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A formula for hidden regular variation behavior
for symmetric stable distributions

Malin Palö Forsström ∗ Jeffrey E. Steif †

October 22, 2019

Abstract

We develop a formula for the power-law decay of various sets for sym-
metric stable random vectors in terms of how many vectors from the
support of the corresponding spectral measure are needed to enter the
set. One sees different decay rates in “different directions”, illustrating
the phenomenon of hidden regular variation. We give several examples
and obtain quite varied behavior, including sets which do not have exact
power-law decay.

Keywords and phrases. Hidden regular variation, multivariate stable dis-
tributions.
MSC 2010 subject classifications. Primary 60E07, 60G70

1 Main result and remarks
Many distributions have tails that exhibit regular variation (see [2] and [8])
which means that they behave like a power-law times a slowly varying func-
tion. Examples are one-dimensional stable distributions where the slowly vary-
ing function is just constant. For stable random vectors, one also has this but
in addition, one can have more interesting behavior, so-called hidden regular
variation (see [9] and [10]), meaning that one has different power-law decay in
different directions. Ideally, one would like to capture the correct decay rate
in each such direction. Our main result, Theorem 1.1, describes such behavior
for symmetric stable distributions. Needed definitions and background will be
given in Section 2.

Let α ∈ (0, 2) and X be an n-dimensional symmetric α-stable random vector
with spectral measure Λ. Let E ⊆ Rn be a Borel set with 0 ∕∈ Ē, where Ē and
Eo denote the closure and interior of E respectively. With d being the Euclidean
distance, define the δ-neighborhood of E by

Eδ,+ := {x ∈ Rn : d(x, E) < δ}.
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For any integer k ≥ 1 and any E as above, letting Cα be a constant defined in
Section 2, define

I1(E, k,α) :=
Ck

α

k!

! ∞

0

· · ·
! ∞

0

Λk

"#
x1, . . . ,xk ∈ Sn−1 :

k$

i=1

sixi ∈ Eo

%&
·

k'

i=1

αs
−(1+α)
i dsi

(1)

I2(E, k,α) :=
Ck

α

k!

! ∞

0

· · ·
! ∞

0

Λk

"#
x1, . . . ,xk ∈ Sn−1 :

k$

i=1

sixi ∈ Ē

%&
·

k'

i=1

αs
−(1+α)
i dsi

(2)

and

I3(E, k,α) := lim
δ→0

Ck
α

k!

! ∞

0

· · ·
! ∞

0

Λk

"#
x1, . . . ,xk ∈ Sn−1 :

k$

i=1

sixi ∈ Eδ,+

%&
·

k'

i=1

αs
−(1+α)
i dsi.

(3)

We let Iδ(E, k,α) denote the expression inside the last limit in (3).

Theorem 1.1. For any X, E and k as above,

I1(E, k,α) ≤ lim inf
h→∞

hkαP (X ∈ hE) ≤ lim sup
h→∞

hkαP (X ∈ hE) ≤ I3(E, k,α).

(4)

Remarks 1.2.

• Clearly I1(E, k,α) ≤ I2(E, k,α) ≤ I3(E, k,α). Also, by the Lebesgue
dominated convergence theorem, I2(E, k,α) = I3(E, k,α) provided that
Iδ(E, k,α) is finite for some δ > 0.

• Since 0 ∕∈ Ē, for small δ > 0 and s1 > 0 we have that s1Sn−1 ∩ Eδ,+ = ∅.
This implies in particular that the integrand in (3) is equal to zero for
small δ and s1, removing the singularity at s1 = 0, and hence I3(E, 1,α)
is always finite.

• Taking E to be the set {x ∈ Rn : minxi > 1} and k = 1, one obtains
Theorem 4.4.1 in [11] in the symmetric case (see equation (4.4.2) in [11]).

• If we let

E := Cone(A) :=
(
x ∈ Rn : ‖x‖2 > 1 and x/‖x‖2 ∈ A

)

for some A ⊆ Sn−1 with
Λ(∂A) = 0,

and then apply Theorem 1.1 to both E and to the complement of the unit
ball with k = 1, we recover Corollary 6.20 in [1] in the symmetric case,
stating that

lim
h→∞

P
*
X ∈ Cone(A), ‖X‖2 > h

+

P
*
‖X‖2 > h

+ =
Λ(A)

Λ
*
Sn−1

+ . (5)
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• When the spectral measure Λ of X is finitely supported, some asymptotic
behavior of the corresponding probability density function f(x) in differ-
ent directions is obtained in [7]. However, since the convergence in this
case is not known to be uniform, this cannot be used to get a version of
Theorem 1.1 for finitely supported Λ.

• Our motivation for looking at Theorem 1.1 and its consequences (see Sec-
tion 4) was to understand which threshold stable vectors can be obtained
as divide and color processes in the sense of [12]. These applications, as
well as a study of which threshold Gaussian vectors can be obtained as
divide and color processes, will be carried out in [5].

• One might guess that Theorem 1.1 would generalize to regularly varying
random vectors X ∈ RV (α,Θ) (see e.g. Proposition 2.2.20 on p. 57 in [8]).
This is however not the case. To see this, let α ∈ (0, 2) and let X1 be an
α-stable random vector in R2 whose spectral measure Λ1 has mass 1/4
at ±(1, 0) and ±(0, 1). Further, let α′ ∈ (α, 2α) and let X2 be an α′-
stable random vector in R2 with uniform spectral measure independent of
X1. Then it is easy to see that both X1 and X1 +X2 are in RV (α,Λ1).
However, if we let E := Cone(π/8, 3π/8), then using Theorem 1.1 one
easily obtains P (X1 ∈ hE) ≍ h−2α while, letting E′ := Cone((π/8) +
.001, (3π/8)− .001), we have for h large

2P
*
X1 +X2 ∈ hE

+
≥ P

*
X2 ∈ hE′+ ≍ h−α′

≫ h−2α.

2 Background
We now give some relevant definitions. These will be very brief as we assume
the reader is familiar with the basics of stable vectors. For a more thorough
introduction to stable random vectors, we refer the reader to [11].

Definition 2.1. A random vector X := (Xi)1≤i≤n in Rn has a symmetric stable
distribution if X is symmetric (invariant under x ,→ −x) and if for all k ≥ 1,
there exists ak > 0 so that if X1, . . . , Xk are k i.i.d. copies of X, then

$

1≤i≤k

Xi D
= akX.

It is well known that for any symmetric stable vector X there exists α ∈ (0, 2],
called the stability index, so that for all k ≥ 1, ak = k1/α. The stability index
α = 2 corresponds to Gaussian random vectors. If n = 1, then besides α, there
is only one parameter, the scale parameter σ, and in this case the characteristic
function φX(θ) is given by

φX(θ) = e−σα|θ|α , θ ∈ R.

(When α = 2, σ corresponds to the standard deviation divided by
√
2, an

irrelevant scaling.) When σ = 1, we denote this distribution by Sα. For stable
vectors, the picture is somewhat more complicated. A random vector X in Rn

has a symmetric stable distribution with stability exponent α if and only if its
characteristic function φX(θ) has the form

φX(θ) = exp
,
−
!

Sn−1

|θ · x|α dΛ(x)
-
, θ ∈ Rn (6)
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for some finite measure Λ on the unit sphere Sn−1 which is invariant under
x ,→ −x. Λ is called the spectral measure of X. If (6) holds for some α and
Λ, we write X ∼ Sα(Λ). For α ∈ (0, 2) fixed, different Λ’s yield different
distributions. This is not true for α = 2.

When S1, S2, . . . , Sm are i.i.d. random variables with distribution Sα, S :=
(S1, . . . , Sm), and A is an n × m matrix, then the vector X := (X1, . . . , Xn)
defined by

X := AS

is a symmetric α-stable random vector. To describe the spectral measure of X,
consider the columns of A as elements of Rn, denoted by ŷ1, . . . , ŷm. Then Λ is
obtained by placing, for each i ∈ [m], a mass of weight ‖ŷi‖α2 /2 at ±ŷi/‖ŷi‖2.
See p. 69 in [11].

Finally, we need the following facts. If X ∼ Sα, then

P (X ≥ h) ∼ Cα h−α

2
as h → ∞ (7)

where there is an exact formula for Cα; see e.g. page 17 in [11]. The exact formula
for this constant will not be relevant to us and so we will express quantities in
terms of Cα. Moreover, if we let f denote the probability density function of
X, then

f(h) ∼ Cα αh−(1+α)

2
as h → ∞; (8)

see [4]. Also, f(x) is decreasing in x for x > 0; see Theorem 2.7.4 on page 128
in [13].

3 Proof of Theorem 1.1
The proof of Theorem 1.1 is somewhat simpler in the case when the spectral
measure is finitely supported in addition to being symmetric. We therefore first
give a proof in this simpler setting, which is also sufficient for the examples
covered in Section 4.

Proof of Theorem 1.1 for symmetric and finitely supported spectral measures. .
Suppose that Λ is symmetric and has support in ±y1, . . . ,±ym ∈ Sn−1. For
i = 1, 2, . . .m, let ŷi := (2Λ(yi))

1/αyi and let S1, S2, . . . , Sm ∼ Sα be i.i.d. Then
we have (see Section 2) that

X = (X1, X2, . . . , Xn)
D
= ŷ1S1 + . . .+ ŷmSm.

The rest of the proof will be divided into two steps. In the first step, we give
a proof under the additional assumption that

∀(s1, . . . , sm) ∈ Rm :

m$

i=1

siŷi ∈ Ē ⇒ |{i ∈ [m] : si ∕= 0}| ≥ k. (9)

In the second step, we show that this additional assumption can be removed.
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Step 1. Assume that (9) holds. Given this assumption, we make the following
observations.

(O1) The assumption on Ē in (9) implies that there is ε0 > 0 such that if
s1, s2, . . . , sm are such that

.m
i=1 siŷi ∈ Ē, then there is a set I ⊆ [m],

with |I| ≥ k, such that |si| > ε0 for all i ∈ I.

(O2) It follows from the previous observation and (7) that

P
*
X ∈ hĒ

+
= O

*
h−kα

+
. (10)

(O3) For any ε′ > 0,

P
/
|{i ∈ [m] : |Si| > ε′h| > k

0
= o(h−αk).

For each δ > 0, recall

Eδ,+ =
(
x ∈ Rn : d(x, E) < δ

)

and define
Eδ,− :=

(
x ∈ E : d(x, ∂E) > δ

)
.

Using the observations above, it follows that for any ε′ ∈ (0, ε0)

P
*
X ∈ hE

+
=

$

I⊆[m] : |I|=k

P
/
X ∈ hE and ∀i ∈ [m]\I : |Si| ≤ ε′h

0
+ o

*
h−kα

+
.

Fix δ > 0 arbitrarily and set ε′ = ε0∧
*
δ/((m−k) supi∈[m] ‖ŷi‖2)

+
. Note that for

each set I, the event in question implies that |Si| ≤ δh/
*
(m−k) supi∈[m] ‖ŷi‖2)

+

for all i ∈ [m]\I, which in turn implies that ‖
.

i∈[m]\I Siŷi‖2 ≤ δh. Hence the
previous equation can be bounded from below by

$

I⊆[m] : |I|=k

P
/$

i∈I

Siŷi ∈ hEδ,−, and ∀i ∈ [m]\I : |Si| ≤ ε′h
0
+ o(h−kα)

≥
$

I⊆[m] : |I|=k

P
/$

i∈I

Siŷi ∈ hEδ,−

0
+ o(h−kα).

Let f denote the common probability density function of S1, S2, . . ., Sm. By
(O1), we have that for a fixed set I of size k,

P
/$

i∈I

Siŷi ∈ hEδ,−

0
=

!

s1,...,sk∈R :

|s1|,...,|sk|>ε0h

I
,$

i∈I

siŷi ∈ hEδ,−

- '

i∈I

f(si) dsi.

Using first (8) and then (O1), it follows that

P
/$

i∈I

Siŷi ∈ hEδ,−

0
∼ Ck

α

2k

!

s1,...,sk∈R :

|s1|,...,|sk|>ε0h

I
,$

i∈I

siŷi ∈ hEδ,−

- '

i∈I

αs
−(1+α)
i dsi

=
Ck

α

2k

!

Rk

I
,$

i∈I

siŷi ∈ hEδ,−

- '

i∈I

αs
−(1+α)
i dsi.
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Making the change of variables (2Λ(yi))
1/αsi/h ,→ si, we obtain

Ck
α

2k
·
1'

i∈I

2Λ(yi)h
−α

2 !

Rk

I
,$

i∈I

siyi ∈ Eδ,−

- '

i∈I

αs
−(1+α)
i dsi =

Ck
αh

−kα

1'

i∈I

Λ(yi)

2 !

Rk

I
,$

i∈I

siyi ∈ Eδ,−

- '

i∈I

αs
−(1+α)
i dsi.

Summing over all I ⊆ [m] with |I| = k, we get

Ck
αh

−kα
$

I⊆[m] : |I|=k

31'

i∈I

Λ(yi)

2 !

Rk

I
,$

i∈I

siyi ∈ Eδ,−

- '

i∈I

αs
−(1+α)
i dsi

4

= Ck
αh

−kα

!

Rk

$

I⊆[m] : |I|=k

31'

i∈I

Λ(yi)

2
I
,$

i∈I

siyi ∈ Eδ,−

- '

i∈I

αs
−(1+α)
i dsi

4
.

Now note that

(i) each pair of points, ±yi, i = 1, 2, . . . ,m, is counted only once in the last
equation and

(ii) each set I of size k can be ordered exactly in k! ways.

Using this, it follows that the previous equation is equal to

Ck
αh

−kα

2kk!

!

Rk

Λk

"#
x1, . . . ,xk ∈ Sn−1 :

k$

i=1

sixi ∈ Eδ,−

%&
k'

i=1

αs
−(1+α)
i dsi =

Ck
αh

−kα

k!

!

Rk
+

Λk

"#
x1, . . . ,xk ∈ Sn−1 :

k$

i=1

sixi ∈ Eδ,−

%&
k'

i=1

αs
−(1+α)
i dsi

and hence, by taking h to infinity and then δ to zero,

lim inf
h→∞

hkαP (X ∈ hE)

≥ lim
δ→0

Ck
α

k!

!

Rk
+

Λk

"#
x1, . . . ,xk ∈ Sn−1 :

k$

i=1

sixi ∈ Eδ,−

%&
k'

i=1

αs
−(1+α)
i dsi.

Using the monotone convergence theorem, this implies in particular that

lim inf
h→∞

hkαP (X ∈ hE) ≥ I1(E, k,α)

and hence the lower bound in Theorem 1.1 holds. The proof of the upper bound
is completely analogous, slightly easier and hence omitted here.

Step 2. It now remains only to show that the assumption on Ē given in (9)
can be removed. So we now assume that

∃(s1, . . . , sm) ∈ Rm :

m$

i=1

siŷi ∈ Ē and |{i ∈ [m] : si ∕= 0}| < k.

Then it is easy to see that the integral in (3) is infinite for every δ > 0 and
hence the upper bound holds without the assumption on Ē.

We now show that the lower bound holds also without the assumption on
Ē. To this end, assume first that there is t := (t1, . . . , tm) ∈ Rm such that
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(i)
.m

i=1 tiŷi ∈ Eo, and

(ii) |{i ∈ [m] : ti ∕= 0}| = ℓ < k.

Assume further that ℓ is the smallest integer for which such a point t exists.
Then, for all sufficiently small δ > 0 we have that

.m
i=1 tiŷi ∈ Eδ,−, and

∀(t1, . . . , tm) ∈ Rm :

m$

i=1

tiŷi ∈ Eδ,− ⇒ |{i ∈ [m] : ti ∕= 0}| ≥ ℓ.

Since by the first part of the proof, we have that

lim inf
h→∞

hℓαP (X ∈ hE) ≥ lim inf
h→∞

hℓαP (X ∈ hEδ,−) = I1(Eδ,−, ℓ,α) > 0

it follows that
lim inf
h→∞

hkαP (X ∈ hE) = ∞

and hence the lower bound is still valid in this case. If no such point t exists,
then we have that

∀(t1, . . . , tm) ∈ Rm :

m$

i=1

tiŷi ∈ Eo ⇒ |{i ∈ [m] : ti ∕= 0}| ≥ k.

Using Step 1, this implies in particular that for all δ > 0, we have that

lim inf
h→∞

hkαP (X ∈ hE) ≥ lim inf
h→∞

hkαP (X ∈ hEδ,−) = I1(Eδ,−, k,α).

Since I1(Eδ,−, k,α) is monotone in δ, the desired conclusion follows by applying
the monotone convergence theorem. This concludes the proof.

Remark 3.1. We observe that we have shown that if there is a matrix A =
(ŷ1, ŷ2, . . . , ŷm) such that X

D
= A(S1, . . . , Sm), where S1, S2, . . . , Sm ∼ Sα are

i.i.d. (or equivalently that the spectral measure is finitely supported), then, for
any set E ⊆ Rn,

1

k!

! ∞

0

· · ·
! ∞

0

Λk

"#
x1, . . . ,xk ∈ Sn−1 :

k$

i=1

sixi ∈ E

%&
k'

i=1

αs
−(1+α)
i dsi

= 2−k
$

I⊆[m] : |I|=k

!

R
· · ·

!

R
I

5$

i∈I

siŷi ∈ E

6 k'

i=1

αs
−(1+α)
i dsi.

Remark 3.2. With only small adjustments of the proof above, the assumption
that X is symmetric can be dropped. To do this, one replaces the matrix
representation used above with the corresponding representation for when X
is not symmetric (i.e. define A by A(·, i) = (Λ(yi))

1/αyi and Si is a so-called
totally skewed α-stable random variable with scale one, and then adjust the
proof accordingly. This is not as easy to do however when Λ is not finitely
supported.
Remark 3.3. By Theorem 1(ii) in [3], any multivariate stable distribution X ∼
Sα(Λ) can be approximated by a multivariate stable distribution Xε ∼ Sα(Λε)
which is such that
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(i) Λε is finitely supported, and

(ii) sup
E : E⊆Rn,

E is a Borel set

77P (X ∈ E)− P (Xε ∈ E)
77 < ε.

Here Λε is chosen by partitioning the unit sphere into a finite number of sets of
small diameter, and then concentrating all the mass of Λ in each such set at an
arbitrarily chosen point in the set.

This result, together with the proof for the finitely supported case, is however
not sufficient to be able to make the same conclusion for any spectral measure.
To see this, let E and Λ be as in Example 4.4, and let α ∈ (0, 1) so that
Example 4.4 gives that limh→∞ h2αP (X ∈ hE) ∈ (0,∞). Then there are Λε as
above which are arbitrarily close to Λ but for which the corresponding limit is
infinite by Theorem 1.1.

To be able to give the proof of Theorem 1.1 in the general setting, we will
first need the following lemma. The special case k = 2 was stated in [11] (see
Equation 1.4.8 on p. 27), but no proof is given there. A sketch of the proof
of this particular case was provided in private correspondence with one of the
authors.

Lemma 3.4. Let (Wi)i≥1 be a sequence of i.i.d. random variables with 0 ≤ Wi ≤
1, (εi)i≥1 be a sequence of i.i.d. random variables with εi ∼ unif({−1, 1}) and
(Γi)i≥1 be the arrival times of a Poisson process with rate one where we assume
that these three sequences are independent of each other. Next let α ∈ (0, 2),
k ≥ 2 be an integer and ε ∈ (0,min({α, (k − 1)(2− α)})). Then

E

37777
∞$

i=k

εiΓ
−1/α
i Wi

7777
(k−1)α+ε

4
< ∞.

Proof of Lemma 3.4. To simplify notation, write β := (k − 1)α + ε. We then
need to show that

E

37777
∞$

i=k

εiΓ
−1/α
i Wi

7777
β
4
< ∞.

To this end, note first that for any fixed m ≥ k we have that

E

37777
m$

i=k

εiΓ
−1/α
i Wi

7777
β
4
≤ E

31 m$

i=k

Γ
−1/α
i Wi

2β4
≤ E

31 m$

i=k

Γ
−1/α
i

2β4

≤ E
1,

(m− k + 1)Γ
−1/α
k

-β
2
= (m− k + 1)β E

/
Γ
−β/α
k

0
.

Since k > β/α, we have that E
/
Γ
−β/α
k

0
< ∞, and hence

E

37777
m$

i=k

εiΓ
−1/α
i Wi

7777
β
4
< ∞ (11)

for any fixed m ≥ k.
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Now recall that for any real-valued random variables X and Y with E
8
|X|β

9
<

∞ and E
8
|Y |β

9
< ∞ we have that E[|X+Y |β ] < ∞. Using (11), the conclusion

of the lemma will thus follow if we can prove that

E

37777
∞$

i=m

εiΓ
−1/α
i Wi

7777
β
4
< ∞

for some m ≥ k. To this end, fix m > β/α · k/(k − 1). Then

E

37777
∞$

i=m

εiΓ
−1/α
i Wi

7777
β
4
= E

315 ∞$

i=m

εiΓ
−1/α
i Wi

62(k−1)2β/(2(k−1))
4

= E

3
E(εi)

35, ∞$

i=m

εiΓ
−1/α
i Wi

-2(k−1)
6β/(2(k−1))

| σ
*
(Wi), (Γi)

+
44

.

Since β/(2(k − 1)) = ((k − 1)α+ ε)/(2(k − 1)) < 1 by the assumption on ε, we
can apply Jensen’s inequality to bound this expression from above by

E

3
E(εi)

1, ∞$

i=m

εiΓ
−1/α
i Wi

-2(k−1)

| σ
*
(Wi), (Γi)

+2β/(2(k−1))
4

≤ E

31
(2(k − 1))!

$

i1,...,,ik−1 :

m≤i1≤...≤ik−1

k−1'

j=1

Γ
−2/α
ij

W 2
ij

2β/(2(k−1))
4
.

Now we can again use the fact that β/(2(k − 1)) < 1 and the so-called cr-
inequality (see e.g. Theorem 2.2 in [6]) to move this exponent into the summands
to bound the previous expression from above by

((2(k − 1))!)β/(2(k−1)) E

3
$

i1,...,,ik−1 :

m≤i1≤...≤ik−1

Γ
−β/(α(k−1))
ij

W
β/(k−1)
ij

4

= ((2(k − 1))!)β/(2(k−1))
$

i1,...,,ik−1 :

m≤i1≤...≤ik−1

E

3
k−1'

j=1

Γ
−β/(α(k−1))
ij

W
β/(k−1)
ij

4

≤ ((2(k − 1))!)β/(2(k−1))
$

i1,...,,ik−1 :

m≤i1≤...≤ik−1

E

3
k−1'

j=1

Γ
−β/(α(k−1))
ij

4
.

In particular, this implies that it now only remains to show that

$

i1,...,,ik−1 :

m≤i1≤...≤ik−1

E

3
k−1'

j=1

Γ
−β/(α(k−1))
ij

4
< ∞. (12)

To do this, first fix γ ∈ R+. If i ∈ Z+, then E[Γ−γ
i ] < ∞ if and only if i > γ.

Moreover, for such i and γ we easily have that E
8
Γ−γ
i

9
= Γ(i−γ)

Γ(i) . By Stirling’s
formula, it follows that for a fixed γ we have that E

8
Γ−γ
i

9
∼ i−γ and hence

E
8
Γ−γ
i

9
< Cγi

−γ for some constant Cγ ≥ 1 and all i > γ.

9



Now assume that 1 ≤ i1 ≤ . . . ≤ ik−1 is a sequence of integers. Then for
j = 2, 3, . . . , k − 1 we have that Γij ≥ Γi1 , and Γij ≥ Γij − Γij−1

. The random
variables Γij − Γij−1 are independent and equal in distribution to Γij−ij−1 if
ij ∕= ij−1 noting that Γ0 = 0. Using this, it follows that for any fixed integer
M > 0 we have that

E
1 k−1'

j=1

Γ−γ
ij

2
≤ E

1
Γ
−γ−γ

!k−1
j≥2

1(ij−ij−1<M)

i1

2
·

k−1'

j≥2 :
ij−ij−1≥M

E
/
Γ−γ
ij−ij−1

0

≤ E
/
Γ−γ
i1

· I(Γi1 ≥ 1) + Γ
−(k−1)γ
i1

· I(Γi1 < 1)
0
·

k−1'

j≥2 :
ij−ij−1≥M

E
/
Γ−γ
ij−ij−1

0

≤ E
/
Γ−γ
i1

+ Γ
−(k−1)γ
i1

0
·

k−1'

j≥2 :
ij−ij−1≥M

E
/
Γ−γ
ij−ij−1

0
.

If i1 > (k − 1)γ and M > γ, then, using the above, this is bounded from above
by

(Cγ + C(k−1)γ) · i1−γ · Ck−2
γ

k−1'

j≥2 :
ij−ij−1≥M

(ij − ij−1)
−γ .

In particular, if we let γ = β/(α(k− 1)) = (α(k− 1)+ ε)/(α(k− 1)) > 1 and
M = m, then for i1 ≥ m we have that

i1 ≥ m > β/α · k/(k − 1) = kγ > (k − 1)γ

and therefore, since k ≥ 2, M = m > γ. Hence it follows that (12) is bounded
from above by

*
Cβ/(α(k−1)) + Cβ/α

+
Ck−1

β/(α(k−1))

$

i1,...,,ik−1 :

m≤i1≤...≤ik−1

i
−β/(α(k−1))
1

'

j∈{2,3,...,k−1} :
ij−ij−1≥m

(ij − ij−1)
−β/(α(k−1)).

This implies in particular that it only remains to show that
$

i1,...,,ik−1 :

m≤i1≤...≤ik−1

i
−β/(α(k−1))
1

'

j∈{2,3,...,k−1} :
ij−ij−1≥m

(ij − ij−1)
−β/(α(k−1)) < ∞.

To see this, we first change the order of summation as follows. First, we will
sum over all possible choices of i1. Then we sum over the number G of terms
in the product, which will range between 0 and k − 2. Finally, we sum also
over the possible choices of ℓj := ij − ij−1 in the product, which will range from
m to infinity. To sum over all possible sequences m ≤ i1 ≤ . . . ≤ ik−1, we
find an upper bound on the number of ways to choose the differences ij − ij−1

which are smaller than m and also, on the number of ways to choose which of
the differences are larger than or equal to m. The former of these quantities is
clearly bounded from above by mk−2, and the latter is equal to

*
k−2
G

+
< 2k−2.

10



Putting these observations together, we get
$

i1,...,,ik−1 :

m≤i1≤...≤ik−1

'

j∈{2,3,...,k−1} :
ij−ij−1≥m

(ij − ij−1)
−β/(α(k−1))

≤ (2m)k−2
∞$

i1=m

i
−β/(α(k−1))
1

k−2$

G=0

∞$

ℓ1,...,ℓG=m

G'

j=1

ℓ
−β/(α(k−1))
j

= (2m)k−2
∞$

i1=m

i
−β/(α(k−1))
1

k−2$

G=0

" ∞$

ℓ=m

ℓ−β/(α(k−1))

&G

= (2m)k−2
k−1$

G=1

" ∞$

ℓ=m

ℓ−β/(α(k−1))

&G

.

Since β/(α(k− 1)) = (α(k− 1) + ε)/(α(k− 1)) > 1, the desired conclusion now
follows.

We now state the following lemma which will be used in the proof of Theo-
rem 1.1. For a proof of this lemma we refer the reader to [11].

Lemma 3.5 (Theorem 3.10.1 in [11]). Let Λ be a symmetric spectral measure
on Sn−1. Furthermore, let Cα be defined by P (Y ≥ h) ∼ Cαh

−α/2 for Y ∼ Sα,
let (Γi)i≥1 be the arrival times of a rate one Poisson process and let (Wi)i≥1 be
i.i.d., each with distribution Λ̄ := Λ/Λ(Sn−1) (the normalized spectral measure),
independent of the Poisson process. Then

C1/α
α Λ(Sn−1)1/α

∞$

i=1

Γ
−1/α
i Wi

converges almost surely to a random vector with distribution Sα(Λ).

We now give a proof of Theorem 1.1 using Lemmas 3.4 and 3.5.

Proof of Theorem 1.1. Let Cα, (Γi) and (Wi) be as in Lemma 3.5. Define

X =
*
X1, X2, . . . , Xn

+
:= C1/α

α Λ
*
Sn−1

+1/α ∞$

i=1

Γ
−1/α
i Wi.

Then Lemma 3.5 implies that X has distribution Sα(Λ). By Markov’s inequality,
for any j = 1, 2, . . . , n and all h > 0 and ε > 0 we have that

P

1,
CαΛ

*
Sn−1

+-1/α 777
∞$

i=k+1

Γ
−1/α
i Wi(j)

777 > h

2

≤
E
1,

CαΛ
*
Sn−1

+-(kα+ε)/α 777
.∞

i=k+1 Γ
−1/α
i Wi(j)

777
kα+ε

2

hkα+ε
.

By picking ε sufficiently small and applying Lemma 3.4 using k+1 (noting that
by symmetry, Wi(j) has the same distribution as εi|Wi(j)| with the two factors

11



independent), it follows that

P

1,
CαΛ

*
Sn−1

+-1/α777
∞$

i=k+1

Γ
−1/α
i Wi(j)

777 > h

2
≤ o

*
h−kα

+

and hence

P

1,
CαΛ

*
Sn−1

+-1/α :::
∞$

i=k+1

Γ
−1/α
i Wi

:::
∞

> h

2
≤ o

*
h−kα

+
.

This implies in particular that for any ε′ > 0

P

1,
CαΛ

*
Sn−1

+-1/α :::
∞$

i=k+1

Γ
−1/α
i Wi

:::
∞

> ε′h

2
≤ o

*
h−kα

+
.

Now for any δ > 0, let Eδ,− :=
(
x ∈ E : d(x, ∂E) > δ

)
. Setting δ :=

√
nε′,

we then have

P
*
(X1, X2, . . . , Xn) ∈ hE

+

= P

1
(X1, X2, . . . , Xn) ∈ hE,

,
CαΛ

*
Sn−1

+-1/α :::
∞$

i=k+1

Γ
−1/α
i Wi

:::
∞

< ε′h

2
+ o(h−kα)

≥ P

3,
CαΛ

*
Sn−1

+-1/α,
Γ
−1/α
1 W1 + . . .+ Γ

−1/α
k Wk

-
∈ hEδ,−,

,
CαΛ

*
Sn−1

+-1/α :::
∞$

i=k+1

Γ
−1/α
i Wi

:::
∞

< ε′h

4
+ o(h−kα)

= P

3,
CαΛ

*
Sn−1

+-1/α ,
Γ
−1/α
1 W1 + . . .+ Γ

−1/α
k Wk

-
∈ hEδ,−

4
+ o(h−kα).

(13)

Similarly, we have that

P
*
(X1, X2, . . . , Xn) ∈ hE

+

= P

1
(X1, X2, . . . , Xn) ∈ hE,

,
CαΛ

*
Sn−1

+-1/α :::
∞$

i=k+1

Γ
−1/α
i Wi

:::
∞

< ε′h

2
+ o(h−kα)

≤ P

3,
CαΛ

*
Sn−1

+-1/α ,
Γ
−1/α
1 W1 + . . .+ Γ

−1/α
k Wk

-
∈ hEδ,+,

,
CαΛ

*
Sn−1

+-1/α :::
∞$

i=k+1

Γ
−1/α
i Wi

:::
∞

< ε′h

4
+ o(h−kα)

≤ P

1,
CαΛ

*
Sn−1

+-1/α ,
Γ
−1/α
1 W1 + . . .+ Γ

−1/α
k Wk

-
∈ hEδ,+

2
+ o(h−kα).

(14)

To be able to simplify these expressions, first recall that if (Γ1,Γ2, . . . ,Γk+1)
are the first k + 1 arrivals of a mean one Poisson process and U1, U2, . . . , Uk ∼
unif(0, 1) are independent,

(
Γ1/Γk+1, . . . ,Γk/Γk+1 | Γk+1

) d
=

(
U1, . . . , Uk

)
.

12



Using this and now letting U1, U2, . . . , Uk be i.i.d. uniforms defined on the same
probability space as everything else but independent of them, we see that for
Eδ,· = Eδ,+ or Eδ,· = Eδ,−, we have that

P

1,
CαΛ

*
Sn−1

+-1/α k$

i=1

Γ
−1/α
i Wi ∈ hEδ,·

2

= P

1,
CαΛ

*
Sn−1

+-1/α

Γ
−1/α
k+1

k$

i=1

U
−1/α
i Wi ∈ hEδ,·

2

=

! ∞

0

xke−x

k!

! 1

0

· · ·
! 1

0

Λ̄k

"#
(wi)

k
i=1 : x

−1/α
k$

i=1

5
CαΛ(Sn−1)

ui

61/α

wi ∈ hEδ,·

%&
k'

i=1

dui dx.

If, for each fixed x, we make the change of variables

si = x−1/α

5
CαΛ(Sn−1)

hαui

61/α

,

then this simplifies to

! ∞

0

e−x

k!

,
CαΛ

*
Sn−1

+
h−α

-k
! ∞

0

· · ·
! ∞

0

Λ̄k

"#
(wi)

k
i=1 :

k$

i=1

siwi ∈ Eδ,·

%&

· I
1
min
i

si >
,CαΛ(Sn−1)

hαx

-1/α
2 k'

i=1

αs
−(1+α)
i dsi dx

=
Ck

αh
−αk

k!

! ∞

0

· · ·
! ∞

0

Λk

"#
(wi)

k
i=1 :

k$

i=1

siwi ∈ Eδ,·

%&3! ∞

CαΛ(Sn−1)
hα mini sα

i

e−x dx

4
k'

i=1

αs
−(1+α)
i dsi.

Note that the integral above is increasing in h. Combining the previous equation
with (13) and (14) and applying the monotone convergence theorem, it follows
that for any δ > 0,

Ck
α

k!

! ∞

0

· · ·
! ∞

0

Λk

"#
(wi)

k
i=1 :

k$

i=1

siwi ∈ Eδ,−

%&
k'

i=1

αs
−(1+α)
i dsi (15)

≤ lim inf
h→∞

hkαP
*
(X1, X2, . . . , Xn) ∈ hE

+

≤ lim sup
h→∞

hkαP
*
(X1, X2, . . . , Xn) ∈ hE

+

≤ Ck
α

k!

! ∞

0

· · ·
! ∞

0

Λk

"#
(wi)

k
i=1 :

k$

i=1

siwi ∈ Eδ,+

%&
k'

i=1

αs
−(1+α)
i dsi.

Noting that the integrand in (15) is monotone in δ and converges pointwise to
the integrand in I1(E, k,α), the desired conclusion follows by letting δ → 0 and
applying the monotone convergence theorem.

4 Examples
We will now apply Theorem 1.1 to a few examples.
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Example 4.1. Let α ∈ (0, 2) and let X1 and X2 be i.i.d. with X1 ∼ Sα and
let X = (X1, X2). The corresponding spectral measure Λ has four point masses
each of weight 2−1 at (1, 0), (0, 1), (−1, 0) and (0,−1). With this example, we
will consider three different sets E which will be our three different cases.

Case (i) Let E =
(
x ∈ R2 : x1, x2 > 1

)
. Then it is easy to see that I1(E, 2) =

I3(E, 2) and furthermore this common value is

C2
α/2 · 2

! ∞

0

! ∞

0

(2−1)2 · I
*
s1, s2 > 1

+
· αs−(1+α)

1 αs
−(1+α)
2 ds1 ds2 = C2

α · 2−2.

Applying Theorem 1.1 with k = 2, we obtain

lim
h→∞

h2αP
*
X1, X2 > h

+
= C2

α · 2−2

which is of course consistent with what independence yields.

1

1

x1

x2

Figure 1: The figure above shows the set E (gray area) considered in Case (i)
of Example 4.1 together with the four points (in red) at which Λ is supported.

Case (ii) Let A ⊆ S1 ∩ (ε,∞)2 for some ε > 0 and define

CA :=
(
x ∈ Rn : ‖x‖2 > 1 and x/‖x‖2 ∈ A

)

be the cone above A. Then we have the following.

Proposition 4.2. Let X, A and CA be as above, and assume that in addition
to the above, the boundary of A has zero (one-dimensional) measure. Then

lim
h→∞

h2αP
*
X ∈ CA

+
=

C2
α

8

!

A

α(cos θ sin θ)−(1+α) dθ

Proof. We begin with the following computation which is valid for any set A

14



contained in S1 ∩ (ε,∞)2.

C2
α

2

! ∞

0

! ∞

0

Λ2
*
x1,x2 ∈ S1 : s1x1 + s2x2 ∈ CA

+
·

2'

i=1

αs
−(1+α)
i dsi

= C2
α

! ∞

0

! ∞

0

2−2 · I
*
s1e1 + s2e2 ∈ CA

+
·

2'

i=1

αs
−(1+α)
i dsi

=
C2

α

4

!

(s1,s2)∈CA

α2s
−(1+α)
1 s

−(1+α)
2 ds1 ds2 (16)

=
C2

α

4

!

A

! ∞

1

α2(r cos θ)−(1+α)(r sin θ)−(1+α) r dr dθ

=
C2

α

8

!

A

α(cos θ sin θ)−(1+α) dθ.

For any set U , letting Uo be the interior of U , one easily checks that

(CA)
o = CAo and CĀ ⊂ C̄A ⊂ CĀ ∪ S1

keeping in mind that the interiors and closures are with respect to different
spaces, in one case R2 and in one case S1. Therefore the above computation
shows that

I1(CA, 2) =
C2

α

8

!

Ao

α(cos θ sin θ)−(1+α) dθ

and

I2(CA, 2) =
C2

α

8

!

Ā

α(cos θ sin θ)−(1+α) dθ

where for the latter equation, we also used the fact that the S1 piece adds
nothing to the relevant integral.

Now, using the fact the boundary of A has measure zero, we conclude that
I1(CA, 2) = I2(CA, 2). Since ε is fixed, it is easy to see that Iδ(CA, 2) is fi-
nite for sufficiently small δ allowing us to conclude that I1(CA, 2) = I3(CA, 2).
Theorem 1.1 with k = 2 now yields the result.

Remark 4.3. This improves on (5) in this case since it yields the correct decay
rate and demonstrates the hidden regular variation behavior. The former result
would only give limh→∞ hαP (X ∈ CA) = 0. Not surprisingly, when A is as
large as possible with ε fixed, the integral tends to infinity as ε goes to 0; this
is because we are getting closer to the support of the spectral measure.

Case (iii) This example, while fairly simple, has three different values arising
in (4) when k = 1 and, in particular, Theorem 1.1 yields nonmatching upper
and lower bounds. We let

E = {x ∈ R2 : x1 > 1,x2 < 0}.

It is easy to check that for any α ∈ (0, 2), we have that I1(E, 1,α) = 0,
I2(E, 1,α) = I3(E, 1,α) = Cα/2 while using the independence of the com-
ponents, it is immediate that the middle terms in (4) when k = 1 are Cα/4.
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1

1

x1

x2

Figure 2: The figure above shows the set CA (gray) considered in Case (ii) of
Example 4.1, together with the four points (in red) at which Λ has support.

1

1

x1

x2

Figure 3: The figure above shows the set E (gray) considered in Case (iii) of
Example 4.1 together with the four points (in red) at which Λ has support.

Our next example illustrates a number of interesting phenomena which we
summarize in Proposition 4.5 after giving the example. This provides an exam-
ple where (i) the decay rate has three possible behaviors depending on α, (ii)
I1(E, k,α) ∕= I3(E, k,α) and (iii) where the tail behavior can drastically change
due to a modification in the set E in an arbitrarily small neighborhood of one
point, namely (1, 1). It is also a “baby version” of the example following it which
will be crucially used in [5].

Example 4.4. Let α ∈ (0, 2) and S1 and S2 be i.i.d. with distribution Sα and
let

X = (1, 1)S1 − (0, 1)S2.

Then X is a symmetric α-stable random vector and the spectral measure Λ of
X has mass 2α/2/2 at ±(1, 1)/

√
2 and mass 1/2 at ±(0, 1). Let

E :=
(
x ∈ R2 : x1 > 1,x2 < 1

)
.

We mention that it is straightforward to show that for all α, I3(E, 1,α) = 0.

Proposition 4.5. Let Λ, X and E be as above.
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1

1

x1

x2

Figure 4: The figure above shows the set E (gray) considered in Example 4.4
together with the four points (in red) at which Λ has support.

(i) ∗ For α < 1,

lim
h→∞

h2αP (X ∈ hE) =
C2

ααΓ(2α)Γ(1− α)

4Γ(1 + α)
< ∞. (17)

∗ For α = 1,

lim
h→∞

h2

log h
P (X ∈ hE) =

C2
1

4
. (18)

∗ For α > 1,

lim
h→∞

h1+αP (X ∈ hE) =
CααE[|S1|]

4
. (19)

(ii) For all α ∈ (0, 2), I3(E, 2,α) = ∞. Moreover, I1(E, 2,α) = I2(E, 2,α) is
equal to ∞ if α ∈ [1, 2) and is equal to C2

ααΓ(2α)Γ(1−α)
4Γ(1+α) if α ∈ (0, 1).

(iii) Let Bε := B∞((1, 1), ε) be the ball around (1, 1) of radius ε in the L∞
metric. For any ε > 0 and α ∈ (0, 1),

g+(α, ε) := I1(E ∪Bε), 1,α) = I3(E ∪Bε, 1,α) ∈ (0,∞)

implying by Theorem 1.1 that

lim
h→∞

hαP (X ∈ h(E ∪Bε)) = g+(α, ε)

and
g−(α, ε) := I1(E\Bε), 2,α) = I3(E\Bε, 2,α) ∈ (0,∞)

implying by Theorem 1.1 that

lim
h→∞

h2αP (X ∈ h(E\Bε)) = g−(α, ε).

(iv) For all α ∈ (0, 2), g+(α, ε) is increasing in ε with limε→0 g
+(α, ε) = 0

while g−(α, ε) is decreasing in ε with limε→0 g
−(α, ε) = ∞ for α ∈ [1, 2)

and C2
ααΓ(2α)Γ(1−α)

4Γ(1+α) for α ∈ (0, 1).
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Proof. We only prove (i) and (ii). (iii) and (iv) are fairly straightforward and
left to the reader. We start with the proof of (ii).

It is easy to see that I1(E, 2,α) = I2(E, 2,α) and that their common value
is

C2
α · 2α/2/2 · 1/2 ·

! ∞

√
2

! ∞

(s1/
√
2)−1

α2s
−(1+α)
1 s

−(1+α)
2 ds2 ds1

=
C2

α

4

! ∞

1

! ∞

t1−1

α2t
−(1+α)
1 s

−(1+α)
2 ds2 dt1

=
C2

α

4

! ∞

1

αt
−(1+α)
1

8
−s−α

2

9∞
t1−1

dt1

=
C2

α

4

! ∞

1

αt
−(1+α)
1 (t1 − 1)−α dt1

=
C2

α

4

! 1

0

αx2α−1(1− x)−α dx.

This integral is easily verified to be infinite if and only if α ≥ 1 and strictly
positive for all α ∈ (0, 1). Recognizing the integrand as the probability density
function (up to a constant) of a Beta distribution with parameters 2α and 1−α,
we see that the last expression is equal to

C2
ααΓ(2α)Γ(1− α)

4Γ(1 + α)
.

The fact that I3(E, 2,α) is ∞ is seen by noting that for any fixed δ > 0, the
term

Λ2
*
x1,x2 ∈ S1 : s1x1 + s2x2 ∈ Eδ,+

+

is uniformly bounded away from 0 for arbitrarily small s2 and hence the integral
diverges. This finishes the proof of (ii).

We now move to (i). Since X = (1, 1)S1 − (0, 1)S2, we have

{X ∈ hE} = {h < S1 < h+ S2}

and so for any α, we have

P (X ∈ hE) =

! ∞

0

f(t)P (h < S1 < h+ t) dt.

We now proceed with the α ∈ (0, 1) case. It is not hard to show that for
every ε > 0,

I1(E\Bε, 2,α) = I3(E\Bε, 2,α) ∈ (0,∞)

and hence by Theorem 1.1

lim
h→∞

h2αP (X ∈ h(E\Bε)) = I1(E\Bε, 2,α).

Letting ε → 0, we can apply the monotone convergence theorem to both sides
(using the fact that E is open) and conclude (17) as desired.

Now instead let α = 1. It is not hard to show that for every ε > 0, by
breaking up the following integral into [0, h] and [h,∞) and using the fact that
f is decreasing, we have

h2

log h
P (X ∈ hE) =

h2

log h

! ∞

0

f(t)P (h < S1 < h+ t) dt
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≤ h2

log h

/
f(h)

! h

0

f(t)t dt+ P (S1 ≥ h)2
0
.

Noting that (7) implies the second term goes to 0 as h → ∞ and the fact that
that (8) easily implies that

lim
h→∞

; h

0
f(t)t dt

log h
= C1/2 (20)

as well as applying (8) directly, we get

lim sup
h→∞

h2

log h
P (X ∈ hE) ≤ C2

1

4
.

For the lower bound, we fix ε > 0, integrate only over [0, εh] and use f is
decreasing to obtain

h2

log h
P (X ∈ hE) ≥ h2

log h
f((1 + ε)h)

! εh

0

f(t)t dt.

Using (8) and (20), the limit of the last term is, as h → ∞, equal to C2
1/4(1+ε)2.

Hence for every ε > 0, we have

lim inf
h→∞

h2

log h
P (X ∈ hE) ≥ C2

1

4(1 + ε)2

and we can then let ε → 0 to complete the proof.
Finally, we now do the case α ∈ (1, 2). Using the fact that f is decreasing

and using (8), we have

P (X ∈ hE) =

! ∞

0

f(t)P (h < S1 < h+ t) dt ≤ f(h)

! ∞

0

f(t)t dt (21)

∼ CααE[|S1|]
4

h−(1+α)

establishing the upper bound in (19). For the lower bound, fixing ε > 0, we
have

P (X ∈ hE) =

! ∞

0

f(t)P (h < S1 < h+ t) dt ≥
! εh

0

f(t)P (h < S1 < h+ t) dt

≥ f(h(1 + ε))

! εh

0

f(t)t dt ∼ (1 + ε)−(1+α) CααE[|S1|]
4

h−(1+α).

(22)

It follows that

lim inf
h→∞

h(1+α)P (X ∈ hE) ≥ (1 + ε)−(1+α) CααE[|S1|]
4

.

One can now let ε → 0, obtaining the lower bound in (19), completing the
proof.
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Remark 4.6. If X is as in our first example where we have independent compo-
nents, one can construct a set, namely

E := {x ∈ R2 : x1 > 1,x2 > a(x− 1)}

for a ∈ (0, 1), which exhibits similar behavior to that in the above proposition.
However, the above example, when generalized to three variables, is what we
need in another context and so we proceeded in this way.

1

1

x1

x2

x1 = x2

Figure 5: The figure above shows the set E (gray) considered in Example 4.4
together with the four points (in red) at which Λ has support.

Remark 4.7. With the previous result in mind, one might wonder if any thresh-
old for events of the type {X ∈ hE} will occur at α = 1. To show that this is
not the case, fix α ∈ (0, 2) and σ > 0, and define

Eσ :=
(
x ∈ R2 : 1 < x1 < 1 + xσ

2

)
.

Further, let S1, S2 ∼ Sα be i.i.d and consider the decay rate of P (X ∈ hEσ) as
h → ∞. Then, using a very similar argument to the argument in the proof of
Proposition 4.5, one can show that we get a phase transition in the behavior of
the decay rate of P (X ∈ hEσ) at α = σ, and in fact

P
*
X ∈ hEσ

+
≍

<
=>

=?

h−(α+σ) if α > σ

h−2α log h if α = σ

h−2α if α < σ.

In our next, and final, example we study one of the simplest three-dimensional
permutation invariant multivariate stable distributions, and show that it ex-
hibits the same behavior as our previous example. Here we only study the case
α ∈ (0, 1) in detail, but the cases α = 1 and α > 1 can be done similarly as in
the the proof of Proposition 4.5.

Example 4.8. Let α ∈ (0, 2) and let S0, S1, S2 and S3 be i.i.d. with S0 ∼ Sα.
Furthermore, let a ∈ (0, 1) and define X1, X2 and X3 by

Xi := aS0 + (1− aα)1/αSi, i = 1, 2, 3.
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1

1

x1

x2

(a) σ = 0.5

1

1

x1

x2

(b) σ = 1.8

Figure 6: The figures above shows the set Eσ in Remark 4.7, for two different
values of σ, together with the four points (in red) at which the spectral measure
Λ from the same remark has support.

Clearly (X1, X2, X3) is a three-dimensional symmetric α-stable random vec-
tor whose marginals are Sα. The corresponding spectral measure Λ has mass
aα3α/2/2 at ±(1, 1, 1)/

√
3 and mass (1− aα)/2 at ±ei for i = 1, 2, 3. Consider

the set
E := {x ∈ R3 : x1, x2 > 1,x3 < 1}.

The proof of the following proposition follows the proof of Proposition 17
exactly, and therefore we only give a sketch of the proof here.

Proposition 4.9. Let Λ, X and E be as above. Then for all α ∈ (0, 1), we
have that

lim
h→∞

h2αP (X ∈ hE) =
C2

α

4

"
(1− aα)2 + aα(1− aα) · αΓ(2α)Γ(1− α)

Γ(1 + α)

&
< ∞.

(23)
Moreover, for all α ∈ (0, 2), I3(E, 2,α) = ∞, and I1(E, 2,α) = I2(E, 2,α) is
equal to ∞ if α ∈ [1, 2) and is equal to the right hand side of (23) if α ∈ (0, 1).

Proof sketch. It is easy to see that I1(E, 2,α) = I2(E, 2,α) and that their com-
mon value is

Λ(e1)Λ(e2) · C2
α

! ∞

1

! ∞

1

α2s
−(1+α)
1 s

−(1+α)
2 ds1 ds2

+ Λ((1, 1, 1)/
√
3)Λ(−e3) · C2

α

! ∞

√
3

! ∞

(s0/
√
3)−1

α2s
−(1+α)
0 s

−(1+α)
3 ds3 ds0

=
C2

α

4

5
(1− aα)2 + aα(1− aα)

! 1

0

αx2α−1(1− x)−α dx

6
.

The rest of the proof follows the lines of the proof of Proposition 17 exactly,
and is hence omitted here.
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x1

x2

x3 x1 = x2 = x3

Figure 7: The figure above shows the set E (gray) considered in Example 4.8
together with the eight points (in red) at which Λ has support.
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