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Abstract—Several emerging wireless communication services
and applications have stringent latency requirements, necessitat-
ing the transmission of short packets. To obtain performance
benchmarks for short-packet wireless communications, it is
crucial to study the maximum coding rate as a function of the
blocklength, commonly called finite-blocklength analysis. A finite-
blocklength analysis can be performed via nonasymptotic bounds
or via refined asymptotic approximations. This paper reviews
finite-blocklength approximations for the noncoherent Rayleigh
block-fading channel. These approximations have negligible com-
putational cost compared to the nonasymptotic bounds and are
shown to be accurate for error probabilities as small as 10−8

and SNRs down to 0 dB.

I. INTRODUCTION

Traditional wireless communication technologies have fo-
cused on increasing the transmission rates without stringent
latency constraints. Thus, the transmission of long packets is
feasible and capacity and outage capacity provide accurate
benchmarks for the throughput achievable in such systems. In
contrast, current and upcoming generations of communication
systems target, inter alia, the transmission of short packets
at low rates [1]. Specifically, in ultra-reliable low-latency
communications (URLLC), devices are expected to attain
latencies below 1 ms and probabilities of error smaller than or
equal to 10−5. In this scenario, capacity and outage capacity
are too optimistic and a more refined characterization of the
finite-blocklength performance is required.

The finite-blocklength performance can be characterized by
means of nonasymptotic bounds. Polyanskiy et al. proposed
the random-coding union (RCU) bound, the dependence-
testing (DT) bound, and the meta-converse (MC) bound [2].
A relaxation of the RCU bound, based on the Chernoff bound,
is the RCUs bound [3, Th. 1]. Nonasymptotic bounds on the
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maximum coding rate for noncoherent Rayleigh block-fading
channels were studied in [4] for the single-antenna setting and
in [5] for the multiple-input multiple-output (MIMO) setting.

Refined asymptotic analyses of the nonasymptotic bounds
provide a complementary characterization of the finite-
blocklength performance of communication systems. A so-
called error-exponent analysis follows from fixing the coding
rate and studying the exponential decay of the error proba-
bility as the blocklength tends to infinity. The resulting error
exponent is referred to as the reliability function [6, Ch. 5].
Some results on the reliability function of fading channels can
be found, e.g., in [7]–[10].

In contrast, a dispersion or normal-approximation analy-
sis follows by fixing the error probability and studying the
maximum coding rate as the blocklength tends to infinity [2].
Such an analysis has been carried out for fading channels, e.g.,
in [11]–[14]. Particularly relevant for this work is the high-
SNR normal approximation for noncoherent single-antenna
Rayleigh block-fading channels derived in [14].

A third approach to perform asymptotic analyses is the
saddlepoint method [15, Ch. XVI]. The saddlepoint method
yields an accurate approximation of the nonasymptotic bounds
even where the error-exponent and normal approximation
do not. This method has been applied to the RCU bound,
the RCUs bound, and the MC bound for some memoryless
channels [16]–[18]. Saddlepoint approximations of the RCUs
bound and the MC bound for noncoherent single-antenna
Rayleigh block-fading channels were derived in [9], [10].

In this paper, we present a summary of the existing
nonasymptotic bounds and approximations for noncoherent
single-antenna Rayleigh block-fading channels. We assess
the accuracy of the approximations by means of numerical
examples and discuss their computational complexity.

II. RAYLEIGH BLOCK-FADING CHANNEL

We consider a single-antenna Rayleigh block-fading channel
with coherence interval T . For this channel model, the input-
output relation within the `-th coherence interval is given by

Y` = H`X` + W` (1)

where X` and Y` are T -dimensional, complex-valued, random
vectors containing the input and output signals, respectively;
W` is the additive noise with i.i.d., circularly-symmetric,



complex Gaussian entries; and H` is a circularly-symmetric
complex Gaussian random variable. We assume that H` and
W` are mutually independent and take on independent real-
izations over successive coherence intervals. We consider a
noncoherent setting where transmitter and receiver are aware
of the distribution of H` but not of its realization.

We next introduce the notion of a channel code. We shall
restrict ourselves to codes of blocklength n = LT , where L
denotes the number of coherence intervals of length T needed
to transmit the entire codeword.

An (M,L, T, ε, ρ)-code for the channel (1) consists of:
1) An encoder f : {1, . . . ,M} → CLT that maps the mes-

sage A, which is uniformly distributed on {1, . . . ,M},
to a codeword XL = [X1, . . . ,XL] = f(A) satisfying1

‖X`‖2 = Tρ, ` = 1, . . . , L. (2)

2) A decoder g: CLT → {1, . . . ,M} satisfying

P
[
g
(
YL
)
6= A

]
≤ ε (3)

where YL = [Y1, . . . ,YL] is the channel output in-
duced by the transmitted codeword XL = f(A).

The maximum coding rate and minimum error probability are
respectively defined as

R∗(L, T, ε, ρ) , sup

{
log(M)

LT
: ∃(M,L, T, ε, ρ)-code

}
(4)

ε∗(L, T,R, ρ) , inf
{
ε : ∃(2LTR, L, T, ε, ρ)-code

}
. (5)

Note that upper (lower) bounds on ε∗(L, T,R, ρ) can be turned
into lower (upper) bounds on R∗(L, T, ε, ρ) and vice versa.

III. NONASYMPTOTIC BOUNDS

Throughout the paper, we evaluate the achievability bounds
for the capacity-achieving input distribution, under which the
inputs are of the form XL =

√
TρUL (where the components

of UL = [U1, . . . ,UL] are i.i.d. and uniformly distributed on
the unit sphere in CT ). We denote by P̄X the distribution of
X` =

√
TρU`. We define the generalized information density

as

is(x`;y`) , log
pY`|X`

(y`|x`)s

p̄sY`
(y`)

, s > 0 (6)

p̄sY`
(y`) ,

∫
pY`|X`

(y`|x`)sdP̄X(x`), s > 0. (7)

It can be shown that is(X`;Y`) depends on X` only via
‖X`‖2 = Tρ. Thus, conditioned on ‖X`‖2 = Tρ, [10]

is(X`;Y`)
L
= (T − 1) log(sTρ)− log Γ(T )− sTρZ2,`

1 + Tρ

+ (T − 1) log

(
(1 + Tρ)Z1,` + Z2,`

1 + Tρ

)
− log γ̃

(
T − 1, s

Tρ((1 + Tρ)Z1,` + Z2,`)

1 + Tρ

)
(8)

1While in the information theory literature it is more common to impose
a power constraint per codeword XL, practical systems typically require a
per-coherence-interval constraint. Although it may be preferable to impose (2)
with inequality, in this paper we restrict ourselves to using maximum power.
For the high-SNR normal approximation presented in [14], this turns out to
be the optimal case.

where we use “L
=” to denote equality in distribution, and

where Γ(·) and γ̃(·) denote the gamma function and the
regularized lower incomplete gamma function, respectively.
In (8), {Z1,`}L`=1 are i.i.d. gamma(1, 1)-distributed random
variables, and {Z2,`}L`=1 are i.i.d. gamma(T−1, 1)-distributed
random variables. For brevity, we let i`,s(ρ) , is(X`;Y`),
and we define the expectation and variance of i`,s(ρ) by
Is(ρ) , E

[
i`,s(ρ)

]
and Vs(ρ) , Var

[
i`,s(ρ)

]
.

The RCUs bound [3, Th. 1] states that, for every s > 0,

ε∗(L, T,R, ρ) ≤ P

[
L∑
`=1

i`,s(ρ) ≤ LTR− log(θ)

]
(9)

where θ is uniformly distributed on the interval [0, 1].
For any s > 0, we define the auxiliary output probability

density function (pdf)

qsY`
(y`) ,

1

µ(s)

(∫
pY`|X`

(y`|x`)sdP̄X(x`)

)1/s

(10)

where µ(s) is a normalizing factor. A lower bound on
ε∗(L, T,R, ρ) follows by evaluating the MC bound [2, Th.31]
for the auxiliary pdf qsY`

and using [2, Eq. (102)]. We then
obtain that, for every ξ > 0 and s > 0,

ε∗(L, T,R, ρ)

≥ P

[
L∑
`=1

i`,s(ρ) ≤ s log ξ − sL logµ(s)

]
− ξe−LTR. (11)

For s = 1, both p̄sY`
and qsY`

coincide with the capacity-
achieving output distribution, in which case (9) and (11)
recover the DT and MC bounds derived in [2]. For brevity,
we write i`(ρ) , i`,1(ρ), V (ρ) , V1(ρ), and C(ρ) , I1(ρ).2

We shall see in Section VII that the nonasymptotic bounds
(9) and (11) precisely characterize the triple (R, ε, n). How-
ever, their high computational complexity hinders their prac-
tical application for URLLC scenarios. In the following, we
present asymptotic approximations of these bounds that are
easier to compute.

IV. ERROR EXPONENT APPROXIMATION

We define the reliability function as [6]

Er(T,R, ρ) , lim
L→∞

− 1

L
log ε∗(L, T,R, ρ). (12)

Let τ 7→ κρ,s(τ) denote the cumulant generating function
(CGF) of the zero-mean random variable Is(ρ)− i`,s(ρ), i.e.,

κρ,s(τ) = log E
[
eτ(Is(ρ)−i`,s(ρ))

]
(13)

and let κ′ρ,s, κ
′′
ρ,s, and κ′′′ρ,s denote the first three derivatives

of κρ,s. The critical rate of the channel is defined as [6, Eq.
(5.6.30)]

Rcr
s (ρ) ,

1

T

(
Is(ρ)− κ′ρ,s(1)

)
. (14)

2The USTM input distribution is capacity achieving for the power constraint
considered in (2). Hence, I1(ρ) coincides with the capacity of the channel.



For rates above Rcr
s (ρ), the error exponents of (9) and (11)

coincide and, setting s = 1
1+τ , we obtain the following result.

Theorem 1 (Error exponent approximation): Assume that
Rcr

1/2(ρ) ≤ R ≤ C(ρ), and let

R(τ) =
1

T

(
I 1

1+τ
(ρ)− κ′ρ, 1

1+τ
(τ)
)

(15)

Er(τ) = τκ′ρ, 1
1+τ

(τ)− κρ, 1
1+τ

(τ) (16)

where τ is the solution of R(τ) = R. Then,

ε∗(L, T,R, ρ) = e−L[Er(τ)+oτ,L(1)] (17)

where oτ,L(1) comprises terms that depend on (τ, L), are
uniform in ρ, and vanish as L→∞.

Proof: See [19, Sec. 6.4].

V. NORMAL APPROXIMATIONS

An application of the central limit theorem (CLT) shows
that we can approximate the tail probabilities in (9) and (11)
by those of a normal distribution with a certain mean and
variance. The resulting expression is the so-called normal
approximation, which is presented next.

Theorem 2 (Normal approximation): The maximum coding
rate in a single-antenna Rayleigh block-fading channel satisfies

R∗(L, T, ε, ρ) =
C(ρ)

T
−
√
V (ρ)

LT 2
Q−1(ε)+OL

(
logL

L

)
(18)

where Q−1(·) denotes the inverse of the Gaussian Q-function,
and OL

(
(logL)/L

)
collects terms of order (logL)/L that are

uniform in ρ.
Proof: See [19, Sec. 6.3].

The channel capacity C(ρ) and channel dispersion V (ρ) have
no closed-form expression and must be evaluated numerically.
A closed-form high-SNR normal approximation [14, Th. 2]
can be obtained from (18) by using that [14, Eqs. (38)–(39)]

C(ρ) = (T − 1) log(Tρ)− log Γ(T )

− (T − 1)

[
log(1 + Tρ) +

Tρ

1 + Tρ
− ψ(T − 1)

]
+ 2F1

(
1, T − 1;T ;

Tρ

1 + Tρ

)
+ oρ(1) (19)

V (ρ) = (T − 1)2
π2

6
+ (T − 1) + oρ(1) (20)

where oρ(1) comprises terms that are uniform in L and vanish
as ρ → ∞. In (19), ψ(·) denotes the digamma function and
2F1(·, ·; ·; ·) denotes the Gauss hypergeometric function.

VI. SADDLEPOINT APPROXIMATIONS

Similar to the CLT, the saddlepoint method [15, Ch. XVI]
can be used to estimate tail probabilities. This method first
applies an exponential tilting to the distribution of the random
variable inside the tail probability, followed by a CLT-based
approximation over the tilted distribution.

Before we present the saddlepoint expansions of the
nonasymptotic bounds (9) and (11), we first discuss the region

of convergence of the moment generating function (MGF) of
Is(ρ)− i`,s(ρ). Let

mρ,s(τ) , E
[
eτ(Is(ρ)−i`,s(ρ))

]
(21)

and let m(k)
ρ,s denote the k-th derivative of mρ,s. It can be

shown that [19, Lemma 4.2]

sup
(τ,ρ,s)∈S

m(k)
ρ,s(τ) <∞ (22)

for every nonnegative integer k, where

S , {(τ, ρ, s) ∈ R3 : τ ∈ [a, b], ρ ∈ [ρ, ρ], s ∈ [s, s]} (23)

for some arbitrary 0 < s < s, 0 < ρ < ρ, and 0 < a <

b < min
{

T
T−1 ,

1+Tρ
Tρs

}
. Thus, the set S is in the region of

convergence of mρ,s, and we obtain the following results.
Theorem 3 (Saddlepoint Expansion RCUs): The coding rate

R and minimum error probability ε∗ can be parametrized by
(τ, ρ, s) ∈ S as

R(τ, s) =
1

T
(Is(ρ)− κ′ρ,s(τ)) (24)

ε∗(τ, s) ≤ eL[κρ,s(τ)−τκ′
ρ,s(τ)]

×
[
fρ,s(τ, τ) + fρ,s(1− τ, τ) +

K̂ρ,s(τ)√
L

+ oL

(
1√
L

)]
(25)

where

fρ,s(u, τ) , en
u2

2 κ
′′
ρ,s(τ)Q

(
u
√
nκ′′ρ,s(τ)

)
(26)

K̂ρ,s(τ) ,
2√
2π

κ′′′ρ,s(τ)

6κ′′ρ,s(τ)3/2
(27)

and oL(1/
√
L) comprises terms that vanish faster than 1/

√
L

and are uniform in (τ, s, ρ).
Proof: See [10, Th. 3].

Remark 1: The set S with s = 1 includes 0 ≤ τ < 1. In
this case, the identity (24) characterizes all rates R between
the critical rate (14) and Is(ρ). Solving (24) for τ , we thus
obtain from Theorem 3 an upper bound on ε∗(L, T,R, ρ) as
a function of the rate R ∈ (Rcr

s (ρ) , Is(ρ)], s ∈ (0, 1].
Theorem 4 (Saddlepoint Expansion MC): For every rate R

and (τ, ρ, s) ∈ S

ε∗(L, T,R, ρ) ≥ −eL
[
log µ(s)+ 1

s Is(ρ)−
κ′ρ,s(τ)

s −TR
]

+ eL[κρ,s(τ)−τκ′
ρ,s(τ)]

[
fρ,s(τ, τ) +

Kρ,s(τ, L)√
L

+ oL

(
1√
L

)]
(28)

where fρ,s(·, ·) is defined in (26), Kρ,s(·, ·) is given by

Kρ,s(τ, n) ,
κ′′′ρ,s(τ)

6κ′′ρ,s(τ)3/2

(
− 1√

2π
+
τ2κ′′ρ,s(τ)n
√

2π

− τ3κ′′ρ,s(τ)3/2n3/2fρ,s(τ, τ)

)
(29)

and oL(1/
√
L) comprises terms that vanish faster than 1/

√
L

and are uniform in (τ, s, ρ).
Proof: See [10, Th. 4].



The saddlepoint expansions (25) and (28) can be written
as an exponential term times a subexponential factor. The
exponential terms of both expansions coincide for rates above
the critical rate and yield the reliability function (12). We next
present the corresponding subexponential factors.

Theorem 5: Let ρ ≤ ρ ≤ ρ and τ < τ < τ for some
arbitrary 0 < ρ < ρ and 0 < τ < τ < 1, and set
sτ , 1/(1 + τ). The coding rate R and the minimum error
probability ε∗ can be parametrized by τ ∈ (τ , τ) as

R(τ) =
1

T

(
Isτ (ρ)− κ′ρ,sτ (τ)

)
(30)

Aρ(τ) ≤ ε∗(L, T,R, ρ)e−L[κρ,sτ (τ)−τκ′
ρ,sτ

(τ)] ≤ Aρ(τ) (31)

where

Aρ(τ) ,
1√

2πLτ2κ′′ρ,sτ (τ)
+
|K̂ρ,sτ (τ)|√

L

+
1√

2πL(1− τ)2κ′′ρ,sτ (τ)
+ oL

(
1√
L

)
(32)

Aρ(τ) ,
s

1
sτ
τ

τ
(
2πLκ′′ρ,sτ (τ)

) 1
2sτ

+ oL

(
1

L
1

2sτ

)
. (33)

The little-o term in (32) vanishes faster than 1/
√
L uniformly

in ρ and τ . The little-o term in (33) vanishes faster than
1/L1/2sτ and is uniform in ρ (for every given τ ) [10].

Proof: See [19, Th. 6.6].

VII. DISCUSSION

A. Numerical Comparison

We obtain approximations of the RCUs and MC bounds by
disregarding the error terms in Theorems 1–5. Approximations
of the RCUs bound are plotted in red and approximations of
the MC bound are plotted in blue. Straight lines (“saddle-
point”) depict the saddlepoint approximations (25) and (28),
and dashed lines (“pref+EE”) depict (31). We further plot the
nonasymptotic bounds (9) and (11) with dots. Finally, we plot
the normal approximation (18) (“NA”), the high-SNR normal
approximation [14, Th. 2] (“high-SNR-NA”), and the error-
exponent approximation (17) (“EEA”).

In Fig. 1, we study R∗(L, T, ε, ρ) as a function of L for
n = 168 (hence T is inversely proportional to L), ε = 10−5,
and SNR values 0 dB and 10 dB. Observe that the approxi-
mations (25), (28), and (31) are almost indistinguishable from
the nonasymptotic bounds. Further observe that the normal
approximation “NA” is accurate for 10 dB and L > 10, but is
loose for 0 dB. In contrast, the error exponent approximation
“EEA” is loose for 10 dB, but accurate for 0 dB.

In Fig. 2, we study R∗(L, T, ε, ρ) as a function of ε for
n = 168 (T = 12 and L = 14) and SNR values 6 dB and 0 dB.
We also show the critical rate Rcr

1/2(0) for ρ = 0 dB. Observe
that the approximations (25), (28), and (31) are almost indis-
tinguishable from the nonasymptotic bounds. Further observe
how the normal approximation “NA” becomes accurate for
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Fig. 1: Bounds on R∗(L, T, ε, ρ) for n = 168, ε = 10−5, ρ = {0, 10} dB.
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Fig. 2: Bounds on R∗(L, T, ε, ρ) for n = 168, T = 12, ρ = {0, 6} dB.

large error probabilities, whereas the error exponent approxi-
mation “EEA” becomes accurate for small error probabilities.

In Fig. 3, we study ε∗(L, T,R, ρ) as a function of the SNR ρ
for n = 168 (T = 24 and L = 7) and R = 0.48. Observe that
in this scenario the approximations (25), (28), and (31) are the
only accurate approximations of the nonasymptotic bounds.

B. Complexity vs. Accuracy

Table I summarizes the computational complexity and ac-
curacy of the bounds and approximations presented in this
paper. Specifically, we denote by N the cost of numerically
evaluating a one-dimensional integral and by K the cost of
optimizing over an auxiliary parameter. We then provide a
rough estimate of the complexity of the presented bounds
and approximations in terms of N and K. For example, the
nonasymptotic bounds require the evaluation of the distribu-
tion function of

∑L
`=1 i`,s(ρ) which, for the RCUs bound cor-

responds to an (2L+1)-dimensional integral (over {Z1,`}L`=1,
{Z2,`}L`=1, and θ) and the optimization over s and, for the
MC bound, corresponds to an (2L)-dimensional integral and
the optimization over s and ξ. The numerical evaluation of an
L-dimensional integral has a complexity of roughly NL, hence
the overall complexity is KN2L+1 for the RCUs bound and
K2N2L for the MC bound. The approximations (25), (28),



TABLE I: Complexity and accuracy of the analyzed bounds and approximations.
Bound/Approximation Complexity Accuracy
Nonasymptotic bounds RCUs: KN2L+1 (optimization over s)

MC: K2N2L (optimization over s, ξ)
Exact. Computable for moderate values of L and ε. For example,
for L = 14, computable for ε > 10−8. For L = 84, computable
for ε > 10−5.

Saddlepoint approximation 5K2N2 (optimization over τ , s) Almost indistinguishable from nonasymptotic bounds over the
entire range of system parameters.

Prefactor-and-error-exponent
approximation

5KN2 (optimization over τ ) Almost as accurate as saddlepoint approximation and easier to
interpret analytically.

Error-exponent approximation 3KN2 (optimization over τ ) Accurate for small values of ρ and ε. For example, for ρ = 6 dB,
accurate for ε < 10−7. For ρ = 0 dB, accurate for ε < 10−4.

Normal approximation 2N2 (no optimization) Accurate for large values of ρ and ε. For example, for ρ = 6 dB,
accurate for ε > 10−3. For ρ = 0 dB, accurate for ε > 10−2.

High-SNR normal approximation available in closed form Accurate for ρ ≥ 15 dB and L ≥ 10 and large values of ε [14].
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Fig. 3: Bounds on ε∗(L, T,R, ρ) for n = 168, T = 24, R = 0.48.

and (31) depend on Is(ρ), κρ,s, κ′ρ,s, κ
′′
ρ,s, and κ′′′ρ,s, so they

can be obtained by solving 5 two-dimensional integrals and
by optimizing over τ and s. The error-exponent approximation
(17) can be obtained by evaluating Isτ (ρ), κρ,sτ , and κ′ρ,sτ ,
which corresponds to the evaluation of 3 two-dimensional
integrals and by optimizing over τ . The normal approximation
(18) can be obtained by evaluating C(ρ) and V (ρ), which
corresponds to the evaluation of 2 two-dimensional integrals.
The high-SNR normal approximation is available in closed
form.

Observe that the computational complexity of the
nonasymptotic bounds grows exponentially in L, whereas the
presented approximations have a computational complexity
that is independent of L. This is a significant reduction in
computational cost, especially if L is large. The saddlepoint
approximations, as observed in Section VII-A, exhibit almost
the same accuracy as the nonasymptotic bounds over a large
range of system parameters at a negligible computational cost.
The normal approximations and the error-exponent approxima-
tion have an even lower computational complexity, but they
are only accurate in a limited range of system parameters.

In summary, the normal approximations and the error-
exponent approximation yield accurate characterizations of
the maximum coding rate only for certain ranges of the
system parameters. In contrast, the saddlepoint approximations
arise as easy-to-compute alternatives to the nonasymptotic
bounds when one wishes to characterize the maximum coding
rate for a large range of system parameters or for system
parameters where neither normal approximations nor error-
exponent approximation are accurate.
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“Saddlepoint approximations in random coding,” in Proc. Conference on
Inf. Sci. and Sys. (CISS), Princeton, NJ, USA, Mar. 2018.

[18] G. Vazquez-Vilar, A. Guillén i Fàbregas, T. Koch, and A. Lancho,
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