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ABSTRACT

We study the linear and nonlinear thermovoltage of a quantum dot with effective attractive electron–electron interaction and weak, energy-
dependent tunnel coupling to electronic contacts. Remarkably, we find that the thermovoltage shows signatures of repulsive interaction,
which can be rationalized. These thermovoltage characteristics are robust against large potential and temperature differences well into the
nonlinear regime, which we expect can be demonstrated in current state-of-the-art experiments. Furthermore, under nonlinear operation, we
find extended regions of large power production at efficiencies on the order of the Curzon–Ahlborn bound interrupted only by a characteris-
tic sharp dip.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0008866

Recently, different types of devices with an effectively attractive
electron–electron interaction1 have been experimentally investigated2

and quantum dot structures with attractive onsite-interaction have
also been realized.3,4 In these quantum dots, signatures of pair tunnel-
ing5–7 induced by the attractive onsite interaction could be identified
in transport properties.

In the present letter, we predict surprising features in the thermo-
voltage of such quantum dots. We show that the linear-response
thermovoltage—the Seebeck coefficient—shows signatures at
quantum-dot level positions that are characteristic of Coulomb oscilla-
tions due to repulsive onsite interaction. We rationalize this fact and
show that it can be exploited in an analysis of how these features are
modified under various realistic experimental conditions. The dis-
cussed effects are highly relevant for the characterization of attractive
systems, which has only recently started.

Simultaneously, there has been significant progress in investigating
linear and nonlinear response thermoelectrics in quantum dot devices
(see Refs. 8–20 and references therein). These are of interest for on-chip
energy harvesting, and their Seebeck coefficient is a key parameter to
characterize them. Our analysis instead reveals the thermoelectric proper-
ties of systems with strong attractive electron–electron interaction. We
also explicitly address energy-dependent tunnel couplings between the
dot and the environment as energy filters in addition to the quantum-dot

levels. Efficient nanoscale thermoelectrics, in particular three-terminal
energy harvesters,10,21–24 crucially rely on this energy-dependent cou-
pling. In this Letter, we characterize the performance of such quantum
dots with attractive interaction as steady-state heat engines and find
extended regions of large power production and efficiency.

Finally, the thermoelectric response of repulsive quantum
dots16,19 has successfully been analyzed using a mapping based on a
fermionic duality relation,25 providing simple analytical formulas.
Here, this relation enables us to explain the thermoelectric response of
a quantum dot with attractive interaction in terms of the well under-
stood physics of a repulsive dot. This simple description can serve as a
guide for future experiments.

The quantum dot of interest is sketched in Fig. 1(a). It is modeled
as a single spin-degenerate level, with an attractive electron–electron
interaction. We assume the level spacing to be large compared to any
other energy scale relevant for transport, such as voltage bias and tem-
peratures; indeed, recent experimental realizations of quantum dots
with attractive interactions have been well explained in terms of such a
model.4 The isolated dot is then described by the Hamiltonian,

H ¼ ~eN � jU jN"N#; (1)

with ~e being the single-level energy, N ¼ N" þ N# the local particle-
number operator with spin-resolved components N" and N#, and
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jU j ¼ �U the interaction strength. The quantum dot is tunnel-
coupled to two electronic reservoirs, a ¼ L;R, with electrochemical
potentials lL ¼ l� V and lR ¼ l and temperatures TL ¼ T þ DT
and TR ¼ T . We assume the experimentally relevant case of weak tun-
nel rates CaðEÞ � Ta, implying that pair tunneling is enabled by ther-
mal excitations.4,26,27 We allow these rates to strongly depend on the
energy of the tunneling process. We set kB ¼ �h ¼ jej ¼ 1.

We analyze the full thermoelectric response of the quantum
dot using expressions obtained from a recently established, general
fermionic duality.16,19,25,28 This purely dissipative symmetry, applied to
a weak-coupling master-equation description, maps the transport
dynamics of fermionic open nonequilibrium systems to those of dual
systems with sign-inverted local energies, chemical potentials, and
energy dependencies of the tunnel couplings, replacing ½~e;�jUj; la;
CaðEÞ� ! ½�~e; jU j;�la;Cað�EÞ.] In the present case, the remark-
able duality enables us to predict nonequilibrium effects in the thermo-
electric response of the attractive dot of interest by relating them to the
properties of the quantum dot with equilibrium parameters and attrac-
tive interaction as well as to its dual model with repulsive interaction.29

The key quantities in this analysis are the equilibrium dot occupation
for attractive interaction,

nðe;�jU jÞ ¼ hNi ¼ 2f ðeÞ
1þ f ðeÞ � f ðe� jU jÞ ; (2)

with e ¼ ~e � l and f ðxÞ ¼ ½expðx=TÞ þ 1��1 the Fermi function, and
most importantly, the dual occupation,19

nd ¼ nð�e; jU jÞ ¼ 2 1� f ðeÞ½ �
1� f ðeÞ þ f ðe� jU jÞ ; (3)

to which the duality assigns a repulsive interaction jU j. Figure 1(c)
shows both n and nd as functions of e.

We start with the linear response of the thermovoltage, for small
V andDT , and the linear Seebeck coefficient S ¼ V=DTjI¼0 at vanish-
ing charge current I¼ 0 [see Eq. (10)] across the dot and first consider
energy-independent tunnel couplings CaðEÞ ! Ca. The explicit for-
mula for S has a remarkably simple form16 in terms of the dual dot
occupation (3),

S� T ¼ e� jUjð2� ndÞ=2: (4)

The consequences of the attractive interaction are shown in Fig. 1(b).
On the one hand, we find a linear e-dependence S� T � e� jUj=2
around the zero-crossing at e ¼ jU j=2. This is intuitively expected in
analogy to the well-known case of repulsive quantum dots:16,30–32 as

reflected by nðeÞ in Fig. 1(c), the attractive dot effectively acts as a
single resonance at e ¼ jUj=2. On the other hand, we find S� T
! e� jU j for e < 0 and S� T ! e for e > jU j. Here, the attractive
interaction does not anymore favor thermally excited pair transitions
over single-electron transitions. The resulting crossovers between all
three identified regimes lead to surprising kinks in the Seebeck coeffi-
cient SðeÞ [blue line in Fig. 1(b)]. These kinks are even better visible in
its derivative33 [green, dashed line in Fig. 1(b)], measurable using lock-
in techniques,

T � @S
@e
¼ 1þ dn2d �

jUj
2T

: (5)

Indeed, this derivative depends on the equilibrium charge fluctuations
dn2d ¼ hN2id � n2d after the duality mapping. This implies features
in SðeÞ at the Coulomb resonances e¼ 0 and e ¼ �U ¼ jU j of a
repulsive dot. The appearance of the dual occupation nd in Eq. (4) is
not expected from a brute-force “Fermi’s Golden rule” calculation and
defies common physical intuition. This is typical for insights offered
by fermionic duality.16,19,25

The mapping to a repulsive system via nd enables a further predic-
tion for experiments. The peaks in @S=@e are shifted by approximately
6T ln(2) away from the zero-temperature resonances e ¼ 0; jU j of a
repulsive dot. In the latter case, this shift is well understood as the
entropy of the singly occupied state due to the spin degeneracy.34–36 In
an attractive dot, single occupation is never a stable equilibrium state,
but remarkably, our dual picture reveals that its spin degeneracy, never-
theless, affects the Seebeck coefficient.

A relevant question is how energy-dependent couplings CaðEÞ
affect the thermovoltage. In experiments, the environment density of
states may sizably vary around the Fermi energy and, thereby, give rise
to such an energy dependency. Moreover, an appropriately tuned
energy dependence can be beneficial for efficient nanoscale energy
harvesting.10,17,21–23

We account for this by assuming arbitrary smoothly energy-
dependent rates Ca¼L;RðEÞ � T within the weak-coupling constraint.
Following Ref. 19, S is then determined by

S� T ¼ e� ð1þ KÞð2� ndÞ
ð1� KÞnd þ ð1þ KÞð2� ndÞ

jUj: (6)

This introduces the energy asymmetryK of the coupling,

K ¼ CULCURCe � CeLCeRCU

CULCURCe þ CeLCeRCU
; (7)

with CeL¼CLðeÞ;CeR¼CRðeÞ;CUL¼CLðe�jU jÞ;CUR¼CRðe�jU jÞ;
Ce¼CeLþCeR, and CU¼CULþCUR. The result for S in the presence
of energy-dependent tunnel coupling is shown in Fig. 2. Equation (6)
enables us to systematically isolate how energy-dependent couplings
CaðEÞ influence the linear thermovoltage for different level positions e at
fixed U¼�jU j and T.37,47–50 In Fig. 2, we identify—as one main quali-
tative effect of energetic coupling asymmetry—a shift of the zero-
crossing of S as a function of e away from e0¼jU j=2. This shift, which
we call De0, can be understood from Eq. (6). We exploit that well within
0<e< jUj and for jU j�T , repulsive Coulomb blockade induces a pla-
teau at nd�1 in the dual occupation. This simplifies Eq. (6) to

S� T ! e� 1þ Kð ÞjU j=2 for 0 < e < jU j; (8)

FIG. 1. (a) Sketch of a quantum dot with attractive interaction. (b) Seebeck coeffi-
cient S (blue solid) and its derivative (green dashed) and (c) equilibrium charge n
and its dual nd, as a function of dot level e ¼ ~e � l. We take T ¼ jUj=10 and
CL;R that are energy-independent.
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implying that an asymmetry K > 0 favors emission from a doubly
occupied dot at addition energy e� jU j and K < 0 favors absorption
into an empty dot at energy e. This offset of SðeÞ in Eq. (8) involves a
zero crossing e0 shifted away from jU j=2 by De0 ! jU j=2� K, pre-
dicting a pronounced effect for strong attractive interaction. The limit
De0 ! 6jUj=2 for K! 61 reflects that transport is reduced to a sin-
gle resonance at e¼ 0 or e ¼ jU j, annulling all two-electron features.

Next, Fig. 2(c) demonstrates how the peaks in @S=@e, and hence
the kinks in S visible in Fig. 1(b), change with energy-dependent cou-
plings. For K > 0, the peak in @S=@e around e¼ 0 shrinks with larger
jKj, whereas the peak in @S=@e around e ¼ jUj grows. At the same
time, the latter also moves substantially further away from reso-
nance—we refer to this shift from resonance as DeP. For K < 0, the
behavior is opposite with respect to the two peaks. In the single-
resonance limit jKj ! 1, the slope @S=@e� T ! 1 becomes constant
and both peaks disappear, as expected.

The change in the relative peak height follows from the offset of S
within 0 < e < jU j described in Eq. (8). For example, K > 0, the shift
to smaller S in this e-interval causes the step of SðeÞ around e¼ 0 to be
smaller than around e ¼ jU j, see Fig. 2(b). This leads to a smaller rela-
tive peak height in @S=@e.

The growing shift DeP of the higher peak for increasing jKj
stems from the fact that the coupling asymmetry K not only affects S
for 0 < e < jUj and large jU j=T as in Eq. (8) but, in general, also
influences where the crossover between the single-particle, linear limits
(SðeÞ � e and SðeÞ � e� jU j) and the two-particle limit (SðeÞ
� e� jU j=2) takes place [see Eq. (6)]. For both small jKj and large
jKj� 1, a useful analytical expression is [including the spin-
degeneracy shift Tln(2)]

DeP � T � sgn Kð Þ � ln 2=ð1� jKjÞ½ �: (9)

For example, K ¼ 0:8 yields DeP � 3:3Tln(2), which substantially
deviates from the wideband limit result, where the shift away from res-
onance is given by Tln(2). In this case, CU is large enough compared
to Ce, such that even for a considerable interval with e > 0 and
e� jU j > 0, the physics of pair tunneling prevails. Namely, a ther-
mally excited electron entering the dot at energy e causes transport of
further electrons at energy e� jU j before the dot is emptied again.

Next, we demonstrate how the Seebeck coefficient gets modified in
the nonlinear regime due to large DT and V. This is also relevant below
where we discuss the performance of the quantum dot as a thermoelec-
tric device. The nonlinear thermovoltage Snl ¼ V jI¼0=DT quantifies the
voltage V ¼ l� lL required to suppress a charge current I induced by
a large temperature difference DT ¼ TL � T across the junction.

We have previously shown16 the nonlinear current to take the
compact form,

I ¼ cLcR
cL þ cR

nL � nRð Þ; (10)

in the wideband limit ðCea ¼ CUa ¼ CaÞ. This depends on the differ-
ence between equilibrium occupations nR ¼ n and nL ¼ njl;T!lL;TL

and on the energy-level dependent charge relaxation rates38,39 cR=L
¼ CR=L½1þ fR=LðeÞ � fR=Lðe� jU jÞ�=2 > 0. Both the occupations
and relaxation rates can be understood as if the dot was coupled
only to the right or left lead; the symbols fRðxÞ ¼ f ðxÞ and fLðxÞ
¼ f ðxÞjl;T!lL;TL

denote the corresponding Fermi functions. Setting
I¼ 0 while keeping the potential lR ¼ l and temperature TR ¼ T
fixed, Eq. (10) yields the helpful analytical result for the thermovoltage,16

Snl�T¼e�jU j�TþDT
DT=T

� ln
1�ndþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�ndÞ2þexp �

jU jDT
TðTþDTÞ

� �
ndð2�ndÞ

s

2�nd

2
664

3
775
;

(11)

again expressed in terms of the dual occupation number nd.
Figure 3 shows Snl � T and its e-derivative40 as a function of level

position e and temperature difference DT > 0. As expected, the zero
crossing at the particle-hole symmetric point e ¼ jU j=2 persists.
Importantly, the counter intuitive features at e ¼ 0; jU j also continue
to exist. This is indeed suggested by Eq. (11), in which the e-depen-
dence enters entirely through the dual occupation nd determined by
repulsive interaction. Specifically, in Fig. 3(c), an increasing DT trans-
forms the steps at e ¼ 0; jU j between the three regimes of SnlðeÞ � T
with equal e-slopes into temperature-broadened transitions between
three regimes of different slopes. For e < 0 and e > jU j; SnlðeÞ � T
still grows with a slope of 1 as function of e, just as the Seebeck coeffi-
cient SðeÞ � T [see Fig. 1(b)]. This again reflects that transport is effec-
tively governed by single-particle physics (see above discussion on
energy-dependent couplings). For levels 0 < e < jU j at which two-
particle effects are relevant, a linear e-dependence of Snl � T with a
larger slope of�2 emerges, as can be qualitatively understood from an
analysis of the nonlinear charge current (10): a small T � jU j and a
large DT � jU j correspond to a sharp two-particle transition of
nR ¼ 2! 0, yet a smooth behavior of nL as a function of e around

FIG. 3. Nonlinear thermovoltage [(a) and (c)] and its derivative (b) as a function of
dot level e and temperature gradient DT=jUj. We take T ¼ jUj=10 and CL;CR
that are energy-independent.

FIG. 2. Seebeck coefficient [(a) and (b)] and its derivative at fixed K (c) as a func-
tion of dot level e and coupling-asymmetry K. We take energy-dependent
CLðEÞ;CRðEÞ, and T ¼ jUj=10.
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e ¼ jU j=2. Consequently, fulfilling nL ¼ nR to achieve I¼ 0 for fixed
e and l requires a relatively large shift of V ¼ l� lL. In particular,
the slope of 2 of SnlðeÞ � T ¼ VT

DT jI¼0 in the limit DT=T � 1 reflects
the sharp change of nR by 2 at e ¼ jU j=2 due to attractive interaction
[see Fig. 1(c)].

Finally, let us consider the power output of the dot. As is well-
known,41–44 a sharp spectral resonance of a conductor is beneficial for
its thermoelectric performance. Hence, quantum dots have been stud-
ied as thermoelectric elements operated in the nonlinear regime of large
temperature and voltage biases, both theoretically8,9,12,16 and experi-
mentally.11,20 We now show that also in the presence of strong attrac-
tive interaction, finite power output is possible at high efficiencies.

We study the power output P ¼ I � V with current I given by Eq.
(10) as well as the efficiency g ¼ P=J , where J is the heat current out of
the left (hot) reservoir. Analytical expressions for J are derived in Ref. 16
for a generic onsite interaction. In Fig. 4(a), we show P and g as a func-
tion of V for DT ¼ �jU j; CL ¼ CR ¼ C and for an e ¼ 1:23jU j in
the vicinity of the crossover between single- and two-particle regimes,
optimized for maximal power output. The power clearly behaves non-
monotonically with a peak at jVj � DT . Efficiency g increaseswith volt-
age and assumes about 0.6 times the Carnot efficiency gC ¼ 1� TR=TL

at maximum power. These efficiencies are sizable at finite power output,
as can clearly be seen in Fig. 4(b), where g and P are shown for several
temperature differences DT . These also show that efficiencies reach the
Carnot limit when power is suppressed at large voltages.45

Figures 4(c) and 4(d) show the power Pmax maximized over V at
otherwise fixed parameters and the efficiency gPmax

at Pmax. Extended
regions of e- and DT-values have sizable power Pmax � CT .
Interestingly, Fig. 4(c) shows that the maximum power is fully sup-
pressed only at e ¼ jU j=2. This can be understood by the fact that the

nonlinear thermovoltage Snl only disappears at this level position, as
shown above. However, in the whole two-particle regime,
0 < e < jU j, the power is small compared to the single-particle
regime, e < 0 and e > jU j. The reason is that the charge relaxation
rate cR entering the current, Eq. (10), is suppressed in this regime by
attractive Coulomb blockade.25 This leads to low power production.

Important for the performance of the attractive quantum dot as a
heat engine is our finding that the efficiency at maximum output power
is on the order of the Curzon–Ahlborn bound,46 gCA ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
TR=TL

p
,

in the whole range in which the output power is sizable. It even reaches
this bound close to the dual resonances, e ¼ 0; jU j, namely, the level
positions at which nd obtained from the dual mapping changes by 1. It
is also remarkable that for the finite power output, prominent features
appear at the resonances of the dual repulsive model.

To conclude, we have analyzed the thermoelectric response of a
weakly coupled, single-level quantum dot with attractive interaction
together with its performance as a steady-state heat engine. The presented
results are expected to be important for future experiments aiming to
characterize systems with strong attractive onsite interaction. At the same
time, they demonstrate that nanodevices based on quantum dots with
attractive interaction can also efficiently convert heat into work.

The most relevant qualitative features that we found are (i)
two stepped features in the Seebeck coefficient S instead of one,
unexpectedly located at the positions for resonances of a repulsive dot
(Fig. 1). (ii) Nonlinear Seebeck coefficient Snl is constant up to sizeable
thermal bias (Fig. 3). (iii) Sharp dip in the maximum power and effi-
ciency at the position expected for the attractive dot (Fig. 4). We antici-
pate these effects in state-of-the-art experiments as, e.g., in quantum
dots defined at an oxide interface4 where clear features of attractive
interaction have already been seen in voltage-driven charge transport
measurements. Here, applying a temperature bias would allow to ver-
ify our predictions, in particular, due to the available electrical control
over the level position. In contrast, nanostructures such as in Ref. 3
allow the magnitude and sign of the real interaction to be altered. This
would enable a direct comparison between attractive and real repulsive
quantum dots. Predictions for such a comparison are outlined in the
supplementary material. However, these setups would need to be
extended to allow for transport measurements.

The remarkable appearance of prominent features at level posi-
tions characteristic of a repulsive quantum dot was rationalized with a
dual mapping emerging from a dissipative symmetry for master equa-
tions. For attractive quantum dots, the role of this dual mapping is
particularly important: The dual features with respect to the original
attractive system do not appear at special positions, where, e.g.,
particle-hole symmetry imposes restrictions. Their prominent role
could hence not have been predicted straightforwardly in another way.

See the supplementary material for a comparison to a quantum
dot with real repulsive interaction.

We acknowledge financial support from the Knut and Alice
Wallenberg foundation and the Swedish VR (J.Sp., J.Sc.) and the
Danish National Research Foundation (J.Sc.).
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FIG. 4. (a) Power P and efficiency g as a function of the voltage bias V at the fixed
level position, e ¼ 1:23jUj; DT ¼ jUj; T ¼ jUj=10. (b) Efficiency vs power at the
fixed level position, e ¼ 1:23jUj for different temperature biases DT . (c) Power
Pmax maximized over V. (d) Efficiency gPmax at maximum power. In all panels, we
set CL ¼ CR ¼ C.
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