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Abstract
We study the natural linear operators associated to divide and color (DC) models.
The degree of nonuniqueness of the random partition yielding a DC model is directly
related to the dimension of the kernel of these linear operators. We determine exactly
the dimension of these kernels as well as analyze a permutation-invariant version.
We also obtain properties of the solution set for certain parameter values which will
be important in (1) showing that large threshold discrete Gaussian free fields are DC
models and in (2) analyzing when the Ising model with a positive external field is a
DC model, both in future work. However, even here, we give an application to the
Ising model on a triangle.
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1 Introduction, Some Notation and Summary of Results

There is a very simple mechanism for constructing random variables with a (positive)
dependency structure,which are calleddivide and colormodels. Thesewere introduced
in its general form in [4], but have already arisen in many different contexts.
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Definition 1 A {0, 1}-valued process X := (Xi )i∈S is a divide and color (DC)model if
X can be generated as follows. First, choose a random partition of S according to some
arbitrary distribution π , and then independent of this and independently for different
partition elements in the random partition, assign, with probability p, all the variables
in a partition element the value 1 and with probability 1− p assign all the variables the
value 0. This final {0, 1}-valued process is called the DC model associated to (π, p).
We also say that (π, p) is a color representation of X .

As detailed in [4], many processes in probability theory are DC models; examples
are the Ising model with zero external field, the fuzzy Potts model with zero external
field, the stationary distributions for the voter model and random walk in random
scenery.

While certainly the distribution of a divide and color model determines p, it in fact
does not determine the distribution of π . This was seen for small sets S in [4], and this
lack of uniqueness will essentially be completely determined in this paper.

Given a set S, we let BS denote the collection of partitions of S. We denote
{1, 2, 3, . . . , n} by [n] and if S = [n], we write Bn for BS . |Bn| is called the nth
Bell number. We let Pn denote the number of integer partitions on n. Since S will
always be finite, we will, without loss of generality, assume it is equal to [n] for some
n ∈ N.

The lawof any randompartition of [n] canbe identifiedwith a probability vectorq =
{qσ }σ∈Bn ∈ R

Bn . Similarly, the law of any random {0, 1}-valued vector (X1, . . . , Xn)

can be identified with a probability vector ν = (ν(ρ))ρ∈{0,1}n ∈ R
{0,1}n . The definition

of a DCmodel yields immediately, for each n and p ∈ [0, 1], a map�n,p from random
partitions of [n], i.e., from probability vectors q = {qσ }σ∈Bn to probability vectors
ν = (νρ)ρ∈{0,1}n .While a triviality, a crucial observation is that�n,p is an affinemap of
the relevant simplices. As a result, this map naturally extends to a linear mapping An,p

from R
Bn to R

{0,1}n . This will allow us to more easily analyze questions concerning
nonuniqueness of color representations, since, by placing the problem in a vector space
context, one can consider formal solutions (to be defined below)which onemight show
afterward are in fact nonnegative solutions and therefore color representations.

To describe the linear operator An,p, we identify Bn with the natural basis for RBn

in which case An,p is uniquely determined by giving the image of each σ ∈ Bn which
is done as follows. Given σ ∈ Bn and a binary string ρ ∈ {0, 1}n , we write σ � ρ if ρ

is constant on the partition elements of σ . We then have

An,p(σ )ρ := An,p(ρ, σ ) :=
{
pc(σ,ρ)(1 − p)‖σ‖−c(σ,ρ) if σ � ρ

0 otherwise

where ‖σ‖ is equal to the number of partition elements in the partition σ and c =
c(σ, ρ) is the number of partition elements on which ρ is 1. We would not be surprised
if this operator has occurred in other contexts, but we have not been able to find it in
the literature.

As seen in [1] and [4], the cases p = 1/2 and p �= 1/2 behave quite differently
when it comes to DC models. We will see this difference also below when studying
the dimension of the kernels of the corresponding operators. In [4], the below was
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obtained for some small values of n. For ρ ∈ {0, 1}n , we write −ρ to denote the
binary string where the zeros and ones in ρ are switched, i.e., −ρ = 1 − ρ.

Theorem 1 An, 12
has rank 2n−1 and hence nullity |Bn| − 2n−1. The range of An, 12

is

{
(ν(ρ))ρ∈{0,1}n : ∀ρ, ν(ρ) = ν(−ρ)

}
. (1)

Remark 1 In the proof of Theorem 1, we will obtain a concrete formula for a formal
solution (to be defined below) for any ν satisfying (1). If, in addition, ν is a probability
vector with the property that the probability of being constant is at least .5, then this
formal solution will be a nonnegative solution, and hence, ν will be a divide and color
model. We mention that there is no such result when p �= 1/2.

Theorem 2 If p /∈ {0, 1/2, 1}, then An,p has rank 2n − n and hence nullity |Bn| −
(2n − n). The range of An,p is equal to

{
(ν(ρ))ρ∈{0,1}n : ∀i, p

∑
ρ:ρ(i)=0

ν(ρ) = (1 − p)
∑

ρ:ρ(i)=1

ν(ρ)
}
. (2)

(The vector subspace defined by (2) is the vector space analog of the marginal dis-
tributions each being pδ1 + (1 − p)δ0.) In particular, if ν is a probability vector on
{0, 1}n, all of whose marginals are pδ1 + (1 − p)δ0, then ν is in the range of An,p.
(Of course, there might not be a probability vector q = (qσ )σ∈Bn which maps to ν;
i.e., ν need not be a DC model.)

We now discuss the relationship between a nontrivial kernel and nonunique color
representations. Given n, p and ν, a (not necessarily nonnegative) vector q ∈ R

Bn is
called a formal solution if

An,pq = ν (3)

while a nonnegative such vector q is called a nonnegative solution. It is easy to see,
using inclusion–exclusion, that (3) is equivalent to the system

∑
σ∈Bn

p‖σS‖qσ = νp(1
S), S ⊆ [n] (4)

where σS denotes the restriction of a partition σ ∈ Bn to a set S ⊆ [n], and 1S is
the event that ρ ∈ {0, 1}n is equal to 1 on S. If ν is a probability vector, then the
sum of the coordinates of any formal solution will always be one, but it will be a
nonnegative solution if and only if it corresponds to a divide and color representation.
Therefore, the relationship between nontriviality of the kernel of An,p and uniqueness
of a color representation (i.e., uniqueness of a nonnegative solution) is as follows.
First, of course An,p has a nontrivial kernel if and only if for any ν in the range, there
are an infinite number of formal solutions. Hence, if the kernel is trivial, there is always
at most one divide and color representation for any DC model. The converse is not
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true since an i.i.d. process clearly has at most one color representation even when the
kernel is nontrivial. However, as is also explained in [4], if the kernel is nontrivial,
ν is in the range and there exists a nonnegative solution all of whose coordinates
are positive, then one has infinitely many nonnegative solutions since we can add a
small constant times an element in the kernel. More generally, if ν is in the range and
there exists a nonnegative solution q for ν, then there is another nonnegative solution
(and then infinitely many) if and only if there is an element q ′ in the kernel whose
negative-valued coordinates are contained in the support of q.

It is sometimes natural to consider situations where one has some further invariance
property, a special case being full invariance meaning everything considered is invari-
ant under the full symmetric group. In this case, the characterization of the ranges and
of the dimensions of the kernel are given in Theorem 5 in Sect. 2.3.

Our next theorem will be used in [3] to show that threshold discrete Gaussian free
fields are DCmodels for large threshold. This theorem is included here since it heavily
relies on the algebraic picture used in the proofs of the above results. It gives sufficient
conditions for a family of probability measures νp to be a DC model for small p in
terms of the asymptotic behavior of certain probabilities as p → 0. In the below, for a
given set S of coordinates, ν(1S) will denote the ν-probability that we have all 1’s on
S and νp(1S0S

c
) will denote the ν-probability that we have all 1’s on S and 0’s on Sc.

Theorem 3 Let (νp)p∈(0,1) be a family of probability measures on {0, 1}n. Assume that
νp has marginals pδ1 + (1− p)δ0 and that for all S ⊆ [n] with |S| ≥ 2 and all k ∈ S,
as p → 0, we have that

pνp(1
S\{k}) 
 νp(1

S) � νp(1
S0[n]\S) (5)

and

lim
p→0

∑
S⊆[n] : |S|≥2

νp(1S0S
c
)

p
< 1.

Then, νp is a DC model for all sufficiently small p > 0.

Next, since p = 1/2 plays a special role, it will turn out to be useful to understand
the limiting behavior of the solution set as p → 1/2. This will also be needed in
understanding which Ising models are DC models in the presence of an external field;
the latter will be studied in [2]. The following result captures this limiting behavior.

Theorem 4 Let (νp)p∈(0,1) be a family of probability measures on {0, 1}n. Assume that
νp has marginals pδ1 + (1− p)δ0, and that for each S ⊆ [n], νp(1S) is differentiable
in p at p = 1/2. Assume further that for any sets T ⊆ [n] and S ⊆ T , and any
p ∈ (0, 1), we have that

νp(0
S1T \S) = ν1−p(0

T \S1S).
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Finally, for each p ∈ (0, 1) let (q(p)
σ )σ∈Bn be a formal solution to the equation

∑
σ∈Bn

p‖σS‖q(p)
σ = νp(1

S), S ⊆ [n].

Then, the set of subsequential limits (qσ )σ∈Bn of sequences ((q(p)
σ )σ∈Bn )p∈(0,1) as

p → 1/2 is exactly the set of solutions to the system of equations

{∑
σ∈Bn

2−‖σS‖qσ = ν1/2(1S), S ⊆ [n], |S| even∑
σ∈Bn

‖σS‖2−‖σS‖+1qσ = ν′
1/2(1

S), S ⊆ [n], |S| odd. (6)

Remark 2 It follows from the proof of this theorem that the system of linear equations
given by the equations in (6) corresponding to even sets is equivalent to the linear
equation system in (4) for p = 1/2.

The following application of Theorem 4 will be proved in Sect. 4. We consider the
Ising model on a triangle with parameters J and h; this is the probability measure on
{1,−1}[3] which has relative weights

eJ (
∑

x �=y η(x)η(y))+h
∑

x η(x)

to the configuration η. Call this measure νJ ,h . For any J ≥ 0 and h > 0, by Theorem 2,
there is a unique q J ,h ∈ R

B3 with A3,pq J ,h = νJ ,h where p = p(J , h) is chosen to
be the probability that a single site is positive. The uniqueness of this solution also
follows from Theorem 2.1(C) in [4]. If we now, for fixed J , let h tend to zero, then any
subsequential limit q J of (q J ,h) necessarily satisfies A3,1/2q J = νJ ,0. One natural
random partition which yields νJ ,0 as its color process is the so-called random cluster
model or Fortuin–Kasteleyn representation denoted by qRCM. Interestingly, it turns
out that qRCM does not correspond to the small h limit. This was first observed by the
second author and Johan Tykesson with the help of Mathematica. Here, we obtain it
as a direct corollary of Theorem 4.

Corollary 1 For all J > 0, limh→0 q J ,h exists and does not equal qRCM.

The rest of the paper is organized as follows. The proofs of Theorems 1, 2 and 5
will be given in Sect. 2. Then, Theorem 3 will be proved in Sect. 3 and Theorem 4 as
well as Corollary 1 will be proved in Sect. 4.

2 Dimension of the Kernels of the Induced Linear Operators

2.1 Formal Solutions for the p = 1/2 case

In this subsection, we prove Theorem 1 and demonstrate the statement made in the
remark after the statement of this theorem.
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Proof (Proof of Theorem 1) Given a {0, 1}-symmetric probability vector ν = (ν(ρ)) on
{0, 1}n , it is easy to verify (and left to the reader) that a formal solution (i.e., a solution
to An, 12

q = ν) is given by

qσ =

⎧⎪⎨
⎪⎩
2
(
ν(0S1S

c
) + ν(1S0S

c
)
)
, if σ = {S, Sc}, S �= ∅, [n]

1 − ∑
σ ′∈Bn : |σ ′|=2 qσ ′ if σ = [n]

0 otherwise.

In addition, this yields a color representation (i.e., a nonnegative solution to An, 12
q =

ν) if and only if

ν(00 . . . 0) + ν(11 . . . 1) ≥ 0.5 (7)

by observing that

q[n] = 1 −
∑
σ∈Bn :
|σ |=2

qσ = 1 −
∑

{S,Sc} :
S⊆[n], 0<|S|<n

2
(
ν(0S1S

c
) + ν(1S0S

c
)
)

= 1 − 2
(
1 − (

ν(00 . . . 0) + ν(11 . . . 1)
))

.

Clearly, every element of the range must satisfy the symmetry condition (1) since
p = 1/2 while the first part of the proof shows that any vector satisfying (1) is in the
range. This proves the description of the range and from this, it follows immediately
that the rank is 2n−1, and hence, the nullity is |Bn| − 2n−1.

2.2 Formal Solutions for the p �= 1/2 Case

In this subsection, we prove Theorem 2.
Proof (Proof of Theorem 2)]

Step 1 The rank of An,p is at least 2n − n.

Proof (Proof of Step 1) Let A′
n,p be the 2

n ×|Bn|matrix corresponding to the left-hand
side of (4), i.e., let

A′
n,p(S, σ ) := p‖σS‖, S ⊆ n, σ ∈ Bn .

It suffices to show that the rank of A′
n,p is at least 2

n − n.

Let σ ∅ be the partition into singletons and for each T ⊆ [n] with |T | > 1, let
σ T ∈ Bn be the unique partition with exactly one non-singleton partition element
given by T . If, e.g., n = 5 we would have that σ {1,2,3} = (123, 4, 5). One easily
verifies that ‖(σ T )S‖ = |S\T | + (1 ∧ |S ∩ T |) for T = ∅ or |T | > 1.

Consider the equation system

ν(1S) =
∑

T⊆[n] : |T |�=1

p‖(σ T )S‖qσ T , S ⊆ [n]
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and let A′′ = A′′
n,p be the corresponding 2n × (2n − n) matrix. Define B =

(B(S, S′))S,S′⊆[n] by

B(S, S′) := (−p)|S|−|S′| I (S′ ⊆ S).

If we order the rows (from top to bottom) and columns (from left to right) of B such
that the sizes of the corresponding sets are increasing, then B is a lower triangular
matrix with B(S, S) = 1 for all S ⊆ [n]. In particular, this implies that B is invertible
for all p ∈ (0, 1), and hence, A′′ and BA′′ (also a 2n × (2n −n) matrix) have the same
rank. Moreover, for any S, T ⊆ [n] with |T | �= 1 we get

(BA′′)(S, T ) =
∑

S′ : S′⊆S

(−p)|S|−|S′|A′′(S′, T )

=
∑

S′ : S′⊆S

(−p)|S|−|S′| p|S′\T |+(1∧|S′∩T |)

= (−p)|S| ∑
S′ : S′⊆S

(−p)−|S′| p|S′\T | p1∧|S′∩T |

= (−p)|S| ∑
S′ : S′⊆S

(−p)−|S′∩T |(−1)|S′\T | p1∧|S′∩T |

=
{

(−p)|S| ∑
S′ : S′⊆S(−p)−|S′| p1∧|S′| if S ⊆ T

0 otherwise.

In the case S ⊆ T , we can simplify further to obtain

(BA′′)(S, T ) = (−p)|S| ∑
S′ : S′⊆S

(−p)−|S′| p1∧|S′|

= (−p)|S| ((1 − p−1)|S| · p + (1 − p)
)

= p(1 − p)|S| + (−p)|S|(1 − p).

Note that since p �= 1/2, if S ⊆ T , then (BA′′)(S, T ) = 0 if and only if |S| = 1. If we
order the rows (from top to bottom) and columns (from left to right) of BA′′ so that
the corresponding sets are increasing in size, it is obvious that the (2n − n)× (2n − n)

submatrix of BA′′ obtained by removing the rows corresponding to |S| = 1 has full
rank. This implies that BA′′ has rank at least 2n − n which implies the same for A′′
since B is invertible. Finally, since A′′ is a submatrix of A′

n,p, we obtain the desired
lower bound on the rank of the latter. ��
Step 2 The rank of An,p is at most 2n − n.

Proof (Proof of Step 2) We first claim that if ν = (ν(ρ))ρ∈{0,1}n is in the range, then it
is in the set defined in (2). To see this, let ν = An,p q for some q = (qσ )σ∈Bn and fix
an i ∈ [n]. The expression in the left-hand side of (2) becomes
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p
∑

ρ:ρ(i)=0

∑
σ∈Bn

An,p(ρ, σ )qσ = p
∑
σ∈Bn

qσ

∑
ρ:ρ(i)=0

An,p(ρ, σ ).

With σ ∈ Bn fixed, let

T i
σ : {ρ : ρ(i) = 0} �→ {ρ : ρ(i) = 1}

be the bijection which flips ρ on the partition element of σ which contains i . It is clear
that for all ρ with ρ(i) = 0, we have

(1 − p)An,p(T
i
σ (ρ), σ ) = pAn,p(ρ, σ ),

and hence, the previous expression is

(1 − p)
∑
σ∈Bn

qσ

∑
ρ:ρ(i)=0

An,p(T
i
σ (ρ), σ ) = (1 − p)

∑
σ∈Bn

qσ

∑
ρ:ρ(i)=1

An,p(ρ, σ ) =

(1 − p)
∑

ρ:ρ(i)=1

∑
σ∈Bn

An,p(ρ, σ )qσ = (1 − p)
∑

ρ:ρ(i)=1

ν(ρ).

An,p is mapping into a 2n-dimensional vector space, and each of the n equations
in (2) gives one linear constraint. It is easy to see that these n constraints are linearly
independent (e.g., one can see this by just looking at the number of times each of the
vectors 0k1n−k appears on the two sides). It follows that the rank of An,p is at most
2n − n. ��

With Steps 1 and 2 completed, together with the claim at the start of Step 2, we
conclude that the rank is as claimed and the range is characterized as claimed. Finally,
the claim concerning probability vectors follows immediately.

Remark 3 (i) The argument for the p �= 1/2 case can equally well be carried out
with minor modifications for the p = 1/2 case, but we preferred the simpler
argument which even gives more.

(ii) This last proof shows that, when dealing with formal solutions, we only need to
use partitions which have at most one non-singleton partition element. This is in
large contrast to the earlier proof of the p = 1/2 case where we only needed to
use partitions which have at most two partition elements.

(iii) The rank of an operator as a function of its matrix elements is not continuous,
but it is easily seen to be lower semicontinuous. We see this lack of continuity at
p = 1/2 as well as of course at p = 0 and p = 1.

2.3 The Fully Invariant Case

It is sometimes natural to consider situations where one has some further invariance
property. One natural case is the following. The symmetric group Sn acts naturally
on Bn , {0, 1}n , P(Bn), P({0, 1}n), RBn and R

{0,1}n where P(X) denotes the set of

123



Journal of Theoretical Probability

probability measures on X . (Of course P(Bn) ⊆ R
Bn and the action on the former

is just the restriction of the action on the latter; similarly for P({0, 1}n) ⊆ R
{0,1}n .)

To understand uniqueness of a color representation when we restrict to Sn-invariant
probability measures, it is natural to again extend to the vector space setting, which
is done as follows. Let QInv

n := {q ∈ R
Bn : g(q) = q ∀g ∈ Sn} and V Inv

n := {ν ∈
R

{0,1}n : g(ν) = ν ∀g ∈ Sn}. We next let AInv
n,p be the restriction of An,p to QInv

n . It is
elementary to check that AInv

n,p maps into V Inv
n and furthermore, it is easy to check, by

averaging, that

AInv
n,p(Q

Inv
n ) = An,p(R

Bn ) ∩ V Inv
n . (8)

Recalling that Pn is the set of partitions of the integer n, we have an obvious mapping
from Bn to Pn , denoted by σ �→ π(σ), which is constant on Sn orbits. RPn can then
be canonically identified with QInv

n via (qπ )π∈Pn is identified with (qσ )σ∈Bn where
qσ = qπ(σ)/aπ(σ) where aπ is the number of σ ’s for whichπ(σ) = π . In an analogous
way, V Inv

n can be canonically identifiedwithRn+1; namely, (νi )0≤i≤n is identifiedwith
(ν(ρ))ρ∈{0,1}n where ν(ρ) = ν‖ρ‖/

( n
‖ρ‖

)
and ‖ρ‖ is the number of ones in the binary

string ρ.
Using this notation, we have the following theorem. Again, in [4], this was done

for some small values of n.

Theorem 5 (i). For p /∈ {0, 1/2, 1}, AInv
n,p has rank n and hence nullity |Pn| − n. The

range of AInv
n,p (after identifying V Inv

n with Rn+1) is

{
(ν0, . . . , νn) : νn = p

1 − p

n−1∑
k=0

n − k

n
νk −

n−2∑
k=0

k + 1

n
νk+1

}
. (9)

(ii) AInv
n, 12

has rank �n/2� + 1 and hence nullity |Pn| − �n/2� − 1. The range of An, 12

(after identifying V Inv
n with Rn+1) is

{
(ν0, . . . , νn) : νi = νn−i ∀i = 1, . . . , n

}
. (10)

Proof (i). Denoting by Un the subset of Rn+1 satisfying (9), we claim that (after
identifying V Inv

n with Rn+1)

Un = AInv
n,p(Q

Inv
n ). (11)

SinceUn is clearly an n-dimensional subspace of Rn+1, the proof of (i) will then
be done. To see this, first take ν ∈ Un and let νInv be the corresponding element
in V Inv

n . We first need to show that (2) is satisfied for νInv. Fixing any i ∈ [n], we
have

p
∑

ρ:ρ(i)=0

νInvρ = p
n−1∑
k=0

(
n − 1

k

)
νk(n
k

) = p
n−1∑
k=0

n − k

n
νk
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and

(1 − p)
∑

ρ:ρ(i)=1

νInvρ = (1 − p)
n−2∑
k=0

(
n − 1

k

)
νk+1( n
k+1

) + (1 − p)νn

= (1 − p)
n−2∑
k=0

k + 1

n
νk+1 + (1 − p)νn .

Hence, since ν ∈ Un , (2) holds. In view of (8), this shows ⊆ in (11) holds.
Now, fix νInv ∈ AInv

n,p(Q
Inv
n ). Clearly νInv ∈ V Inv

n and by Theorem 2, (2) holds.
The above computation shows that the corresponding ν ∈ R

n+1 satisfies (9) and
hence is in Un . This shows that ⊇ in (11) holds as well.

(ii). Denoting now by Un the subset of Rn+1 satisfying (10), we claim that

Un = AInv
n, 12

(QInv
n ). (12)

Since Un is clearly an (�n/2� + 1)-dimensional subspace of Rn+1, the proof of
(ii) will then be done. However, in view of (1) in Theorem 2 and (8), this is
immediate.

��

3 Limiting Solutions as p Approaches 0

In this section, we provide a proof of Theorem 3.

Proof (Proof of Theorem 3) We will show that given the assumptions of the lemma, for
p > 0 sufficiently small there is a color representation (qσ ) = (qσ (p)) of X p ∼ νp

which is such that qσ = 0 for all σ ∈ Bn with more than one non-singleton partition
element. To this end, fix p ∈ (0, 1/2). We now refer to the proof of Theorem 2. By
Step 1 in that proof, we have that a color representation (qσ (p)) with the desired
properties exists if and only if the (unique) solution (qσ S (p))|S|�=1 to

νp(1
S) =

∑
T⊆[n] : |T |�=1

p‖(σ T )S‖qσ T (p), S ⊆ [n] : |S| �= 1 (13)

is nonnegative. As in the proof of Theorem 2, let A′′ be the 2n × (2n − n) matrix
corresponding to (13) and define B = (B(S, S′))S,S′⊆[n] by

B(S, S′) := (−p)|S|−|S′| I (S′ ⊆ S).

In the proof of Step 1 of Theorem 2, we saw that for S, T ⊆ [n] with |T | �= 1,

(BA′′)(S, T ) =
{
p(1 − p)|S| + (−p)|S|(1 − p) if S ⊆ T

0 otherwise.
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Let D = (D(S, S′))S,S′⊆[n] be the diagonal matrix with

D(S, S) := (p(1 − p)|S| + (−p)|S|(1 − p))−1 I (|S| �= 1), S ⊆ [n].

Then for S, T ⊆ [n] with |T | �= 1,

(DBA′′)(S, T ) = I (S ⊆ T ) · I (|S| �= 1).

Furthermore, one can verify that if we define the matrix C = (C(S, S′))S,S′⊆[n] by

C(S, S′) :=

⎧⎪⎨
⎪⎩

(−1)|S′|−|S| I (S ⊆ S′) if |S| ≥ 2 or S = S′ = ∅
(−1)|S′|−|S| I (S ⊆ S′) · (1 − |S′|) if S′ �= S = ∅
0 otherwise

then (since p /∈ {0, 1/2, 1})

(CDBA′′)(S, T ) = I (S = T ) · I (|S| �= 1). (14)

Since, by Step 1 in the proof of Theorem 2, the rank of A′′ is exactly 2n −n, it follows
that if we think of νp as a column vector, then (13) is equivalent to

qσ (p) =
{
etSCDBνp if σ = σ S, |S| �= 1

0 otherwise
(15)

(with t here meaning transpose and eS denoting the vector (I (S′ = S))S′⊆[n]). Now,
note that DBνp(1∅) = νp(1∅) and that if S ⊆ [n] has size |S| ≥ 2, we have that

DBνp(1
S) = eTS DBνp =

∑
S′ : S′⊆S(−p)|S|−|S′|νp(1S

′
)

p(1 − p)|S| + (−p)|S|(1 − p)
.

Since |S| ≥ 2, the denominator is p(1 + O(p)), and by the left-hand side of (5) the
numerator is given by νp(1S) + o(νp(1S)). It follows that

DBνp(1
S) = p−I (|S|≥2)(νp(1

S) + o(νp(1
S)))(1 + O(p))

= p−I (|S|≥2)νp(1
S) + o(p−I (|S|≥2)νp(1

S))

for any S ⊆ [n] with |S| �= 1. If we apply C to the vector (DBνp(1S))C⊆[n], a
computation shows that we get

etsCDBνp = p−1νp(1
S0[n]\S)) + o(p−1νp(1

S)), S ⊆ [n], |S| ≥ 2.

By (14) and the assumption that νp(1S) � νp(1S0S
c
), it follows that qσ S ∼

p−1νp(1S0[n]\S) for any S ⊆ [n] with |S| ≥ 2. Since qσ∅ = 1 − ∑
S⊆[n] : |S|≥2 qσ S ,

again using the assumptions, this concludes the proof.
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4 Limiting Solutions as p Approaches 1/2

Before we proceed to the proof of Theorem 4, we state and prove a few lemmas that
will be useful in this proof.

Lemma 1 Let f : 2[n] → R. Define ϕ f : 2[n] → R by

ϕ f (S) :=
∑

S′ : S′⊆S

(−2)|S′|−|S| f (S′), S ⊆ [n]

and ϕ−1 f : 2[n] → R by

ϕ−1 f (S) :=
∑

S′ : S′⊆S

2|S′|−|S| f (S′), S ⊆ [n].

Then,

ϕ−1ϕ f (S) = f (S), S ⊆ [n].

This lemma is a type of Möbius inversion formula. For completeness, we present a
short proof.

Proof Let T ⊆ [n]. Then, we have that

ϕ−1ϕ f (T ) =
∑

S : S⊆T

2|S|−|T |ϕ f (S) =
∑

S : S⊆T

2|S|−|T | ∑
S′ : S′⊆S

(−2)|S′|−|S| f (S′)

=
∑

S′ : S′⊆T

∑
S : S′⊆S⊆T

2|S|−|T |(−2)|S′|−|S| f (S′)

= 2−|T | ∑
S′ : S′⊆T

2|S′| f (S′)
∑

S : S′⊆S⊆T

(−1)|S′|−|S|

= 2−|T | ∑
S′ : S′⊆T

2|S′| f (S′)
∑

S′′ : S′′⊆T \S′
(−1)|S′′|

= 2−|T | ∑
S′ : S′⊆T

2|S′| f (S′)I (S′ = T ) = f (T ).

��

Lemma 2 Define A : Bn → R
2[n]

by

A(S, σ ) := I (σS has most one odd sized partition element).

Then, A has rank 2n − n.
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Proof (Proof of Lemma 2) Recall the definition of σ T from the proof of Theorem 2.
One can check that for any S ⊆ [n],

A(S, σ T ) =

⎧⎪⎨
⎪⎩
1 if S ⊆ T

1 if |S| is odd and |S\T | = 1

0 else.

This implies in particular that

A(S, σ T ) −
∑
i∈S

A(S\{i}, σ T ) I (|S| is odd) = (
1 − |S| · I (|S| is odd)) · I (S ⊆ T ).

Since (I (S ⊆ T ))S,T⊆[n] has full rank, it follows that A, when restricted to sets S ⊆ [n]
with |S| �= 1, has full rank, i.e., rank 2n − n. Since A({i}, σ T ) = A(∅, σ T ) = 1 for
all T ⊆ [n] with |T | �= 1 and all i ∈ [n], A can have rank at most 2n − n; hence, the
desired conclusion follows.

Lemma 3 If S ⊆ [n], |S| is odd and ν : {0, 1}n → R is {0, 1}-symmetric,
∑

T : T⊆S

(−2)|T |ν(1T ) = 0.

Proof (Proof of Lemma 3) Fix a set S ⊆ [n] with |S| odd. Since |S| is odd and ν is
symmetric,

0 =
∑

ρ∈{0,1}n
(−1)

∑
i∈S ρ(i)ν(ρ) =

∑
T : T⊆S

(−1)|S\T |ν(0T 1S\T )

=
∑

T : T⊆S

(−1)|S|−|T |ν(0T 1S\T ).

Next, by inclusion exclusion, for any set T ⊆ S,

ν(0T 1S\T ) =
∑

T ′ : T ′⊆T

(−1)|T ′|ν(1T
′∪(S\T )).

Combining the two earlier equations and then changing the order of summation, we
obtain

0 =
∑

T : T⊆S

(−1)|S|−|T | ∑
T ′ : T ′⊆T

(−1)|T ′|ν(1T
′∪(S\T ))

=
∑

T ′,T : T ′⊆T⊆S

(−1)|S|−(|T |−|T ′|)ν(1S\(T \T ′))

=
∑

S′ : S′⊆S

(−1)|S′|ν(1S
′
) · 2|S′| =

∑
S′ : S′⊆S

(−2)|S′|ν(1S
′
)
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which is the desired conclusion. ��
Lemma 4 Suppose that S ⊆ [n], |S| is even and that νp : {0, 1}n → R is differentiable
in p at p = 1/2. Suppose further that for all T ⊆ S and all p ∈ (1/2, 1), νp satisfies

νp(1
S0T \S) = ν1−p(1

T \S0S).

Then, ∑
T : T⊆S

(−2)|T |ν′
1/2(1

T ) = 0.

Proof (Proof of Lemma 4) Fix a set S ⊆ [n]with |S| even. Note that, using the assump-
tion on (νp), for any T ⊆ S, we have that

ν′
1/2(0

T 1S\T ) = lim
p→1/2

νp(0T 1S\T ) − ν1−p(0T 1S\T )

p − (1 − p)

= lim
p→1/2

ν1−p(1T 0S\T ) − νp(1T 0S\T )

p − (1 − p)
= −ν′

1/2(1
T 0S\T ).

(16)

Next, by the proof of the Lemma 3, we have that

2
∑

T : T⊆S

(−2)|T |ν′
1/2(1

T ) = 2
∑

T : T⊆S

(−1)|S|−|T |ν′
1/2(0

T 1S\T ).

By (16), this equals

∑
T : T⊆S

(−1)|S|−|T |[ν′
1/2(0

T 1S\T ) − ν′
1/2(0

S\T 1T )
]

=
∑

T : T⊆S

ν′
1/2(0

T 1S\T )
[
(−1)|S|−|T | − (−1)|S|−|S\T |].

Since |S| is even, |T | and |S\T | have the same parity, and hence, the desired conclusion
follows. ��

We now proceed to the proof of Theorem 4.

Proof (Proof of Theorem 4) Assume that (q(p)
σ )σ∈Bn is such that

∑
σ∈Bn

p‖σS‖q(p)
σ = νp(1

S), S ⊆ [n] (17)

holds. Note that for p close to 1/2, we have that

p‖σS‖ = 2−‖σS‖ + ‖σS‖2−‖σS‖+1(p − 1/2) + o(p − 1/2).
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Further, as νp is differentiable in p at 1/2, we have that

νp(1
S) = ν1/2(1

S) + ν′
1/2(1

S)(p − 1/2) + o(p − 1/2).

Using these expansions, we will now apply ϕ, as defined in Lemma 1, to both sides
of (17). To this end, we first introduce the following notation. Given σ ∈ Bn and
S ⊆ [n], write σS = {T1, T2, . . . , Tm}, where m = ‖σ‖, to denote that the partition
elements of σ when restricted to S are given by T1, T2, . . . , Tm ⊆ S. Using this
notation, for any fixed set S ⊆ [n] and σ ∈ Bn , we have that

∑
S′ : S′⊆S

(−2−1)|S|−|S′| · 2−‖σS′ ‖ =
∑

S1,...,Sm :
∀i∈[m] : Si⊆Ti

m∏
i=1

(−2−1)|Ti |−|Si |2−I (Si �=∅)

=
m∏
i=1

∑
Si : Si⊆Ti

(−2−1)|Ti |−|Si | · 2−I (Si �=∅) =
m∏
i=1

(1 + (−1)|Ti |) · (2−1)|Ti |+1

= 2−|S| I (σS has only even sized partition elements).

Similarly, we have that

∑
S′ : S′⊆S

(−2−1)|S|−|S′| · ‖σS′ ‖ 2−‖σS′ ‖+1

= 2 · (−2)−|S| ∑
S′ : S′⊆S

(−2)|S′| · ‖σS′ ‖ 2−‖σS′ ‖

= 2 · (−2)−|S| ∑
I : I⊆[m]

|I | 2−|I | ∏
i∈I

∑
Si : Si⊆Ti ,

Si �=∅

(−2)|Si |

= 2 · (−2)−|S| ∑
I : I⊆[m]

|I | 2−|I | ∏
i∈I

((1 + (−2))|Ti | − 1)

= 2 · (−2)−|S| ∑
I : I⊆[m]

|I | 2−|I | ∏
i∈I

(
I (|Ti | is odd) · (−2)

)
= 2 · (−2)−|S| ∑

I : I⊆[m]
|I | (−1)|I | I (|Ti | is odd for all i ∈ I )

= 2 · (−2)−|S| · I (σS has exactly one odd sized partition element) · 1 · (−1)1

= 2−|S|+1 · I (σS has exactly one odd sized partition element).

Noting that ϕ, as defined in Lemma 1, is linear, applying it to (17) and using the above
derivations, we hence obtain
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∑
σ∈Bn

(
2−|S| I (σS has only even sized partition elements)

+ 2−|S|+1 · I (σS has exactly one odd sized partition element)(p − 1/2)

+ o(p − 1/2)
)
q(p)
σ

=
∑

S′ : S′⊆S

(−2−1)|S|−|S′|(ν1/2(1
S′

) + ν′
1/2(1

S′
)(p − 1/2) + o(p − 1/2)

)
.

(18)

Using Lemmas 3 and 4, it follows that this is equivalent to that

∑
σ∈Bn

(
I (σS has only even sized partition elements) + o(p − 1/2)

)
q(p)
σ

=
∑

S′ : S′⊆S

(−2)|S′|ν1/2(1S
′
) + o(p − 1/2)), if |S| is even

and

∑
σ∈Bn

(
I (σS has exactly one odd sized partition element) + o(1)

)
q(p)
σ

=
∑

S′ : S′⊆S

(−2)|S′|−1ν′
1/2(1

S′
) + o(1), if |S| is odd.

Now, let (qσ )σ∈Bn be any subsequential limit, as p → 1/2, of formal solutions

(q(p)
σ )σ∈Bn to (17). Then, combining the previous two equations and letting p → 1/2,

we obtain

∑
σ∈Bn

I (σS has at most one odd sized partition element) qσ

=
{∑

S′ : S′⊆S(−2)|S′|ν1/2(1S
′
) if |S| is even∑

S′ : S′⊆S(−2)|S′|−1ν′
1/2(1

S′
) if |S| is odd.

By applyingϕ−1 as defined inLemma1,we obtain (6). For the other direction, note that
by Lemma 2, the matrix corresponding to the left-hand side in the previous equation
has rank 2n − n. By Theorem 2, this is also the rank of An,p when p /∈ {0, 1/2, 1},
and hence of the equivalent matrix given by the left-hand side of (18). By a standard
argument, it follows that (6) exactly describes the limiting solutions. This concludes
the proof.

We now provide the proof of Corollary 1.

Proof (Proof of Corollary 1) We first need to place ourselves into the context of The-
orem 4 which we do as follows. With J fixed, define a function h from (0, 1) to R

where h(p) is such that the one-dimensional marginal of νJ ,h(p) is p. It is easy to see
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that h(1/2) = 0 and that h is symmetric about 1/2. It also follows from well-known
inequalities that h is increasing, bijective and differentiable.We now let νp := νJ ,h(p).
Understanding what happens as h → 0 is the same as understanding what happens for
νp as p → 1/2. We need to look at the solutions of (6). Only symmetric solutions can
arise and we then, for a random partition, let, for i = 1, 2, 3, qi be the probability that
there are i partition elements. q1 and q3 each correspond to one configuration, while q2
corresponds to three. In (6), by symmetry, there are just four equations corresponding
to S having sizes zero, one, two and three. S having size zero and one both yield the
equation

q1 + q2 + q3 = 1.

The interesting equations are for |S| being two and three. It is easy to check that the
|S| = 2 equation yields

q1
2

+ q2
3

+ q3
4

= e3J + e−J

2e3J + 6e−J
.

For the |S| = 3 equation,wefirst need the right-hand side. By the chain rule, this equals
the derivative of the probability of having all 1’s with respect to h at h = 0 times h′(p)
at p = 1/2. For the latter, using the inverse instead, it is straightforward to compute

p′(h) at h = 0 to be 3e3J+e−J

2e3J+6e−J , and hence, h′(1/2) = 2e3J+6e−J

3e3J+e−J . For the derivative
of the probability of having all 1’s with respect to h for h = 0, a computation yields

this to be 3e3J

2e3J+6e−J , and hence, the right-hand side is
3e3J

3e3J+e−J . This easily yields the
final equation to be

q1 + q2 + 3q3
4

= 3e3J

3e3J + e−J
.

One checks that the 3×3 system has a unique solution, and hence, Theorem 4 implies
that limh→0 q J ,h exists. One can also check that this unique solution is strictly positive
implying that for fixed J and small h, νJ ,h is a color process. One finds q2 to be

12(e4J−1)
(3+e4J )(1+3e4J )

, while one easily checks that qRCM2 = 6e−2J (e2J−1)
3+e4J

. Since one can

check that for all J > 0, 12(e4J−1)
(3+e4J )(1+3e4J )

<
6e−2J (e2J−1)

3+e4J
, we obtain the claim.
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