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Quantum many-body theory has witnessed tremendous progress in various fields, ranging from atomic and
solid-state physics to quantum chemistry and nuclear structure. Due to the inherent computational burden linked
to the ab initio treatment of microscopic fermionic systems, it is desirable to obtain accurate results through
low-order perturbation theory. In atomic nuclei, however, effects such as strong short-range repulsion between
nucleons can spoil the convergence of the expansion and make the reliability of perturbation theory unclear.
Mathematicians have devised an extensive machinery to overcome the problem of divergent expansions by
making use of so-called resummation methods. In large-scale many-body applications, such schemes are often
of limited use since no a priori analytical knowledge of the expansion is available. We present here eigenvector
continuation as an alternative resummation tool that is both efficient and reliable because it is based on robust
and simple mathematical principles.

DOI: 10.1103/PhysRevC.101.041302

Introduction. The quantum-mechanical treatment of many
interacting particles from first principles poses a formidable
formal and computational challenge. At the heart of the ab
initio philosophy is the capacity to control the error induced
by many-body approximations used to solve the stationary
Schrödinger equation. Light systems, e.g., atomic nuclei with
small mass number A, can be accurately described by large-
scale diagonalization approaches, such as configuration inter-
action (CI) [1–3] or by imaginary-time propagation methods
via Quantum Monte Carlo techniques [4–6]. However, the
exponential growth of the Hilbert-space dimension with in-
creasing A constitutes an ordeal for many-body practitioners
interested in systems containing tens or hundreds of particles.
In this Rapid Communication, we present a novel approach to
the many-body problem that uses the method of eigenvector
continuation to accelerate the convergence of calculations us-
ing many-body perturbation theory. As we show, the method
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can produce accurate results even in cases where standard
approaches fail to converge.

Expansion methods are a powerful tool for ab initio
calculations. The exact eigenstate of the Hamiltonian H is
systematically expanded around a simple, yet appropriately
chosen, A-body reference state. Truncating the expansion
to a given order translates into a polynomial scaling with
system size, making the calculation possible for up to 100
fermions [7]. Most commonly used approaches of this kind
are many-body perturbation theory (MBPT) [8–18], coupled-
cluster (CC) theory [19–22], self-consistent Green’s-function
(SCGF) theory [23–27] and the in-medium similarity renor-
malization group [28–34]. Although they have been used with
great success in various fields of many-body research for a
long time, the (re-)import into nuclear physics of CC [35]
and SCGF [36] from quantum chemistry about 15 years ago
played a decisive role to reestablish ab initio nuclear many-
body theory as a viable route to study nuclei with more than
ten nucleons. Due to the strong short-range repulsion that is
a feature of many, although not all, representations of nuclear
forces, it is only much more recently that MBPT has been
reconsidered as a viable option [8,12–18].

In fact, there are two characteristics of the two-nucleon
interaction making the many-body problem hard to solve,
i.e., a priori nonperturbative [8,37–39]. The first one relates
to strong high-momentum correlations induced by the short-
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range repulsive interactions noted above. Fortunately, this
problem can be tamed via the use of renormalization-group
transformations. The second issue stems from the large scat-
tering lengths corresponding with resonant scattering in the
S-wave channels, which can produce strong many-body cor-
relations. Although Pauli-blocking and effective-range effects
ameliorate this problem to some extent, one of the motivations
of approaches, such as Bogoliubov many-body perturbation
theory (BMBPT), is that the use of symmetry-breaking refer-
ence states allows one to include more long-range correlations
into the reference state, which can help to tame this problem
further in nuclei.

Although we have reduced some of the problems of strong
correlations, we may find that the perturbative expansion is
still not convergent and requires using resummation tools.
However, since the analytical properties of the many-body
expansion are usually unknown, conventional resummation
methods often cannot be applied with confidence. Therefore,
an alternative framework that does not require such knowl-
edge is highly desirable. In this Rapid Communication, we
present eigenvector continuation (EC) as a technique that
allows to achieve this goal. Two numerical applications dedi-
cated to the closed- and open-shell nuclei 3H and 18O, respec-
tively, are provided to illustrate the power of the method.

Eigenvector continuation. Recently, the EC technique was
introduced [40,41] to treat physical systems the Hamiltonian
of which is a particular instance, e.g., H ≡ H (1) of an opera-
tor H (c) depending smoothly on a parameter c. The power of
EC relies on

(1) the fact that there exists a regime 0 � c � ce < 1 for
which the many-body problem is easier to solve than
for the target value c = 1,

(2) the stability of the eigenvectors of H (c) against varia-
tions of c, i.e., the targeted many-body state remains in
a low-dimensional manifold of the full A-body Hilbert
space when changing c from [0, ce] to 1.

Based on these principles and targeting a particular eigen-
state of H , e.g., the nuclear ground state, EC works in two
successive steps,

(1) a low-dimensional manifold of NEC auxiliary states
{|�(ci )〉; i = 1, . . . , NEC} is obtained by solving, to
the best of one’s capacity, the A-body Schrödinger
equation associated with H (ci ), ci ∈ [0, ce],

(2) the physical Hamiltonian H (1) is diagonalized
within the low-dimensional manifold obtained in step
1. The auxiliary states being nonorthogonal, solv-
ing the secular equation requires the computation of
two NEC × NEC matrices, i.e., the Hamiltonian kernel
Hi j ≡ 〈�(ci )|H (1)|�(c j )〉 and the norm kernel Ni j ≡
〈�(ci )|�(c j )〉.

In practice, it is typically advantageous to first diagonalize
the norm matrix and eliminate eigenvectors associated with its
very small eigenvalues that arise when choosing the ci from a
narrow range.

Perturbation theory. The EC method is, in principle, ag-
nostic with respect to the particular computational method

used to generate the NEC auxiliary states {|�(ci)〉}. In prac-
tice, the performance of EC does, of course, depend on the
ability to describe the ground state of H (ci ) with sufficient
accuracy. In this Rapid Communication, the low-dimensional
EC manifold is built from perturbative corrections on top
of a well-chosen reference state. Although the perturbative
expansion is, in general, not suited to reach directly H (1),
EC can be understood as effectively performing a sequence
of analytic continuations and is, thus, able to go beyond the
radius of convergence of the perturbative expansion whereas
using the same inputs. It has been observed empirically that
EC even works in cases where the radius of convergence of
perturbation theory is zero and we use a variational subspace
spanned by derivatives of the eigenvector at zero coupling
[42]. The only requirement is that the dependence of H (c)
on c is sufficiently smooth.

The procedure starts from the partitioning of the Hamilto-
nian according to H ≡ H0 + H1 such that the reference state
is the ground state of the unperturbed Hamiltonian,

H0|�(0)〉 = E (0)|�(0)〉. (1)

The eigenstates of H0 obtained through elementary, e.g.,
particle-hole, excitations of |�(0)〉 provide an orthonormal
basis of the many-body Hilbert space. Scaling the residual
interaction H1 by a parameter c to introduce the parameter-
dependent Hamiltonian H (c) ≡ H0 + c H1, perturbation the-
ory (PT) generically parametrizes the exact ground state of
the latter via an infinite power series,

|�(c)〉 ≡
∞∑

p=0

cp|�(p)〉 (2)

characterized by an (unknown) radius of convergence c ∈
[0, Rc]. In Eq. (2), |�(p)〉, p � 1 denotes the perturbative state
correction of order p, which is independent of c and typically
given as a specific linear combination of the eigenstates
of H0 [43].

Choosing 0 � ci � ce � Rc, i = 1, . . . , NEC and working
at PT order P, the approximate low-dimensional manifold can
be related to the reference state and the first P state corrections
via the transformation,

⎛
⎜⎜⎜⎜⎝

|�P(c1)〉
|�P(c2)〉

...

|�P(cNEC )〉

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

1 c1 c2
1 · · · cP

1

1 c2 c2
2 · · · cP

2

...
...

...
. . .

...

1 cNEC c2
NEC

· · · cP
NEC

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

|�(0)〉
|�(1)〉

...

|�(P)〉

⎞
⎟⎟⎟⎟⎟⎠

,

such that the EC eigenvalue problem is equivalently formu-
lated within the manifold {|�(p)〉; p = 1, . . . , P}. Eventually,
the actual values {ci; i = 1, . . . , NEC} do not matter, and
the dimensionality of the manifold is effectively set by the
perturbative order P. One, thus, needs to compute the (P +
1)(P + 1) matrices,

Hpq ≡ 〈�(p)|H |�(q)〉, (3a)

Npq ≡ 〈�(p)|�(q)〉, (3b)
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FIG. 1. Ground-state energy of 3H for MBPT (blue circles), MBPT-based EC (red squares), and MBPT-based Padé (yellow diamonds)
as a function of the perturbative order P against exact CI diagonalization (full line). Left panels: unevolved Hamiltonian. Right panels:
λ = 2.0 fm−1. Top panels: absolute energies. Bottom panels: error relative to the CI result. The insets display the successive perturbative
contributions on the logarithmic scale.

and solve the secular equation,

HX = ENX, (4)

where the diagonal matrix E gathers P + 1 eigenenergies, the
lowest of which relates to the ground state.1 Eventually, the
procedure reduces to calculating PT state corrections at a cho-
sen order P, computing the (P + 1) × (P + 1) Hamiltonian
and norm matrices as well as solving the associated secular
equation. Last but not least, the eigenvectors can further be
used to compute other observables of interest.

While the present Rapid Communication provides proof-
of-concept results up to high order P, future work will target
fully realistic calculations at low orders, e.g., P = 3, that
are currently within reach of state-of-the-art numerical codes
implemented in large model spaces.

Applications. We now consider the MBPT-based EC
scheme applied to two situations of increasing complexity
with the goal of illustrating the difficulties posed by the
two sources of nonperturbative behavior mentioned at the

1Although the ground state is targeted, Eq. (4) actually delivers
P + 1 vectors and energies. It will be interesting to investigate
to what extent the excited states within the EC subspace can be
associated with states in the spectrum of H carrying the same
quantum numbers as the ground state. In fact, the excited states of
a Hermitian operator in the EC subspace are variational with respect
to the corresponding large-space spectrum [44].

outset. In both cases, the calculations are performed up to
high perturbative orders based on a recursive scheme, and
the interaction employed is the EM500 interaction [45] with
three-nucleon forces omitted for simplicity. Furthermore, a
similarity renormalization group (SRG) transformation char-
acterized by a continuous flow parameter λ is applied to soften
the nuclear Hamiltonian [46].

The first application is dedicated to the very light nucleus
3H. The exact result and the recursive scheme to perform
MBPT are based on a CI code built within the harmonic-
oscillator Jacobi-coordinate no-core shell-model formalism
[47]. The large three-body Hilbert (sub)space employed in-
cludes configurations up to Nmax = 12 excitations above
the harmonic-oscillator Slater-determinant reference state. In
Fig. 1, the ground-state energy is displayed as a function of the
MBPT order P for the unevolved EM500 interactions and for
the SRG-evolved potential with λ = 2.0 fm−1. Results from
the CI diagonalization are compared to MBPT as well as to
EC and (diagonal and superdiagonal) Padé resummations built
on top of it [48].

When employing a “hard” interaction displaying large low-
to-high momentum coupling (left panels), the perturbative
series exhibits a divergent behavior. Using EC on top of it
yields a rapid and monotonic convergence towards the exact
CI result. The EC and Padé results are very similar. The effect
of “softening” the short-range behavior of the interaction
via the SRG transformation is seen in the right panels: The
perturbation series oscillates much more mildly and seems to
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converge towards the CI limit, although it, in fact, diverges
at even higher orders. Even in this case, EC improves upon
MBPT by exhibiting a monotonic and rapid convergence
providing, at each order, a variational upper bound to the
CI result. Again, EC and Padé results are very similar. At
P = 4, their deviation from the CI result is already below
5%. The same behavior is found for 4He and for various SRG
parameters.

Eigenvector continuation based on the first few MBPT
orders manages to reveal the exact result even for the un-
evolved Hamiltonian where the series displays a divergence of
ultraviolet character. It must be noted that, although the above
calculations have been performed using a reference Slater
determinant built from the spherical harmonic-oscillator one-
body basis, the divergence of the MBPT series can actually
be overcome by starting from an optimized (e.g., Hartree-
Fock) mean-field reference state [13]. In open-shell nuclei,
the infrared divergence associated with the emergence of
nuclear superfluidity and/or deformation requires an even
more drastic optimization of the reference state, i.e., of H0.
This can be achieved by using symmetry-breaking references
states, e.g., using a Bogoliubov extension of MBPT as we will
discuss in the following.

Neither EC nor any other resummation technique is useful
when the reference state is degenerate with respect to ele-
mentary excitations since this prevents the construction of
the first few perturbative orders. A powerful way to resolve
the issue is to allow H0 and |�(0)〉 to break symmetries of
H . For example, nuclear superfluidity can be handled at the
price of breaking U (1) symmetry associated with the con-
servation of particle number. In this case, the reference state
becomes a Bogoliubov vacuum that already captures (most
of) the so-called static correlations originally responsible for
the infrared divergence. Building perturbation theory on top
of such a reference state led recently to the introduction of
BMBPT [49]. In BMBPT, the average particle number must
be monitored and adjusted to the targeted value A at each
perturbative order. Thus, BMBPT qualifies as a perturbation
theory under constraint [50]. Recent large-scale second- and
third-order BMBPT calculations of midmass open-shell nu-
clei demonstrated the merits of the method and provided
ground-state energies in agreement with the most sophisti-
cated nonperturbative many-body schemes on a few percents
level at a small fraction of the computational cost [16].

The second application is, thus, dedicated to the open-shell
nucleus 18O and employs the soft interaction characterized
by the SRG parameter λ = 2.0 fm−1. Compared to 3H, the
CI result and the recursive scheme to perform BMBPT re-
quire a more drastic limitation of the model space. First,
a one-body harmonic-oscillator basis utilized in the present
application is severely truncated2 at emax = 2n + l = 4. A
symmetry-broken Hartree-Fock-Bogoliubov (HFB) reference
state is obtained in that model space by solving the variational
mean-field HFB equations [51]. Subsequently, the many-body
basis of H0 used to expand perturbative state corrections is

2A converged ab initio calculation with respect to the size of the
one-body basis would typically require emax = 2n + l = 13 [16].

FIG. 2. Ground-state energy of 18O for BMBPT (blue circles),
BMBPT-based EC (red squares), and BMBPT-based Padé (yellow
diamonds) as a function of the perturbative order P against exact
CI diagonalization (full line) for λ = 2.0 fm−1. Top panel: absolute
energies. Bottom panel: relative error to the CI result.

limited to configurations obtained via two-, four-, and selected
[52] six-quasiparticle excitations of the reference state.3 The
latter truncation leads to performing approximate BMBPT
calculations at order P � 3 where basis states associated
with eight quasiparticles and beyond do contribute to state
corrections. The CI result acting as a benchmark is obtained
in the same configuration basis.

Figure 2 displays the ground-state energy of 18O as a
function of the perturbative order P. Results are shown for
BMBPT as well as for BMBPT-based (diagonal) Padé resum-
mation and EC. One first observes that variationally optimiz-
ing the U (1)-breaking Bogoliubov reference state does not
prevent the perturbative series to diverge. Indeed, best coping
with the most dramatic, i.e., infrared, divergence is achieved
at the price of inducing an ultraviolet one [50] that was not
present in 3He for λ = 2.0 fm−1. Still, the tremendous benefit
of the approach is to make low MBPT orders meaningful
in open-shell nuclei such that they actually provide a decent
account of the exact result. Performing a parametric Padé
resummation slightly reduces the oscillations for intermediate
orders, but the resummed expansion still diverges. Only with
EC, a rapid and monotonically converging series towards the
CI result is obtained.

3This corresponds to limiting the configuration space to one-
particle and one-hole, two-particle and two-hole, and selected three-
particle and three-hole excitations when using a simpler Slater deter-
minant reference state.
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As a matter of fact, EC based on a low-order BMBPT
calculation provides an accurate upper bound of the CI
result with a subpercent error for P � 1. The method,
thus, constitutes a very promising tool for fully realis-
tic4 calculations where low-order BMBPT can be applied
at moderate computational cost. One must, of course, be-
ware that, by continuing approximate eigenvectors |�P(c)〉
obtained at small values of c, EC can, at best, account
for the CI result at c = 1 within the eigensubspace of
H0 covered by the approximate eigenvectors. Realistic
BMBPT(2) calculations probe, at most, zero-, two, four-,
and (selected) six- (and, in principle, eight-) quasiparticle
excitations. Thus, the corresponding EC result can capture
nonperturbative correlations associated with up to six-quasi-
particle (three-particle and three-hole) excitations, which is
superior to what available state-of-the-art nonperturbative
methods can deliver today for midmass (open-shell) nuclei.

Conclusions and outlook. In this Rapid Communication,
a novel nonparametric resummation method was applied to
perturbative expansions appropriate to closed- and open-shell
nuclei. Calculations were based on a realistic nuclear two-
body interaction derived from chiral effective field theory.
Although the perturbative expansion is divergent in most
cases, EC provides a robust framework to obtain a rapidly
converging resummed sequence.

In particular, EC elegantly overcomes divergences arising
from possible strong high-momentum couplings in nuclear
interactions and/or induced by the interference between them
and strong infrared correlations as long as the perturbation
theory exploits a symmetry-breaking reference state. Bench-
mark calculations reveal that EC based on low-order pertur-
bation theory is vastly superior to parametric resummation
schemes, such as Padé approximants that are widespread
among many-body practitioners. Consequently, EC provides
an efficient and accurate tool to improve many-body expan-
sions independently of the origin of the Hamiltonian, thus,

4In addition to being converged with respect to the harmonic-
oscillator one-body basis, realistic calculations refer here to results
performed with three-nucleon forces.

being very promising for various fields of many-body physics
and chemistry.

While the results presented in this Rapid Communica-
tion are of proof-of-principle character, EC will soon be
applied to fully realistic ab initio large-scale calculations of
midmass closed- and open-shell nuclei. This will be per-
formed on top of low-order perturbative calculations per-
formed in a large single-particle basis set and starting from
realistic two- and three-nucleon interactions. Since the EC
method yields a variational upper bound for binding ener-
gies, it also provides a first step towards the quantification
of many-body uncertainties from nonvariational many-body
techniques. Notably, EC also gives access to other ground-
state observables [41] and low-lying excitations at the same
time. Furthermore, the method can be applied to infinite
nuclear matter calculations.

Although the present Rapid Communication implements
EC on top of perturbation theory, it can be similarly applied on
top of more sophisticated nonperturbative expansion methods,
such as coupled cluster theory [53]. It will be interesting to
see if a further optimization of the solution can be obtained
in this way. Be it initially through perturbation theory or
perturbatively corrected coupled cluster, the fully nonpertur-
bative treatment of three-particle and three-hole excitations in
midmass (and eventually heavy-mass) nuclei via EC will be
superior to presently available implementations of many-body
expansion methods.
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