and acceleration plots shows the MPC's open-loop prediction at the time where the automated system is suspended. The
noise in control command of Vehicle 3 around t ≈ 17 is due to a GPS issue, which is discussed in Reference 25 but omitted here for brevity.
MPC, model predictive control [Colour figure can be viewed at wileyonlinelibrary.com]

Note in particular the trajectories corresponding to the case in which the time-slot schedule is kept constant. In this
case, the entire effort of perturbation rejection is placed on the first vehicle, with higher transient accelerations and
velocities as a consequence. A similar behavior is observed between the time-slot updates when the SQP is solved to con-
vergence every tO

s = 3s. While the effort of rejecting the disturbance is redistributed among the vehicles with recomputed
time-slots, large acceleration levels are observed in Vehicle 1 between t = 3 and t = 6.

With the 1-step controller, the transient velocities and accelerations are lower as the effort to counter the perturbation
is continuously distributed between the vehicles. As can be seen in Figure 13B, the size of the time-slot adjustments in
the 1-step case is very small, and their application results in no rapid changes in the control command. This is due to the
higher update frequency, which allows a gradual adjustment of the intersection-level controller to the disturbance.

Finally, the difference between the positions resulting from the 1-step controller and the idealized case where the SQP
solved to convergence every 0.1 s is shown in the lower plot of Figure 13A. As can be seen, the difference is at most in the
order of the accuracy of the positioning system. For most of the time, the difference would not be distinguishable from
measurement noise. This is a strong indication that there is no major benefit of solving the SQP to a higher accuracy this
fast, further motivating the use of the 1-step controller. We note that the corresponding accumulated difference in tin

i is
around 50 ms at most, and settles around 1 ms.

Note that the trajectories for the case where the SQP is solved to convergence every t = 0.1 s are drawn in all plots of
Figure 13, but are indistinguishable from the trajectories corresponding to the 1-step controller.

6 DISCUSSION AND CONCLUSION

This article addressed the development and experimental validation of a semi-distributed algorithm for optimal coordi-
nation of automated vehicles at intersections. In particular, we described a bi-level MPC, where an outer control layer
allocates collision free intersection occupancy time-slots by solving a NLP, and a lower control layer computes the OC

http://wileyonlinelibrary.com

HULT et al. 1093

(A) (B)

F I G U R E 13 Data from simulated scenarios with large perturbations where different versions of the intersection-level controller has
been applied. Besides the controllers used in the experiments, the case where the time-slot schedule is kept constant and the case where the
SQP is solved to convergence every 0.1 s is shown for comparison. The colors differentiate Vehicle 1 (blue) from Vehicle 3 (red). In the lower
plot of A, di denotes the difference between the position pi,k resulting from the 1-step controller and the controller where the SQP is solved to
convergence every 0.1 s. The perturbation is taken from the experimental scenario of Figure 12A [Colour figure can be viewed at
wileyonlinelibrary.com]

commands by solving QPs. We detailed a semi-distributed SQP method used to solve the NLP, and described a practical
implementation of the controller, including the integration of the state-of-the art QP solver HPMPC. We demonstrated
the applicability of the controller and computational scheme through an extensive experimental campaign. In partic-
ular, even though there were substantial imperfections in the implementation, the method was shown to reject large
perturbations efficiently and satisfy the collision avoidance constraints to a relevant accuracy.

We want to highlight that the issues observed during the experimental campaign were entirely due to implementation
deficiencies and design choices and not inherent to the control formulation or algorithm. On the contrary, the perfor-
mance observed despite the issues is an indication of the scheme's applicability to real scenarios. For instance, while the
ITS-G5 standard has six service channels,48 and therefore has the potential to let six vehicles communicate simultane-
ously, larger scenarios would require sequential communication with the current technology. The actual communication
time would thereby increase and a delay would be induced: in a scenario with, for example, 42 cars, at least seven rounds
where six vehicles communicate in parallel would be required. With the equipment used during the experiment, the wait
on Line 12 of Algorithm 1 would increase with at least 24 ms. Even though a larger scenario likely requires more SQP
iterations to converge, as indicated by the results of Section 5.1.3, the time required to solve the problem would still be
much smaller than that observed in the experiments, and equal or better performance could be expected. It should also
be noted that, even in a nonideal communication environment where some vehicles possibly need to resend their data
due to packet drops, the added delay is small compared with the one observed during the experiments and would likely
not affect the controller performance significantly.

We also want to emphasize the complete parallelizability of the vehicle-level QPs and LPs. Due to this, the
time-per-iterate in the SQP will practically be independent of the number of vehicles, and the computational time decided
solely by the number of iterates, use of reduced steps, and the time required to solve the QP subproblems. In terms of
computation, the algorithm therefore scales well with an increased number of vehicles.

We should also point out that the central part of the algorithm could be performed at a physically remote location, for
example, in the “cloud.” In this case, the coordinating unit would only be required to provide an access point to the V2V
network. Moreover, the ability to function with rather large delays could also motivate the use of cellular communication
rather than direct radio-links. With a cellular communication solution, no dedicated intersection infrastructure would be
needed at all.

As evidenced by both experimental and simulated results, the bi-level controller successfully managed to handle both
large and small perturbations. In particular, by closing the outer control loop, we showed that the controller distributed the
effort of rejecting perturbations among all involved vehicles. With such a system, the actuation capacities of all involved
vehicles can be used to prevent a collision, should it be necessary, which is an important safety feature. Moreover, the

http://wileyonlinelibrary.com

1094 HULT et al.

1-step variation of the intersection-level controller was shown to have comparable performance. Indeed, as indicated by
the simulation results, the difference between solving the SQP to full convergence and applying the 1-step scheme are on a
scale which makes it irrelevant to the application. As the 1-step scheme requires significantly less communication, faster
feedback is thereby enabled in the intersection control loop. While this indicates that the 1-step controller is superior to
the Converged controller in the tested cases, further studies are required before general conclusions can be drawn.

6.1 Future Work

We aim to generalize the method to include scenarios with more than one oncoming lane per road and explicitly
account for rear-end collisions between vehicles on the same lane. While rear-end collision avoidance con-
straints are easy to formulate and include in the centralized setting of Problem (6), they create additional cou-
plings between the vehicles and complicates the application of the decomposition method used in this article.
We are currently working on schemes which allows both rear-end collision avoidance constraints and distributed
computation.

ACKNOWLEDGEMENTS
This research was funded by The Swedish Research Council under Grant No. 2012-4038, Vinnova under grants 2015-04849
(Copplar project) and 2015-03075 (AstaZero program). The Authors would like to thank Albin Severinson for help with
the V2V communication equipment, and express our gratitude toward the following individuals for help with equip-
ment for the experimental validation: Arpit Karsolia and Fredrik von Corswant at Chalmers REVERE-lab, Wojciech
Mostovski at Halmstad University, Henrik Lind at Volvo Cars and Alessandro Colombo at Politechnico di Milano. The
authors further wish to thank Moritz Diehl for supporting the cooperation between the research groups at Chalmers
University and Freiburg University. We also want to thank our colleagues Giuseppe Giordano, Ankit Gupta and Johan
Karlsson as well as Marco di Vaio and Gabriel de Campos, who acted as drivers and helpers during the experi-
ments. Finally, we want to thank Fengco Real-Time Control and Leica Geosystems for technical assistance with the
hardware.

ORCID
Robert Hult https://orcid.org/0000-0002-1337-3880

REFERENCES
1. Hult R, Campos GR, Steinmetz E, Hammarstrand L, Falcone P, Wymeersch H. Coordination of cooperative autonomous vehicles: toward

safer and more efficient road transportation. IEEE Signal Process Mag. 2016;33(6):74-84.
2. Colombo A, Del Vecchio D. Efficient algorithms for collision avoidance at intersections. Paper presented at: Proceedings of the 15th ACM

International Conference on Hybrid Systems: Computation and Control; 2012:145-154.
3. Steinmetz E, Hult R, Campos GR, Wildemeersch M, Falcone P, Wymeersch H. Communication analysis for centralized intersection cross-

ing coordination. Paper presented at: Proceedings of the 11th International Symposium on Wireless Communications Systems (ISWCS);
2014:813-818.

4. Chen L, Englund C. Cooperative intersection management: a survey. IEEE Trans Intell Transp Syst. 2016;17(2):570-586.
5. Rios-Torres J, Malikopoulos AA. A survey on the coordination of connected and automated vehicles at intersections and merging at

highway on-ramps. IEEE Trans Intell Transp Syst. 2017;18(5):1066-1077.
6. Dresner K, Stone P. Multiagent traffic management: a reservation-based intersection control mechanism. Paper presented at: Proceedings

of the 3rd International Joint Conference on Autonomous Agents and Multiagent Systems; 2004:530-537.
7. Dresner K, Stone P. A multiagent approach to autonomous intersection management. J Artif Intell Res. 2008;31(1):591-656.
8. Kowshik H, Caveney D, Kumar PR. Provable systemwide safety in intelligent intersections. IEEE Trans Veh Technol. 2011;60(3):804-818.
9. Gregoire J, Frazzoli E. Hybrid centralized/distributed autonomous intersection control: using a job scheduler as a planner and inheriting

its efficiency guarantees. Paper presented at: Proceedings of the 55th IEEE Conference on Decision and Control (CDC); 2016:2549-2554.
10. Tallapragada T, Cortés J. Coordinated intersection traffic management. IFAC-PapersOnLine. 2015;48(22):233-239.
11. Lee J, Park B. Development and evaluation of a cooperative vehicle intersection control algorithm under the connected vehicles

environment. IEEE Trans Intell Transp Syst. 2012;13(1):81-90.
12. Campos GR, Falcone P, Sjöberg J. Autonomous cooperative driving: a velocity-based negotiation approach for intersection crossing. Paper

presented at: Proceedings of the 16th International IEEE Conference on Intelligent Transportation Systems (ITSC); 2013:1456-1461.
13. Campos GR, Falcone P, Wymeersch H, Hult R, Sjöberg J. Cooperative receding horizon conflict resolution at traffic intersections. Paper

presented at: Proceedings of the 53rd IEEE Conference on Decision and Control (CDC); 2014:2932-2937.

https://orcid.org/0000-0002-1337-3880
https://orcid.org/0000-0002-1337-3880

HULT et al. 1095

14. Kim KD, Kumar PR. An MPC-based approach to provable system-wide safety and liveness of autonomous ground traffic. IEEE Trans
Autom Control. 2014;59(12):3341-3356.

15. Miculescu D, Karaman S. Polling-systems-based control of high-performance provably-safe autonomous intersections. Paper presented
at: Proceedings of the 53rd IEEE Conference on Decision and Control (CDC); 2014:1417-1423.

16. Qian X, Gregoire J, La Fortelle A, Moutarde F. Decentralized model predictive control for smooth coordination of automated vehicles at
intersection. Paper presented at: Proceedings of the European Control Conference (ECC); 2015:3452-3458.

17. Kamal MAS, Imura J, Hayakawa T, Ohata A, Aihara K. A vehicle-intersection coordination scheme for smooth flows of traffic without
using traffic lights. IEEE Trans Intell Transp Syst. 2015;16(3):1136-1147.

18. Murgovski N, Campos GR, Sjöberg J. Convex modeling of conflict resolution at traffic intersections. Paper presented at: Proceedings of
the 54th IEEE Conference on Decision and Control (CDC); 2015:4708-4713.

19. Zhang YJ, Malikopoulos AA, Cassandras CG. Optimal control and coordination of connected and automated vehicles at urban traffic
intersections. Paper presented at: Proceedings of the American Control Conference (ACC); 2016:6227-6232.

20. Jiang Y, Zanon M, Hult R, Houska B. Distributed algorithm for optimal vehicle coordination at traffic intersections. IFAC-PapersOnLine.
2017;50(1):11577-11582.

21. Katriniok A, Kleibaum P, Joševski M. Distributed model predictive control for intersection automation using a parallelized optimization
approach. IFAC-PapersOnLine. 2017;50(1):5940-5946.

22. Hult R, Zanon M, Gros S, Falcone P. Energy-optimal coordination of autonomous vehicles at intersections. Paper presented at: Proceedings
of the European Control Conference; 2018.

23. Hult R., Zanon M., Gros S., Falcone P.. An MIQP-based heuristic for optimal coordination of vehicles at intersections. Paper presented at:
Proceedings of the 57th IEEE Conference on Descision and Control; 2018. https://research.chalmers.se/publication/501532/file/501532_
Fulltex t.pdf.

24. Hult R, Campos GR, Falcone P, Wymeersch H. An approximate solution to the optimal coordination problem for autonomous vehicles at
intersections. Paper presented at: Proceedings of the American Control Conference (ACC); 2015:763-768.

25. Hult R, Zanon M, Gros S, Falcone P. Optimal coordination of automated vehicles at intersections: theory and experiments; 2018. https://
arixiv.2018.

26. Hult R, Zanon M, Gros S, Falcone P. Primal decomposition of the optimal coordination of vehicles at traffic intersections. Paper presented
at: Proceedings of the 55th IEEE Conference on Decision and Control (CDC); 2016:2567-2573.

27. Zanon M, Gros S, Wymeersch H, Falcone P. An asynchronous algorithm for optimal vehicle coordination at traffic intersections.
IFAC-PapersOnLine. 2017;50(1):12008-12014.

28. Zanon M, Hult R, Gros S, Falcone P. Experimental validation of distributed optimal vehicle coordination. Paper presented at: Proceedings
of the European Control Conference; 2018.

29. Frison G, Sorensen HB, Dammann B, Jorgensen JB. High-performance small-scale solvers for linear model predictive control. Paper
presented at: Proceedings of the European Control Conference (ECC); 2014:128-133.

30. Diehl M. Real-Time Optimization for Large Scale Nonlinear Processes. vol. 920 of Fortschr.-Ber. VDI Reihe 8, Meß-, Steuerungs- und
Regelungstechnik: Düsseldorf: VDI Verlag; 2002. http://www.ub.uni-heidelberg.de/archiv/1659/.

31. Hult R, Zanon M, Gros S and Falcone P. Optimal Coordination of Automated Vehicles at Intersections with Turns, in Proceedings of the
European Control Conference (ECC); 2018.

32. Nocedal J, Wright SJ. Numerical Optimization. Springer Series in Operations Research and Financial Engineering. 2nd ed. New York, NY:
Springer; 2006.

33. Büskens C, Maurer H. Ch: sensitivity analysis and real-time optimization of parametric nonlinear programming problems. Online
Optimization of Large Scale Systems. Berlin Heidelberg / Gemany: Springer; 2001:3-16.

34. Diehl M, Findeisen R, Schwarzkopf S, et al. An efficient algorithm for nonlinear model predictive control of large-scale systems. Part I:
description of the method. Automatisierungstechnik. 2002;50(12):557-567.

35. Findeisen R, Allgöwer F. Computational delay in nonlinear model predictive control. Paper presented at: Proceedings of the International
Symposium on Advanced Vehicle Control of Chemical Processes, ADCHEM; 2003.

36. Chen W, Ballance DJ, O'Reilly J. Model predictive control of nonlinear systems: computational delay and stability. IEEE Trans Autom
Control. 2000;147(4):387-394.

37. Fletcher R. Practical Methods of Optimization. 2nd ed. Chichester, NH: Wiley; 1987.
38. Frison G, Kouzoupis D, Sartor T, Zanelli A, Diehl M. BLASFEO: basic linear algebra subroutines for embedded optimization; 2017.

arXiv:1704.02457.
39. Axehill D. Controlling the level of sparsity in MPC. Syst Control Lett. 2015;76:1-7.
40. Frison G, Kouzoupis D, Jørgensen JB, Diehl M. An efficient implementation of partial condensing for nonlinear model predictive control.

Paper presented at: Proceedings of the 2016 IEEE 55th Conference on Decision and Control (CDC); 2016:4457-4462; IEEE.
41. Diehl M, Ferreau HJ, Haverbeke N. Ch: nonlinear model predictive control lecture notes in control and information sciences. Efficient

Numerical Methods for Nonlinear MPC and Moving Horizon Estimation. Vol 384. New York, NY: Springer; 2009:391-417.
42. Hult R, Sancar E, Jalalmaab M, et al. Design and experimental validation of a cooperative driving control architecture for the grand

cooperative driving challenge 2016. Trans Intell Transp Syst. 2017;19(4):1290-1301.
43. RENDITS. http://www.rendits.com/. Accessed. May 11, 2016.
44. Zanon M, Gros S, Diehl M. A tracking MPC formulation that is locally equivalent to economic MPC. J Process Control. 2016;45:30-42.

https://research.chalmers.se/publication/501532/file/501532_Fulltex
https://research.chalmers.se/publication/501532/file/501532_Fulltex
https://arixiv.2018
https://arixiv.2018
http://www.ub.uni-heidelberg.de/archiv/1659/
http://www.rendits.com/

1096 HULT et al.

45. Hult R, Zanon M, Gros S, Falcone P. Optimal coordination of three cars approaching an intersection. https://youtu.be/nYSXvnaNRK4.
Accessed. March 03, 2017.

46. Fernandez JA, Borries K, Cheng L, Kumar BVK, Stancil DD, Bai F. Performance of the 802.11p physical layer in vehicle-to-vehicle
environments. IEEE Trans Veh Technol. 2012;61(1):3-14.

47. Rittger L, Schmidt G, Maag C, Kiesel A. Driving behaviour at traffic light intersections. Cogn Tech Work. 2015;17(4):593-605.
48. European Telecommunications Standards Institute. ETSI EN 302 663: access layer specification for intelligent transport systems operating

in the 5 GHz frequency band; 2012.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Hult R, Zanon M, Frison G, Gros S, Falcone P. Experimental validation of a
semi-distributed sequential quadratic programming method for optimal coordination of automated vehicles
at intersections. Optim Control Appl Meth. 2020;41:1068–1096. https://doi.org/10.1002/oca.2592

https://youtu.be/nYSXvnaNRK4

