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Limiting global warming to well below 2 °C (let alone 1.5 °C) as 
decided in the UNFCCC Paris Climate Agreement is either 
unattainable or far from the economic optimal according to 

William Nordhaus1. Instead, his economic analysis implies a cli-
mate policy path that limits global warming to 3.5 °C by the end of 
the century and decarbonizes the economy only in the next century. 
According to Nordhaus, this reflects the economically optimal bal-
ance between future benefits and current costs. So, while both the 
UN climate targets and Nobel Prize winner highlight the need for 
a policy response to global climate change, they are strikingly dif-
ferent in the stringency of the recommended temperature goals and 
the implied emission pathways over the century2,3.

Nordhaus’ recommendations are derived from the Dynamic 
Integrated Climate–Economy (DICE) integrated assessment model 
(IAM), which he created and developed in several steps4,5. The 
model seeks to find the optimal emission, temperature and car-
bon tax trajectories by balancing the costs of emissions reductions 
and the damages of climate change, measured in economic terms. 
Emissions reductions are justified provided the benefits of avoiding 
climate damages outweigh the costs; for example, higher costs asso-
ciated with energy supply. Nordhaus was early in making his model 
readily available to the research community and it has become cen-
tral in climate economic analysis and highly influential in policy 
discussions6–8. However, DICE has also been criticized on several 
grounds. These include the choice of discounting parameters9–11, the 
model’s omission of uncertainty and the risk for climate catastro-
phes12–15, the treatment of non-market damages16,17 and details of its 
climate model18–20. Notably the DICE model’s concept of economic 
optimality, that is maximizing a discounted utilitarian social wel-
fare function, has been criticized for not reflecting the structure 
of optimal-control models that incorporate risk and uncertainty15 

and for its reliance on a single conception of intergenerational wel-
fare21–24. DICE has also been subject to general criticism regarding 
the use of cost–benefit analysis for climate policy purposes25–27.

The Committee for the Prize in Economic Sciences in Memory 
of Alfred Nobel was well aware that the precise conclusions that 
Nordhaus draws from DICE are highly sensitive to specific assump-
tions. In its scientific background paper, the Committee stated that 
the 2018 Laureate was rewarded for the methodological contribution 
of integrated assessment modelling, not the specific policy recom-
mendations following from the DICE model’s baseline calibration. In 
this analysis, we show that updates to the existing parameters of the 
DICE model, drawn from some of the latest contributions in social 
and climate science, lead to economically optimal climate policies 
and emissions pathways that are in line with the UN climate targets.

Specifically, our updates to the basic DICE parameters draw 
from the latest findings on economic damage functions28, which 
Nordhaus1 includes in a sensitivity analysis, together with some of 
the latest climate science29,30 and a broad range of expert recommen-
dations on social discount rates (SDRs)24. This is complemented by 
revised assumptions regarding non-CO2 GHG emissions31, the fea-
sibility of negative emissions technologies (NETs)2,32 and constraints 
on the feasible speed of decarbonization2,33. While some of these indi-
vidual updates have already been analysed in the existing literature, 
our innovation is to analyse their joint effect in DICE. This reveals 
that there is no inherent discrepancy between the method underpin-
ning the 2018 Economics Nobel Prize and the UN climate targets.

Updates to the climate module
Our first major update of the DICE model serves to better reflect 
the relationship between emissions, concentration and temperature 
change. The climate module in the most recently available version 
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of DICE (2016R2; ref. 34) has two key limitations. First, DICE uses 
a linearized carbon cycle model. This linearization has been under-
taken for cumulative CO2 emission levels far higher than those 
compatible with the UN climate targets5. Consequently, the impact 
on CO2 concentrations of each emissions pulse is overestimated for 
any scenario in which cumulative emissions are smaller than those 
found by Nordhaus’ optimal analyses34,35. Second, the energy bal-
ance model (EBM) that is used to calculate the temperature impacts 
of radiative forcing in DICE is not in line with the most recent 
advanced climate system models.

We first update DICE by implementing the carbon cycle module 
from the simple climate model Finite Amplitude Impulse Response 
(FAIR)29,30. This module takes into account how the removal rate of 
atmospheric CO2 depends on past cumulative CO2 emissions and 
changes in the global mean surface temperature. The FAIR model 
was central for the assessment of emission pathways in the IPCC 
Special Report on 1.5 °C warming2,36.

To further improve the EBM in DICE, we recalibrate it so that 
its response approximates the results of advanced climate system 
models included in the Coupled Model Intercomparison Project 
Phase 5 (CMIP5)37. The findings of CMIP5 were central for the cli-
mate system model characterizations in the IPCC Fifth Assessment 
Report38. Geoffroy et al.37 fit simple two-box EBMs to larger cli-
mate system models and show that these simple models capture the 
global aggregated temperature dynamics of the large-scale climate 
system models. We use the findings of Geoffroy et al.37 to recalibrate 
the two-box EBM in DICE and thus make its temperature dynamics 
consistent with recent climate science.

The climate sensitivity that determines the equilibrium tempera-
ture change for a given change in radiative forcing in DICE is set to 
3.1 °C for a doubling of the atmospheric CO2 level5. As this remains 
consistent with the most recent central estimates of equilibrium cli-
mate sensitivity39,40, we leave it unchanged.

These updates roughly align our temperature pathways for a 
given emission scenario with median estimates generated by simple 
climate models (FAIR and Model for the Assessment of Greenhouse 
Gas Induced Climate Change, MAGICC) used in the IPCC Special 
Report on 1.5 °C warming2,41 and in the UN Emissions Gap Report3. 
See Methods and Extended Data Figs. 1, 2, 5 and 6 for how the car-
bon cycle and EBM updates, respectively, affect the optimal path-
ways. With these changes, lower temperature scenarios become 
attainable and the optimal temperature change by 2100 drops by 
0.5 °C compared to the original DICE calibration, to just below 3 °C 
by the end of this century.

Updates to the economics
The optimal policy response in DICE is notoriously sensitive to two 
socioeconomic inputs: the SDR and the magnitude of economic 
damages incurred as temperatures increase. The damage function 
has proved difficult to estimate because of the joint uncertainties 
of physical climatic effects, the likely socioeconomic responses to 
these effects and the economic valuation of these damages. Since the 
first attempts to estimate economic damages for different tempera-
ture levels4,9,42–44, methodologies have improved but key challenges 
remain45. For instance, the quadratic damage function used in the 
standard DICE is calibrated to a meta-analysis46 that has been shown 
to suffer from multiple citation bias, a form of non-independence28. 
We instead use the damage function of Howard and Sterner28, 
who provide an up-to-date meta-analysis of the quadratic tem-
perature–damage relationship that corrects for the problem of 
non-independence. In what they refer to as their ‘preferred model’, 
damages are substantially higher than in the original DICE model, 
reaching 6.7% of global gross domestic product (GDP) for a 3 °C 
temperature increase, as compared to 2.1% in the standard DICE34. 
This updated damage function is closer to, yet still more conserva-
tive than, recent micro-econometric studies47 and expert elicitations 

on the topic48,49, which estimate damages upwards of around 10% of 
global GDP for a 3 °C temperature increase. In our central model, 
we do not change the functional form of the damage function, as in 
Weitzman12,50 or Glanemann et al.51, who apply the damage function 
of Burke et al.47 but rather update how damage estimates are com-
bined to calibrate the standard DICE damage function. When using 
our updated damage function alongside the improved calibration 
of the carbon cycle and EBM, leaving DICE otherwise unchanged, 
optimal temperature is reduced by a further 0.7 °C to 2.2 °C by 2100. 
For robustness, we also undertake a simulation of the Weitzman50 
damage function, which has higher order polynomial terms. The 
details of how this recalibration affects the model results can be 
found in the Methods and Supplementary Fig. 3.

Next, we consider the determinants of intergenerational wel-
fare as embodied in the SDR. The SDR captures the ethical choices 
involved when policies transfer well-being between current and 
future generations11,52,53. The SDR can be simultaneously viewed as 
embodying conditions on fairness and economic efficiency across 
generations. Again, we do not change the structure of the DICE 
model and our updates calibrate parameters of the standard dis-
counted utilitarian social welfare function used in DICE: the pure 
rate of time preference and the elasticity of marginal utility (see Box 
1). Other studies have changed the structure of the social welfare 
function by separating out the coefficient of risk aversion and the 
elasticity of intertemporal substitution, for instance. Indeed, there 
are many different ways in which social welfare could be mea-
sured24. Box 1 presents further details on the discounted utilitarian 
social welfare function of DICE, including extensions that incorpo-
rate risk and uncertainty15,54–56.

Climate policy recommendations are very sensitive to the choice 
of discount rate. Subjective ethical perspectives underpin often 
irreducible differences of opinion on the matter, making the choice 
of SDR the subject of disagreement. To inform policy it is there-
fore important to understand the extent of disagreement. For this 
reason, we update the DICE model by using the latest evidence on 
expert recommendations on the SDR. Drupp et al.24 surveyed 173 
experts on what Nordhaus57 referred to as the two ‘central normative 
parameters’ that determine the SDR: the pure rate of time preference 
and elasticity of marginal utility. The survey responses contain both 
positive and normative viewpoints on these parameters. By using 
these data, we move away from the simple black-and-white char-
acterization of social discounting that is usually framed in terms of 
the Stern versus Nordhaus debate and engage with the full range of 
expert recommendations.

We use two approaches to summarizing the range of expert rec-
ommendations for policy purposes. First, we consider the climate 
paths associated with each expert’s chosen pair of discounting 
parameters and take the median (hereafter ‘median expert path’) of 
all 173 model runs for the social cost of CO2 emissions (SCC), tem-
perature and emissions at each point in time. Second, we consider 
the median response for each of the two discounting parameters 
separately (hereafter ‘median expert view’). Both approaches have 
a theoretical justification in the literature on voting outcomes (see 
Methods) and hence imagine a voting solution to the disagreement 
on the SDR58–60.

Both approaches place greater weight on the well-being of future 
generations than does Nordhaus’ calibration, leading to more 
stringent climate policies. Compared to the original DICE using 
Nordhaus’ discounting parameters, the optimal temperature is 
reduced by 0.4 °C and 1.0 °C according to the median expert path 
and the median expert view respectively. When combined with the 
previous updates to the climate science and the damage function, 
the optimal temperature increase above the pre-industrial level falls 
from 2.2 °C by 2100, in the case of Nordhaus’ discounting parameter 
choices, to 2.0 °C under the median expert path. The temperature 
change under the median expert view is even lower at 1.7 °C.
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Further updates
We next make two further changes to align DICE with the larger 
scale models used to develop emission pathways that are assessed 
in terms of their likelihood to meet the 1.5 °C and 2 °C limits in the 
IPCC Special Report on 1.5 °C warming2.

First, the original DICE model assumes an exogenous radiative 
forcing for non-CO2. This pathway for the non-CO2 emissions is 
high compared to those generated by technology-rich IAMs reach-
ing temperature targets in line with those in the Paris Agreement61. 
We adjust DICE by taking the pathway for non-CO2 forcers esti-
mated by the Regional Model of Investments and Development 
(REMIND) using the central shared socioeconomic pathway (SSP 2) 
that meets a radiative forcing level of 2.6 W m–2 in 210031. This higher 
abatement of non-CO2 GHGs makes even lower temperatures attain-
able. Among these paths we show that Nordhaus’ view on discount-
ing yields (using the updated DICE model) an optimal temperature 
increase of 2.0 °C by 2100 and that reaching the 1.5 °C climate target 
in 2100 (with some temporary overshoot) would be optimal accord-
ing to the median expert view. In contrast, the median expert path 
would imply global warming of 1.8 °C by 2100.

Second, we consider the role of NETs. Nordhaus34 only allows 
for net-negative CO2 emissions after 2160, while Nordhaus1 allows 
for the possibility of NETs within this century. Removing CO2 from 
the atmosphere by CO2 removal technologies such as Biomass 
Energy with Carbon Capture and Storage (BECCS), afforestation 
and direct air capture has been suggested as a possible critical and 
cost-effective abatement option to limit climate change2,35,62–64. The 
timing of the availability of NETs and their potential magnitude 
are under debate65,66, as well as their relation to the use of differ-
ent discount rates67. Although we are aware of biophysical and 
socioeconomic limits to all individual NETs, here we assume NET 

potentials by 2050 in line with the recent literature36,65. Feasibility 
will largely depend on reliable institutions, good governance and 
structured incentives across the innovation cycle as well as the 
implementation of a NET portfolio that overcomes the risk of 
relying on a single NET like BECCS32,65. Most emission pathways 
that stay below 2 °C warming in the Working Group III of IPCC 
Fifth Assessment Report32,33 and the IPCC Special Report2 have 
net-negative CO2 emissions during the second half of this century. 
We allow abatement of CO2 to be at most 120% of the baseline 
emissions, as assumed by Nordhaus34, but allow for the possibility 
of net-negative CO2 emissions from mid-century onwards instead 
of from next mid-century. This update results in optimal negative 
emissions of 18 GtCO2 per year in 2100 at the lower 95% bound of 
expert recommendations on the SDR. The emission pathways that 
are assessed in the IPCC Special Report and that meet the 1.5 °C 
level by 2100 have a median emission level of –12 GtCO2 in 2100, 
with a lower 90% bound of –20 GtCO2 per year as estimated from 
data available in the Integrated Assessment Modelling Consortium 
(IAMC) 1.5 °C Scenario Explorer68. Allowing for NETs from 2050 
lowers optimal temperatures but when introduced on top of our 
previously described changes to DICE, the effect on our two central 
runs is small: <0.1 °C for both the median expert view and median 
expert path.

Finally, DICE does not include constraints on the speed of emis-
sion reductions. Under Nordhaus’34 calibration this is not a concern 
since emission reductions occur relatively gradually. However, in 
our updated version of DICE, the optimal policy path displays very 
fast rates of emission reductions. Yet, there are practical limitations 
on how rapidly a transition to a decarbonized world economy can 
be implemented69. Typically, these restrictions are incorporated into 
an integrated assessment model either by imposing a cost on the 

Box 1 | Details on social/intergenerational discounting

Economic optimality in DICE relates to an optimal consumption 
and emissions path that results from maximizing an intertemporal 
discounted utilitarian welfare function subject to economic and 
climate constraints. Specifically, intergenerational welfare in DICE 
is the discounted sum of utilities at each point in time where util-
ity is discounted at the pure rate of time preference δ and marginal 
utility diminishes by η% with each 1% increase in consumption. 
That is, η is the (absolute) elasticity of marginal utility. Depend-
ing on the parameterization of intergenerational welfare and on 
the constraints, many different paths of consumption and asso-
ciated climate policies may be considered optimal. The SDR for 
consumption in this framework depends on both parameters and 
is given by the simple Ramsey rule:

Social discount rate ¼ δþ η ´ g ð1Þ

where g the growth rate of consumption. According to the 
rule, δ and η × g reflect two distinct reasons for discounting future 
consumption.

The pure time preference, δ, specifies how impatient society 
is (a positive approach) or should be (a normative approach) 
when waiting for future well-being. A pure time preference of 
1.5% (or 0.5%) per year implies that the well-being of someone 
100 yr from now would be valued 77% (or 39%) less than the 
well-being of someone living today. These values correspond to 
the value judgement of Nordhaus and the median expert of Drupp 
et al.24, respectively. Many believe that all generations should be 
weighted equally (δ = 0%). Others have argued for positive values 

to account for the small risk of humankind’s extinction (for 
example, δ = 0.1%)11 because non-discrimination may demand 
unacceptably high saving from the current generation82 or because 
impatience is reflected in real rates of return on capital markets52.

The parameter η can also be interpreted as measuring 
intertemporal inequality aversion. Due to diminishing marginal 
utility, the idea is that an additional US$1 is worth more to a poor 
person than to a rich one. In a growing economy, citizens in the 
future will be richer and their lower marginal utility motivates 
discounting. Suppose the economy grows at 2%. People living in 
100 yr will be seven times richer. If inequality aversion is the only 
reason for discounting, if η = 1 (or 1.45), which corresponds to 
the values of the median expert (Nordhaus), the value of US$1 in 
100 yr is only 14 (or 6) cents. To estimate this parameter experts use 
introspection, experiments, surveys, revealed evidence from tax 
schedules and savings decisions83. More generally, η can also reflect 
risk aversion and the desire to smooth consumption over time.

The simple Ramsey rule (equation (1)) is used for project 
appraisal by several countries and organizations, including in 
the Fifth Assessment Report of the IPCC38. However, the rule 
has various extensions that experts recommend24. A notable class 
of extensions explicitly incorporate risk and uncertainty15,54,56,84. 
Inspired by the finance literature, some of these approaches 
combine insights from asset pricing with climate economics and 
allow for differences in how much society is willing to substitute 
consumption risk across states of nature (risk aversion) compared 
to over time (inequality aversion). While noting these important 
extensions, we constrain ourselves to the welfare function used in 
the DICE model and solely perform parametric updates.
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adjustment pace70 or by technology inertia constraints71. We impose 
a set of constraints on the maximum rate of decarbonization. First, 
we set the starting emissions to 2020 levels. We also constrain the 
increase in emissions reductions between 2020 and 2045 to no more 
than 2 GtCO2 per year. This constraint is consistent with the upper 
range of emission reductions used for assessing the 1.5 °C and 2 °C 
limits in Clarke et al.33 and Rogelj et al.2. Finally, to avoid unrealis-
tic emission reduction jumps for the period when negative emis-
sions are feasible (2050 onwards), we limit the growth rate of the 
emissions reduction to 10% of the previous (5 yr) period’s emissions 
reduction. Figure 1 summarizes the sequential updates within a 
schematic structure of the DICE model.

A central ground for climate policy
Figure 2 summarizes the optimal climate policy paths taking all the 
above-described changes to DICE into account. Since individual 
disagreements on value judgements embodied in the discounting 
parameters may be largely irreducible72,73, we run the DICE model 
for each expert’s view on the two discounting parameters to obtain 
95th and 66th percentile ranges of optimal climate policy outcomes. 
Versions of Fig. 2 for each sequential stage of our adjustment to 
DICE are given in the Methods and Extended Data Figs. 5–9.

When expert views of the rate of pure time preference and inequal-
ity aversion24 (Fig. 2a) are translated into global SCC in US$ per ton of 
CO2 (Fig. 2b), the highest SCC for 2020 in the 95th percentile range 
is US$528. By contrast, the lowest SCC in the 95th percentile range is 
US$21. Nordhaus’ discounting parameters imply an SCC of US$82 in 
2020 in our updated DICE, which compares to an SCC of US$37 in the 
original DICE (see Supplementary Fig. 1b). By contrast, the median 
expert view translates into an SCC of US$208. The median expert path 
in turn results in an SCC of US$119. In sum, the social cost of carbon 
is at least twice as high as that in the original DICE calibration.

There is a substantial range of resulting pathways of global fossil 
fuels related CO2 emissions per year (Fig. 2c). In the central 66% 
range, the economy is decarbonized between 2055 and 2100. Given 
Nordhaus’ choice of discounting parameters, the economy would 
be decarbonized within this century, by 2090, while optimal decar-
bonization takes place by 2065 with the median expert view. The 
median expert path in turn results in decarbonization by 2080.

It is important to recognize that with Nordhaus’ discounting 
parameters we find a temperature increase of only 2.0 °C in this 
updated DICE model instead of 3.5 °C in the original DICE (Fig. 2d).  
The median expert view (or median expert path) leads to an 
increase in temperature of 1.4 °C (or 1.8 °C) by 2100, with a 66th 
percentile range of 1.2–2.2 °C. Overall, given the assumptions on the 
technological environment and climate constraints in the updated 
DICE, 32% of all model runs resulting from the expert views on 
discounting parameters would lead to an optimal policy that stays 
below 1.5 °C in 2100, while 76% of all model runs stay below 2 °C 
in 2100. These findings suggest that there is support for the Paris 
climate targets being optimal from a social welfare perspective.

Figure 3 summarizes the consequences of each sequential model 
update reported in Fig. 2 on the optimal climate policy paths. Views 
on discounting parameters translate into optimal temperature change 
by 2100 (Fig. 3a), the timespan to full decarbonization (Fig. 3b)  
and the SCC in 2020 (Fig. 3c) for each considered sequential model 
update to DICE.

Updating the carbon cycle model reduces the amount of carbon 
that stays in the atmosphere in response to a pulse emission of car-
bon, which in turn leads to a lower optimal temperature response 
by the year 2100 regardless of the discount rate. For all discount-
ing parameter choices, the carbon cycle update reduces the SCC in 
2020 and delays the date of decarbonization for most discounting 
parameter choices. If in addition to the carbon cycle the EBM is 
recalibrated, this reduces the optimal temperature increase by 2100  
for all discounting parameter combinations and prolongs the time 
until optimal decarbonization for most discounting parameter 
choices. This reduces the cost of emitting an additional ton of CO2 
into the atmosphere for the current generation for most discounting 
parameter combinations.

Updating economic damages increases the SCC in 2020, makes 
it optimal to decarbonize earlier and results in a lower temperature 
change by 2100. Introducing a lower non-CO2 forcing pathway 
leads to a further drop in optimal temperatures, increases the time 
to decarbonization and reduces the SCC in 2020. Allowing for the 
availability of net-negative emissions from 2050 leads to postponing 
emission reductions. This is consistent with the literature on larger 
scale integrated assessment models65.

Intergenerational welfare
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Fig. 1 | Updates to the DiCe model. A stylized schematic of the DICE model that highlights the seven updates we make to the standard DICE version 
(2016R2; ref. 34). These are: (1) a carbon cycle based on the FAIR model29,30, (2) an update of the EBM37, (3) a revised economic damage estimate28, (4) a 
range of expert views on intergenerational welfare24, (5) non-CO2 forcing in line with lower emission pathways31, (6) the earlier availability of NETs2 and (7) 
constraints on the maximum rate of decarbonization2,33.
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In our model runs, NETs shift the welfare costs of decarboniza-
tion to future generations while the associated temperature drop by 
2100 is only minor. Adding the feasibility constraints leads to slight 
increases in the temperature in 2100 and the time until decarbon-
ization but it only has a small impact on the SCC.

Each of the individual updates that we make to DICE has differ-
ent impacts on the optimal path. The largest impact on the optimal 
temperature in 2100 and the SCC in the year 2020 arises from the 
updates to the discounting parameters. The sensitivity to discount-
ing assumptions exists irrespective of when they are introduced in 
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about forecasts, rather they capture how the disagreement about discounting parameters affects the optimal paths when incorporated into our updated 
DICE model. Panels b–d also compare climate policy pathways implied by Nordhaus’ discounting in this updated DICE (black line) to those resulting from 
the median expert view (blue line) and the median expert path (green line). While Nordhaus’ discounting implies an optimal carbon price of US$82 in 
2020, in our updated DICE the median expert path (or view) translates into a value of US$119 (or US$208) in 2020.
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Fig. 3 | effects of each sequential model update on optimal climate policy paths. a–c, The 66th percentile range of experts’ recommendations on the 
pure rate of time preference and inequality aversion translates into the optimal temperature change by 2100 from 1850 to 1900 levels (a), the years to 
decarbonization (b) and the SCC in 2020 (c) for each sequential update to DICE considered in this paper. Starting from the DICE 2016R2 baseline (B) we 
cumulatively add changes to the DICE model. First, we change the carbon cycle (CC), then add the EBM followed by the temperature–damage relationship 
(D), then add the exogenous path for non-CO2 forcing (nCO2) and then the availability of NET, and finally we add the technologically feasible speed of 
decarbonization (Feas). For better visibility of the changes, we only depict the 66th percentile ranges based on the different expert views on discounting 
parameters in the boxplots (Extended Data Fig. 10 shows a box-and-whiskers plot with the 95th percentile ranges). The black triangle indicates the 
optimal path that is consistent with the Nordhaus34 choice of discount parameters; the blue square reflects the median expert view on intergenerational 
welfare; and the green bar the median expert path.
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the sequence of model updates, as is reflected in Fig. 3. The sub-
stantial vertical differences between the median expert view and 
the Nordhaus choice at each cumulative update show how crucial 
it is to consider a more representative range of recommendations 
on intergenerational welfare to inform policy. In combination with 
discounting assumptions, updating damages also has a large effect 
on the SCC74. Specifically, updating the damage function more than 
doubles the SCC in 2020 to US$317 for the median expert view 
compared to the previous step of updating the EBM. The SCC esti-
mates would have been even higher had we used more recent dam-
age estimates with overall higher damages47,51,75.

Finally, the carbon cycle and EBM, updated assumptions for 
non-CO2 forcing and NETs each have two important effects on the 
optimal path. First, they contribute to a reduction in the optimal 
temperature. Second, they relax the pressure on current generations 
to rapidly decarbonize, thus postponing the date at which decar-
bonization occurs. This latter effect helps the economy to remain 
within a given temperature limit at lower welfare costs by allowing 
a smoother transition to decarbonization over time. These observa-
tions reflect well the way in which intertemporal welfare tradeoffs 
play out in economic appraisals of climate change. These two effects 
are also reflected in an SCC that falls with the carbon cycle and 
energy balance updates, and NET, and rises with damage and social 
discounting updates.

Although we have made several modifications to DICE in this 
paper we have made a point of keeping the number of changes to 
a minimum. Indeed, there are many factors ignored in the analysis 
that should be part of a more comprehensive appraisal of climate 
policies. In addition to uncertainty, these include, tipping points, 
relative scarcity of non-market goods, climate-induced migration 
and consideration of a host of alternative ethical frameworks. In 
Box 2, we summarize some key limitations and potential extensions 
proposed in the literature. Likewise, an analysis of the political pro-
cess of setting the UN climate targets themselves is outside the scope 
of this article.

Conclusion
We used recent findings from the literature to update several key 
parameters of the prominent DICE model developed by Nobel 
Laureate William Nordhaus. Our updated DICE model is in line 
with the Paris temperature targets, with an optimal temperature 
increase of 2.0 °C by 2100 even with Nordhaus’ assumptions on dis-
counting1,34 and otherwise well below 2 °C towards 1.5 °C. Of course, 
the basic DICE model is deterministic. Under uncertainty, to ensure 
the maximum temperature increase is <2 °C in 2100, or indeed to 
hit the lower 1.5 °C UN target, with any degree of certainty (for 
example in 95% of cases) would require more stringent mitigation 
policies than the central, deterministic case presented here.

Box 2 | limitations and extensions of DiCe

Inequality and heterogeneity
A crucial assumption of DICE is the use of a representative agent 
that maximizes global well-being. Thus our analysis ignores 
crucial aspects of heterogeneity relating, among others, to regional 
and subregional differences in preferences, income levels, adaptive 
capacity and damages. Nordhaus early on developed a regionalized 
version of DICE, called Regional Integrated model of Climate and 
the Economy (RICE)85, which has subsequently been used86 and 
extended to a subregional level87 to study the effect of inequality on 
climate policy measures. Furthermore, there are analytic models 
that deal with key heterogeneities88.

Uncertainty
While DICE is a deterministic model, the long-term future is 
inherently uncertain. This relates to processes governing economic 
development89 and discount rates84,90, as well as to climate 
dynamics and climate damages12,14,15, including the location and 
extent of tipping points in coupled climate–society systems91,92. 
Thus, a more comprehensive economics assessment of climate 
change should consider various forms of uncertainty, ranging from 
standard risk to fundamental ignorance93. Besides applications of 
Monte-Carlo analyses in DICE6,34, stochastic computational or 
dynamic programming applications55,94,95 and analytic models49,54,96 
have already been used.

Climate damages
DICE assumes a quadratic damage function of temperature 
increase on economic output but a host of other functional forms 
of the damage function may be plausible. This includes variants 
with higher damage exponents, in line with the idea of potentially 
catastrophic climate damages12,97 or empirically estimated damage 
functions47 and expert survey evidence49 that points towards 
higher overall damages. However, damages from climate change 
not only hit output but also affect the capital stock and thus 
growth directly98–100. Finally, a considerable share of damages will 
affect goods and services that are not traded on markets, such 

as environmental amenities, biodiversity and coral reefs45. These 
damages to non-market goods—and their associated relative price 
changes—should be explicitly modelled and can substantially 
impact optimal climate policy16,17.

Endogenous growth
DICE assumes an exogenous decline in technological progress, yet 
much of modern growth theory is concerned with endogenous 
channels of growth101–105. Furthermore, endogenous population 
change will probably not only impact resource demand but also 
affect innovation106,107.

Abatement cost function
The abatement function in DICE is calibrated to smooth 
reduction rates. However, with faster rates of reduction, several 
non-equilibrium phenomena could make the reductions more 
costly, for example, through increasing levels of unemployment 
in certain regions. In addition, if the global efforts to reduce 
emissions are poorly coordinated, as is the case now, with certain 
regions paying much higher attention to the problem, then costs 
might also be higher than what would be the case under perfect 
coordination70,108. On the other hand, scale effects and technical 
progress can considerably reduce abatement costs as witnessed 
in renewables such as solar and wind in recent years. Relatedly, 
the marginal abatement costs curve assumed in DICE could 
also be made endogenous, such as to feature learning-by-doing 
dynamics109.

Alternative ethical frameworks
DICE builds on the standard consequentialist discounted 
utilitarian welfare function that still forms the workhorse 
model of the economic analysis of climate policy. However, the 
literature has proposed and applied numerous alternative ethical 
approaches22,110. Alternative welfare criteria include, among others, 
sustainable discounted utilitarianism111,112, rank-discounted 
utilitarianism113 and prioritarianism21.
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Even if the UN Paris Agreement is attainable, intergenerationally 
fair and economically optimal in our updated version of DICE, it is 
also necessary to consider the political feasibility of meeting these 
stringent climate targets. One way to assess this is to investigate the 
level of the optimal price of CO2 and the speed of decarbonization. 
The mitigation policies that can be pursued in practice are likely 
to be constrained in these dimensions, as recently witnessed in 
response to the imposition of carbon taxes in Canada and France 
in 2018–19. While the median expert path implies a carbon price 
of around US$120 in 2020 and zero emissions in 2080, the median 
expert view results in an optimal CO2 price of just above US$200 
per ton in 2020 and complete global decarbonization by 2065. This 
contrasts with a carbon price of around US$80 that results from the 
discounting parameters of Nordhaus1,34 in our updated model and a 
carbon price of around US$40 in Nordhaus’ original DICE calibra-
tion. Thus, carbon prices resulting from most expert views in our 
updated DICE model are considerably higher than what is being 
implemented in most sectors even in the most ambitious regions 
of the world. However, it is within the range of what is currently 
used in governmental guidance for cost–benefit analysis, such 
as in Germany where an SCC of around US$200 (ref. 75) is used, 
or implemented as actual or effective carbon taxes in certain sec-
tors in many European countries such as the Netherlands, Sweden 
and Switzerland76. It should also be recognized that total current 
taxes on gasoline in Europe can amount to effective taxes that far 
exceed our two median cases, with more than US$400 per ton of 
CO2 in Germany, for instance77. Although they are not labelled car-
bon taxes, these policies provide some perspective on what could  
be possible.

Yet these countries are the exception and make up a small part 
of the global economy. Furthermore, while carbon pricing is key to 
achieving the range of optimal climate targets we present, there are 
major obstacles to such a policy. First, there is lobbying by pow-
erful and concentrated industries. Second, there is fear of reduced 
competitiveness. Naturally, this is mitigated if the policies are global 
but the fear nevertheless highlights a difficult issue of policy coor-
dination between nations. A third obstacle is the perception that 
carbon taxes hurt the poor disproportionately78. It is often argued 
that distributional concerns are a chief source of resistance from 
substantial shares of the electorate. Yet, the regressive nature of car-
bon taxes is often exaggerated and, in fact, fuel taxes are often pro-
gressive in low-income countries where only the very richest have 
vehicles and air conditioning79. Yet distributional concerns may still 
be real in many contexts and considerable thought will have to go 
into the design and implementation of carbon pricing to mitigate 
these widely held political economy concerns80,81. Perhaps one of the 
chief obstacles to policy stems from a straightforward resistance to 
higher prices.

The UN Paris Agreement is an expression of the international 
view that rapid action is necessary to limit the damages caused by 
climate change. The IPCC Special Report on the 1.5 °C target36 then 
illustrated the measures required to meet the agreed limit of 1.5 °C. 
In this analysis, we have shown that the benefits of limiting global 
warming to (well) below 2 °C outweigh the costs of doing so when 
considering updates to the most standard and influential economic 
cost–benefit framework for climate change appraisal: Nordhaus’ 
DICE model. Our results suggest that there is no inherent dispar-
ity between the UN climate targets and the principle of economic 
optimality. Nevertheless, enacting ambitious policies remains a  
key challenge.
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Methods
The DICE 2016R2 model is presented in detail in Nordhaus34. We implement DICE 
with the AMPL optimization software and use the Knitro solver (v.10.2) to obtain 
the numerical dynamic optimization results presented in this paper. We provide the 
programming code and data in separate files. To ease comparability to Nordhaus’1,34 
figures, we present industrial emissions, the SCC and temperature increases only 
until the year 2100, while the optimization runs extend until 2500, as in DICE.

Here we provide a more detailed account of the calibration of the updated 
DICE model. We do so by first presenting results of the baseline DICE 2016R2 
of Nordhaus34. In a second step we summarize the updates to key climate and 
economics-related functional forms and parameters leading to the final model 
specification presented in the main text. The resulting climate policy paths that we 
present in Fig. 2 of the main text are framed in terms of what is intergenerationally 
optimal as reflected by value judgements on the rate of pure time preference 
and inequality aversion. Thus, we also offer a more detailed perspective on the 
diverging views on discounting parameters, one of the key sensitivities in the 
economic analysis of climate change. As a third step we analyse how each of 
the updates subsequently affect climate policy paths for (1) Nordhaus’ choice of 
discounting parameters, (2) the median expert choice of discounting parameters, 
(3) the median expert path and for the 95th and 66th percentile ranges resulting 
from different expert views on intergenerational optimality.

Nordhaus’34 baseline calibration is the starting point of our analysis. The 
resulting pathway for the social cost of CO2, starting at US$37 in 2020 and rising to 
US$271 per ton of CO2, lies within the politically discussed range for carbon prices. 
Both the optimal date of decarbonization in the next century and the optimal 
atmospheric temperature change of 3.5 °C by 2100, rising to 4 °C in the middle 
of the next century are far outside climate policy pathways that are consistent 
with the UN temperature limits of 2 °C and 1.5 °C. We provide detailed results of 
Nordhaus’34 baseline calibration in Supplementary Fig. 1.

We argue that the following adjustments from more recent climate and 
economics research closes the gap between Nordhaus’ calibration of DICE 2016R2 
and the Paris Agreement.

Carbon cycle. Nordhaus34 writes that the 2016 version of DICE ‘incorporates 
new research on the carbon cycle. Earlier versions of the DICE model were 
calibrated to fit the short-run carbon cycle (primarily the first 100 years). 
Because the new model is in part designed to calculate long-run trends, such 
as the impacts on the melting of large ice sheets, it was decided to change the 
calibration to fit the atmospheric retention of CO2 for periods up to 4,000 years. 
Based on studies of Archer et al.114, the 2016 version of the three-box model does 
a much better job of simulating the long-run behaviour of larger models with 
full ocean chemistry. This change has a major impact on the long-run carbon 
concentrations.’ While this is an improvement over previous DICE versions, it does 
not take into account nonlinearities in the carbon cycle. This is important since 
the fraction of a CO2 emissions pulse that stays in the atmosphere at any point 
in time in the future depends on the past cumulative emissions of CO2. Roughly 
the larger the cumulative emissions, the larger the fraction that remains114–116. 
Although Nordhaus does not explicitly describe which model experiment in 
Archer et al.114 he uses for calibrating the box model in DICE, it appears from 
numerical comparison of the carbon cycle impulse response in DICE with those 
impulse responses presented in Archer et al.114 that the calibration is based on an 
impulse size of 5,000 GtC. That is roughly a factor of five larger than the amount 
of cumulative CO2 emissions that are compatible with the targets in the Paris 
Agreement. Hence, given the nonlinearities in the carbon cycle and climate carbon 
cycle feedbacks, the standard carbon cycle in DICE 2016R2 underestimates the 
removal of CO2 from the atmosphere by the biosphere and ocean when assessing 
emission pathways with cumulative emissions considerably smaller than 5,000 GtC. 
As a consequence of this, the concentration and thus also the temperature impact 
of each ton of CO2 emitted is likely to be too high in DICE 2016R2 for cumulative 
emission levels compatible with a stabilization of global mean surface temperature 
well below 2 °C.

To deal with these issues, we change the carbon cycle in DICE 2016R2 so that 
it takes into account the nonlinearity in the carbon cycle as well as climate carbon 
cycle feedbacks. Specifically, the linearized carbon cycle representation in DICE is 
changed to the carbon cycle representation in the simple climate model FAIR29,30, 
which was used to assess the climate impact of various emissions pathways in the 
IPCC Special Report36. This enables us to model a carbon cycle that is consistent 
with large-scale carbon cycle models, such as those analysed in Archer et al.114, over 
a broad range of emission pathways and not only pathways with emission levels far 
above those that are consistent with the Paris Agreement.

In the Extended Data Fig. 1, we compare the optimal paths for atmospheric 
carbon in the standard DICE 2016R2 calibration to the model with just the 
updated carbon cycle based on Nordhaus’ standard discounting parameters.

EBM. The temperature response to changes in radiative forcing in Nordhaus34 
is not consistent with the response in state-of-the-art climate system models37. 
Since the EBM in DICE is a two-box model it has two characteristic response time 
scales whose calibration are different than those presented in Geoffroy et al.37 The 
rapid response (yearly time scales related to the response of the well-mixed upper 

ocean layer) is too slow in DICE 2016R2, while the slow response (century time 
scales related to the response of the deep ocean) is too fast compared to advanced 
climate system models. The latter implies that for a given radiative forcing 
step change the equilibrium temperature level is approached too fast. We have 
therefore recalibrated the EBM so that its parameterization represents the average 
characteristics of climate models used in the CMIP5 (ref. 37). The equilibrium 
response, that is the climate sensitivity in DICE (being 3.1 °C for a doubling in the 
CO2 concentration), is left unchanged since it fits well in the middle of the likely 
distribution of equilibrium climate sensitivity5,39,40.

In the Extended Data Fig. 2, we compare the optimal temperature dynamics 
in DICE 2016R2 with the dynamics when only the new EBM climate system 
model (based on Geoffroy et al.37) is implemented. The optimal temperature 
drops by around 0.3 °C due to the introduction of the EBM only. Additionally, our 
recalibrated model includes a higher initial temperature level in 2015 compared 
to the standard DICE 2016R2. That is for two reasons. First, in DICE 2016R2 
the reference period for the atmospheric temperature change is 1900 while the 
updated EBM uses the average between 1850 and 1900 and hence, the temperature 
has increased slightly more since the 1850–1900 period. Second, we initialize the 
updated EBM with historical forcing estimates to ensure that the model’s initial 
conditions in 2015 are internally consistent (that is, the temperature in the two 
boxes are consistent with the radiative forcing history). We are not aware of any 
information on how this calibration is dealt with in the standard DICE 2016R2.

Economic damages from climate change. The climate damage function in DICE 
translates a temperature increase into a percentage change in global GDP. Due 
to the large uncertainty involved in estimation, meta-analyses are a standard 
tool to inform the choice of the parameter that scales the temperature–damage 
relationship in models such as DICE28,43,44,46.

Tol43 provided an influential meta-analysis of climate damages, which served 
as a basis for previous versions of the DICE model. Both the 2009 meta-analysis 
and an update, Tol44, have been found to contain statistical errors28. As a result 
Nordhaus revised the climate damage function in the 2016 version of DICE34,46 
based on his own meta-analysis of 36 studies that report a damage estimate. 
Each of these estimates is treated as an independent draw from an underlying 
damage function. This is a precondition for using the usual statistical analysis 
needed. However, the independence assumption can be questioned as several of 
the estimates come from the same limited circle of authors. The selected climate 
damage function translates a temperature increase of 3 °C into a damage of 2.12% 
of global GDP.

Howard and Sterner28 provide an up-to-date meta-analysis of the temperature–
damage relationship. They find strong evidence that Nordhaus and Moffat’s46 
damage estimate is biased due to duplicates and omitted variables in the regression. 
In their preferred model (regression 4 in Table 2 of ref. 28), total damages that 
include a markup of 25% for omitted non-market damages from climate change are 
substantially higher, reaching 6.69% of global GDP for a 3 °C temperature increase. 
This is closer to recent empirical evidence47, which shows that economic damages 
from climate change may be even more severe, but has the merit that it can be 
incorporated directly into the DICE model. Nordhaus1 also used this damage 
function in sensitivity analysis. Extended Data Fig. 3 compares the baseline to 
the isolated effect of the updated optimal economic damage from climate change 
(as a percentage of global GDP) under Nordhaus’ discounting choices. Damages 
are substantially higher in the updated model for most of the time horizons 
considered.

Intergenerational welfare. In the standard social objective function used in DICE, 
welfare weights across generations can be chosen on the basis of both normative 
and positive considerations. Drupp et al.24 have undertaken a large, representative 
survey of academics publishing in leading economics journals who have specific 
expertise on these matters to determine their views on the values that the welfare 
weights in the social objective function should take. A total 173 respondents 
provided complete responses on the normative parameters in DICE (see Box 1). In 
the main text, we use two approaches to find some central, mediating value among 
the different expert opinions, for policy purposes. We now report the motivation 
behind these concepts of central tendency by explaining how the median expert 
view and median expert path are constructed.

The median expert view represents the median response of all 173 experts 
for each of the two discounting parameters, the rate of pure time preference and 
inequality aversion. The median expert view has a theoretical justification in 
the literature on voting outcomes. It can be interpreted as the voting outcome 
if experts have circular indifference curves around their central value and vote 
simultaneously and separately over the two welfare parameters59,60.

The median expert path represents the median of all model runs for the SCC, 
temperature and emissions associated with each of the 173 experts’ chosen pair 
of discounting parameters at each point in time. The median expert path has a 
theoretical justification in the literature on voting outcomes. It can be interpreted 
as the voting outcome if experts have single-pealed preferences, and vote over a 
specific end point of a climate path at a given point in time58, instead of parameters 
as in the case for the median expert view. Hence, a given median expert path tracks 
voting outcomes for a given climate path at any given point in time.
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The median expert path should primarily be viewed as a pragmatic, alternative 
definition of central tendency, as the superior mediating statistic it is not clear 
a priori. The median expert path offers mediating climate paths that are less 
stringent compared to the paths implied by the median expert view.

It should be noted that a major finding of the expert survey is that most experts 
do not follow the simple discounted utilitarian approach and associated Ramsey 
rule (see Box 1) but deviate for a number of reasons24. These include project risk, 
uncertainty, environmental scarcity, effects of inequalities within generations as 
well as alternative ethical approaches (see Box 2). As the mean (median) imputed 
simple Ramsey rule in the expert survey is higher than the recommended mean 
(median) SDR, these extensions are likely to lead to recommending more stringent 
climate policy. The main text may therefore depict conservative results.

Non-CO2 forcing. Abatement of non-CO2 emissions are critical when aiming for 
stringent climate stabilization levels2,36. The scenario assumption for the radiative 
forcing from non-CO2 climate forcers in Nordhaus34 is exogenously given. It is 
substantially higher compared to what is estimated in other climate scenario 
work analysing pathways compatible with stabilization of global mean surface 
temperature around 1.5–3 °C above the pre-industrial level, for example, the 
representative concentration pathways RCP 2.6 and RCP 4.5 (ref. 117) or the SSP 
towards 1.9 W m–2 (ref. 118). While several of these abatement options for non-CO2 
emissions might not be cost-effective at modest carbon prices as those suggested 
in the original DICE model (US$37 in 2020), it very likely becomes cost-effective 
to abate non-CO2 greenhouse gases if governments implement policies that 
will meet current UN climate targets2,119. This implies that the exogenously set 
radiative forcing pathway for non-CO2 emissions in DICE is too high for most of 
our optimal policy runs. We therefore consider a pathway of non-CO2 greenhouse 
gases that is better aligned to the CO2 price and temperature levels we obtain 
with the updated version of DICE. Specifically, we have changed the radiative 
forcing scenario from non-CO2 forcers so that it matches the path of the REMIND 
integrated assessment model using the SSP 2 scenario meeting a non-CO2 forcing 
level of 2.6 W m–2 in 210031. This scenario reaches similar carbon concentrations, 
radiative forcing and temperature levels as obtained in our fully updated DICE 
model. In the Extended Data Fig. 4, we compare the standard to the updated path 
for non-CO2 forcing in isolation.

Negative emissions technologies. A key difference between the DICE and the 
IPCC Special Report36 is the stance regarding the availability of carbon removal 
technologies leading to net-negative emissions. While the scenarios considered by 
the IPCC2,36 make use of NETs roughly by the year 2050, the DICE 2016R2 model 
assumes that this will only be feasible from 2160 onwards. In line with the pathways 
assessed in the IPCC report, we allow for the possibility of NETs from mid-century 
onwards. We set the upper level of abatement to 120% of baseline emissions as 
in DICE 2016R2. For instance, emissions are at –18 GtCO2 per year for the lower 
95% bound of expert views on discounting by 2100. For comparison, the emission 
pathways that are assessed in IPCC Special Report and that meet the 1.5 °C level 
by 2100 have a median emission level of –12 GtCO2 per year in 2100, with a 90% 
interval of –20 to –2.3 GtCO2 per year, while the emissions level in 2070 has a 
median of –8.0 GtCO2 per year and a 90% interval of –15 to –0.70 GtCO2 per year 
(estimated from data available in IAMC 1.5 °C Scenario Explorer68). The timing 
of the availability of NETs as well as their potential magnitude are still intensely 
debated65,66 and will ultimately, similar to all abatement technologies, depend on the 
interplay of technological development and (expected) carbon prices.

Feasibility constraints. We impose a set of constraints on the maximum rate 
of technologically feasible decarbonization. These conditions allow for a more 
credible study of low-emission scenarios. The main text contains all relevant 
information. In a next step, we present the resulting climate policy paths under 
updated model specifications. In Supplementary Fig. 2, we show how different 
positions on social discounting translate into plausible ranges of climate policy 
paths within the baseline DICE 2016R2 model calibration.

Optimal climate policy paths under updated model specifications. First, we now 
consider the introduction of the new carbon cycle dynamics. Extended Data Fig. 5 
shows how different positions on social discounting translate into plausible ranges 
of climate policy paths in DICE 2016R with the new updated carbon cycle.

The maximum SCC in the 66th (95th) percentile range are US$289 (US$1,004) 
in the year 2020 and US$1,036 (US$2,108) in 2100. By contrast, the minimum 
SCC in 2020 in the 66th (95th) percentile range is US$20 (US$4) increasing to 
US$177 (US$54) in 2100. Nordhaus’ SCC is at US$31 in 2020 and US$263 in 2100. 
By contrast, the median expert view translates into an SCC of US$158 in 2020, 
increasing to US$738 in 2100. The median expert path in turn results in an SCC of 
US$52 in 2020, increasing to US$499 in 2100.

In the central 66th percentile plausible range, the decarbonization of the 
global economy occurs around 5 yr later compared to the baseline model; the 
economy should either be decarbonized in 2045 or 2130. In Nordhaus’ best-guess, 
the economy would not be decarbonized within this century, while optimal 
decarbonization takes place by 2070 in the median expert view. The median expert 
path in turn results in decarbonization by 2090.

While Nordhaus’ view on social discounting translates into 3.3 °C warming 
by 2100, the median expert view (median expert paths) leads to an increase 
in temperature of 2.4 °C (2.9 °C) by 2100. In the 66th percentile range, the 
temperature increase in 2100 is as high as 3.4 °C at the upper end and 2.1 °C at the 
lower end. Moreover, none of the model runs that result from the expert views 
would lead to an optimal policy that stays within the 1.5 °C limit of the Paris 
Agreement. Overall, only 7% of all model runs stay below 2 °C by 2100.

Second, we add the updated EBM. Extended Data Fig. 6 shows how different 
positions on social discounting translate into plausible ranges of climate policy 
paths in DICE 2016R2 with updated carbon cycle and EBM.

Compared to the model that only incorporates the updated carbon cycle, the 
SCC decrease in almost all model runs. The maximum SCC in the 66th (95th) 
percentile range are US$235 (US$738) in the year 2020 and US$846 (US$1,574) 
in 2100. By contrast, the minimum SCC in 2020 in the 95th (66th) percentile 
range is US$7 (US$22) increasing to US$59 (US$178) in 2100. The SCC using the 
discounting parameters of Nordhaus remains at US$31 in 2020 and increases to 
US$245 in 2100. By contrast, the median expert view results in an SCC of US$130 
in 2020, increasing to US$613 in 2100. The median expert path in turn leads to an 
SCC of US$49 in 2020, increasing to US$425 in 2100.

In the central 66th percentile plausible range, the economy should be 
decarbonized in either 2055 or 2135. In Nordhaus’ best-guess, the economy would 
not be decarbonized within this century, while optimal decarbonization takes 
place by 2075 in the median expert view. The median expert path in turn results 
in decarbonization by 2095. Hence, the introduction of the updated EBM shifts 
optimal decarbonization into the future.

While Nordhaus’ view on social discounting now translates into 3.0 °C 
warming by 2100, the median expert view (median expert paths) leads to an 
increase in temperature of 2.1 °C (2.6 °C) by 2100. In the 95th (66th) percentile 
range, the temperature increase in 2100 is 3.3 °C (3.1 °C) at the upper end and 
1.6 °C (1.8 °C) at the lower end. Moreover, still none of the model runs that result 
from the expert views would lead to an optimal policy that stays within the 1.5 °C 
limit of the Paris Agreement. Overall, now 23% of all model runs stay below  
2 °C by 2100.

Third, we add the updated temperature–damage relationship according to 
Howard and Sterner28. Extended Data Fig. 7 shows how different positions on 
social discounting translate into plausible ranges of climate policy paths in DICE 
2016R2 with updated carbon cycle, EBM and temperature–damage relationship.

Compared to the model that incorporates the updated carbon cycle and EBM 
only, the SCC is, not surprisingly, increased quite markedly by the introduction of 
the new damage function. The maximum SCC in the 66th (95th) percentile range 
are US$590 (US$2,318) in the year 2020 and US$2,094 (US$4,835) in 2100. By 
contrast, the minimum SCC in 2020 in the 95th (66th) percentile range is US$22 
(US$67) increasing to US$179 (US$466) in 2100. Nordhaus’ SCC is US$90 in 2020 
and increasing to US$616 in 2100. By contrast, the median expert view leads to an 
SCC of US$317 in 2020, increasing to US$1,437 in 2100. The median expert path 
in turn results in an SCC of US$134 in 2020, increasing to US$1,001 in 2100.

In the central 66th percentile plausible range, the economy should be 
decarbonized in either 2020 or 2090. In Nordhaus’ best-guess, the economy would 
be decarbonized by 2080, while optimal decarbonization takes place by 2040 in the 
median expert view. The median expert path in turn results in decarbonization by 
2065. Hence, the introduction of the updated temperature–damage relationship 
means that optimal decarbonization occurs sooner.

While Nordhaus’ view on social discounting now translates into 2.2 °C 
warming by 2100, the median expert view (median expert paths) leads to an 
increase in temperature of 1.7 °C (2.02 °C) by 2100. In the 95th (66th) percentile 
range, the temperature increase in 2100 is 3.0 °C (2.5 °C) at the upper end and 
1.6 °C (1.6 °C) at the lower end. Moreover, still none of the model runs that result 
from the expert views would lead to an optimal policy that stays within the 1.5 °C 
limit of the Paris Agreement. However, with updated damage function, 48% of all 
model runs stay below 2 °C by 2100.

Howard and Sterner28 provide an update on how damage estimates 
are combined to calibrate the standard damage function but abstract from 
‘catastrophic’ climate damages. In the following, we run the DICE model with 
updated carbon cycle and EBM with the Weitzman50 damage function calibrated 
to incorporate damages of 2.9% (50%) in units of output for a temperature 
increase of 3 °C (6 °C). Supplementary Fig. 3 shows how different positions on 
social discounting translate into plausible ranges of climate policy paths in DICE 
2016R2 with updated carbon cycle, EBM and temperature–damage relationship 
as in Weitzman50. Overall, the results show much less stringent climate policy as 
compared to the case with the Howard and Sterner28 damage function. This is 
because, for up to 3 °C temperature increase, the Weitzman50 damage function has 
a similar shape as compared to the Nordhaus34 damage function. Only for higher 
temperature increases, the ‘catastrophic’ damages kick in, leading to 50% output 
loss for 6 °C warming. Thus, in the relevant range of climate policy measures that 
are optimal according to DICE with updates carbon cycle and EBM (for example 
3.1 °C temperature increase by 2100 at the upper 95% bound), the ‘catastrophic’ 
part of Weitzman’s50 damage function does not become relevant.

Fourth, we add the updated exogenous path for non-CO2 forcing. Extended 
Data Fig. 8 shows how different positions on social discounting translate into 
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plausible ranges of climate policy paths in DICE 2016R2 with updated carbon 
cycle, EBM, temperature–damage relationship and non-CO2 forcing.

The updated non-CO2 forcing scenario reflects an improved management 
of non-CO2 emissions in line with the SCC and temperature levels we got after 
having updated the damage function. The maximum SCC values thus decrease; in 
the 66th (95th) percentile range they are US$388 (US$1,127) in the year 2020 and 
US$1,248 (US$2,141) in 2100. By contrast, the minimum SCC in 2020 in the 95th 
(66th) percentile range is US$21 (US$63) increasing to US$149 (US$395) in 2100. 
Nordhaus’ SCC is US$83 in 2020 and increasing to US$510 in 2100. By contrast, 
the median expert view leads to an SCC of US$253 in 2020, increasing to US$1,009 
in 2100. The median expert path in turn results in an SCC of US$123 in 2020, 
increasing to US$776 in 2100.

In the central 66th percentile plausible range, the economy should be 
decarbonized in either 2035 or 2100. In Nordhaus’ best-guess, the economy 
would be almost decarbonized in 2085, while optimal decarbonization takes place 
by 2055 in the median expert view. The median expert path in turn results in 
decarbonization by 2070.

While Nordhaus’ view on social discounting now for the first time translates 
into staying below the 2 °C temperature target (1.98 °C warming by 2100), the 
median expert view (median expert paths) leads to an increase in temperature 
of 1.4 °C (1.8 °C) by 2100. In the 95th (66th) percentile range, the temperature 
increase in 2100 is 2.7 °C (2.2 °C) at the upper end and 1.3 °C (1.3 °C) at the lower 
end. For the first time the 1.5 °C temperature target by 2100 is in line with optimal 
economic policy according to around a third of the 173 expert views on social 
discounting (32 percent). More than three-quarters (77 percent) of all model runs 
stay below 2 °C by 2100.

Fifth, we make NETs available in 2050 instead of 2160 in DICE 2016R2. 
Extended Data Fig. 9 shows how different positions on social discounting translate 
into plausible ranges of climate policy paths in DICE 2016R2 with updated 
carbon cycle, EBM, temperature–damage relationship, non-CO2 forcing and NETs 
available by 2050.

The earlier availability of NETs increases the emissions budget in line  
with any given temperature target. The maximum SCC values in the 66th  
(95th) percentile range are US$255 (US$428) in the year 2020 and US$586 
(US$596) in 2100. By contrast, the minimum SCC in 2020 in the 95th (66th) 
percentile range is US$21 (US$62) increasing to US$156 (US$370) in 2100. 
Nordhaus’ SCC is US$81 in 2020 and increasing to US$444 in 2100. The median 
expert view leads to an SCC of US$199 in 2020, increasing to US$575 in 2100. The 
median expert path in turn results in an SCC of US$116 in 2020, increasing to 
US$543 in 2100.

In the central 66th percentile plausible range, the economy should be 
decarbonized in either 2060 or 2100. In Nordhaus’ best-guess, the economy  
would be decarbonized in 2090, while optimal decarbonization takes place 
by 2070 in the median expert view. The median expert path in turn results in 
decarbonization by 2080.

While Nordhaus’ view on social discounting translates into 2.0 °C warming 
by 2100, the median expert view (median expert paths) leads to an increase in 
temperature of 1.4 °C (1.8 °C) by 2100. In the 95 (66th) percentile range, the 
temperature increase in 2100 is 2.6 °C (2.2 °C) at the upper end and 0.9 °C (1.2 °C) 
at the lower end. Of all model runs, 38% stay within the 1.5 °C limit of the Paris 
Agreement and 76% stay below 2 °C by 2100.

As the last step, we add the described technology inertia constraints resulting 
in Fig. 2 in the main text.

Data availability
The data that support the plots within this paper and other findings of this study 
are available in the Source data provided with this paper.

Code availability
All code used to produce the analysis is available at the following repository: 
https://www.openicpsr.org/openicpsr/project/119395/version/V1/view/ under 
a Creative Commons 4.0 license. Details of implementation can be found in the 
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Extended Data Fig. 1 | Optimal dynamics for atmospheric carbon under Nordhaus discounting. The black line depicts the standard DICE 2016R2 result; 
the red line shows the updated optimal dynamics for atmospheric carbon for the case with the updated carbon cycle model but without considering  
other updates.
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Extended Data Fig. 2 | Optimal dynamics for atmospheric temperature change from 1850–1900 levels under Nordhaus discounting. The black line 
depicts the standard DICE 2016R2 result; the red line shows the optimal path resulting from the updated EBM without considering other updates.
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Extended Data Fig. 3 | Optimal economic damages from temperature increases under Nordhaus discounting. The black line depicts the standard 
DICE 2016R2 result. Without considering other updates, the red line shows the economic damages as a fraction of global GDP based on the preferred 
specification in Howard and Sterner (2017)28.
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Extended Data Fig. 4 | exogenous path for non-CO2 forcers. The black line depicts the standard DICE 2016R2 assumption; the red line shows the updated 
path based on the REMIND SSP2.6 scenario.
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Extended Data Fig. 5 | Nordhaus DiCe 2016r2 with an updated carbon cycle. a shows each expert’s value judgements on the rate of pure time 
preference and inequality aversion. The triangle indicates the position implied by the choice of discount parameters in Nordhaus (2018a) and the blue 
square the median expert’s view social discounting. b–d depict the 95 (grey-shaded area) and 66 (blue-shaded area) percentile ranges in terms of 
experts’ value judgements for three climate policy measures: the social cost of CO2 (in US$ per ton), industrial emissions (in gigatons of CO2) and global 
mean temperature increases from 1850–1900 levels (in degrees Celsius). They also compare climate policy pathways implied by Nordhaus’ discounting 
parameters (black line) to those resulting from the median expert’s view (blue line) and the median expert path (green line).

NATUre CliMATe CHANGe | www.nature.com/natureclimatechange

http://www.nature.com/natureclimatechange


AnAlysis Nature Climate ChaNge

Extended Data Fig. 6 | Nordhaus DiCe 2016r2 with updated carbon cycle and eBM. a shows each expert’s value judgements on the rate of pure time 
preference and inequality aversion. The triangle indicates the position implied by the choice of discount parameters in Nordhaus (2018a) and the blue 
square the median expert’s view social discounting. b–d depict the 95 (grey-shaded area) and 66 (blue-shaded area) percentile ranges in terms of 
experts’ value judgements for three climate policy measures: the social cost of CO2 (in US$ per ton), industrial emissions (in gigatons of CO2) and global 
mean temperature increases from 1850–1900 levels (in degrees Celsius). They also compare climate policy pathways implied by Nordhaus’ discounting 
parameters (black line) to those resulting from the median expert’s view (blue line) and the median expert path (green line).
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Extended Data Fig. 7 | Nordhaus DiCe 2016r2 with updated carbon cycle, eBM and temperature–damage relationship. a shows each expert’s value 
judgments on the rate of pure time preference and inequality aversion. The triangle indicates the position implied by the choice of discount parameters 
in Nordhaus (2018a) and the blue square the median expert’s view social discounting. b–d depict the 95 (grey-shaded area) and 66 (blue-shaded area) 
percentile ranges in terms of experts’ value judgements for three climate policy measures: the social cost of CO2 (in US$ per ton), industrial emissions (in 
gigatons of CO2) and global mean temperature increases from 1850–1900 levels (in degrees Celsius). They also compare climate policy pathways implied 
by Nordhaus’ discounting parameters (black line) to those resulting from the median expert’s view (blue line) and the median expert path (green line).
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Extended Data Fig. 8 | Nordhaus DiCe 2016r2 with updated carbon cycle, eBM, temperature–damage relationship and non-CO2 forcing. a shows 
each expert’s value judgments on the rate of pure time preference and inequality aversion. The triangle indicates the position implied by the choice of 
discount parameters in Nordhaus (2018a) and the blue square the median expert’s view social discounting. b–d depict the 95 (grey-shaded area) and 
66 (blue-shaded area) percentile ranges in terms of experts’ value judgements for three climate policy measures: the social cost of CO2 (in US$ per ton), 
industrial emissions (in gigatons of CO2) and global mean temperature increases from 1850–1900 levels (in degrees Celsius). They also compare climate 
policy pathways implied by Nordhaus’ discounting parameters (black line) to those resulting from the median expert’s view (blue line) and the median 
expert path (green line).

NATUre CliMATe CHANGe | www.nature.com/natureclimatechange

http://www.nature.com/natureclimatechange


AnAlysisNature Climate ChaNge

Extended Data Fig. 9 | Nordhaus DiCe 2016r2 with updated carbon cycle, eBM, temperature–damage relationship, non-CO2 forcing and NeTs available 
by 2050. a shows each expert’s value judgments on the rate of pure time preference and inequality aversion. The triangle indicates the position implied by 
the choice of discount parameters in Nordhaus (2018a) and the blue square the median expert’s view social discounting. b–d depict the 95 (grey-shaded 
area) and 66 (blue-shaded area) percentile ranges in terms of experts’ value judgements for three climate policy measures: the social cost of CO2 (in US$ 
per ton), industrial emissions (in gigatons of CO2) and global mean temperature increases from 1850–1900 levels (in degrees Celsius). They also compare 
climate policy pathways implied by Nordhaus’ discounting parameters (black line) to those resulting from the median expert’s view (blue line) and the 
median expert path (green line).
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Extended Data Fig. 10 | effects of each sequential model update on optimal climate policy paths including 95-percentile ranges. The figure shows 
how each expert’s value judgements on the pure rate of time preference and inequality aversion translates into the optimal temperature change by 2100 
from 1850–1900 levels (a), the years to decarbonization (b) and the social cost of carbon in 2020 (c) for each sequential update to DICE considered in 
this paper. Starting from the DICE 2016R2 Baseline (b) we change the carbon cycle (CC), second the EBM, third the temperature–damage relationship 
(d), fourth the exogenous path for non-CO2 forcing (nCO2), fifth the availability of negative emissions technologies (NET) and sixth the technologically 
feasible speed of decarbonization (feas). The figure depicts the 66 (boxplot) and 95 (whiskers) percentile ranges. The triangle indicates the optimal 
path that is consistent with the Nordhaus choice of discount parameters (2018a), the blue square reflects the median expert’s view on intergenerational 
fairness, and the green bar the path implied by the median path.
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