Power Allocation in HARQ-based Predictor Antenna Systems

Downloaded from: https://research.chalmers.se, 2020-10-17 06:18 UTC

Citation for the original published paper (version of record):
Power Allocation in HARQ-based Predictor Antenna Systems
IEEE Wireless Communications Letters
http://dx.doi.org/10.1109/LWC.2020.3010579

N.B. When citing this work, cite the original published paper.

©2020 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Power Allocation in HARQ-based Predictor Antenna Systems

Hao Guo, Student Member, IEEE, Behrooz Makki, Senior Member, IEEE, Mohamed-Slim Alouini, Fellow, IEEE, and Tommy Svensson, Senior Member, IEEE

Abstract—In this work, we study the performance of predictor antenna (PA) systems using hybrid automatic repeat request (HARQ). Here, the PA system is referred to as a system with two sets of antennas on the roof of a vehicle. In this setup, the PA positioned in the front of the vehicle can be used to predict the channel state information at the transmitter (CSIT) for the receive antenna (RA) that is aligned behind the PA. Considering spatial mismatch due to mobility, we derive closed-form expressions for the optimal power allocation and the minimum average power of PA systems under different outage probability constraints. The results are presented for different types of HARQ protocols and we study the effect of different parameters on the performance of PA systems. As we show, our proposed approximation scheme enables us to analyze PA systems with high accuracy. Moreover, for different vehicle speeds, we show that HARQ-based feedback can reduce the outage-limited power consumption of PA systems by orders of magnitude.

Index Terms—Channel state information, mobile relay, moving backhaul, outage probability, power allocation, predictor antenna.

I. INTRODUCTION

Vehicle communication is one of the important use cases in the fifth generation of wireless networks (5G) and beyond [1]. Here, the focus is to provide efficient and reliable connections to cars and public transports, e.g., buses and trains. Channel state information at the transmitter (CSIT), plays an important role in achieving these goals, as it enables advanced closed-loop transmission schemes such as link adaptation, multi-user scheduling, interference coordination and spatial multiplexing schemes. However, typical CSIT acquisition systems, which are mostly designed for (semi)static channels, may not work as well as the speed of the vehicle increases. This is because, depending on the vehicle speed, the position of the antennas may change quickly and the CSIT becomes inaccurate.

To overcome this issue, [2] proposes the concept of predictor antenna (PA). Here, a PA system is referred to as a setup with two (sets of) antennas on the roof of a vehicle. The PA positioned in the front of the vehicle can be used to improve the CSIT for data transmission to the receive antenna (RA) that is aligned behind the PA. The potential of such setups have been previously shown through experimental tests [2]–[4], and its performance has been analyzed in, e.g., [5]–[7].

One of the challenges of the PA setup is spatial mismatch that causes CSIT for the RA to be partially inaccurate. This occurs if the RA does not reach the same spatial point as the PA, due to, e.g., the delay for preparing the data is not equal to the time that is needed until the RA reaches the same point as the PA [3]. Moreover, the performance of typical PA setups could be further improved in case the PA could be used not only for channel prediction, but also for data transmission. We address these challenges by implementing hybrid automatic repeat request (HARQ) in PA systems as follows.

In this work, we analyze the outage-limited performance of PA systems using HARQ. With our proposed approach, the PA is used not only for improving the CSIT in the retransmissions to the RA, but also for data transmission in the initial round. In this way, as we show, the combination of PA and HARQ protocols makes it possible to improve the power-constrained outage probability, and adapt the transmission parameters to mitigate the effect of spatial mismatch.

The problem is cast in the form of minimizing the average transmission power subject to an outage probability constraint. Particularly, we develop approximation techniques to derive closed-form expressions for the instantaneous and average transmission power as well as the optimal power allocation minimizing the outage-limited power consumption. The results are presented for the cases with different repetition time diversity (RTD) and incremental redundancy (INR) HARQ protocols [8], [9]. Moreover, we study the effect of different parameters such as the antennas separation and the vehicle speed on the system performance.

As we show through analysis and simulations, the implementation of HARQ as well as power allocation can improve the outage-limited performance of PA systems by orders of magnitude, compared to the cases with no retransmission. For example, consider an outage probability constraint of 10^{-4}, initial rate $R = 2$ nats-per-channel-use (npcu) and a maximum of two transmission rounds. Then, compared to the cases with no retransmission, our proposed scheme can reduce the required signal-to-noise ratio (SNR) by 18 dB and 20 dB for the RTD and the INR schemes, respectively.

II. PROBLEM FORMULATION

Here, we first introduce the basics of PA systems which is followed by our proposed HARQ-based PA setup.

A. Standard PA System

Figure 1 illustrates the standard PA system. Here, the PA first receives pilots from the base station (BS) in time t. Then, the BS gets the BS-PA channel h_1 from the PA and sends the
data in time $t + \delta$ to the RA where δ depends on the processing time at the BS. At the same time, the vehicle moves forward d_m while the antenna separation between the PA and the RA is d_a. Then, considering downlink transmission in the BS-RA link, the signal received by the RA is

$$y = \sqrt{P}h_2x + z.$$

(1)

Here, P represents the transmit power, x is the input message with unit variance, and h_2 is the fading coefficient between the BS and the RA. Also, $z \sim \mathcal{CN}(0, 1)$ denotes the independent and identically distributed (IID) complex Gaussian noise added at the receiver.

We represent the probability density function (PDF) and cumulative density function (CDF) of a random variable A by $f_A(\cdot)$ and $F_A(\cdot)$, respectively. Due to spatial mismatch between the PA and the RA, assuming a semi-static propagation environment, i.e., assuming that the coherence time of the propagation environment is much larger than δ \footnote{This has been experimentally verified in, e.g., [4]}, h_2 and h_1 are correlated according to [5, Eq. 5]

$$h_2 = \sqrt{1 - \sigma^2}h_1 + \sigma q,$$

(2)

where $q \sim \mathcal{CN}(0, 1)$ which is independent of the known channel value $h_1 \sim \mathcal{CN}(0, 1)$, and σ is a function of the mismatching distance $d = |d_a - d_m|$ [5, Eq. 4]. Defining $g_1 = |h_1|^2$ and $g_2 = |h_2|^2$, the CDF $F_{g_2|g_1}$ is given by

$$F_{g_2|g_1}(x) = 1 - Q_1 \left(\sqrt{\frac{2g_1(1 - \sigma^2)}{\sigma^2}}, \sqrt{\frac{2x}{\sigma^2}} \right),$$

(3)

where $Q_1(s, \rho) = \int_s^\infty xe^{-\frac{x^2 + \rho^2}{\rho^2}}I_0(xs)dx$, $s, \rho \geq 0$, is the first-order Marcum Q-function. Also, $\Gamma(z) = \int_0^\infty x^{z-1}e^{-x}dx$ represents the Gamma function. In this way, although parameter adaptation is performed based on perfect CSIT of h_1 at time t, the spatial mismatch may lead to unsuccessful decoding by the RA at $t + \delta$.

B. Proposed HARQ-based PA System

Along with the spatial mismatch problem, in the typical PA systems the PA is used only for channel estimation. On the other hand, because the PA system includes the PA-BS feedback link, in a frequency-division duplex (FDD) setup HARQ can be supported by the PA structure. For this reason, we propose a setup as follows.

Here, as seen in Fig. 2, with no CSIT, at t_1 the BS sends pilots as well as the encoded data with certain initial rate R and power P_1 to the PA. At t_2, the PA estimates the channel h_1 from the received pilots. At the same time, the PA tries to decode the signal. If the message is correctly decoded, i.e., $R \leq \log(1 + g_1P_1)$, an acknowledgment (ACK) is fed back to the BS at t_3, and the data transmission stops. Otherwise, the PA sends both a negative acknowledgment (NACK) and high accuracy quantized CSI feedback about h_1. The number of quantization bits are large enough such that we can assume the BS to have perfect CSIT of h_1 (see [6] for the effect of imperfect CSIT on the performance of PA systems). With NACK, in the second transmission round at time t_4, the BS transmits the message to the RA with power P_2 which is a function of the instantaneous channel quality g_1. The outage occurs if the RA cannot decode the message at the end of the second round.

III. Analytical Results

Let ϵ be the outage probability constraint. Here, we present the results for the cases with RTD and INR HARQ protocols. With an RTD protocol, the same signal (with possibly different power) is sent in each retransmission round, and the receiver performs maximum ratio combining of all received copies of the signal. With INR, on the other hand, new redundancy bits are sent in the retransmissions, and the receiver decodes the message by combining all received signals [8], [9].

Considering Rayleigh fading conditions, as the worst-case scenario, we have $f_{g_1}(x) = e^{-x}$, and the outage probability at the end of Round 1 is given by

$$\Pr(\text{Outage, Round 1}) = \Pr \{ R \leq \log(1 + g_1P_1) \} = \Pr \left\{ g_1 \leq \frac{e^\theta - 1}{P_1} \right\} = 1 - e^{-\frac{\theta}{P_1}},$$

(4)

where $\theta = e^R - 1$. Then, using the results of, e.g., [8, Eq. 7, 18] on the outage probability of the RTD- and INR-based HARQ protocols, the power allocation problem for the proposed HARQ-based PA system can be stated as

$$\min_{P_1, P_2} E_{g_1} \{ P_{\text{tot}} \mid g_1 \}$$

s.t. $P_1, P_2 > 0$,

$$P_{\text{tot}} \mid g_1 = \left[P_1 + P_2(g_1) \right] \times \mathcal{I} \left\{ g_1 \leq \frac{\theta}{P_1} \right\},$$

with

$$F_{g_2|g_1} \left(\frac{\theta - g_1P_1}{P_2(g_1)} \right) = \epsilon, \quad \text{for RTD} \tag{6}$$

$$F_{g_2|g_1} \left(\frac{e^{R - \log(1 + g_1P_1) - 1}}{P_2(g_1)} \right) = \epsilon, \quad \text{for INR.} \tag{7}$$

Here, $P_{\text{tot}} \mid g_1$ is the total instantaneous transmission power for two transmission rounds (i.e., one retransmission) with given
and we define \(\tilde{P} \equiv \mathbb{E}_{g_1}[P_{\text{tot}}|g_1] \) as the expected power, averaged over \(g_1 \). Moreover, \(\mathcal{I}(x) = 1 \) if \(x > 0 \) and \(\mathcal{I}(x) = 0 \) if \(x \leq 0 \). Also, \(\mathbb{E}_{g_1}[\cdot] \) represents the expectation operator over \(g_1 \). Here, we ignore the peak power constraint and assume that the BS is capable of transmitting sufficiently high power. Finally, (5)-(7) come from the fact that, with our proposed scheme, \(P_1 \) is fixed and optimized with no CSIT at the BS and based on average system performance. On the other hand, \(P_2 \) is adapted continuously based on the predicted CSIT.

Using (5), the required power in Round 2 is given by

\[
P_2(g_1) = \frac{\theta - g_1P_1}{F_{g_2|g_1}^{-1}(\epsilon)},
\]

for the RTD, and

\[
P_2(g_1) = \frac{e^{R \log(1 + g_1P_1)} - 1}{F_{g_2|g_1}^{-1}(\epsilon)},
\]

for the INR, where \(F_{g_2|g_1}^{-1}(\cdot) \) is the inverse of the CDF given in (3). Note that, \(F_{g_2|g_1}^{-1}(\cdot) \) is a complex function of \(g_1 \) and, consequently, it is not possible to express \(P_2 \) in closed-form. For this reason, one can use [10, Eq. 2, 7]

\[
Q_1(s, \rho) \approx \mathcal{E}(-e^{R(s)}\rho^{\sqrt{r(s)}}),
\]

\[
\mathcal{I}(s) = -0.840 + 0.327 s - 0.740 s^2 + 0.083 s^3 - 0.004 s^4,
\]

\[
\mathcal{J}(s) = 2.174 - 0.592 s + 0.593 s^2 - 0.092 s^3 + 0.065 s^4,
\]

for the INR, where

\[
\Omega(g_1) = \frac{2}{\sigma^2} \left(\frac{\log(1 - \epsilon)}{\sqrt{2(1 - \epsilon^2)/\sigma^2}} \right).
\]

In this way, (8) and (9) can be approximated as

\[
P_2(g_1) = \Omega(\theta - g_1P_1),
\]

for the RTD, and

\[
P_2(g_1) = \Omega \left(e^{R \log(1 + g_1P_1)} - 1 \right),
\]

for the INR, where

\[
\Omega(g_1) = \mathcal{E}(-e^{R(s)}\rho^{\sqrt{r(s)}}).
\]

Now, let us initially concentrate on the RTD protocol. Combining (5) and (8), the expected total transmission power is given by

\[
\hat{P}_{\text{RTD}} = P_1 + \int_0^{\theta/P_1} e^{-x} P_2 \, dx = P_1 + \int_0^{\theta/P_1} e^{-x} \frac{\theta - xP_1}{F_{g_2|g_1}^{-1}(\epsilon)} \, dx.
\]

Then, Theorem 1 derives the minimum required power in Round 1 and the average total power consumption as follows.

Theorem 1. With RTD and outage constraint \(\epsilon \), the minimum required power in Round 1 and the average total power are, respectively, given by

\[
\hat{P}_{1,\text{RTD}} = \frac{-m\theta}{W_{-1}(\frac{m\theta}{W_{-1}(\frac{m\theta}{W_{-1}(\cdot)+1)}+1)}},
\]

\[
\hat{P}_{\text{RTD}} = \hat{P}_{1,\text{RTD}} + \frac{c}{m^2} \left(\frac{\hat{P}_{1,\text{RTD}}}{m\theta} - \hat{P}_{1,\text{RTD}} + m\theta \right),
\]

where \(m = 1 + \frac{1 - \sigma^2}{\sigma^2} \) and \(c = \frac{1}{\sigma^2 \log(1 - \epsilon)} \), and \(W_{-1}(\cdot) \) is the Lambert W function with the -1 branch [11, Eq. 16].

Proof. Plugging (3) into (6), we have

\[
1 - Q_1 \left(\frac{2g_1(1 - \sigma^2)}{\sigma^2}, \frac{2(\theta - g_1P_1)}{\sigma^2 P_2} \right) = \epsilon.
\]

By using the approximation [12, Eq. 17] for moderate/large \(\sigma \), i.e., if \(1 - Q_1(s, \rho) = 1 - \epsilon \), then \(\rho = Q_1^{-1}(s, 1 - \epsilon) \approx \sqrt{-2\log(1 - \epsilon)e^{x^2}} \), we can obtain

\[
\sqrt{\frac{2(\theta - g_1P_1)}{\sigma^2 P_2}} \approx \sqrt{-2\log(1 - \epsilon)e^{x^2}}
\]

In this way, \(P_2 \) in (14) is approximated by

\[
P_2 \approx (\theta - g_1P_1) e^{-\frac{g_1(1 - \sigma^2)}{\sigma^2}}
\]

and considering RTD, (14) can be rewritten as

\[
\hat{P} = P_1 + \int_0^{\theta/P_1} e^{-x}(\theta - xP_1) - \frac{e^{-x(1 - \sigma^2)}}{-\sigma^2 \log(1 - \epsilon)} \, dx
\]

\[
\overset{(a)}{=} P_1 + \frac{c}{m^2} \left(P_1 e^{\frac{m\theta}{P_1}} - P_1 + m\theta \right),
\]

where, in (a) we set \(m = 1 + \frac{1 - \sigma^2}{\sigma^2} \) and \(c = \frac{1}{\sigma^2 \log(1 - \epsilon)} \) for simplicity. Then, setting the derivative of (19) with respect to \(P_1 \) equal to zero, the minimum \(P_1 \) for the minimum total power can be found as

\[
\hat{P}_{1,\text{RTD}} = \arg_{P_1 > 0} \left\{ 1 + \frac{c}{m^2} e^{-\frac{m\theta}{P_1}} \left(\frac{m\theta}{P_1} + 1 \right) - \frac{c}{m^2} = 0 \right\}
\]

\[
= \arg_{P_1 > 0} \left\{ e^{-\frac{m\theta}{P_1}} \left(\frac{m\theta}{P_1} + 1 \right) = 1 - \frac{m^2}{c} \right\}
\]

\[
\overset{(b)}{=} \frac{-m\theta}{W_{-1}(\frac{m^2}{c} - \frac{1}{c}) + 1}.
\]

Here, (b) is obtained by the definition of the Lambert W function [11, Eq. 16]. Then, plugging (20) into (19), we obtain the minimum total transmission power as given in (15). ■

A. On the Effect of CSIT Feedback/Power Allocation

In this part, we consider the case without exploiting CSIT, i.e., we consider the typical HARQ schemes where CSIT feedback is not sent along with NACK, and we do not perform power adaptation. Here, the outage probability, for the RTD and the INR are given by

\[
\zeta_{\text{RTD}} = \Pr \left\{ \log \left(1 + (g_1 + g_2) \right) < R \& g_1 < \frac{\theta}{P} \right\},
\]

\[
\zeta_{\text{INR}} = \Pr \left\{ \log \left(1 + (g_1 + g_2) \right) < R \& g_1 < \frac{\theta}{P} \right\},
\]

\[
\zeta_{\text{RTD}} = \Pr \left\{ \log \left(1 + (g_1 + g_2) \right) < R \& g_1 < \frac{\theta}{P} \right\},
\]

\[
\zeta_{\text{INR}} = \Pr \left\{ \log \left(1 + (g_1 + g_2) \right) < R \& g_1 < \frac{\theta}{P} \right\},
\]

\[
\zeta_{\text{RTD}} = \Pr \left\{ \log \left(1 + (g_1 + g_2) \right) < R \& g_1 < \frac{\theta}{P} \right\},
\]

\[
\zeta_{\text{INR}} = \Pr \left\{ \log \left(1 + (g_1 + g_2) \right) < R \& g_1 < \frac{\theta}{P} \right\},
\]

\[
\zeta_{\text{RTD}} = \Pr \left\{ \log \left(1 + (g_1 + g_2) \right) < R \& g_1 < \frac{\theta}{P} \right\},
\]

\[
\zeta_{\text{INR}} = \Pr \left\{ \log \left(1 + (g_1 + g_2) \right) < R \& g_1 < \frac{\theta}{P} \right\},
\]

\[
\zeta_{\text{RTD}} = \Pr \left\{ \log \left(1 + (g_1 + g_2) \right) < R \& g_1 < \frac{\theta}{P} \right\},
\]

\[
\zeta_{\text{INR}} = \Pr \left\{ \log \left(1 + (g_1 + g_2) \right) < R \& g_1 < \frac{\theta}{P} \right\},
\]
\(\zeta_{\text{INR}} = \text{Pr}\left\{ \log (1 + g_1 P) + \log (1 + g_2 P) < R \& g_1 < \frac{\theta}{P} \right\}. \) \hfill (22)

Note that as opposed to (5)-(7), where the transmit power in Round 2 is set instantaneously such that, for every given \(g_1 \), the instantaneous outage probability constraint is satisfied, (21) and (22) are based on the average outage probability, i.e., a less constrained condition. Also, in both protocols, the total average power is given by

\[
P = P + P \cdot \text{Pr}\{\log (1 + g_1 P) < R\} = P(2 - e^{-\theta/P}). \quad (23)
\]

Theorem 2. Without CSIT feedback/power allocation, the outage probability of the RTD-based PA-HARQ scheme is given by (26).

Proof. Using (21), we have

\[
\zeta_{\text{RTD}} = \text{Pr}\left\{ g_2 < \frac{\theta}{P} - g_1 \& g_1 < \frac{\theta}{P} \right\}
= \int_0^{\frac{\theta}{P}} e^{-x} F_{g_2|x}\left(\frac{\theta}{P} - x\right) \, dx. \quad (24)
\]

Considering (3), there is no closed-form solution for (24). For this reason, we use the approximation [13, Eq. 14]

\[
Q_1(s, \rho) \simeq 1 - \left(1 + \frac{s^2}{2} \right) e^{-\theta/P} + \left(1 + \frac{s^2}{2} + \frac{s^2 \rho^2}{4} \right) e^{-\frac{\theta^2 + \rho^2}{2}},
\]

which simplifies (24) to

\[
\zeta_{\text{RTD}} \simeq -\frac{e^{-\frac{\theta^2}{2 \rho^2}}}{\theta^4} \left(6\theta^8 - 12\theta^6\right) e^{\frac{\theta^2}{2 \rho^2}} + 12\theta^6 + (3\theta^2 - 3\theta^4) \frac{\theta^2}{P^2} + (12\theta^4 - 6\theta^6) \frac{\theta}{P} + (1 - \theta^2) \frac{\theta^3}{P^3} - 6\theta^8.
\]

\hfill (26)

B. On the Effect of Introducing INR

For the INR scheme, by using Jensen’s inequality and the concavity of the logarithm function [14, Eq. 30]

\[
\frac{1}{n} \sum_{i=1}^{n} \log(1 + x_i) \leq \log\left(1 + \frac{1}{n} \sum_{i=1}^{n} x_i\right),
\]

the closed-form expressions for the minimum required power, the average total power, as well as outage probability without power allocation are given by the following Corollary.

Corollary 1. With INR, the minimum required power in Round 1 and the average total power are given by (28) and (29), respectively. Also, without power allocation, the outage probability of the INR-based scheme is given by (31).

Proof. Using (7), the Jensen’s inequality (27) and defining \(\theta_1 = 2\left(e^{\frac{\theta}{P}} - 1\right), \) (9) can be approximated by \(P_2(g_1) \simeq \frac{\theta_1 - g_1 P_1}{F_{g_2|g_1}(g)}, \) and, following the same steps as in Theorem 1, we obtain the minimum required \(P_1 \) for the minimum total power in the INR scheme as

\[
\hat{P}_{1,\text{INR}} = \frac{-n\theta_1}{\frac{m^2}{\epsilon e} - 1} + 1.
\]

\hfill (28)

Finally, (22) can be further derived by

\[
\zeta_{\text{INR}} = \text{Pr}\left\{ g_2 < \frac{e^{-R - \log(1 + g_1)} - 1}{P} \& g_1 < \frac{\theta}{P} \right\}
\]

\[
\simeq \int_0^{\frac{\theta}{P}} e^{-x} F_{g_2|x}\left(\frac{\theta}{P} - x\right) \, dx,
\]

\hfill (30)

with (c) using Jensen’s inequality. Following the same steps as in Theorem 2, the outage probability is found as

\[
\zeta_{\text{INR}} \simeq \zeta_{\text{RTD}}(\theta_1). \quad (31)
\]

Then, as a benchmark, we consider the case with no retransmission where the outage probability is given by \(1 - e^{-\frac{\theta}{P}}. \) In this case, the required outage-constrained power without retransmission is given by \(P \geq \frac{1}{\log(1 + \frac{\theta}{P})}. \)

Finally, note that, for simplicity of analysis, we have presented the results for the cases with the perfect CSIT of the BS-PA link. This is motivated by the fact that, compared to direct transmission, relatively short feedback signals are required to provide the transmitter with fairly accurate quantized CSIT. Then, as we have shown in [6, Section III.C] the effect of imperfect CSIT can be well modeled as an extra additive Gaussian noise in (2), and we can follow the same procedure to analyze the system performance with imperfect CSIT.

IV. Simulation Results

In the simulations, we set \(\delta = 5 \text{ ms}, f_c = 2.68 \text{ GHz}, \) and \(d_s = 1.5 \lambda. \) For simplicity, we have ignored the path loss. However, it is straightforward to extend the results to the cases with path loss which will affect the power terms in the figures correspondingly. Each point in the figures is obtained by averaging the system performance over \(10^5 \) channel realizations.

Figure 3 shows the results of the power allocation problem (5) for both the RTD and the INR with different initial rates \(R = 0.5, 2 \text{ ncpu}, \sigma = 0.8, \) and different outage probability constraints \(\epsilon. \) Here, the simulation results are obtained by solving the optimization problem (5) numerically, while the approximation results for the RTD and the INR are obtained from Theorem 1 and Corollary 1, respectively. In Fig. 4, we plot the outage probability using the RTD and the INR without power optimization. Here, we set \(\sigma = 0.8, \) and the initial rate
retransmission. For instance, with $\epsilon = 10^{-4}$ and $R = 2$ npcu, the RTD- and INR-based PA-HARQ can reduce the required power, compared to no retransmission case, by 18 and 20 dB, respectively. Then, as can be seen from Fig. 5, the effect of power-optimized PA-HARQ increases with σ. This is because the larger σ provides better spatial diversity of the channel, which can improve the performance with retransmissions. For the peaks in Fig. 5, the channel for the retransmission has the largest correlation with the one in the first round, which leads to the smallest power gain. Moreover, when the antenna separation d_a decreases, the speed where the power gain is minimum, also decreases, due to the reduction of the mismatch distance d.

V. CONCLUSION

We studied PA-HARQ systems with the spatial mismatch problem, in the context of outage-constrained power allocation. We derived closed-form expressions for the minimum instantaneous and total transmit power. The approximations are tight for a broad range of system configurations. Also, the results show that, while PA-assisted adaptive power adaptation leads to considerable performance improvements, the total transmission power and the outage probability are remarkably affected by the spatial mismatch.

REFERENCES