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Abstract

How do star clusters form? We care, since these are the birth sites of most stars, perhaps including
our own Sun. There are a great variety of different theoretical models of cluster formation and our
main goal in this thesis is to examine the implications of these for the dynamical evolution of a
cluster’s stellar population, including the ejected stars. In contrast to the majority of previous cluster
formation studies, the focus of this work is on detailed modeling, using the Nbody6 code, of stellar
dynamics, including binaries, with the structure, kinematics and star formation of the natal gas cloud
explored with simple analytic prescriptions. In particular, we adopt the Turbulent Clump Model of
pressure-truncated singular polytropic spheres, which sets global and local initial conditions of the
newly formed stars. In a first paper, exploring a fiducial 3,000 solar mass clump, we investigated the
effects of overall clump density, global star formation efficiency, degree of primordial mass segregation,
degree of primordial binarity and binary population properties on the dynamical evolution of the
cluster. Here, like most previous works, we assumed stars are formed very quickly, i.e., approximated
as instantaneously, compared to the free-fall time of the clump. In our next work, after implementing a
major code development to Nbody6 that allows modeling of gradual formation of stars, we investigated
how the timescale of cluster formation, parameterized via the star formation efficiency per free-fall
time, εff , affects its early dynamical evolution. This is the first time that such a study, including a
realistic binary population, has been carried out. We showed that star clusters that form rapidly,
e.g., with εff = 1, expand more quickly after they emerge from the gas, while slowly-formed clusters,
e.g., with εff < 0.03, evolve into a much more stable configuration during the gas rich phase. We also
showed how the stellar population is affected by the timescale of formation, including the frequency
of runaway/walkaway stars, stellar age gradients and primordial binary processing. We have then
carried out preliminary explorations of a broad range of star-forming clump parameters, i.e., with
masses from 300 to 30,000 solar masses and background cloud mass surface densities from 0.1 to
1 g cm−2. For the largest clusters simulated, we make use of a GPU-enabled version of the code.
Further improvements to the modeling that have been implemented include global elongation of the
clump so that nonspherical, including very filamentary, initial conditions can be studied. Models with
internal spatial and kinematic substructure for the birth locations of the stars, based on hydrodynamic
simulations of supersonic turbulence, have also been studied. In parallel, we have also carried out
two projects that focus on observed systems related to dynamical ejections within the Orion Nebula
Cluster (ONC). First, we examined a particular set of runaway stars associated with the Orion
KL massive star forming region and carried out a systematic exploration of N-body simulations to
understand the properties of the dynamical ejection that produced them. Second, we have performed
a census of runaway stars from the ONC using Gaia data, estimating the total unbound population
from the cluster. We have compared these results with our cluster formation simulations leading to
new constraints on the star formation rate and dynamical age of the system.
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Part I

Introductory Chapters





Chapter1

Introduction

A major question in Astrophysics is how and where star formation happens. Many aspects of
star formation are still under active debate, and the reason of such long debate is the complexity
of the process. Star formation involves a wide range of scales and the interaction of multiple
physical mechanisms. However, some agreement exists that the majority of stars appear to
form in “clusters” instead of in isolation (e.g. Bressert et al. 2010; Gutermuth et al. 2009; Lada
& Lada 2003). Therefore, to understand star formation it is necessary to understand how star
clusters form.

There is a long standing debate on whether star cluster formation is a short process that
happens in about one single cloud collapse timescale, i.e., a “free-fall timescale” (Elmegreen
2000; Elmegreen 2007; Hartmann & Burkert 2007), or if it takes place over a longer duration
with clouds evolving in a quasi-equilibrium state (Nakamura & Li 2007; Tan 2006). Star cluster
formation, like individual star formation, is the result of a complex interaction of numerous
physical processes inside molecular clouds. Star-forming regions are massive, self-gravitating
systems, supported by a combination of magnetic fields and turbulent motions. Thermal
pressure is not important on these scales, as gas in molecular clouds is able to cool to about
10 K. Formation of stars involves gas infall, accretion via disks, and jets and winds launched
from these disks that enhance and support turbulence (Nakamura & Li 2007; Nakamura &
Li 2014), i.e., part of the process of “feedback”. Other forms of feedback, include when newly
formed stars irradiate energy into their environments (e.g. Dale et al. 2015), launch stellar winds
and ultimately when the most massive stars explode as supernovae injecting large amounts of
energy into the clouds, potentially dispersing residual gas within the cluster.

It is extremely challenging to conduct a numerical simulation that accounts for all the
physics involved during star cluster formation and with the necessary resolution to follow
these processes accurately. Thus it can be useful and insightful to address the problem from
different angles. Since the main ingredient during the transition from a molecular cloud to
a star cluster is the dynamics of the gas, many studies have been focused on reproducing
the outcome of star formation from hydrodynamical and magneto-hydrodynamical (MHD)
simulations (e.g. Bate 2009; Dale et al. 2015; Gavagnin et al. 2017; Girichidis et al. 2012; Wu
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4 1.1. Basic concepts

et al. 2017). However, these kind of studies are very expensive computationally and only few
simulations can be done per study. Furthermore, these simulations are still limited in their
spatial resolution and typically cannot accurately follow the close orbits and interactions of
stars, e.g., in typical binary systems with separations of less than 100 AU. Furthermore, star
formation in typical clusters involves sparse sampling of the stellar initial mass function (IMF),
especially at its upper end. It is thus a stochastic problem, which can only be addressed by an
statistical approach involving analysis of many simulation realizations, which is not possible
from expensive hydrodynamical simulations.

In this thesis we aim to address this problem by a statistical study of the dynamics of
stars during the formation of star clusters. In order to achieve this, we accurately follow the
dynamics of the stars, given simple assumptions, approximations and parameterizations for
the individual star formation and the global cluster formation processes. We are then able
to explore by numerical experiments the influence of these assumptions, approximations and
parameterizations for the dynamical evolution of the clusters and their general properties,
including for stars that escape from the clusters.

Here in Chapter 1 we introduce basic concepts of stellar dynamics that will be discussed
during this thesis. In Chapter 2 we overview the physics involved in the evolution of star
clusters. In Chapter 3 we describe the numerical codes used in this work and in Chapter 4 we
introduce the appended papers that discuss our results.

1.1 Basic concepts

1.1.1 The virial theorem

The virial theorem applied to gas free stellar clusters, states that a system is in virial equilibrium
if:

T∗ = −1
2

N∑
i=1

Fi · ri (1.1)

= −1
2Ωtot (1.2)

where T∗ is the kinetic energy of all stars in the cluster, Fi is the force felt by the ith particle
by the other N − 1 particles, ri is the position of the ith star and Ωtot is the total potential
energy of the cluster (Aarseth 2003). However, not all systems are in virial equilibrium and it
is useful to characterize a system by its relation to the virial theorem.

Virial ratio, Q, is the ratio defined by the kinetic and total potential energies of the cluster,
i.e.:

Q = − T∗
Ωtot

. (1.3)

Depending on this value, we call a system with: Q < 0.5, a cold system, i.e., a highly bound
system with low velocity particles; Q = 0.5, a system in virial equilibrium; 0.5 < Q < 1, a hot
system with high velocity particles; and Q > 1, an unbound system where a significant fraction
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of particles have velocities higher than the escape velocity1.

Virial radius, rvir, is characteristic length unit commonly used in numerical simulations
(Aarseth 2003; Heggie & Hut 2003). It is defined in terms of the potential energy of an isolated
system by:

rvir = −GM
2
∗

2Ω∗
(1.4)

where M∗ and Ω∗ are the system mass and potential energy of the system.

1.1.2 Dynamical timescales
One of the most debated features of star cluster formation is the timescale on which it happens,
and this particular issue is the most important parameter we wish to constrain. The relevant
timescales regarding star cluster formation and stellar dynamics are:

Free-fall time, tff , is a commonly adopted timescale used in star formation simulations. The
free-fall time defines the time it would take to a cloud of mass M and radius R to collapse
under it own weight if no other forces support it against gravity. It only depends on the volume
density of the cloud (ρ) and can be calculated to be:

tff =
√

3π
32Gρ (1.5)

for a uniform density sphere.
Crossing time, tcross, is a typical timescale used in stellar dynamics denoting the timescale
needed for a typical particle to cross the system, i.e., tcross = 2R/v where R is the radius of
the system and v is the typical speed of a star in the system. The value of v will depend on
the dynamical state of the system, i.e., a hot system will have higher v than a cold system.
The crossing time is generally used as a characteristic timescale, often used as the time against
which to compare some other dynamical process.

A typical velocity of a stellar system is the velocity dispersion (σ) of the particles. Assuming
virial equilibrium, we can define the crossing time as (see Aarseth 2003):

tcross ≈ 2rv

σ
(1.6)

In virial equilibrium we can estimate the value of σ by σ2 ≈ GM/2rvir where G is Newton’s
gravitational constant and M is the total mass of the cluster. Thus the crossing time can be
estimated as (Aarseth 2003; Heggie & Hut 2003):

tcross ≈ 2
√

2r3
vir

GM
(1.7)

1Note that this does not mean that the whole stellar system is completely unbound. In fact it can be shown
that a system with Q = 1 that follows a Maxwell-Boltzmann velocity distribution would have ∼65% of their
particles bound (see Farias & Tan 2018) and figure 2.3.
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This last equation is particularly useful in numerical simulations since a typical N-body code
uses units such that G = 1, M = 1 and rvir = 1 and thus tcross = 2

√
2.

Relaxation time, trelax, is the timescale on which a typical star in the system will lose any
memory of its initial energy and angular momentum through interactions with other stars. It
can also be defined as the typical timescale that a system needs to reach dynamical equilibrium
or to come back to equilibrium after being disturbed. A useful approximation of this timescale
is derived in Binney & Tremaine (2008) as:

trelax ≈
0.1N
lnN × tcross. (1.8)

This relation only depends on the number of particles in the system, and it is very important
to understand the difference between a collisional and collisionless regime.

For galaxies with N ≈ 1011 stars with an age of approximately 10 Gyr and a few hundred
crossing times old, the relaxation time-scale for the whole system is much longer than the age
of the Universe, and it is possible to neglect the contribution from close encounters, i.e., these
are collisionless systems.

On the other hand a globular cluster (GC) with N ≈ 105 members and a relaxation time of
trelax ≈ 100 Myr, close encounters may be important over the lifetime of the cluster of ∼ 10 Gyr
and we can not ignore close encounters, i.e., these are collisional systems.

In general a system is called collisional when its lifetime or the time range that we are
interested in is much greater than trelax, and collisionless when the time-scale of interest is
much smaller than trelax. In this thesis we focus on highly collisional systems, so we need to
follow their evolution accordingly.

1.2 The stellar population
Initial mass function (IMF), is the distribution function of individual masses of stars at
birth during a given star formation event. Introduced by Salpeter (1955). A common form of
this function is:

ξ(m) = dN

dm
∝ m−α, (1.9)

where m is the mass of a star and N the number of stars with masses in the range m+ dm.
Salpeter (1955) derived a slope of α = 2.35 for stellar masses in the range 0.4− 10 M�, however
it has been found that this value overestimates the number of low mass stars, where this slope
has been found to be shallower, and many variations have been proposed over the years (e.g.
Chabrier 2003; Kroupa et al. 1990; Miller & Scalo 1979). In these works, it has been shown
that the IMF slope varies in different mass ranges. Kroupa et al. (2001) has proposed a three
part power law, usually referred to as the canonical IMF, equivalent to equation 1.9 with the
slopes:

α =


0.3 , 0.01 ≤ m/M� < 0.08,
1.3 , 0.08 ≤ m/M� < 0.5,
2.3 ,m/M� ≥ 0.5

(1.10)
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This form of the IMF is adopted in this thesis to sample the initial stellar masses in our star
cluster simulations.

Stellar binaries are pairs of stars orbiting each other. Stellar binaries are very important
for stellar dynamics as they can store large amounts of energy in their orbits, and they can
exchange this energy with nearby stars. The nature of the interchange of energy will depend
on the relation between their internal binding energy and their environment. The internal
mechanical energy of a binary is given by:

Ebin = −Gm1m2

2a , (1.11)

where m1 and m2 are the masses of the components and a is the semi-major axis of their
orbit. If a binary is located in an environment where the mean stellar mass is m̄ and the
velocity dispersion is σ, then we call the binary hard if |Ebin| � m̄σ2, soft if |Ebin| � m̄σ2 and
intermediate if |Ebin| ∼ m̄σ2.

Their interaction with their environment is given by the Heggie-Hills law: hard binaries get
harder, and soft binaries get softer with time (Heggie 1975; Hills 1975). What this means is that
a hard binary will decrease (on average) its internal energy on each interaction. For instance,
if a single star approaches, the perturber star will absorb kinetic energy from the binary and it
will leave the interaction with a higher velocity than it approached. The opposite happens to
soft binaries that gain internal energy as they interact, eventually becoming positive and the
binary is dissolved. An approaching perturber will give kinetic energy to the binary and so, it
will leave the interaction with a smaller velocity. There is no rule for intermediate stars, and
only numerical simulations can determine their individual behaviour in a given environment.

In general, energy exchanged for hardening a binary is much bigger than when a binary
is softened (or disrupted). Therefore, in star clusters, binaries behave like sources of energy
that can prevent the collapse of the internal, central, dense “core” regions of star clusters, thus
keeping their central densities relatively flat (see, e.g., Chatterjee et al. 2013).
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Chapter2

The Birth and Death of Star Clusters

While it is generally agreed that the majority of stars form in clusters instead of in an isolated,
dispersed manner (e.g. Bressert et al. 2010; Gutermuth et al. 2009; Lada & Lada 2003), there
is no general consensus for how this comes about. It is also agreed from the above studies
that most young clusters dissolve into the Galactic field population fairly quickly, or, more
accurately, most of their stars become unbound from the cluster, leaving behind a much smaller
remnant bound central core.

In this thesis we are addressing the question of how the physics of star formation affects
the dynamical evolution of young star clusters during their formation, as well as in their later
evolution. While we are focused on stellar dynamics, the evolution of star clusters involves a
set of physical process that rise and fall in relevance during the cluster’s life. In this chapter
we overview the life cycle of a star cluster and the physics involved at each stage. We discuss
the relevant metrics that are outcomes of star formation, which have potential consequences
for the long term evolution of star clusters.

2.1 Molecular clouds
Most star clusters form from the densest parts of Giant Molecular Clouds (GMCs) (McKee &
Ostriker 2007), which are defined to have masses > 104 M�. They are also observed to have
mass surface densities Σ ∼ 0.01 g cm−2 (see Figure 2.1). Star clusters are formed within ∼ 1
to 10 parsec structures, termed star-forming clumps. Within clumps, star-forming cores host
the formation of individual stars or small multiple systems, such as binaries.

Overall, most GMCs appear to be gravitationally bound (McKee & Ostriker 2007; Tan
et al. 2012). This is likely to be true for star-forming clumps also, including those traced as
Infrared Dark Clouds (Kainulainen & Tan 2012). The stability of clumps is a competition
between gravity and several internal pressures such as thermal, magnetic, as well as turbulent
stochastic motions. However, the relative importance of magnetic fields and turbulence is still
a matter of intense debate, in part because of the difficulty of accurately measuring magnetic

9
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Figure 2.1: Physical proper-
ties of star forming clouds and
young star clusters in the Milky
Way and nearby galaxies (from
Tan et al. 2014)

field strengths in molecular clouds (see, e.g., Li et al. 2014a; Pillai et al. 2015). Cores within
clumps need to become dense enough to become gravitationally unstable and undergo star
formation. However, when gas is adiabatically compressed thermal pressure increases stopping
the collapse. It is necessary that gas is also able to cool down. This is possible due to the fact
that molecular clouds contain several efficient cooling mechanisms, including dust and different
molecular species, especially CO, that are able to emit energy in the form of radiation. The
amount of energy radiated will depend on the internal chemical structure of the gas, but in
general the equilibrium between cooling and external pressures causes local overdensities to
become dense in approximate isothermal equilibrium. Only when the gas reaches very high
densities, at number densities of n(H2) > 1010 cm−3 (Mac-Low et al. 2004), does it become
opaque to cooling radiation so that it starts behaving adiabatically. At this point, thermal
pressure starts to support the core against gravity and formation of a “first hydrostatic core”
as the first stage of star formation takes place.

2.2 Star cluster formation
As soon as a protostar forms it is also acting gravitationally with surrounding sources. It is
in this stage that stellar dynamics starts to become important and the outcome of individual
star formation affects the early evolution of the embedded star cluster. Star-forming cores can
fragment and form binaries or small systems. Binaries are extremely important as they can
store large amounts of energy in their orbits. They can either absorb or release energy into
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Figure 2.2: An example of fragmentation on a magneto-hydrodynamical simulation of the collapse of a
turbulent magnetized cloud (from Hennebelle et al. 2011).

the environment depending on if they are hard or soft binaries (Heggie 1975; Hills 1975) (see
Section 1.2). Observations shows that a large fraction of stars in the field are binary systems
(Duquennoy & Mayor 1991; Fischer & Marcy 1992). However, the dynamical formation of
binaries by capture is very inefficient, and the majority of observed binaries must have been
formed initially as binaries (Goodman & Hut 1993; Goodwin 2010), i.e., as “primordial binaries”
formed from a core. Binaries and small systems are formed through core fragmentation
(Goodwin et al. 2006). Fragmentation happens in several modes, e.g., disk fragmentation and
turbulent fragmentation, and depends on several factors such as the equation of state of the
gas, the strength of magnetic fields, the amount of angular momentum, etc. The general idea is
that as a core collapses it increases its rotation velocity by conservation of angular momentum
and instabilities within the core cause it to fragment. However, magnetic fields can efficiently
transport angular momentum (Li et al. 2014b), so the question of rotational evolution and
disk formation is still debated.

An important outcome of star formation is the initial mass function of stars (IMF). The IMF
has been shown to be quite invariant on a variety of environments, and its actual universality
under debate (see Bastian et al. 2010). Stars of different masses can interact with other stars
causing some of them to leave the cluster at high speeds, e.g. two stars can form a binary
system and the excess of energy is lost ejecting a third star. This effect would be suppressed
for instance, if all stars had the same mass (see Pfalzner & Kaczmarek 2013).

Dynamical ejections can be particularly important during the early phases of star cluster
formation and evolution. Star clusters are generally at their densest in these stages. Other
factors are important for the relative numbers and energy of ejected stars, such as multiplicity
and mass segregation (Oh & Kroupa 2016). Both of these are potentially dependent on the
star formation process, i.e., can have “primordial” values. However both can also be modified
during the evolution of the cluster.

In the case of mass segregation, it has been argued that massive stars need higher densities
and gas rich environments to form, and therefore should be born in the central areas of molecular
clumps (Bonnell et al. 2001). However mass segregation can also develop dynamically, since
more massive stars are more affected by dynamical friction than low-mass stars, so that they
decay to the center of star clusters naturally. In fact, it has been shown that mass segregation
timescales are quite short, and distinguishing between primordial or developed mass segregation
is a very difficult task. While some efforts have been made to distinguish between primordial
or developed mass segregation (e.g. Baumgardt et al. 2008; Moeckel & Bonnell 2009; Parker
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et al. 2014) unfortunately most of these studies assumed that all stars are formed instantly
and thus ignore the crucial star cluster formation stage.

It is also uncertain what are the primordial properties of binaries, as well as their initial
fractions. If wide binaries are formed, then they are likely to be destroyed during the dense,
early phase. However they can also form dynamically during the later expansion of the
cluster(e.g. Kouwenhoven et al. 2010), in the stage discussed in the next section. Most of what
we know about binary populations comes from observations of binaries in the field, i.e., when
any dynamical processing is finished.

After stars are formed, they can be kept in a dense state by the background gas that is
still present. Star formation is a highly inefficient process and only 20% to 50% of the initial
gas is observed to be transformed into stars, at least in local young clusters in the Milky
Way (Lada & Lada 2003). It is uncertain how long the residual gas stays within star cluster
boundaries. However, while it is present it can be an important contribution to the potential
well of the star cluster, and thus keep stars in a dense environment with high velocity dispersions.

When the first massive stars are born they can dissipate the surrounding gas via radiation
pressures, ionization and strong stellar winds. Gas will start to dissipate and ultimately, the
first supernovae explosion may remove any remaining gas from the cluster.

2.3 Surviving gas expulsion
After the gas is gone, the evolution of the star cluster is only determined by the gravitational
interaction of its members, together with stellar evolution processes, which include some gas
removal from stars, e.g., by winds. However, the transition from an embedded star cluster
to naked bound entity is thought to be a violent process that might disperse most of young
star clusters. The low global star formation efficiencies imply that the gas not used by star
formation will be the main component of the potential well that keep the cluster bound. The
violent removal of the gas results in most of the stars suddenly having higher velocities than
the escape velocity and therefore are unbound to the system. In the classical picture of this
scenario, the only way for star clusters to remain bound is having relatively high SFE (> 20%)
or removing the gas on timescales much greater than their crossing time (Baumgardt & Kroupa
2007).

However, recent studies have shown that this transition may not be as destructive as
originally thought. Many of the assumptions on star cluster formation that these classical
models use are far from reality, and in fact these assumptions have a great influence on the
survival and early evolution of star clusters.

Star clusters are likely to be out of equilibrium at formation, e.g., either sub- or super-virial.
Then, they need time to reach equilibrium and relevant global parameters oscillate during
several crossing times. The result is that survival rate, if gas expulsion is explosive, will depend
on how these parameters end up when gas is expelled. The two relevant parameters are the
stellar to gas mass fraction in the central regions of the cluster, e.g. within the half mass radius,
and the stellar virial ratio, both measured when gas expulsion beings.

The central stellar fraction may also be an outcome of star cluster formation. Star formation
may happen faster in denser parts of the star forming clump where the free-fall time is shorter
(Parmentier & Pfalzner 2013). Furthermore, stars do not form in spherical distributions. Star
forming clumps usually show filamentary structures on several scales. It has been shown that
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just by the introduction of substructure in numerical simulations, there is an increase in the
central stellar fraction considerably via merging of substructures (Farias et al. 2015; Smith
et al. 2011, 2013).

Most importantly, it has been shown that the stellar virial ratio at the time of final gas
expulsion is the only necessary parameter to estimate the minimum amount of mass that a
star cluster will retain (Lee & Goodwin 2016), even in the most complex stellar and gaseous
distributions (Farias & Tan 2018), as can be seen in Figure 2.3.

2.4 Gas-free evolution
Even if a star cluster survives gas expulsion, the process will likely expand it considerably. It
is important that the cluster remain dense after gas expulsion so its internal binding energy
is large. If it is not dense enough it could be easily destroyed by tidal forces from nearby
molecular clouds and/or from the host galaxy.

In the best scenario, if the star cluster remains dense after emerging from its parent clump,
internal dynamical processing may also expand the cluster. Star clusters are collisional systems,
which means that close encounters between stars determine the internal evolution and structure
of the entity. Strong dynamical interactions between stars, especially multiples, typically
end up in one or more stars being ejected with high velocities. High densities enhance these
interactions in energy and frequency, therefore they are most likely to happen in the center
of the cluster. These ejections remove binding energy from the cluster in the form of kinetic
energy of the ejected stars and therefore the cluster expands. The timescale at which a star
cluster evaporates completely is ∼ 100trelax ≈ (10N/logN)tcross (Binney & Tremaine 2008). For
a small star cluster of 100 members, this means 1000tcross which is in general a relatively long
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timescale, especially compared to expected formation timescales.
At this stage, the most massive stars have already exploded as supernovae – and may have

been the ones that removed any residual gas from the cluster – but at later stages, the mass
loss from other intermediate- and lower-mass stars starts to play a role in the evolution of the
star cluster. Stellar evolution becomes a secondary source of dynamical ejections. If one of
the stars that explode as a supernova happens to be a binary system, the sudden mass loss
will modify the binary orbit and it could even cause the ejection of both star and remnant in
opposite directions. Even the remnants of single massive stars can be ejected spontaneously
when exploding as supernovae, since these explosions are not necessarily symmetrical and the
supernovae remnant (neutron star or black hole) can be ejected in a random direction at very
high speeds, i.e., a few hundred km/s.

Thus, once a star cluster is born its subsequent evolution will depend on its environment
and the ability of the cluster to remain dense. Clusters will tend to keep losing mass by stellar
evolution, dynamical evaporation and tidal stripping.

We have briefly overviewed the life cycle of star clusters and the physics involved. We have
seen that the evolution and survivability is the combination and interplay of several physical
processes. However, most of the factors that determine the dynamical evolution of star clusters
are determined by the physics and the outcome of star formation. Many theories exist on how
stars are formed and there is a long standing debate on what the outcome of star formation is
and how star clusters are born. All these different theories have direct and indirect implications
in the evolution of star clusters and in this thesis we will explore some of them. We will aim to
identify the observables that could constrain some of these theories using a statistical approach.

References
Bastian, Nate, Kevin R. Covey & Michael R. Meyer (Aug. 2010). “A Universal Stellar Initial

Mass Function? A Critical Look at Variations”. Annu. Rev. Astron. Astrophys. 48.1, pp. 339–
389. arXiv: 1001.2965.

Baumgardt, H. & P. Kroupa (2007). “A comprehensive set of simulations studying the influence
of gas expulsion on star cluster evolution”. MNRAS 380.4, pp. 1589–1598. arXiv: 0707.1944.

Baumgardt, H, P Kroupa & G Parmentier (2008). “The influence of residual gas expulsion on
the evolution of the Galactic globular cluster system and the origin of the Population II
halo”. MNRAS 384, pp. 1231–1241. arXiv: 0712.1591.

Binney, J. & S. Tremaine (Dec. 2008). Galactic Dynamics. Vol. 30. 1. Princeton: Princeton
University Press, pp. 65–67.

Bonnell, I.˜A. A., M.˜R. R. Bate, C.˜J. J. Clarke & J.˜E. E. Pringle (May 2001). “Competitive
accretion in embedded stellar clusters”. MNRAS 323.4, pp. 785–794.

Bressert, E., N. Bastian, R. Gutermuth, S. T. Megeath, L. Allen, Neal J. Evans, L. M. Rebull,
J. Hatchell, D. Johnstone, T. L. Bourke, L. A. Cieza, P. M. Harvey, B. Merin, T. P.
Ray & N. F H Tothill (2010). “The spatial distribution of star formation in the solar
neighbourhood: Do all stars form in dense clusters?” MNRAS 409.1, pp. L54–L58. arXiv:
1009.1150 [astro-ph.SR].

Duquennoy, A & M Mayor (1991). “Multiplicity among solar-type stars in the solar neigh-
bourhood. II - Distribution of the orbital elements in an unbiased sample.” A&A 500,
pp. 337–376.

http://arxiv.org/abs/1001.2965
http://arxiv.org/abs/0707.1944
http://arxiv.org/abs/0712.1591
http://arxiv.org/abs/1009.1150


Chapter 2. The Birth and Death of Star Clusters 15

Farias, J. P. & J. C. Tan (2018). “On the formation of runaway stars BN and x in the Orion
Nebula Cluster”. A&A 612, pp. 1–7. arXiv: 1712.08485.

Farias, J.˜P. P., R. Smith, M. Fellhauer, S. Goodwin, G.˜N. N. Candlish, M. Blaña & R.
Dominguez (July 2015). “The difficult early stages of embedded star clusters and the
importance of the pre-gas expulsion virial ratio”. MNRAS 450.3, pp. 2451–2458. arXiv:
1504.02474.

Fischer, D.˜A. & G.˜W. Marcy (1992). “Multiplicity among M dwarfs”. ApJ 396, pp. 178–194.
Goodman, Jeremy & Piet Hut (1993). “Binary-single-star scattering. V - Steady state binary

distribution in a homogeneous static background of single stars”. ApJ 403, p. 271.
Goodwin, S.˜P. (2010). “Binaries in star clusters and the origin of the field stellar population”.

Philos. Trans. R. Soc. London Ser. A 368, pp. 851–866. arXiv: 0911.0795.
Goodwin, S.˜P. P., P. Kroupa, A. Goodman & A. Burkert (2006). “The Fragmentation of Cores

and the Initial Binary Population”. Protostars Planets V, pp. 133–147. arXiv: 0603233
[astro-ph].

Gutermuth, R. A., S. T. Megeath, P. C. Myers, L. E. Allen, J. L. Pipher & G. G. Fazio
(2009). “A Spitzer survey of young stellar clusters within one kiloparsec of the sun: Cluster
core extraction and basic structural analysis”. ApJS 184.1, pp. 18–83. arXiv: 0906.0201
[astro-ph.SR].

Heggie, D. C. (1975). “Binary Evolution in Stellar Dynamics”. MNRAS 173.3, pp. 729–787.
Hennebelle, P., B. Commerçon, M. Joos, R. S. Klessen, M. Krumholz, J. C. Tan & R. Teyssier

(2011). “Collapse, outflows and fragmentation of massive, turbulent and magnetized prestel-
lar barotropic cores”. A&A 528, A72. arXiv: 1101.1574.

Hills, J. G. (Oct. 1975). “Encounters between binary and single stars and their effect on the
dynamical evolution of stellar systems”. AJ 80, p. 809.

Kainulainen, J. & J.˜C. C. Tan (Jan. 2012). “High-dynamic-range extinction mapping of
infrared dark clouds: Dependence of density variance with sonic Mach number in molecular
clouds”. A&A 549, A53. arXiv: 1210.8130.

Kouwenhoven, M.˜B.˜N. B.N., S.˜P. P. Goodwin, R.˜J. Richard J. Parker, M.˜B. B. Davies,
D. Malmberg & P. Kroupa (Mar. 2010). “The formation of very wide binaries during the
star cluster dissolution phase”. MNRAS 404.4, pp. 1835–1848. arXiv: 1001.3969.

Lada, Charles J. & Elizabeth A. Lada (2003). “Embedded Clusters in Molecular Clouds”.
Annu. Rev. Astron. Astrophys. 41.1, pp. 57–115.

Lee, Paweł L. & Simon P. Goodwin (2016). “Surviving gas expulsion with substructure”.
MNRAS 460.3, pp. 2997–3001.

Li, H.-B., A. Goodman, T. K. Sridharan, M. Houde, Z.-Y. Li, G. Novak & K. S. Tang (2014a).
“The Link Between Magnetic Fields and Cloud/Star Formation”. Protostars Planets VI,
pp. 101–123. arXiv: 1404.2024.

Li, Z.-Y., R. Banerjee, R. E. Pudritz, J. K. Jørgensen, H. Shang, R. Krasnopolsky & A.
Maury (2014b). “The Earliest Stages of Star and Planet Formation: Core Collapse, and the
Formation of Disks and Outflows”. Protostars Planets VI, pp. 173–194. arXiv: 1401.2219
[astro-ph.SR].

Mac-Low, Mordecai Mark, Ralf S. R.˜S. Klessen, M.-M. Mac Low & Ralf S. R.˜S. Klessen
(Jan. 2004). “Control of star formation by supersonic turbulence”. Rev. Mod. Phys. 76.1,
pp. 125–194.

McKee, C.˜F. & E.˜C. Ostriker (2007). “Theory of Star Formation”. Annu. Rev. Astron.
Astrophys. 45, pp. 565–687. arXiv: 0707.3514.

http://arxiv.org/abs/1712.08485
http://arxiv.org/abs/1504.02474
http://arxiv.org/abs/0911.0795
http://arxiv.org/abs/0603233
http://arxiv.org/abs/0603233
http://arxiv.org/abs/0906.0201
http://arxiv.org/abs/0906.0201
http://arxiv.org/abs/1101.1574
http://arxiv.org/abs/1210.8130
http://arxiv.org/abs/1001.3969
http://arxiv.org/abs/1404.2024
http://arxiv.org/abs/1401.2219
http://arxiv.org/abs/1401.2219
http://arxiv.org/abs/0707.3514


16 References

Moeckel, Nickolas & I.˜A. Ian A. Bonnell (July 2009). “Limits on initial mass segregation in
young clusters”. MNRAS 396.4, pp. 1864–1874. arXiv: 0903.3893 [astro-ph.SR].

Oh, Seungkyung & Pavel Kroupa (Mar. 2016). “Dynamical ejections of massive stars from
young star clusters under diverse initial conditions”. A&A 590, A107. arXiv: 1604.00006.

Parker, R.˜J. Richard J., J.˜E. James E. Dale & Barbara Ercolano (Feb. 2014). “Primordial
mass segregation in simulations of star formation?” MNRAS 446.4, pp. 4278–4290. arXiv:
1411.3002.

Parmentier, G. & S. Pfalzner (2013). “Local-density-driven clustered star formation”. A&A
549, A132. arXiv: 1211.1383 [astro-ph.GA].

Pfalzner, S. & T. Kaczmarek (May 2013). “Reaction of massive clusters to gas expulsion-The
cluster density dependence”. A&A 555, A135. arXiv: 1305.6699.

Pillai, T., J. Kauffmann, J. C. Tan, P. F. Goldsmith, S. J. Carey & K. M. Menten (Jan. 2015).
“Magnetic fields in high-mass infrared dark clouds”. ApJ 799.1, p. 74. arXiv: 1410.7390.

Smith, R., M. Fellhauer, S. Goodwin & P. Assmann (2011). “Surviving infant mortality in
the hierarchical merging scenario”. MNRAS 414.4, pp. 3036–3043. arXiv: 1102.5360
[astro-ph.SR].

Smith, R., S. Goodwin, M. Fellhauer & P. Assmann (2013). “Infant mortality in the hierarchical
merging scenario: Dependence on gas expulsion time-scales”. MNRAS 428.2, pp. 1303–1311.
arXiv: 1210.0908 [astro-ph.SR].

Tan, J.˜C., M.˜T. Beltrán, P Caselli, F Fontani, A Fuente, M.˜R. Krumholz, C.˜F. McKee &
A Stolte (2014). “Massive Star Formation”. Protostars Planets VI. Ed. by Henrik Beuther,
Ralf S Klessen, Cornelis P Dullemond & Thomas Henning, p. 149. arXiv: 1402.0919
[astro-ph.GA].

Tan, Jonathan C. J.˜C., Suzanne N. S.˜N. Shaske & Sven Van Loo (Aug. 2012). “Molecular
clouds: Internal properties, turbulence, star formation and feedback”. Proc. Int. Astron.
Union. IAU Symposium 8.S292. Ed. by T Wong & J Ott, pp. 19–28. arXiv: 1211.0198.

http://arxiv.org/abs/0903.3893
http://arxiv.org/abs/1604.00006
http://arxiv.org/abs/1411.3002
http://arxiv.org/abs/1211.1383
http://arxiv.org/abs/1305.6699
http://arxiv.org/abs/1410.7390
http://arxiv.org/abs/1102.5360
http://arxiv.org/abs/1102.5360
http://arxiv.org/abs/1210.0908
http://arxiv.org/abs/1402.0919
http://arxiv.org/abs/1402.0919
http://arxiv.org/abs/1211.0198


Chapter3

Numerical Methods

3.1 The N-body Code: Nbody6

In this thesis aim to follow accurately the dynamical evolution of star clusters over millions of
years, mainly focussing on the gravitational interaction between their members. This treatment
includes an accurate modeling of stellar binaries with a wide range of period distributions,
including periods as short as ∼ 1 day. This achievement is enabled by use of the Nbody6++
(Wang et al. 2015), a multiprocessor optimized version of the extensively developed code Nbody6,
the first version of which is almost 50 years old, and which is still under active development.
Here we will briefly describe its main features, as well as the modification done by ourselves in
order to accomplish our goals. A complete description of the code can be found in Aarseth
(2003).

Nbody6 is a sixth order Hermite integrator that calculates the forces between the particles
directly with no approximations. The resulting acceleration vector of the forces acting on a
given particle i by the rest of the N − 1 particles is given by:

r̈i =
∑
j6=i

Gmj(ri − rj)
|ri − rj|3

, (3.1)

where mj is the mass of the jth particle and r is the position. The equations of motion given by
equation 3.1 need to be solved for each particle. Therefore there are 3N differential equations
to be solved. For N ≤ 3 it is possible to be done analytically, however for greater numbers is
only possible to do numerically. There are multiple numerical schemes to solve equation 3.1,
from which Nbody6 uses the Hermite scheme, which solves the equations of motion using a
Taylor expansion series up to 4th order. Here we briefly describe the scheme.
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3.1.1 Hermite Scheme
In the Hermite scheme, accelerations a0 are given explicitly by equation 3.1 and their derivatives
ȧ0 are calculated by:

ȧ0 =
∑
j6=i
Gmj

Vij

R3
ij
− 3(Vij ·Rij)Rij

R5
ij

 , (3.2)

where G is the gravitational constant, Rij = ri − rj, Vij = vi − vj, Rij = |Rij|, Vj = |Vj|. Then
a first (low order) prediction of the position and velocity of the particle i at t = t1 is calculated
(with t1 = t0 + ∆t and ∆t as particle timestep) according to:

xp(t) = 1
6(t− t0)3ȧ0 + 1

2(t− t0)2a0 + (t− t0)v + x , (3.3)

vp(t) = 1
2(t− t0)2ȧ0 + (t− t0)a0 + v , (3.4)

where the subscript p stands for “predicted”. This is done for all particles in the cluster.
Thus, using again equations 3.1 and 3.2 with the new positions of the particles we obtain the
accelerations and their derivatives at t = t1 denoted a1 and ȧ1. However, a1 and ȧ1 can also
be obtained using the Taylor series with higher derivatives of a at t = t0:

a1 = 1
6(t− t0)3a(3)

0 + 1
2(t− t0)2a(2)

0 + (t− t0)ȧ0 + a0 , (3.5)

ȧ1 = 1
2(t− t0)2a(3)

0 + (t− t0)a(2)
0 + ȧ0 . (3.6)

Now, since we already know a1 and ȧ1 from the low order prediction, we can use that result
to obtain the higher derivatives of a, at t = t0, i.e., a(2) and a(3):

1
2a(2) = −3 a0 − a1

(t− t0)2 −
2ȧ0 + ȧ1

(t− t0) (3.7)

1
6a(3) = 2 a0 − a1

(t− t0)3 −
ȧ0 + ȧ1

(t− t0)2 . (3.8)

The Hermite interpolation then finishes the timestep correcting the low order prediction of
the positions and velocities to a higher order:

x(t) = xp(t) + 1
24(t− t0)4a(2)

0 + 1
120(t− t0)5a(3) , (3.9)

v(t) = vp(t) + 1
6(t− t0)3a(2)

0 + 1
24(t− t0)4a(3)

0 . (3.10)

3.1.2 Block Timestep Scheme
Particles in the system feel very different accelerations and the timestep needed to accurately
follow their motion depends on the strength of the acceleration. Therefore, individual timesteps
are needed. Nbody6 uses the block timestep scheme in which timesteps are sorted into a
hierarchy of levels starting from a maximum timestep ∆t1 according to the rule:

∆tn = ∆t1/2n−1. (3.11)
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At the beginning of the calculation a reasonable timestep for each particle is specified. This
reasonable timestep has been found by empirical experiments to be (see Aarseth 2003):

∆ti =

√√√√ η|a||a(2)|+ |ȧ|2
|ȧ||a(3)|+ |a(2)|2

, (3.12)

where η is a free parameter, which by experience is usually taken to be in the range η =
0.01 − 0.04. Then the nearest level is chosen according to Eq. 3.11. At any general time
Eq. 3.11 is evaluated and any of these three cases apply when comparing with the previous
timestep ∆tp: If ∆tp > ∆ti then the timestep is reduced by a factor of 2; if 2∆tp < ∆ti the
timestep is increased by factor 2; otherwise there is no change. A detailed discussion about the
implementation and special situations can be found in Aarseth (2003).

3.1.3 Neighbour scheme
In order to save computational time, the code adopts the Ahmad-Cohen neighbour scheme
(Ahmad & Cohen 1973; Makino & Aarseth 1992). The basic idea is that the contribution
to the acceleration given by distant particles does not need to be updated as frequently as
close neighbour particles. As a difference of similar approaches like the Tree scheme (Barnes
& Hut 1986), where the calculation of distant particles is done using their center of mass, in
the neighbour scheme the forces are still calculated individually and therefore the method is
not an approximation, but rather an optimization. The optimization is based on the fact that
distant particles have smaller angular speeds and their force contribution does not change so
fast as neighbouring particles.

3.1.4 Regularizations
Even with only single particles, the methods described above are not enough to efficiently handle
all the length and time scales involved in the evolution of a realistic star cluster. However, the
main problems are caused by binary systems with very short periods, on the order of days,
that will likely keep their short separation during the whole duration of the calculation. In
addition, small stable multiple systems, normally composed of a binary perturbed by another
binary or single star, and very close encounters between stars, may slow down the simulations
even with individual timesteps and the neighbour scheme. Nbody6 uses several methods to
deal with these special cases called regularizations. Close encounters and binaries are handled
with the Kustaanheimo-Stiefel (KS) regularization (Kustaanheimo & Stiefel 1965), which uses
a coordinate transformation in order to avoid singularities. The KS scheme has been expanded
to the isolated and perturbed 3- (Aarseth et al. 1974) and 4-body problem as well as higher
order hierarchies (Mikkola 1997; Mikkola & Aarseth 1993, 1996, 1998; Mikkola & Aarseth
1989).

3.1.5 Gradual formation
In this thesis we study star cluster formation from the beginning, that is, during the stage of the
cluster where stars are being created. Unfortunately, this is a feature not currently implemented
in Nbody6. However, during a regular Nbody6 run, particles are being created and removed
all the time. Each time regularization starts, the particles involved in the regularization are
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removed from the calculation and replaced by a center of mass particle that interacts with
the rest of the cluster, while the regularized particles are integrated in isolation. Also, high
velocity escapers are normally removed entirely from the calculation. Therefore, there is no
reason that stop us from adding particles arbitrarily during the run-time. Through careful
investigation of the code, we have introduced our own routines in order to achieve this feature.
We are able couple a time evolving background gas potential with the creation of single and
KS regularized binaries until the gas is exhausted.

This feature then enables us to study a regime only explored so far by state-of-the-art
hybrid N -boody/hydrodynamical codes. However, because of the complexity of the N -body
problem, these codes normally have not implemented regularizations of binaries or higher-order
multiples. Also, they normally use approximations like the Tree scheme (Barnes & Hut 1986).
We expect that the important feature we have developed, allowing gradual star formation, can
enable Nbody6 to be coupled with hydrodynamical codes in frameworks like the Astrophysical
Multipurpose Software Envirionment (AMUSE) (Pelupessy et al. 2013; Portegies Zwart et al.
2009). Still, coupling Nbody6 with hydro codes would be computationally expensive, and the
pure N -body approach presented here, is the first necessary step to obtain a general statistical
understanding of stellar dynamics during star cluster formation.
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Chapter4

Introduction to papers

In this thesis, we explore the effects of several fundamental parameters of star cluster formation
theories, such as the initial mass surface densities of the gas clumps, the frequency of the
primordial binary population, the degree of primordial mass segregation, and, of particular
importance, the timescale of star cluster formation. We have developed novel techniques for
modeling star cluster formation, while accurately following stellar dynamics. Ejected, so-called
“runaway” or “walkaway”, stars are an important population that can help us understand star
cluster formation. While we follow the global evolution and structure of the bound cluster, it
can quickly erase its initial state and rearrange to a near equilibrium configuration. The ejected
stars are sensitive to other aspects of the history of the forming cluster, including the number
density and multiplicity of the cluster members. In this thesis, we present three independent,
but closely related, works. First, we present, in two papers the star cluster formation model
that we use in our main work, as well as it implications. Then, we present a study that analyzes
how a particular observed runaway system in the Orion Nebula Cluster may have been created
by exploring the parameter space of possible binary-binary interactions. Third, we exploit the
capabilities of Gaia by searching for runaway stars in the ONC in an attempt of characterize its
unbound population. We use the results of this work to contrast the results of the theoretical
models presented in the first part of this thesis.

Star Cluster Formation from Turbulent Clumps. I. The fast formation limit

In this paper, we set the basis for our overall project of cluster formation modeling. We
present a simple form of the model in the extreme limit of fast, i.e., instantaneous, star cluster
formation. Even though this model appears unrealistic, it has been the commonly adopted
assumption of most previous dynamical studies exploring the early evolution of star clusters.
Also, most previous studies have used initial conditions in which the stellar population is
already in dynamical equilibrium. In contrast, we draw our initial conditions from observations
of starless clumps and theory describing their internal structure, i.e., the Turbulent Clump
Model, from which we then form star clusters. We found that in this scenario, star clusters
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expand very quickly, meaning that in order to explain the current structure and sizes of
observed star clusters, dense initial conditions are necessary. Also, the periods that star clusters
remain dense are very short (less than a crossing time), thus not giving enough time to produce
significant dynamical ejections. In fact, not a single runaway massive star was produced. This
work suggests that star cluster formation must happen in a less extreme fashion, that we will
explore in the subsequent papers of this series.

Star Cluster Formation from Turbulent Clumps. II. Gradual star cluster forma-
tion

In this paper, we relax the assumption of instantaneous star cluster formation explored in
Paper I (and in most of studies to date). We explore a range of star cluster formation timescales,
parameterized by the star formation efficiency per free-fall time. We model the natal gas of
the young cluster using a time evolving background potential, based on the Turbulent Clump
Model. As the stars are created, the background potential gradually vanishes assuming a global
star formation efficiency. Using this simple prescription, we study the dynamic of the stars
during the formation of the cluster, and found that the longer formation timescales give enough
time for the cluster to get close to virial equilibrium before gas is completely exhausted/ejected.
Star clusters formed in a slow fashion are much more stable against expansion than the ones
forming fast. In these models, we are able to form a significant fraction of massive runaway
stars even in low density environments. In general, the models presented in this paper, appear
to require lower densities to reproduce parameters that could only be explained appealing
to highly dense initial environments. However, several assumptions need to be relaxed and
studied to understand the real extent of these results.

Star Cluster Formation from Turbulent Clumps. III. Across the Mass Spectrum

Star clusers forms in a wide range of scales and masses, where the different physical processes
involved in star cluster formation have different relative importance depending of their own
timescales and environmental regimes. It is not clear how our previous results would scale to
other possible envirionments on which star clusters are observed to be born. In this work, we
extend our models to a wide range of parent clump masses and densities and explore how the
different envirionments affect the dynamical processing of the primordial stellar population, e.g.
binary properties, mass segregation and production of high velocity stars. And also how these
different initial conditions affect the later evolution of these systems. In this models, clumps of
higher mass are of lower initial volume density, but their dynamical evolution leads to higher
bound fractions and causes them to form much higher density cluster cores and maintain these
densities for longer periods. This results in systematic differences in the evolution of binary
properties and the rates of creation of dynamical ejection runaways. Herem, we discuss the
implications of these results for observed star clusters.

On the formation of runaway stars BN and x in the Orion Nebula Cluster

Star clusters formed in a slow fashion are much more stable against expansion than the
ones forming fast. The Orion Nebula Cluster (ONC) is the closest region of massive star
formation. It hosts a massive young star, BN (∼ 10 M�), that is moving with a velocity of
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∼ 30 km/s in the frame of reference of the ONC. Recent observations have show that two
known nearby objects, source x (∼ 3 M�) and source I (∼ 7M�), are moving away from the
same location than BN and the three objects may have been part of the same ejection event
about 500 years ago. However, this implies that the most massive star in the system was
ejected with very high velocity, which seems questionable. We thus performed a large, > 107,
set of “few-body” simulations testing this scenario, and have found that the event as described
is nearly impossible to happen with the observed velocities. We conclude that to make this
scenario plausible, requires source I to in fact be more massive than the ∼ 7 M� that has
been adopted by some authors in their previous works. This may be possible, since source I is
heavily embedded in dusty molecular gas. The results are of wider interest, since this region is
the closest example of massive star formation and is one of the most well studied locations of
the sky, including one of the richest sites for detection of interstellar molecules. The violent
nature of the interaction, including potential gas interactions and shocks, likely has a bearing
on why this region appears so luminous in the infrared and is so chemically rich. After this
work was published, new high resolution ALMA observations of Source I have obtained a mass
of 15M�1 very close to the optimal mass suggested in this work. Our results and these new
observations suggest that the dynamical ejection scenario involving source I, source x and the
BN object can not be discarded.

Hunting for runaway star from the Orion Nebula Cluster

As mentioned before, characterizing the unbound population of star clusters can provide
strong constraints on the formation and early environment of star clusters. Identifying such
constraints is one of the long term goals of the work presented here. One of the best targets
for contrasting theoretical models with observations is the ONC, that given its close distance,
large efforts have been made on characterizing its stellar population, structure and kinematics.
However characterizing its unbound population is a challenging problem given that they are
well mixed with the field population and also that the region that they may cover is unknown
and not well mapped. In this paper, we made an attempt to identify new runaway/walkaway
candidates from the ONC that may have traveled large distances from their origin. Using the
unprecedented accuracy of Gaia we have examined a 45◦ area around the ONC and selected a
sample of ∼17,000 sources whose 2D trajectory overlap with the one of the ONC. We further
classified those sources combining photometry and astrometry thresholds aiming to identify
sources with well constrained orbits and that also show signs of being Young Stellar Objects,
e.g. using Gaia, 2MASS and WISE photometry when available. We have selected a handful
of 25 sources not previously identified as members of the ONC as the strongest candidates.
We use the results of this work to complemented with literature members, to construct a high
velocity distribution of the ONC members and compare with our previous simulations, finding
good agreements with our models with the densest initial conditions.

1see A. Ginsburg , J. Bally, C. Goddi, R. Plambeck and M. Wright (2018). A Keplerian Disk around Orion
SrCI, a ∼ 15 M� YSO. ApJ 861(2), p. 119.
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