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Göteborg, Sweden, 2020



Kinetic modeling of runaway-electron dynamics in partially ionized
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LINNEA HESSLOW
Department of Physics
Chalmers University of Technology

Abstract
An essential result of kinetic plasma physics is the runaway phenomenon,
whereby a fraction of an electron population can be accelerated to rel-
ativistic energies. Such runaway electrons are formed in astrophysical
settings, but are also of great practical relevance to fusion research.
In the most developed fusion device, known as the tokamak, runaway
electrons have the potential to cause severe damage to the first wall.
Runaway-electron mitigation is therefore one of the critical issues in the
design of a fusion power plant.

In many situations, runaway electrons interact with partially ionized
atoms. In particular, the currently envisaged mitigation method for
tokamaks is to inject heavy atoms which collisionally dissipate the run-
away beam before it can collide with the wall, or prevent it from forming
at all. When the atoms are partially ionized, their bound electrons screen
out a fraction of the atomic charge, which directly affects the collisional
scattering rates. However, accurate expressions for these collisional scat-
tering rates between energetic electrons and partially ionized atoms have
not been available previously.

In this thesis, we explore kinetic aspects of runaway dynamics in partially
ionized plasmas. We derive collisional scattering rates using a quantum-
mechanical treatment, and study the interaction between fast electrons
and partially ionized atoms. We then apply these results to calculate the
threshold field for runaway generation, as well as the production rate of
runaway electrons via the avalanche and Dreicer mechanisms. We find
that even if material injection increases the dissipation rates, it also
enhances avalanche generation which could potentially aggravate the
runaway problem. These results contribute to more accurate runaway-
electron modeling and can lead to more effective mitigation schemes in
the longer term.

Keywords: plasma physics, Fokker–Planck equation, magnetic confine-
ment fusion, tokamaks, runaway electrons, electron-ion collisions
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A L. Hesslow, O. Embréus, A. Stahl, T.C. DuBois, G. Papp,
S.L. Newton and T. Fülöp,
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Chapter 1

Introduction

The possibility of a power plant that takes its fuel from ordinary sea
water has created a great interest in fusion energy since the middle
of the last century. Today, the prospect of a safe, CO2-free and non-
intermittent power source adds to the attractiveness of fusion. Although
commercial fusion will likely be available too late to tackle climate
change, it may play an important role in meeting the increasing en-
ergy demands during the later half of this century (Cabal et al., 2017).
Such a scenario however relies on functional power plants being avail-
able in approximately 50 years, and is sensitive to the policy support for
fission as well as the cost and availability of carbon capture and storage
technologies.

Considering the remarkable development of fusion during the last 50
years, there are reasons to be hopeful that fusion can indeed be achieved
during the coming 50 years. For example, one of the most commonly
adopted performance measures – the triple product – has increased by
four orders of magnitude (CEA, 2016). This performance increase was
achieved in the currently most developed fusion device known as the
tokamak : a ring-shaped magnetic cage where the particles are confined
by a twisted magnetic field. But fusion has also encountered unforeseen
challenges which are not yet satisfactorily solved.

One such challenge is that posed by runaway electrons. In the undesired
event of a plasma-terminating disruption, the tokamak can turn into a
racetrack where electrons make millions of laps per second while they
are accelerated by an electric field. If the resulting beam of relativistic
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Chapter 1. Introduction

electrons hits the tokamak wall, it can locally melt significant amounts of
the wall material (Matthews et al., 2016). The potential for damage in
such an event is so large that not a single unmitigated runaway electron
event is allowed in future, larger tokamak devices operating with multi-
MA plasma currents, such as ITER (Lehnen et al., 2015). It is therefore
essential to further develop runaway mitigation schemes, which requires
accurate modeling of runaway-electron dynamics.

The runaway phenomenon is a basic result of plasma physics, and occurs
in several contexts. The collisional friction force experienced by a fast
plasma particle decreases with speed, so an electric field above a certain
threshold – the critical electric field Ec – can accelerate particles to rela-
tivistic energies. This phenomenon is rather counterintuitive; translated
into our every-day language, it would correspond to a drag force that
decreased with velocity, resulting in an ever-increasing speed when cy-
cling with a constant force on the pedals. The runaway mechanism will
occur in plasmas with electric fields above the critical field Ec (Connor
& Hastie, 1975), which includes several plasma systems: magnetic fusion
devices (Helander et al., 2002), astrophysical plasmas (Holman, 1985),
and in lightning initiation where this mechanism is believed to play a
key role (Dwyer, 2007; Lehtinen et al., 1999).

In many plasmas where runaway electrons are observed, the runaway
electrons interact with weakly ionized or neutral atoms. These impuri-
ties may be either atmospheric molecules, or the ions which are typically
used to mitigate runaway electrons in magnetic fusion. Interaction with
such impurities can drastically affect the dynamics of runaway electrons.
If a slow electron interacts with a partially ionized ion, the interaction
strength depends only on the net charge of the ion since the nucleus
is completely screened by the bound electrons. In contrast, a fast elec-
tron can penetrate this cloud of bound electrons, which leads to partial
screening of the nucleus. Since the interaction strength strongly depends
on the degree of screening, this phenomenon has a significant impact
on the runaway-electron dynamics. However, treatments of screening
have previously been limited to simplified models, which either neglect
quantum-mechanical effects (Mart́ın-Soĺıs et al., 2015; Mosher, 1975), or
employ the approximate Thomas–Fermi theory to calculate the density
of bound electrons around the ions (Kirillov et al., 1975; Zhogolev &
Konovalov, 2014).
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1.1. Generation of runaway electrons in tokamak experiments

In this thesis, we derive a more accurate collision operator for fast elec-
trons in partially ionized plasmas. In Papers A and B, we employ den-
sity functional theory (DFT) simulations to obtain accurate quantum-
mechanical scattering cross-sections, from which we construct an an-
alytical model for the collision operator. Furthermore, we implement
this model in a kinetic solver for the electron distribution function, and
study the effects of screening on runaway dynamics. Papers C-E apply
this collision operator to investigate various aspects of runaway dynamics
in the presence of partially ionized impurities, namely the effect on the
threshold electric field (Paper C) and the steady-state runaway growth
rates due to large-angle collisions (the avalanche mechanism; Paper D)
as well as small-angle collisions (the Dreicer mechanism; Paper E). The
presented model for collisions between fast electrons and partially ion-
ized impurities represents the main contribution of this thesis and is
applicable in and beyond tokamak research. Nevertheless, the primary
application in mind is to runaways in tokamaks; in particular, some
results in Papers C and D are specific to such scenarios. To put the
contributions of this thesis into perspective, we now review the main
mechanisms for runaway generation in tokamaks and the issues present
in runaway modeling.

1.1 Generation of runaway electrons in tokamak ex-
periments

Among systems which can sustain sufficiently large electric fields for
runaway acceleration, the tokamak plasma is distinguished by its large
inductance and its toroidal current. Both of these properties are closely
linked to the formation of a large electric field in the tokamak.

Fortunately, the electric field required to produce the usual operational
toroidal plasma current in a tokamak is generally below Ec, which means
that runaway electrons are seldom observed during normal operation
(Helander et al., 2002). This is because the conductivity σ ∝ T 3/2 is
sufficiently large at high plasma temperatures that the toroidal current
I = σAE (where A is the cross-section area) is large even at a low
external electric field Eext � Ec ∝ n, where n is the electron density.
Consequently, either a lower density or a decreased temperature (at a
fixed plasma current) is required to obtain super-critical electric fields
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Chapter 1. Introduction

and generate runaways. This corresponds to two different scenarios:
low-density discharges and tokamak disruptions.

For runaway generation at low plasma density, the externally applied,
current-driving electric field Eext must exceed the critical electric field
Ec, i.e. Eext/Ec ∝ 1/(T 3/2n) must be sufficiently large. This condition
is most easily achieved during tokamak start-up, where a larger electric
field is applied to achieve plasma break-down and current ramp-up. In
the early years of tokamak research, runaway electrons were routinely
generated during the start-up phase (Knoepfel & Spong, 1979), but in
today’s experiments, runaway generation during this phase can be re-
duced by applying additional heating during ionization. In addition,
any runaway seed population formed during current ramp-up can gen-
erally be suppressed by maintaining larger plasma densities (Granetz
et al., 2014). Consequently, runaway electrons are now only rarely ob-
served during tokamak start-up, although some concern has recently
been raised in this regard for ITER (de Vries & Gribov, 2018).

It is more difficult to prevent runaway generation during a disruption,
which is an off-normal event where the plasma energy is suddenly lost,
typically due to instabilities, in what is known as a thermal quench (TQ)
(Hender et al., 2007; de Vries et al., 2011; Wesson, 2011; Wesson et al.,
1989). This temperature drop can decrease the conductivity σ ∝ T 3/2

by several orders of magnitude, causing a current quench (CQ), which in
turn induces an electric field Eind ∝ −dI/dt (where I is the plasma cur-
rent). The induced electric field can often drastically exceed the critical
electric field and may convert a significant fraction of the initial plasma
current into a runaway beam of several hundred kiloamperes (Hollmann
et al., 2015a). The numbers are even more dramatic in larger tokamaks
such as ITER, with potential runaway currents of several megaamperes
(Mart́ın-Soĺıs et al., 2017; Paper K).

The potential runaway-electron damage increases with the size of the
device. The main reason is that the internal magnetic energy in the
plasma scales as Wmag ∝ I2R (where R is the major radius of the toka-
mak), and it is this energy that is partially converted into kinetic and
magnetic energy of the runaway beam. Moreover, large devices confine
high-energy particles better than small devices, which allows the elec-
trons to reach higher energies before they are lost to the wall (Guan
et al., 2010; Knoepfel & Spong, 1979). Accordingly, runaway electrons
are generally tolerable in today’s tokamaks, whereas they will be un-
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1.2. Runaway avoidance and mitigation

acceptable in larger reactor-size devices due to the risk of damage. In
today’s tokamaks, runaway electrons are therefore predominantly gener-
ated intentionally in dedicated experiments in order to develop reliable
methods for runaway avoidance and mitigation. In these experiments,
runaway electrons are usually created by either a disruption-causing im-
purity injection (Hollmann et al., 2013), or by ramping up the current
while constraining the density (or deacreasing the density at fixed cur-
rent) until the electric field exceeds the critical field (Esposito et al.,
2003).

Runaway generation is more problematic for future devices not only be-
cause of the increased possible damage, but also since a runaway beam
is more easily formed. The reason is intrinsic to kinetic theory of plas-
mas: the runaway density can increase exponentially with time in an
avalanche created by large-angle collisions between runaway electrons
and slower electrons. While the plasma current in present machines al-
lows for some avalanche multiplication, this effect could amplify a small
runaway seed by a devastating factor of ∼1020 in ITER (Rosenbluth &
Putvinski, 1997). Experiments in small devices can therefore not inves-
tigate all aspects of the runaway problem in larger devices, which makes
modeling crucial.

1.2 Runaway avoidance and mitigation

As for many other issues, prevention is better than cure when it comes
to runaway damage mitigation. This means that the first line of defense
is to avoid disruptions altogether. However, the mechanisms behind dis-
ruptions are only partially understood. It is widely known that there
are limits on the maximum density, current and plasma β (the average
ratio of the plasma pressure over the magnetic field pressure) beyond
which major MHD instabilities are triggered (Freidberg, 2007). Disrup-
tions do however also happen during operation within the safe regions
of these limits, in which case the precise underlying mechanisms are not
completely known. To better predict such disruptions, there are both
physics-based and statistical approaches (Pautasso et al., 2018). While
the former approach aims to better understand the formation of cer-
tain instabilities in the plasma, the latter utilizes the large number of
available tokamak pulses, often employing machine learning techniques
(Cannas et al., 2010; Kates-Harbeck et al., 2019; Rattá et al., 2010;

5



Chapter 1. Introduction

Wroblewski et al., 1997). A drawback with this method is that the
algorithms do not necessarily generalize well beyond the region where
they were trained, such as to future, larger tokamaks. One may there-
fore expect that the first of these larger tokamaks will experience some
disruptions, at least in the early phase of operation.

In the case where a disruption is approaching, and the control system
fails to recover the plasma into a region of safe operation, the disruption
mitigation system should be triggered and safely shut down the plasma
(Lehnen et al., 2015). The task of the disruption mitigation system is
three-fold (Hollmann et al., 2011a):

(i) to distribute the heat load in order to prevent melting of the
plasma-facing components;

(ii) to limit the forces from currents induced in the vessel structures;

(iii) to suppress, or at least mitigate, runaway electrons.

Of the tokamaks where a disruption could seriously damage the wall,
ITER is the closest to operation, and its disruption mitigation system
represents the state of the art. Below, we therefore use ITER as an
example, noting that the overall picture applies to other large tokamaks
as well.

In ITER, the first two goals of the disruption mitigation system will be
addressed by massive material injection, most likely in the form of shat-
tered pellets of deuterium in combination with neon or argon (Pautasso
et al., 2018). The injected material will cause a thermal quench, in which
approximately 90-95 % of the thermal and magnetic energy must be ra-
diated to prevent wall melting (Hollmann et al., 2015b; Lehnen et al.,
2015). Assuming sufficient material assimilation, this goal is realistic
and can routinely be achieved in current experiments (Hollmann et al.,
2015b).

In order to limit the forces associated with induced currents, the current
quench must be slow enough to prevent excessive eddy currents from
being induced in the vessel. At the same time, the current quench must
be sufficiently fast to ensure that the current has decayed considerably
before the plasma strikes the vessel wall, driving halo currents (Hollmann
et al., 2011a). To reach these goals, the ITER target current quench time
is in the interval 50-150 ms (Hollmann et al., 2015b). This requirement

6



1.2. Runaway avoidance and mitigation

can also be fulfilled, provided there is enough assimilation of injected
material.

However, it remains uncertain whether sufficient impurity quantities can
be assimilated in ITER, and there is experimental evidence of poor im-
purity penetration into the plasma (Nardon et al., 2016; Reux et al.,
2015). It is crucial that the impurity assimilation is sufficiently quick,
otherwise the fraction of radiated energy during the thermal quench will
be too low. In order to minimize the impurity delivery time as well as
maximize the penetration depth into the plasma, the ITER disruption
mitigation system will utilize shattered pellets (Breizman et al., 2019;
Commaux et al., 2016). These pellets must contain a large amount of
material compared to the original content in the plasma, but the required
amount is modest in everyday life units: a few pellets of the size of a
wine cork spread over the ITER volume of 830 m−3 would be enough for
the impurity density to vastly exceed the original pre-injection density
of the plasma (Breizman et al., 2019).

The aim is that the injected material will not only mitigate the thermal
and current quench loads, but also prevent runaway electron damage
according to task (iii) above. As the main source of damage is localized
wall melting if a runaway beam hits the wall, the maximum allowable
runaway current is approximately 0.3-1.9 MA depending on the spatial
distribution of the deposited material (Breizman et al., 2019). The most
straightforward means of reaching this goal is to prevent runaway forma-
tion by ensuring that the injected density is large enough that E < Ec

at all times. This however requires the assimilated density to be larger
than currently achieved in any experiment, and may therefore be unfea-
sible (Pautasso et al., 2018). For this reason, a second material injection
has been proposed for ITER, which would increase the runaway cur-
rent decay rate. However, more recent simulations of so-called vertical
displacement events show that a second impurity injection might accel-
erate the drift into the wall, in practice not affecting the magnitude of
the current at wall strike, which implies that a faster current quench
is not necessarily beneficial (Konovalov et al., 2016; Pautasso et al.,
2018).

As the reliability of runaway mitigation and prevention by massive mate-
rial injection is uncertain, alternative schemes have also been proposed.
One suggested method is to use magnetic perturbations, either exter-
nally applied (Papp et al., 2015a) or passively generated through the
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Chapter 1. Introduction

design of the tokamak wall (Smith et al., 2013), but these studies indi-
cated that neither method is powerful enough for runaway prevention.
It has also been studied whether wave-particle instabilities can suppress
any runaway formation (Breizman & Aleynikov, 2017; Fülöp & Newton,
2014; Liu et al., 2018; Pokol et al., 2014), but again there is a lack of
evidence for the efficacy of this method in ITER-like scenarios (Breiz-
man et al., 2019). For this reason, a number of alternative mitigation
schemes are currently studied through a combination of experiment and
modeling.

1.3 Modeling of runaway electrons in tokamaks

Realistic modeling and prediction of runaway-electron dynamics requires
many different processes to be accounted for. Of these processes, mom-
entum-space effects are among the most important and include colli-
sions, radiation reaction as well as acceleration by the electric field.
These processes, in turn, depend on the spatiotemporal evolution of
the background plasma: the electric field determines the acceleration,
the temperature and the plasma composition affect the collision rates,
and breakup of magnetic surfaces gives rise to particle transport. A
large runaway population may also lead to back-reaction on the induced
electric field as well as the plasma ionization.

The multidimensional nature of the runaway problem – in combination
with the wide separation in energy and time scale between thermal and
relativistic particles – makes it computationally unfeasible to simulta-
neously model all the relevant effects accurately, which motivates the
use of approximate methods. One such method is reduced kinetic model-
ing, also known as runaway fluid modeling, where kinetically determined
runaway generation rates are implemented in tools which determine the
background plasma evolution to varying degrees of sophistication (Fehér
et al., 2011; Helander et al., 2002; Mart́ın-Soĺıs et al., 2017; Papp et al.,
2013; Putvinski et al., 1997; Smith et al., 2006). However, as we fur-
ther discuss in chapter 4, the available formulas for runaway generation
were (prior to this thesis) inaccurate, and the description of transport
is simplified in these models. Furthermore, the validity of reduced ki-
netic models has not been investigated systematically. To address these
weaknesses, more idealized models can be useful to characterize and
qualitatively understand the specific effects.
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1.3. Modeling of runaway electrons in tokamaks

An example of a more idealized model is a pure momentum-space de-
scription, which is useful to study kinetic effects. This is the approach
we take to explore the effect of partial screening on runaway dynam-
ics in Papers A-C. In making the connection to a tokamak, this spa-
tially homogeneous approach amounts to assuming that the runaway
electrons are located close to the magnetic axis (the circle at the center
of the torus), and neglecting their radial transport as well as the spa-
tial variation of the electromagnetic fields. The momentum-space model
is sophisticated enough to capture many features of runaway dynam-
ics while being simple enough for extensive analytical and numerical
analysis, which enabled us to develop an intuition about the relative
importance of competing effects in different parameter regimes. The
same approach has also been used to study radiation reaction (Embréus
et al., 2016; Stahl et al., 2015), avalanche generation (Embréus et al.,
2018; Stahl et al., 2016) and non-linear collisional effects (Stahl et al.,
2017).

Similarly, a suitable framework for studying runaway-electron transport
in perturbed magnetic fields is to follow test particles in a prescribed
magnetic field geometry, which can be obtained from, for example, mag-
netohydrodynamic (MHD) codes. This has been done in both mag-
netostatic fields, where the perturbations were generated by resonant
magnetic perturbation coils (Papp et al., 2012, 2015a; Särkimäki et al.,
2016), and in disruption scenarios involving massive material injection
(Izzo et al., 2011; Sommariva et al., 2017).

Armed with the improved understanding from idealized models such as
the examples above, it is possible to improve the reduced kinetic mod-
els. For example, more lightweight reduced kinetic models (which do not
solve for the full MHD evolution) could be equipped with effective mod-
els of transport. To better account for partial screening, the runaway
generation rates can be updated. In papers D and E, we thus approach
a more quantitative description of runaway dynamics by improving re-
duced kinetic models.

9



Chapter 1. Introduction

1.4 Outline

In this thesis, we address the runaway interaction with an assumed back-
ground density of impurities. The model we develop is based on kinetic
theory, which we therefore review in chapter 2, arriving at a kinetic
equation for runaway electrons in a homogeneous plasma. In chapter 3,
we use this kinetic equation to derive the basic runaway mechanisms
and some key quantities. Chapter 4 takes a step towards experimen-
tal validation, and is focused on the reduced kinetic models introduced
in section 1.3. Finally, chapter 5 highlights the main findings of the
appended papers concerning the effect of screening on the dynamics of
runaway electrons. We find strongly increased collision rates of runaway
electrons compared to previous estimates. This effect increases both
dissipation and avalanche rates, and therefore has promising as well as
concerning implications for the potential to mitigate damaging runaway
behavior in tokamaks.
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Chapter 2

Kinetic theory for runaway
electrons

The runaway phenomenon is fundamentally a kinetic effect depending
on the balance between collisional friction and electric-field accelera-
tion. Kinetic theory is therefore key to understanding runaway dy-
namics. Specifically, the collision operator is an essential object for
the runaway mechanism and has a particularly important role in this
thesis, which revolves around the collision operator in a partially ion-
ized plasma. This chapter therefore presents an introduction to kinetic
theory with particular emphasis on the collision operator. We then spe-
cialize the kinetic equation to an idealized momentum-space model for
runaway electrons, and briefly introduce the numerical tool code (Lan-
dreman et al., 2014; Stahl et al., 2016), which has been used in all of the
appended papers.

2.1 The kinetic equation

The kinetic equation determines the evolution of the probability distri-
bution of particles in phase-space, and takes the form

∂fa
∂t

+
∂

∂z
· (żfa) = Ca{fa}. (2.1)

Here, fa(x,p, t) is the distribution function of species a evaluated at time
t, position x and momentum p = γmv (where γ = 1/

√
1− v2/c2 is the

11



Chapter 2. Kinetic theory for runaway electrons

Lorentz factor and v is the velocity). The distribution is normalized so
that the particle number density is given by na(x, t) =

∫
fa(x,p, t) d

3p.
Moreover, ∂/∂z denotes the gradient operator with respect to the phase-
space coordinates z = (x,p), and ż = (v,Fa) is the time derivative of
z. In a plasma, the force is given by Fa = qa(E + v ×B), where E and
B are the electric and magnetic fields respectively, and qa is the charge
of species a.

The distribution function fa is a statistical object in the sense that
it denotes a smooth function where the point-like contributions from
individual particles have been ensemble averaged over many macro-
scopically equivalent particle configurations. Similarly, the forces act-
ing on the distribution function are averaged, which removes the short-
length-scale interaction between individual particles. This contribution
to the dynamics is instead described by the collision operator Ca{fa} =∑

bC
ab{fa, fb} on the right-hand side of the kinetic equation (2.1),

which gives the time rate of change in fa due to collisions with all
species b in the plasma. When the collision operator is discussed in
the following section and elsewhere, we will use the shorter notation
Cab ≡ Cab{fa, fb}.

A rigorous derivation of the kinetic equation is outside the scope of
the present text. Such derivation is associated with several subtle is-
sues including precise definitions of the averaging process, particularly
in the collision operator (Montgomery & Tidman, 1964). Nevertheless,
the kinetic equation can be intuitively understood in a simple manner
as a continuity equation with an additional term from the collision op-
erator, which describes the effect of the microscopic fields. Without
collisions, the distribution function would obey the continuity equation,
i.e. ∂fa/∂t+ (∂/∂z) · (żfa) = 0. In a Hamiltonian system, this continu-
ity equation leads to Liouville’s theorem, stating that the distribution
function is conserved along the trajectories of a system (Tong, 2012).
With the dissipation introduced by collisions, the system is, however, no
longer Hamiltonian which invalidates Liouville’s theorem. As a conse-
quence, the motion of individual particles is not deterministic, but can
be described by a stochastic differential equation known as the Langevin
equation (Tong, 2012).

12



2.2. The Fokker–Planck collision operator

2.2 The Fokker–Planck collision operator

The form of the collision operator depends on the range of the inter-
particle forces, which significantly differs between neutral gases versus
plasmas. Short-range forces decrease rapidly with inter-particle distance
r, and include molecular forces which fall off as 1/r6 or 1/r7 (Mont-
gomery & Tidman, 1964). This short-range interaction is dominated by
large-angle two-body collisions, which are described by the Boltzmann
collision operator. The Boltzmann operator can be understood as the
rate at which species a scatters from p1 into p, minus the rate of the
opposite scattering process. Its general form is (Cercignani & Kremer,
2002)

CabBoltz =

∫
dσab
dΩ

gø

[
fa(p1)fb(p2)− fa(p)fb(p

′)
]
d3p′dΩ, (2.2)

where gø =
√

(v − v′)2 − (v × v′)2/c2 is the Møller relative speed and
dσab/dΩ is the differential cross section for collisions in which the mo-
mentum of species a changes from p to p1, and p′ → p2 for species
b.

In contrast to gases of molecules, plasma particles mainly interact via
long-range forces, namely Coulomb forces. Coulomb forces fall off as
the inverse square of the inter-particle distance 1/r2. The distinguishing
feature of inverse-square forces is that the interaction is dominated by
small-angle deflections to the particle trajectories, which are described
by the Fokker–Planck operator.

The Fokker–Planck operator may be obtained from a small-angle ex-
pansion of the Boltzmann operator but it can also be derived indepen-
dently using methods from statistical mechanics (Montgomery & Tid-
man, 1964). The Fokker–Planck collision operator between species a
and b is given by

Cabfp = −∇k
(
fa
〈
∆pk

〉
ab

)
+

1

2
∇k∇l

(
fa
〈
∆pk∆pl

〉
ab

)
, (2.3)

where the term 〈∆pk〉ab represents the average rate of change in the
kth component of the momentum of the incoming electron during a
collision, while 〈∆pk∆pl〉ab describes the average rate of change in the
tensor pkpl. Here, ∇k refers to the momentum-space gradient operator.
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Chapter 2. Kinetic theory for runaway electrons

These average momentum changes are given by〈
∆pk

〉
ab

=

∫
dp′fb(p

′)

∫
dσab
dΩ

gø∆pkdΩ,〈
∆pk∆pl

〉
ab

=

∫
dp′fb(p

′)

∫
dσab
dΩ

gø∆pk∆pldΩ.

(2.4)

The angular integrals in equations (2.4) are taken over∫
dΩ =

∫ π

θmin

sin θ dθ

∫ 2π

0
dφ, (2.5)

where θmin is the minimum scattering angle below which Debye shield-
ing screens out long-range interaction. This shielding effect means that
each plasma particle only interacts with particles within a distance of
the Debye length λD; over larger distances, the plasma species will be
distributed to ensure macroscopic charge neutrality.

Without the minimum angle θmin, the integrals in the Fokker–Planck
operator (2.3) would diverge, since the Coulomb-interaction cross sec-
tion scales as dσab/dΩ ∝ sin−4(θ/2) while the lowest-order terms in
∆pkdΩ and ∆pkpldΩ are of order ∼ sin3(θ/2)d[sin(θ/2)] (Rosenbluth
et al., 1957). The collision operator thus acquires terms which are pro-
portional to the Coulomb logarithm ln Λ = ln(2/θmin), which is typically
large in magnetic-fusion plasmas due to the large number of particles
within a Debye sphere (Helander & Sigmar, 2005). The Coulomb loga-
rithm quantifies the dominance of small-angle collisions over large-angle
collisions, and thereby determines the validity of the Fokker–Planck op-
erator. Since the Fokker–Planck operator can only model small-angle
collisions accurately, it only contains the leading-order terms in ln Λ.
Unless the order-unity terms (i.e.� ln Λ) can be neglected, the resulting
operator will exhibit unphysical energy transfers between the different
species. Such unphysical properties can also appear in the collision op-
erator for partially ionized plasmas that we derive in this thesis, and are
addressed in Paper B.

As for its numerical value, the Coulomb logarithm has an energy de-
pendence which can be significant for particles with momentum much
larger than the thermal speed, in particular if the temperature is low
and the density is high. An expression for this energy-dependence can
be obtained from matching the thermal Coulomb logarithm from Wesson
(2011),

ln Λ0 = 14.9− 0.5 ln(ne [1020 m−3]) + ln(T [keV]), (2.6)
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2.2. The Fokker–Planck collision operator

and the high-energy formula from Solodov & Betti (2008), according to

ln Λee = ln Λ0 +
1

k
ln
(

1 +
[
2(γ − 1)/p̄2

Te

]k/2)
,

ln Λei = ln Λ0 +
1

k
ln
[
1 + (2p̄/p̄Te)

k
]
,

(2.7)

where “e” and “i” denotes electrons and ions respectively, p̄ = p/(mec)
is the normalized momentum and p̄Te =

√
2Te/(mec2) is the normalized

thermal momentum. In the appended papers, the parameter k = 5
was chosen to give a smooth transition between the thermal and the
high-energy expressions.

For runaway electrons, the relation between the Fokker–Planck operator
and the Boltzmann operator is more than a theoretical curiosity, since
both are needed to model the runaway dynamics. In most magnetic-
fusion plasmas, small-angle collisions dominate over large-angle collisions
in which case the Fokker–Planck operator accurately models the dynam-
ics. Small-angle collisions dominate also in runaway-prone plasmas, but
here, large-angle collisions introduce a new runaway mechanism known
as the avalanche effect, which causes an exponential growth of the run-
away population. The Fokker–Planck and Boltzmann operators must
therefore be combined to describe runaway dynamics.

Large-angle collisions are also enhanced in partially ionized plasmas,
which could challenge the validity of the Fokker–Planck operator to
model the effect of partial screening. In Paper B, we therefore inves-
tigate the validity pitch-angle scattering in the Fokker–Planck operator
by comparing it to the Boltzmann operator. We find a negligible dif-
ference in key runaway quantities such as runaway density, current and
generation rates, implying that the Fokker–Planck operator is adequate
also in partially ionized plasmas for typical tokamak parameters.

2.2.1 Linearized collision operator

In highly collisional plasmas, including many tokamak scenarios and run-
away events, the distribution is close to its thermal equilibrium, which in
a relativistic plasma is given by the Maxwell–Jüttner distribution (the
Maxwellian for short) (Cercignani & Kremer, 2002)

fMa(p) =
na

4πm3
ac

3ΘaK2(1/Θa)
exp

(
− γ

Θa

)
, (2.8)
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Chapter 2. Kinetic theory for runaway electrons

where Θa = Ta/(mac
2) is the temperature1 of species a normalized to the

rest energy and K2(1/Θa) is the second-order modified Bessel function
of the second kind. In the non-relativistic limit Θ � 1, the Maxwell–
Jüttner distribution simplifies to the Maxwell–Boltzmann distribution,
which may be obtained by expanding equation (2.8) in small Θ, in which
case K2(1/Θ) ∼ e−1/Θ

√
πΘ/2. The non-relativistic Maxwellian is ac-

cordingly given by (Helander & Sigmar, 2005)

fMa(p) =
na

π3/2m3
av

3
Ta

exp

(
− v2

v2
Ta

)
, (2.9)

where vTa =
√

2Ta/ma is the thermal speed.

If the distribution is close to its thermal equilibrium, the collision oper-
ator can be linearized around a Maxwellian. A linear collision operator
can well describe many aspects of runaway dynamics. This is because
many runaway scenarios have a trace runaway population, since even a
small fraction of relativistic particles are enough to carry the full ini-
tial plasma current. Full current conversion sets the upper limit of the
runaway current due to induction, and thereby restricts the maximum
runaway density, if the average runaway speed is close to the speed of
light. Two interesting exceptions where a linear operator may be inade-
quate are if the distribution is strongly distorted, or if the electric field
is large, both of which may occur during tokamak disruptions. Such sce-
narios can not be modeled by the linear collision operator, but require
a non-linear collision operator, such as that considered by Stahl et al.
(2017), which was derived by Braams & Karney (1989).

The linearized Fokker–Planck collision operator consists of two pieces:
the test-particle operator Cabfp,tp and the field-particle operator Cabfp,fp.
The test-particle operator describes how the perturbation to the Max-
wellian is affected by collisions with the Maxwellian background, while
the field-particle operator describes the back-reaction from the pertur-
bation on the Maxwellian. As a concrete example, the friction on a
runaway population is determined by the test-particle operator whereas
the field-particle operator modifies the bulk population, which is needed
to obtain the correct conductivity in the plasma. The test-particle op-
erator thus contains the essential interaction for runaway physics.

1We follow the plasma-physics convention to include a factor of the Boltzmann
constant kB in the temperature, which gives it units of energy.
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2.2. The Fokker–Planck collision operator

The test-particle operator for species a (2.3) can be parametrized by the
three collision frequencies νabD , νabS and νab‖ (Helander & Sigmar, 2005):

Cabfp,tp = νabD L {fa}+
1

p2

∂

∂p

[
p3

(
νabS fa +

1

2
νab‖ p

∂fa
∂p

)]
, (2.10)

where the Lorentz scattering operator

L =
1

2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2θ

∂2

∂φ2

]
(2.11)

causes deflection at constant energy, known as pitch-angle scattering.

The processes described by the three collision frequencies in equation
(2.10) drive the distribution fa toward a Maxwellian distribution through
different mechanisms. The deflection frequency νabD increases isotropy,
and will counter-act any beam-like structures which can be generated
by, for example, a large electric field. In the energy distribution, the
slowing-down frequency νabS describes collisional friction, whereas the
parallel momentum diffusion frequency νab‖ reduces sharp gradients of
the energy distribution. As a consequence of these collisional effects, a
distribution in equilibrium is isotropic, and the balance between colli-
sional friction and momentum diffusion gives the familiar bell shape of
a Maxwellian.

The test-particle part of the electron collision operator is composed of the
electron-electron and the electron-ion collision operator, where the latter
only contains the pitch-angle scattering; in the limit of small electron-to-
ion mass ratio, energy transfers between the two species are negligible.
Accordingly, the test-particle electron collision operator takes the form

Ce
fp,tp =

(
νee

D + νei
D

)
L {fe}+

1

p2

∂

∂p

[
p3

(
νee

S fe +
1

2
νee
‖ p

∂fe

∂p

)]
. (2.12)

In a fully ionized plasma (to be generalized in section 2.3), the collision
frequencies are given by (Braams & Karney, 1989; Pike & Rose, 2014)2

2In equation (2.13), there is no energy-dependent Coulomb logarithm factor
ln Λee/ ln Λ0 in νee

‖ . This is because such a factor would entail adding terms
∝ ∂ ln Λee(p)/∂p to νee

S . However, the parallel diffusion frequency vanishes at su-
perthermal momentum as shown in section 2.2.2, which implies that ln Λee ≈ ln Λ0

everywhere where νee
‖ is non-negligible and thus justifies the approximation.
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Chapter 2. Kinetic theory for runaway electrons

νee
S =

1

τc

1

p̄

ln Λee

ln Λ0
ΨS(p̄,Θ),

νee
‖ =

1

τc

2γΘ

p̄3
ΨS(p̄,Θ),

νee
D =

1

τc

2

p̄2

ln Λee

ln Λ0
ΨD(p̄,Θ),

νei
D =

1

τc

γ

p̄3

ln Λei

ln Λ0
Zeff.

(2.13)

Here, Θ = Te/(mec
2), Zeff =

∑
j njZ

2
j /ne is the effective plasma charge,

τc =
4πε2

0m
2
ec

3

nee4 ln Λ0
(2.14)

is a relativistic collision time, and the Coulomb logarithm is given in
equation (2.7). The functions ΨD and ΨS take the form

ΨS(p̄,Θ) =
γ2Ψ1 −ΘΨ0 + (Θγ − 1)p̄e−γ/Θ

p̄2K2(1/Θ)
,

ΨD(p̄,Θ) =
1

2γp̄3K2(1/Θ)

((
p̄2γ2 + Θ2

)
Ψ0 + Θ

(
2p̄4 − 1

)
Ψ1

+γΘ
[
1 + Θ

(
2p̄2 − 1

)]
p̄e−γ/Θ

)
,

(2.15)

where

Ψ0 =

∫ p̄

0

1√
1 + s2

exp
(
−
√

1 + s2/Θ
)
ds,

Ψ1 =

∫ p̄

0
exp

(
−
√

1 + s2/Θ
)
ds,

(2.16)

andK2 is the second-order modified Bessel function of the second kind.

2.2.2 Collision frequencies at non-relativistic temperatures

To elucidate the behavior of the collision frequencies presented in equa-
tion (2.13), we evaluate them at a non-relativistic temperature Θ� 1
and in the limit of both non-relativistic momentum (p̄ � 1) and su-
perthermal momentum (γ − 1� Θ).
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2.2. The Fokker–Planck collision operator

In the non-relativistic temperature limit, s � 1 dominates the inte-
grals (2.16) and we may approximate

Ψ1,Ψ0 ≈ Ψ ≡ e−1/Θ

∫ p̄

0
e−s

2/2ds = e−1/Θ

√
πΘ

2
φ(x),

K2(1/Θ) ≈ e−1/Θ
√
πΘ/2,

(2.17)

where φ(x) = (2/
√
π)
∫ x

0 e
−y2

dy is the error function and we defined

x ≡ p̄/
√

2Θ, which approaches v/vTe for non-relativistic speeds.

For ΨS, we obtain the following in the superthermal and non-relativistic
limits, respectively:

ΨS(p̄,Θ) ≈ γ2

p̄2
φ (x)− 1

p̄2

√
2

πΘ
p̄e−(γ−1)/Θ

→


γ2

p̄2
, γ − 1� Θ,

G(x)/Θ, p̄� 1,
(2.18)

where G(x) is the Chandrasekhar function

G(x) =
φ(x)− xφ′(x)

2x2
→

{
2x

3
√
π
, x→ 0

1
2x2 x→∞

. (2.19)

The Chandrasekhar function peaks at x ≈ 1, and then monotonically
decreases.

Similarly, for ΨD,

ΨD(p̄,Θ)→


γ
2p̄ , γ − 1� Θ,

1
2p̄

[(
1− Θ

p̄2

)
φ(x)− 1

p̄

√
2Θ
π e
−x2
]

︸ ︷︷ ︸
=φ(x)−G(x)

, p̄� 1.
(2.20)

The collision frequencies in equation (2.13) thus take the following form
in the non-relativistic limit:

νee
S →

1

τc

c

v

ln Λee

ln Λ0

G(x)

Θ
,

νee
‖ →

2

τc

c3

v3
G(x),

νD = (νee
D + νei

D)→ 1

τc

c3

v3

(
ln Λee

ln Λ0
[φ(x)−G(x)] + Zeff

ln Λei

ln Λ0

)
,

(2.21)
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Likewise, the superthermal collision frequencies are, at a non-relativistic
temperature, given by

νee
S →

1

τc

γ2

p̄3

ln Λee

ln Λ0
,

νee
‖ → 0,

νD →
1

τc

γ

p̄3

(
ln Λee

ln Λ0
+ Zeff

ln Λei

ln Λ0

)
.

(2.22)

Several insights into runaway dynamics can be made almost directly
from inspecting the collision frequencies in equations equations (2.21)
and (2.22). As will be further discussed in chapter 3, the fact that pνee

S

decreases with speed above x ≈ 1 gives rise to the runaway mechanism,
and its behavior as p → ∞ defines the threshold field for the runaway
mechanism.

2.3 Collisions between electrons and partially ion-
ized atoms

Fast electrons are strongly affected by interaction with partially ion-
ized atoms. Unlike the case of a fully ionized plasma, the electron-ion
interaction strength depends on the electron energy due to the energy-
dependent screening of the Ne bound electrons around the ion; a low-
energy electron will experience a completely screened ion with the net ion
charge Z0, whereas an ultrarelativistic electron will approach the limit
of no screening, where the interaction strength is determined by the full
nuclear charge Z. Moreover, the electron experiences an increasing rate
of inelastic collisions with the bound electrons as its energy increases.
Since the collision frequencies vary linearly with electron density, and
the deflection frequency varies approximately quadratically with the ion
charge, the collision rates for fast electrons are strongly enhanced in the
presence of weakly ionized impurities, compared to when the nuclei are
completely screened by the bound electrons.3

The collision operator between fast electrons and partially ionized atoms
consists of two parts: collisions with the nuclei and collisions with the

3Throughout this thesis, we use the limit of complete screening as reference in
expressions such as “enhanced dissipation rates”.
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2.3. Collisions between electrons and partially ionized atoms

bound electrons. In both cases, the target particle can be treated as
stationary; ions have a lower velocity than electrons due to the small
electron-to-ion mass ratio (assuming the electron and ion temperatures
are of the same order of magnitude), and the bound electrons are slow
since they would not be bound if their kinetic energy exceeded the bind-
ing energy. Collisions with partially ionized atoms will therefore only
affect the test-particle part of the electron collision operator.

In the electron-ion collision operator Cei
fp,tp, only νei

D is modified by par-
tial screening, since no energy transfer is kinematically allowed between
ions and electrons in the limit of small electron-to-ion mass ratio. To
calculate νei

D, we evaluate the collision operator (2.3) for stationary tar-
get particles. This derivation of the collision operator follows Rosen-
bluth et al. (1957) but the Rutherford cross-section is replaced by the
quantum-mechanical cross section for collisions with bound electrons,
taken in the Born approximation (Heitler, 1954; Landau & Lifshitz,
1958):

dσej

dΩ
=

r2
0

4p̄4

(
cos2(θ/2)p̄2 + 1

sin4(θ/2)

)
|Zj − Fj(q)|2 . (2.23)

Here, r0 = e2/(4πε20mec
2) is the classical electron radius and Zj is the

atomic number (the full nuclear charge) for ion species j. The form
factor is defined as

Fj(q) =

∫
ρe,j(r)e

−iq·r/a0 dr, (2.24)

where a0 is the Bohr radius, and q = 2p̄ sin(θ/2)/α with the fine-
structure constant α ≈ 1/137. The electronic charge density of the ion is
denoted ρe,j(r), and must in general be determined by numerical meth-
ods such as density functional theory (DFT); see Paper B. By inspecting
the form factor, the limits of complete screening and no screening can be
identified. Complete screening is obtained as the exponential approaches
unity at low q, which implies that Fj → Ne,j and |Zj−Fj |2 → Z2

0,j , where
Ne,j is the number of bound electrons and Z0,j is the charge number (the
net charge) of the ion. Conversely, the no screening limit is approached
at high q since the fast oscillations in the exponential cause the form
factor to vanish, which yields |Zj − Fj |2 → Z2

j .

In Papers A and B, we developed an analytical expression for the par-
tially screened deflection frequency. As we were mostly concerned with
the behavior of the collision operator, the form of this expression was
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chosen to ensure that νei
D well captures the energy-dependence of the full

DFT solution to the deflection frequency. In this regard, we found that a
one-parameter model, which generalizes the expression by Kirillov et al.
(1975), was sufficient. The free parameter was determined so that the
high-energy asymptote of νei

D exactly followed the DFT solution. This
method gave an accurate model for the collision operator, but the model
is less appropriate for processes with a different dependence on the form
factor, such as bremsstrahlung radiation where a Yukawa-type potential
is more suitable (Lamoureux & Avdonina, 1997).

With this model, νei
D in equation (2.13) is modified according to

νei
D =

1

τc

γ

p̄3

1

ln Λ0

(
ln ΛeiZeff + g(p̄)

)
, (2.25)

where the partial screening correction is

g(p̄) =
∑
j

nj
ne

{
2

3

(
Z2
j − Z2

0,j

)
ln
[
(p̄āj)

3/2 + 1
]
− 2

3

N2
e,j(p̄āj)

3/2

(p̄āj)3/2 + 1

}
.

(2.26)
The normalized length parameter āj is determined from the density of
bound electrons around the ion and is thus related to the ion radius.
Its numerical values are given for some fusion-relevant elements in Pa-
per B.

Regarding the electron-electron collision operator Cee
fp,tp, we modify the

slowing-down frequency νee
S according to the Bethe stopping-power for-

mula (Bethe, 1930; Jackson, 1999). No modification is however needed in
νee
‖ ; as shown in equation (2.22) it vanishes at superthermal electron mo-

menta and is therefore adequately described by the completely screened
expression, which is valid at thermal energies. We also neglect the ef-
fects in νee

D , since there is no analytic expression for the differential cross
section for collisions with bound electrons. As discussed in Paper B,
this approximation can be motivated by the fact that νei

D � νee
D if the ef-

fects of screening are significant, and thus the total deflection frequency
νD = νei

D+νee
D is well approximated even with the completely-screened ex-

pression for νee
D . Conversely, if the screening effects are insignificant, the

completely-screened expression will resemble νee
D per definition.

The resulting, modified expression for νee
S in equation (2.13) is

νee
S =

1

τc

γ2

p̄3

1

ln Λ0

(
ln Λee p̄

2

γ2
ΨS(p̄,Θ) + h(p̄)

)
, (2.27)
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2.4. Kinetic equation for runaway electrons

where we note that the first term approaches unity in the superthermal
limit by equation (2.18) and if the energy dependence of the Coulomb
logarithm is ignored. The second term is defined as

h(p̄) =
∑
j

nj
ne
Ne,j

{
1

5
ln

[
1 +

(
p̄
√
γ − 1

Ij/mec2

)5]
− β2

}
, (2.28)

where Ij is the mean excitation energy. Values of Ij are tabulated by
Sauer et al. (2015) for argon, neon and a few other fusion-relevant ions.
Moreover, Berger et al. (1984) provide the values for a large number of
elements, but only for neutral atoms. For other ion species, Mehlhorn
(1981) suggested an interpolation formula which relates the mean exci-
tation energy of an ion to that of a neutral atom, which gives satisfac-
tory results at least for weakly ionized aluminium (Garbet & Deutsch,
1986).

Apart from their effect on the small-angle Fokker–Planck operator, par-
tially ionized impurities also affect the avalanche operator, which de-
scribes large-angle collisions. Since the energy transfer required to pro-
duce a runaway electron typically far exceeds the binding energy, the
analytic structure of the avalanche source is largely unaffected by colli-
sions with partially ionized impurities. The only difference is that the
multiplying density should include the free as well as the bound elec-
trons, since they have equal probability of becoming runaway electrons.
The effect of screening on the avalanche growth rate is discussed in sec-
tion 3.3.2.

2.4 Kinetic equation for runaway electrons

In the previous sections, we discussed the specialization of the collision
operator to make it suitable for runaway modeling, namely a relativis-
tic collision operator, a large-angle collision operator and the modifica-
tion due to screening in partially ionized plasmas. Apart from these
effects, kinetic modeling of runaway electrons also requires the force
in equation (2.1) to include radiation losses. Synchrotron radiation is
emitted as particles gyrate around magnetic field lines, and bremsstrahl-
ung emission is a result of inelastic collisions with ions (not to be con-
fused with inelastic collisions with bound electrons in a partially ionized
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Chapter 2. Kinetic theory for runaway electrons

plasma). Synchrotron radiation reaction can be modeled as a contin-
uous momentum-dependent force (Decker et al., 2016; Hirvijoki et al.,
2015a,b; Stahl et al., 2015), whereas bremsstrahlung is dominated by
large-angle collisions and generally requires a Boltzmann operator in or-
der to capture the effect on the runaway distribution (Embréus et al.,
2016).

With the considerations above, we obtain an equation which describes
the essential momentum-space effects of runaway dynamics. We intro-
duce the cosine of the pitch angle ξ = cos θ = p ·B/(pB) and let E be
the component of the electric field antiparallel to the magnetic field B
(so that electrons are accelerated in the positive ξ direction).4 After a
transformation to the {p, ξ} coordinate system, we arrive at the kinetic
equation in a homogeneous plasma:

∂fe

∂t
+ eE

(
ξ
∂fe

∂p
+

1− ξ2

p

∂fe

∂ξ

)
︸ ︷︷ ︸

electric field

= Cfp + Cava︸ ︷︷ ︸
collisions

+ Cbr −∇k
(
F ksynfe

)
︸ ︷︷ ︸

radiation reaction

.

(2.29)

Here, the test-particle part of the linear Fokker–Planck collision operator
Cfp was given in equation (2.12), the avalanche process is described
by Cava, and radiation losses are modeled by Cbr (the bremsstrahlung
collision operator) and Fsyn (the synchrotron radiation reaction force).
Additionally, equation (2.29) can be supplemented by terms describing
sources of energy and momentum to the system (such as terms to account
for the spatial dynamics).

2.5 Numerical solution of the kinetic equation with
CODE

While certain aspects of runaway dynamics can be understood directly
from analytic equations, quantitative results typically rely on numerical
calculations. This thesis is no exception: in Papers A-E the numeri-
cal tool code (COllisional Distribution of Electrons) (Landreman et al.,

4In a tokamak, particles are accelerated in the direction parallel (or antiparallel) to
the magnetic field, since the motion caused by the orthogonal electric field will cancel
by design of the tokamak. In a non-magnetized atmospheric plasma, ξ is instead
defined by the angle to the electric field; ξ = −p ·E/(pE).
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2.5. Numerical solution of the kinetic equation with CODE

2014; Stahl et al., 2016) has an important role. Code solves the kinetic
equation in a uniform plasma as given in equation (2.29). It calculates
the time-evolving electron distribution function fe under the influence of
electric-field acceleration, collisions and radiation reaction. It can also
handle a prescribed evolution of background temperature and plasma
composition, which is modeled by adding particle and heat sources to
the kinetic equation (2.29). As a result of using a linearized collision
operator, code can only handle a trace runaway population which may,
however, give a non-trace contribution to the plasma current. Since mod-
eling of non-trace runaway currents requires a self-consistent electric field
evolution, the electric field in code can either be set externally or de-
termined self-consistently by a zero-dimensional induction model.

Code is equipped with linear operators for both small-angle (Fokker–
Planck) and large-angle (Boltzmann) collisions. The Fokker–Planck op-
erator includes the test-particle collision operator given in equation (2.10)
as well as a non-relativistic field-particle operator (Landreman et al.,
2014). The possibility to model collisions with partially ionized impuri-
ties was added to the Fokker–Planck test-particle operator in conjunc-
tion with Paper A. Code also contains several options for the avalanche
operator. In its most advanced form, the implemented avalanche op-
erator is fully conservative, which means that the runaway-generating
field-particle term (see section 2.2.1) is combined with a test-particle
term, which describes how the runaway-electrons are scattered by large-
angle collisions (Embréus et al., 2018). In accordance with the discus-
sion in the previous section, a Boltzmann operator is also employed for
bremsstrahlung radiation reaction, while synchrotron radiation reaction
is modeled as a continuous force.

As for its numerical implementation, code is a continuum code. Since
the pitch-angle dependence of the linearized Fokker-Planck and Boltz-
mann collision operators is diagonal in a Legendre polynomial basis (He-
lander & Sigmar, 2005), the kinetic equation is discretized in Nξ Legen-
dre modes PL, so that

fe(p, ξ) =

Nξ−1∑
L=0

fL(p)PL(ξ). (2.30)

This is combined with a fourth-order finite difference scheme in the p
variable, with Np non-uniformly spaced grid points. The kinetic equa-
tion is thus represented on a NpNξ×NpNξ grid. The discretized Fokker–
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Chapter 2. Kinetic theory for runaway electrons

Planck collision operator, the electric field terms and synchrotron radia-
tion together form a sparse matrix and are treated implicitly in time, but
the Boltzmann integral operators for avalanche and bremsstrahlung ra-
diation reaction constitute dense matrices and are consequently treated
explicitly for computational efficiency.

The computational power needed for a code simulation heavily depends
on the problem: simple scenarios can run in a fraction of a second
on a laptop, whereas a self-consistent electric-field simulation with an
advanced avalanche operator including both bremsstrahlung and syn-
chrotron radiation losses may require hundreds of CPU hours using more
than 100 GB of RAM. The present thesis contains the results of both
light and computationally demanding code calculations. The results
of these simulations will be summarized in the final chapter, but first
we will present some basic insights into runaway-electron dynamics that
can be obtained from an analytical approach.
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Chapter 3

Runaway-electron formation
and decay

Having presented the essential components of a kinetic equation for run-
away electrons in (2.29) in the previous chapter, we now interrogate this
equation to gain some physical insights. Starting by deriving the funda-
mental equation for the runaway phenomenon, we subsequently identify
the key parameter regimes in terms of time scales, electric field strength
and plasma current. We also discuss the three chronological phases of
runaway generation in tokamaks: seed generation, avalanche multiplica-
tion and runaway decay.

3.1 The runaway phenomenon

The runaway mechanism originates in the non-monotonic property of
the dynamical friction force, which is defined as pνee

S introduced in sec-
tion 2.2.1. At superthermal speeds, the dynamical friction is identical to
the mean force acting on a test particle. This can be seen from the elec-
tron momentum equation for a test particle homogeneously distributed
in space but localized in momentum according to

fe = δ3(p− p0) =
1

p2 sin θ
δ(p− p0)δ(θ − θ0)δ(φ− φ0). (3.1)

By taking the first p moment of the Fokker-Planck equation (2.1) with
fe as above, and using the test-particle collision operator from equa-
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Chapter 3. Runaway-electron formation and decay

tion (2.12), we obtain the following in the absence of other forces acting
on the particle:

∂p0

∂t
=

∫
p
(
νee

D + νei
D

)
L {fe}d3p

+

∫
p

1

p2

∂

∂p

[
p3

(
νee

S fe +
1

2
νee
‖ p

∂fe

∂p

)]
d3p. (3.2)

The first term evaluates to zero when integrating over θ and φ, respec-
tively:∫

p3

2

(
νee

D + νei
D

) [ ∂
∂θ

(
sin θ

∂fe

∂θ

)
+

1

sin θ

∂2fe

∂φ2

]
dp dθ dφ = 0. (3.3)

Moreover, νee
‖ , defined in equation (2.13), vanishes at superthermal mo-

mentum. Upon evaluating the angular integrals, equation (3.2) therefore
yields

∂p0

∂t
=

∫ ∞
0
p
∂

∂p

(
p3νee

S

δ(p− p0)

p2

)
dp

= −p0ν
ee
S (p0), (3.4)

integrating by parts in the last step.
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superthermal limit

Figure 3.1: Dynamical friction force on an electron in a fully ionized
plasma of temperature 1 keV (i.e. Θ ≈ 2 · 10−3; p̄Te ≈ 0.06), neglecting
the energy-dependence of the Coulomb logarithm. The solid black line
uses the full expression (2.13), whereas the gray lines show the limiting
expressions (3.5). Note that radiation reaction also contribute to the
energy loss at high energies, which means that the total friction on a
relativistic electron increases with p̄.
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3.1. The runaway phenomenon

Using equations (2.21) and (2.22) obtained in a fully ionized plasma and
for non-relativistic bulk temperatures Θ = Te/mec

2 � 1, the dynamical
friction force is given by

F = pνee
S →


mec

τc

ln Λee

ln Λ0

G(x)

Θ
, p̄� 1,

mec

τc

ln Λee

ln Λ0

γ2

p̄2
, γ − 1� Θ.

(3.5)

The friction force is plotted in figure 3.1, comparing the full expression
using equation (2.13) with the limiting expressions in equation (3.5).
The friction force increases for subthermal velocities, and then decreases
with momentum above the thermal velocity, approaching a constant
value in the high-energy limit. This behavior is thus characterized by
two important scales for the electric field: the critical electric field Ec

and the Dreicer field ED.

The critical electric field is the threshold electric field above which the
runaway process can occur. This field can be identified by taking the
high-energy limit of the superthermal expression in equation (3.5), ne-
glecting the energy-dependence of ln Λ. Then, eEc is the force required
to balance the collisional friction on a high-energy particle moving par-
allel to the electric field:

Ec =
mec

eτc
=
nee

3 ln Λ0

4πε20mec2
, (3.6)

where the relativistic collision time τc was given in equation (2.14).

For E > Ec, sufficiently energetic particles will be continuously acceler-
ated, and can accordingly be labeled as runaway electrons. To be more
precise, we can define the critical momentum above which electric-field
acceleration overcomes collisional friction if the electron travels parallel
to the electric field. Combining the superthermal limit of the friction
force (3.5) with equation (3.6), and once again neglecting the energy-
dependence of the Coulomb logarithm, p̄c is obtained from

eE = eEc
p̄2

c + 1

p̄2
c

⇒ p̄c =
1√

E/Ec − 1
. (3.7)

The concept of a threshold field for runaway generation can be gener-
alized beyond the force balance calculation above. The effective critical
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Chapter 3. Runaway-electron formation and decay

electric field Eeff
c can be defined as the minimum electric field required to

sustain a relativistic runaway distribution indefinitely, and is higher than
Ec for several reasons. Electrons moving with an angle θ to the electric
field experience a force FE · p̂ = −eE cos θ projected in the p̂ = p/p
direction, and thus the electric field may need to significantly exceed Ec

in order to balance out the widening of the distribution function caused
by pitch-angle scattering. Moreover, the slowing-down force is increased
at relativistic electron speeds due to the effect of bremsstrahlung and
synchrotron radiation reaction as well as an energy-dependent Coulomb
logarithm, and partial screening contributes to enhanced collision rates
in partially ionized plasmas. The enhancement of the critical electric
field due to these three effects is the subject of Paper C, where we de-
termined the value of Eeff

c in a plasma dominated by partially ionized
impurities. In Paper C, we employed a method developed by Lehti-
nen et al. (1999) and Aleynikov & Breizman (2015), which assumes
fast pitch-angle dynamics, and showed that in the presence of partially
ionized impurities, the effective critical field is approximately given by

Eeff
c & Etot

c =
ntot

e

ne
Ec, (3.8)

where ntot
e is the total electron density including free and bound elec-

trons. Consequently, bound and free electrons contribute approximately
equally to the critical electric field. This result is the combined effect of
collisional friction and enhanced pitch-angle scattering, in synergy with
radiation reaction losses.

While the critical electric field sets the scale for the runaway mechanism
to occur at all, the Dreicer field determines if the electric field is suffi-
cient to accelerate a substantial runaway tail starting from a Maxwellian
distribution. Accordingly, the Dreicer field is related to the fraction of
the thermal population that experiences a net electric-field acceleration;
ED approximates the required electric field for slide-away, i.e. when the
entire electron distribution is accelerated (Dreicer, 1959). To estimate
the slide-away electric field, consider the maximum of the dynamical
friction force in the non-relativistic limit of equation (3.5)

max[F ] = eEc
mec

2

Te
max[G(x)] ≈ 0.2eED, (3.9)

where the Dreicer field evaluates to

ED = Ec
mec

2

Te
. (3.10)
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If the electric field is close to this slide-away field, the entire electron
distribution will be distorted and rapidly deviate from a Maxwellian. In
contrast, if the electric field is a few percent of ED, it will only accelerate
the small fraction of particles that are sufficiently fast to experience a
positive net force. Due to energy diffusion (described by ν‖ introduced
in section 2.2.1), this region in momentum space will be continuously
re-populated, which gives the distribution an energetic tail of runaway
electrons (Helander et al., 2002). This runaway population will consti-
tute a small, steadily growing fraction of the electron population, while
the majority of the distribution will remain close to the Maxwellian dis-
tribution. This mechanism of runaway production is known as Dreicer
generation.

To summarize, there are three distinct electric-field regions with different
fast-electron behavior:

(i) E < Eeff
c : runaway decay,

(ii) Eeff
c < E . 0.2ED: runaway generation can occur,

(iii) E & 0.2ED: slide-away.

Of these, the electric field is typically in range (ii) during runaway sce-
narios, and consequently this is the most important region to model
from a runaway perspective. In this range [as well as range (i)], a lin-
ear collision operator is adequate as long as the runaway population is
trace.

In tokamak experiments, runaway generation is usually characterized
by three phases: seed generation, avalanche multiplication and decay.
These phases are further discussed in section 3.3, but first a brief inter-
lude on the induced electric field, which separates the runaway-generation
phases.

3.2 Induced electric field in tokamak disruptions

The basic equations for the electric field induced in a tokamak disrup-
tion can be directly obtained from Maxwell’s equations. Neglecting the
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Chapter 3. Runaway-electron formation and decay

displacement current in Ampère’s law, these are

B = ∇×A, (3.11)

E = −∇Φ− ∂A

∂t
, (3.12)

∇×B = µ0j, (3.13)

∇×E = −∂B
∂t
. (3.14)

From Maxwell’s equations, we can derive a few basic relations governing
the induced electric field during and after tokamak disruptions: the time
integral of the electric field, its time evolution when the runaway current
is small and the maximum electric field after the thermal quench.

Figure 3.2: A torus showing common tokamak coordinates, including
the poloidal and toroidal angles, which are denoted θ and ϕ, respec-
tively. The radial coordinate r may alternatively be parametrized with
the poloidal flux ψp (or the toroidal flux ψt).

3.2.1 Relation between induced electric field and the poloidal
flux

Figure 3.2 shows the tokamak geometry, including the poloidal and
toroidal angles. To confine the plasma particles, the magnetic field forms
a helical pattern, with a large toroidal component and a smaller poloidal
component induced by a toroidal current. Both the toroidal magnetic
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3.2. Induced electric field in tokamak disruptions

field and current can have either sign depending on the tokamak configu-
ration, which means that the induced electric field can be either toroidal
or anti-toroidal. For simplicity, we will here assume that both Bϕ > 0
and jϕ > 0, so that Bθ > 0 and Eϕ > 0.

A key parameter describing the magnetic field geometry is the poloidal
flux ψp, which is the flux of magnetic field through the central hole of
the torus (Boozer, 2005):

ψp = −
∫

B · daθ, (3.15)

where daθ is the area element perpendicular to ∇θ. Surfaces of constant
ψp (which, for example, could be the surface of the torus in figure 3.2),
together form the nested torii known as flux surfaces, and describe the
magnetic field structure in the tokamak. Accordingly, the poloidal flux
can be regarded as a label for flux surfaces of the tokamak, and ψp

is often used as a radial coordinate instead of r since it simplifies the
expressions for e.g. the equilibrium magnetic field.

Using Stokes’ theorem and the vector potential defined in equation (3.11),
the poloidal flux can be rewritten

ψp = −
∫

A · dl = −2πRAϕ, (3.16)

where the last equality comes from toroidal symmetry. Furthermore,
again due to axisymmetry,

Eϕ = −∂Aϕ
∂t

=
1

2πR

∂ψp

∂t
, (3.17)

which implies that the change in poloidal flux during a tokamak disrup-
tion directly determines the time integral of the induced electric field:∫

Eϕ dt =
∆ψp

2πR
. (3.18)

From the definition (3.15), ψp < 0 if Bθ > 0, which implies that the
poloidal flux will increase toward zero during a disruption, and the
toroidal electric field will be positive with our assumed tokamak config-
uration. Since the electric field is integral to runaway dynamics, it may
not be surprising that the change in poloidal flux is a fundamental quan-
tity in runaway dynamics, which will be shown in section 3.3.2.
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3.2.2 Induction equation in the cylindrical limit

Another equation that will be useful later on is the induction equa-
tion, which can be obtained by combining Ampère’s and Faraday’s laws:

µ0
∂j

∂t
= −∇× (∇×E) = ∇2E, (3.19)

since ∇ · E = 0 in a quasi-neutral plasma. An approximate form of the
induction equation can be obtained in a cylindrically symmetric plasma,
corresponding to a large-aspect-ratio tokamak. Since, by design of the
tokamak, an electric field perpendicular to the magnetic field causes
no net acceleration, we project equation (3.19) in the direction parallel
to the magnetic field. As the magnetic field lines are approximately
toroidal, we get the following in the cylindrical approximation E‖ ≈
Eϕ(r):

µ0

∂j‖

∂t
= ∇2E‖ =

1

r

∂

∂r

(
r
∂E‖

∂r

)
. (3.20)

In elongated plasmas, where the cross-section of the torus is elliptical
rather than circular, the induction equation acquires a dependence on
the elongation κ, as shown in Paper I. The direct effect of finite κ is a
modest increase in the induced electric field at fixed current decay rate,
but this effect is overwhelmed by the reduction in j‖ if the minor radius
a and the current I‖ ∼ κa2j‖ are kept constant while varying κ.

In the cylindrical limit, we can obtain an explicit expression for the
poloidal flux by combining equations (3.17) and (3.20):

ψp(r) = −µ0R

∫ a

r

I(r′)

r′
dr′ + ψp(a), (3.21)

where I(r′) ≡ 2π
∫ r′

0 j‖(r)rdr. If there is a perfectly conducting wall at
r = a, ψp(a) must be constant in time not to induce an electric field
in the wall, which implies that only the first term in equation (3.21)
contributes to induce an electric field.

The electric field evolution is also related to the current density through
Ohm’s law. In a non-relativistic plasma with a weak electric field (He-
lander & Sigmar, 2005),

j‖,Ω = σ‖E‖,

σ‖ =
nee

2τei

me
L11 =

12π3/2

√
2

T
3/2
e ε20

Zeff e2√me ln Λ0
L11,

(3.22)
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where τei is the thermal electron-ion collision time and L11 varies slowly
with increasing effective charge from approximately 2.0 at Zeff = 1 to
3.4 as Zeff → ∞. There are further corrections to the conductivity, for
example at relativistic plasma temperatures (Braams & Karney, 1989),
but the general scaling with physical parameters persists when these
corrections are included. In equation (3.22), j‖,Ω is the Ohmic current
and signifies that the equation only applies to the thermal plasma popu-
lation. The current produced by runaway electrons is not determined by
Ohm’s law since it breaks the weak-electric-field ordering, is sensitive to
transient behavior (whereas equation (3.22) is derived in steady state)
and also can be generated through large-angle collisions. Accordingly,
the parallel current is given by j‖ = σ‖E‖ + jre, which can be used as a
definition of the runaway current density jre.

The induction equation (3.20) and Ohm’s law (3.22) can be combined
to approximate the evolution of the electric field and the current in the
phase where the contribution from runaway electrons can be neglected.
This is useful both to estimate the current quench time and to get an
upper estimate of the induced electric field during the current quench –
the latter was used in Paper D to study avalanche dynamics. In the limit
of trace runaway current, the electric field evolution can be determined
by separation of variables. Assuming

j‖(r, t) =
∑
n

cnjn(r)e−t/τ
cq
n , (3.23)

equation (3.20) can be written

r̄2j′′n(r̄) + r̄j′n(r̄) = −
µ0σ‖a

2

τcq
n

r̄2jn, (3.24)

where r̄ = r/a ∈ [0, 1] is the radial coordinate normalized to the minor
radius of the tokamak. This equation is solved by J0, the zeroth-order
Bessel function of the first kind. If a conducting wall is assumed at the
plasma edge r̄ = 1, the boundary condition is jn(1) = 0, from which we
obtain 

jn = J0 (xnr̄) ,

τcq
n =

µ0σ‖a
2

x2
n

,
(3.25)

where xn is the n’th zero of J0(x); for example, x1 ≈ 2.4.
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Assuming that the initial current profile is described by the first Bessel
mode corresponding to n = 1, we obtain

j‖(r̄, t) =
x1

2J1(x1)

I0

πa2
J0(x1r̄)e

−t/τcq ,

τcq =
µ0σ‖a

2

x2
1

,
(3.26)

where the current density was normalized to give an initial plasma cur-
rent I0 = 2π

∫ a
0 rj‖(r̄, 0)dr. We can then estimate the current quench

time

τcq = 13 ms× (Te [10 eV])3/2(a [m])2

Zeff
, (3.27)

where we approximated L11 ≈ 2, and ln Λ ≈ 10 represents a typical
post-disruption value. During normal plasma operation, where the tem-
perature is in the keV range, the current decay would take many sec-
onds (if the current drive was turned off). Therefore, the current quench
mainly takes place after the thermal quench, which typically occurs on
the sub-ms timescale in medium-sized tokamaks (such as ASDEX Up-
grade and DIII-D, which both have a ≈ 0.5 m), and is expected to last
several ms in ITER (where a ≈ 2 m) (Hender et al., 2007). This also
indicates that the thermal quench and the current quench can be treated
as separate events, unless the post-disruption temperature is lower than
approximately 5 eV.

If the thermal and current quench can be separated in time (i.e. τtq �
τcq), the maximum induced electric field can be estimated from Ohm’s
law (3.22) and demanding that the current density does not change
during the thermal quench1:

σpost-tqEpost-tq ≈ j‖,initial. (3.28)

1One exception where the constant-current assumption is violated is during the vi-
olent onset of the disruption, where MHD effects cause magnetic surfaces to break and
reconnect. In this case, magnetic helicity conservation tends to flatten out the current
profile and cause a sudden peak in the plasma current (Boozer, 2019). The initial
current density j‖,initial should then be evaluated after the magnetic reconnection.
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3.2. Induced electric field in tokamak disruptions

With the current profile from equation (3.26), the central (r = 0) induced
electric field is

Epost-tq

Ec
≈
j‖,initial

neec

√
2

3
√
π

Zeff

L11

(
mec

2

T

)3/2

≈ 200
I0 [MA]Zeff

ne [1020 m−3](T [10 eV])3/2(a [m])2
, (3.29)

where all quantities should be evaluated after the thermal quench, and
we used equations (3.6) and (3.22). In large tokamaks, we may therefore
expect post-disruption electric fields of hundreds to a thousand times the
critical electric fields.

Also E/ED = (Te/mec
2)E/Ec (by equation (3.10)) is expected to peak

at the end of the thermal quench, although the weaker temperature
dependence can here be canceled by a substantial increase in the plasma
density during the disruption;

Epost-tq

ED
≈ 0.5 %× I0 [MA]Zeff

ne [1020 m−3](Te [10 eV])1/2(a [m])2
. (3.30)

3.2.3 Zero-dimensional equation for the induced electric field

Finally, the simplest equation for the induced electric field is the zero-
dimensional induction equation. For this purpose, we introduce the flux
inductance (Boozer, 2018)

L =

∣∣∣∣Ψp

Ip

∣∣∣∣ , (3.31)

where Ψp = ψp(r = 0) and Ip = I(r = a) is the total plasma cur-
rent. The flux inductance generally differs from the self-inductance of
the plasma (Boozer, 2018), but the two quantities are equivalent in the
limit where the plasma becomes a thin conducting wire (Bellan, 2004,
chapter 9.6).

Using the flux inductance, the induced electric field can be related to
the current evolution through equation (3.17),

E‖(r = 0) = − 1

2πR

∂LIp

∂t
≈ − L

2πR

∂Ip

∂t
, (3.32)

if the inductance varies slowly in time. This zero-dimensional inductance
equation can be used for a simplified analysis of the current dynamics,
as was done for example in Paper C and by Helander et al. (2002).
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Chapter 3. Runaway-electron formation and decay

3.3 Dynamics during runaway generation and decay

As stated at the end of section 3.1, runaway dynamics can be divided
into three chronological phases, especially in large tokamaks. First, an
initial seed population is generated through, for example, the Dreicer
mechanism. This seed is then amplified by the avalanche mechanism
until the Ohmic plasma current is consumed. Finally, this runaway
population decays.

3.3.1 Runaway seed generation

Runaway seed generation can occur through several processes. Hot-tail
generation takes place if the electron distribution cools down while it
is subject to an electric field (Aleynikov & Breizman, 2017; Chiu et al.,
1998; Helander et al., 2004; Smith & Verwichte, 2008; Smith et al., 2005).
Since the superthermal friction force decreases with speed, the highly en-
ergetic tail of the distribution will be cooled at a slower rate than the
thermal population, if the cooling is dominated by collisional processes.
When this bulk cooling is accompanied by an electric field, as in a dis-
ruption, the hot-tail mechanism can produce a runaway seed population
or even convert a large part of the initial current directly (Aleynikov &
Breizman, 2017).

During the active phase of fusion operation, fast electrons can be gen-
erated through tritium decay and Compton scattering of γ-rays emitted
from the activated wall. Provided that the electric field is sufficiently
large, a fraction of the produced fast electrons will exceed the criti-
cal momentum and thus run away. For tritium decay, the maximum
electron energy is 18.6 keV, which implies a threshold E & 15Ec for
runaway production through tritium decay, but the runaway generation
drops significantly already below E ≈ 50Ec (Mart́ın-Soĺıs et al., 2017).
The tritium seed is indirectly affected by partial screening, since the
increased critical momentum reduces the fraction of produced electrons
above the runaway threshold (Paper K).

Based on estimations for the ITER wall, runaway production through
Compton decay is less sensitive to the critical momentum and thus
the electric field; it is reduced below E & 10Ec but occurs down to
E ≈ Ec (Mart́ın-Soĺıs et al., 2017). Moreover, Compton-scattered elec-
trons can have such a high energy that they may survive even if they
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3.3. Dynamics during runaway generation and decay

are generated before the thermal quench, similarly to the hot-tail mech-
anism.

Runaway seed generation can also occur through the Dreicer mechanism,
which is the combined effect of electric-field acceleration and collisional
diffusion (Dreicer, 1959, 1960). The most accurate analytical expres-
sion for the Dreicer generation rate was obtained by Connor & Hastie
(1975) by generalizing the non-relativistic results by Kruskal & Bernstein
(1962),
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(3.34)

is the thermal electron collision time, with the thermal speed vTe =√
2Te/me. The order-unity parameter C is undetermined by Connor

& Hastie (1975) but has been quantified in subsequent work to around
C ≈ 1.0 if the thermal collision time is defined as above (Jayakumar
et al., 1993; Kruskal & Bernstein, 1962). The parameters λ, η and
h constitute the relativistic generalization of the generation rate; they
approach unity as E/Ec →∞.

As the Dreicer generation rate is exponentially sensitive to E/ED, Dre-
icer generation predominantly occurs when the electric field is largest.
As shown in equation (3.30), this is most likely immediately after the
thermal quench. Despite its apparent complexity, equation (3.33) is only
valid for fully ionized plasmas. In partially ionized plasmas, the genera-
tion rate can decrease by several orders of magnitude, which we showed
in Paper E. In this paper, we performed a large number of code sim-
ulations to determine the Dreicer generation rate in plasmas of various
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Chapter 3. Runaway-electron formation and decay

ionization degree, and used this data to train a neural network. The
neural network is parametrized by a series of matrix multiplications and
function applications:

ln

(
τee

ne

dnre

dt

)
= W5 tanh [W4 · · · tanh(W1x + b1) + · · ·+ b4] + b5.

(3.35)
Here, x is an eight-component input vector composed of E/ED, lnTe

and six parameters related to the plasma composition. To determine the
weight matrices W(k) and the bias vectors b(k), the neural network was
trained using the Python library PyTorch (Paszke et al., 2019).

As noted above, runaway seed generation mostly takes place during the
thermal quench and the early phase of the current quench. This phase,
in particular the thermal quench and the associated breakup of magnetic
flux surfaces, is characterized by uncertainties in physical models. Most
notably, a large fraction of the runaway seed may be lost due to trans-
port, something which has not been systematically analyzed apart from
a few examples. If transport effects are neglected, it is estimated that
hot-tail generation dominates in ITER, followed by tritium decay and
Compton scattering. Dreicer generation is typically negligible in ITER
compared to the other sources (Mart́ın-Soĺıs et al., 2017), but it is be-
lieved to often dominate in today’s medium-sized tokamaks, which have
lower temperatures and do not produce fusion reactions, in particular
for relatively long thermal quench times (Smith et al., 2005).

3.3.2 Avalanche multiplication

Once a seed population of runaway electrons has been generated, it can
grow exponentially through the avalanche mechanism, provided that the
electric field is larger than the effective critical electric field (Jayakumar
et al., 1993; Sokolov, 1979). This avalanche is created when a runaway
electron collides with a thermal electron and transfers enough momen-
tum that both electrons run away. Large-angle collisions thereby pro-
vide a shortcut in momentum-space compared to the combination of
collisional diffusion and electric field acceleration that gives Dreicer gen-
eration. As a result, if the runaway population is sufficiently large, this
mechanism will dominate over Dreicer and hot-tail generation, despite
the rarity of large-angle collisions in plasmas mentioned in the previ-
ous chapter. The small-angle Fokker–Planck operator must therefore

40



3.3. Dynamics during runaway generation and decay

be complemented by the large-angle Boltzmann operator in order to
accurately describe runaway generation.

In a fully ionized, homogeneous plasma, the avalanche growth rate is
given by Rosenbluth & Putvinski (1997):

Γ ≡ 1

nre

∂nre

∂t
=

e

mec ln Λc

|E‖| − Ec√
5 + Zeff

. (3.36)

Equation (3.36) was derived assuming that all incoming runaway elec-
trons are traveling with the speed of light and parallel to the electric
field. These simplifying assumptions have been relaxed by Chiu et al.
(1998) and Embréus et al. (2018), who showed that the growth rate
(3.36) remains accurate in most of the parameter regime.

Avalanche generation takes place during the current quench when the
flux surfaces have healed. Together with the fact that it is less sensitive
to plasma parameters, the avalanche dynamics is therefore expected to
be less sensitive to uncertainties in models and experimental measure-
ments. To determine if avalanche generation is important in a certain
scenario, the avalanche multiplication factor Nava is a key parameter.
The avalanche multiplication factor determines the upper limit on how
much a runaway seed can be multiplied, i.e. how small a runaway seed
is required to prevent significant avalanche generation. This parameter
can be estimated by assuming that the magnetic field is purely toroidal,
E‖ = Eϕ. Furthermore, if E‖ � Ec we can integrate equation (3.36) in
time, and use equation (3.18) to obtain
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2πR
. (3.37)

As an example, we use the current profile from equation (3.26) obtained
in the cylindrical limit R� a. The induced electric field on the magnetic
axis then obeys∫ ∞

0
E‖dt =
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The avalanche multiplication factor is thus given by

ln
nre
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≈ 1.6

ln Λc

√
5 + Zeff
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, (3.39)
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where IA = (4πmec)/(µ0e) ≈ 17 kA is the Alfvén current. This ex-
pression is rather robust since the temperature and density dependence
canceled, except for the weak variation in the Coulomb logarithm. In
an ITER-like plasma with parameters I0 = 15 MA, ne = 1020 m−3,
T = 10 eV and Zeff = 1, Nava ≈ 37, implying that a seed could be
amplified with a striking factor2 of 1016. Consequently, substantial run-
away generation is much more difficult to prevent in ITER compared to
today’s medium size tokamaks with approximately a tenth of the plasma
current.

In practice, the runaway population typically carries an appreciable frac-
tion of the current toward the end of the current quench. In this case, the
runaway beam is not amplified by the full factor eNava , since only a frac-
tion of the poloidal flux (or plasma current) is consumed by the avalanche
mechanism through the electric field. Accordingly, ∆ψp < |ψp(t = 0)|.
The fact that no appreciable electric field will be induced after the run-
away current reaches IRE ≈ Ip can be approximately accounted for in
equation (3.39) by replacing I0 with the associated change in the plasma
current ∆Ip.

The simple result in equation (3.37), which was derived in a fully ionized
plasma, becomes considerably more complicated in a partially ionized
plasma, as we showed in Paper D. The generalized expression for the
avalanche growth rate takes the form

Γ =
e

mec ln Λc

ntot
e

ne

|E‖| − Eeff
c√

4 + ν̄S(p?)ν̄D(p?)
, (3.40)

where ν̄S = νee
S /(τ

−1
c γ2/p̄3) and ν̄D = νD/[τ

−1
c γ/p̄3] are the collision

frequencies normalized to the superthermal, idealized expressions given
in equation (2.22), and the partially screened collision frequencies are
defined in equations (2.25) and (2.27). The effective critical electric field
Eeff

c is discussed in section 3.1 and is calculated in Paper C. The relation
p2
? =

√
ν̄S(p?)ν̄D(p?)/(E‖/Ec) defines an effective critical momentum p?

for runaway, which has a non-trivial dependence on the electric field in
partially ionized plasmas.

When evaluating equation (3.40) in a partially ionized plasma, the ava-
lanche growth rate is no longer directly proportional to the electric field,

2This number is somewhat different from the number stated in the introduction
due to different assumptions on for example the plasma current profile.
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which implies that the change in poloidal flux is not sufficient to de-
termine the avalanche multiplication factor. Instead, the avalanche dy-
namics are sensitive to the electric-field evolution during the current
quench. The reason for this more complicated behavior is fundamen-
tally the energy-dependent enhancement of the collision frequencies due
to partial screening. This results in two competing effects: the increased
total density of electrons in the plasma increases the growth rate, but
runaway electrons also experience more collisional friction and pitch-
angle scattering. We find that the former effect always dominates, so
the avalanche growth rate increases in the presence of partially ionized
impurities, as opposed to the Dreicer generation rate which always de-
creases with partial screening. This is illustrated in figure 3.3, where
the avalanche growth rate is plotted for a plasma with either neon or
argon, resulting in a substantially higher growth rate than without im-
purities.

Figure 3.3: The avalanche growth rate (3.40) in a plasma with T = 5 eV
and nD = 1020 m−3, and an impurity injection nZ = nD of either doubly
ionized neon (solid line) or triply ionized argon (dash-dotted line), which
correspond to the equilibrium ionization states at the given temperature.
For reference, the dashed line shows the growth rate without impurities.

3.3.3 Runaway-electron decay

The runaway beam that has formed during the current quench will even-
tually decay. This occurs when the runaway current becomes compara-
ble to the Ohmic current, which reduces the induced electric field. Since
runaway electrons experience fewer collisions than thermal particles, the
current decay rate will be substantially slower than during the current
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Chapter 3. Runaway-electron formation and decay

quench, and this phase is therefore sometimes referred to as the runaway
plateau.

During the runaway plateau, the current decay rate is set by the effective
critical electric field Eeff

c and the magnitude of the current (Breizman,
2014). This is because the avalanche growth rate is highly sensitive to
the induced electric field, so an electric field that deviates too much from
the effective critical electric field will cause a rapid growth or decay of
runaway electrons, which will feed back on the current and the electric
field. To prevent such rapid change in the current, E ≈ Eeff

c must hold
if the runaway current is sufficiently large, and the zero-dimensional in-
ductance equation (3.32) can be used to estimate the decay rate. Breiz-
man (2014) used dimensional analysis to predict that a runaway current
above 250 kA is required for E ≈ Eeff

c in a fully ionized plasma. Paper C
performed a similar analysis for a partially ionized plasma with a large
content of singly ionized argon (ntot

e,Ar � ne,D). Using equation (3.32)

and the derived expression for Eeff
c from the same paper, we quanti-

fied the deviation from E ≈ Eeff
c and obtained Ire � 60 kA. This is

sometimes fulfilled in medium-sized tokamaks and will generally hold in
larger tokamaks such as ITER.

The runaway-electron decay phase is also where the runaway radiation
losses are the most important. This is because both bremsstrahlung
and synchrotron radiation are only effective at highly relativistic ener-
gies. When the electric field drops to near-critical values, the critical
momentum (3.7) increases accordingly, which makes radiation reaction
important also for the runaway generation rates, not only the runaway-
electron distribution and maximum energy. Both bremsstrahlung and
synchrotron radiation reaction losses are stronger in partially ionized
plasmas; bremsstrahlung is directly enhanced by the effect of screening,
whereas synchrotron radiation reaction becomes stronger due to the in-
creased pitch-angle scattering rate. Both of these effects can increase the
critical electric field by tens of percent, as we show in Paper C, which
accordingly increases the electric field (and current decay rate) during
the decay phase of the runaway beam.
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Chapter 4

Reduced kinetic modeling of
runaway electrons

The previous chapter outlined the basic momentum-space effects that
govern runaway dynamics. While such analysis is suitable to develop
an intuition, accurate modeling of experimental conditions do require
a self-consistent evolution of the background plasma. As current com-
putational resources do not allow a simultaneous treatment of the full
kinetic problem together with the spatial dependence and the evolution
of the electromagnetic fields, simplified models are needed. One possible
approach is the use of reduced kinetic models, which were introduced in
section 1.3. In this chapter, we discuss reduced kinetic modeling in more
depth, and highlight our contributions to their improvement. We also
discuss open questions and point out areas in which the reduced mod-
els need improvement before they can be reliably used for experimental
validation and prediction. Finally, we highlight some possibilities for
experimental validation of the kinetic theory.

4.1 Reduced kinetic models

In reduced kinetic models for runaway electrons, the momentum-space
runaway dynamics are replaced by formulas for the steady-state run-
away generation rates as a function of background parameters. These
generation rates ideally provide accurate descriptions of the runaway
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generation mechanisms described in section 3.3. To connect the ob-
tained number density of runaway electrons to the current they carry, it
is usually assumed that

jre = e

∫
v‖fred

3p ≈ nreec, (4.1)

i.e. the mean runaway parallel velocity is close to the speed of light,
〈v‖〉 ≈ c. This current is then added to the Ohmic current produced by
thermal electrons

j = jΩ + jre, (4.2)

which is coupled to the evolution of the electric field through the induc-
tion equation (3.19).

This reduced approach has been extensively used in previous studies.
Most of the tools used, including the Chalmers-developed go (see for
example Fehér et al. (2011); Papp et al. (2013); Smith et al. (2006) and
the more recent studies in Paper I and Paper K) as well as the work by
Putvinski et al. (1997), Helander et al. (2002) and Mart́ın-Soĺıs et al.
(2017), have a relatively simple model for the evolution of the electric
field and the background plasma parameters. For example, the go code
solves the induction equation in a cylindrically symmetric plasma (3.20),
with the possibility to account for plasma elongation (Paper I). The
temperature is determined by considering the energy balance between
Ohmic heating, line radiation, ionization, bremsstrahlung and collisions,
and the ionization degree is determined by ionization and radiation rates
taken from the ADAS database (Summers et al., 2007). This means that
go neglects energy losses due to open flux surfaces, which should be jus-
tified if the ITER goal of 90 % radiated energy during the thermal quench
is reached (see section 1.2). However, if the radiated target is not met,
such MHD energy losses could be important. Therefore, the temper-
ature in go can alternatively be determined by assuming equilibrium
between Ohmic heating and line radiation, which is similar to the model
of Mart́ın-Soĺıs et al. (2017). As opposed to neglecting MHD losses, this
temperature model can be considered to be a limit where MHD losses
are large enough to quickly bring down the temperature to the sub-keV
range, after which they are reduced so that the temperature evolution
is governed by radiation and Ohmic heating.

Recently, more advanced tools for reduced kinetic runaway modeling
have been developed. The software kit astra-strahl (Linder et al.,

46



4.2. Fluid-kinetic coupling

2020) is more accurate than previous tools as it accounts for the toka-
mak geometry and has a more accurate model for the evolution of the
background plasma including the injected impurities. Further accuracy
is obtained by using the runaway fluid module in the MHD solver jorek
(Bandaru et al., 2019). With jorek, it is possible to study the thermal
quench dynamics in detail while following the runaway evolution. This
includes an accurate determination of the temperature evolution, as well
as the possibility to account for current diffusion when the field lines are
open. Tools sush as jorek however come at a significant computational
expense, and it is not yet possible to resolve a full thermal quench with-
out artificially increasing the plasma resistivity in the simulations.

Another recent development in the area of reduced kinetic models con-
cerns the accuracy of the runaway generation rates. Above mentioned
tools either neglected the effect of partial screening and the energy-
dependent Coulomb logarithm, or used generalizations of the existing
formulas which were not validated by kinetic simulations. In papers D
and E, we addressed these shortcomings by obtaining more accurate gen-
eration rates due to the Dreicer and avalanche mechanisms, respectively.
In both of these papers, we implemented the new generation rates in go
to evaluate their effect on the runaway dynamics as compared to the pre-
viously used expressions. In Paper D, we found that the more accurate
avalanche growth rate (3.40) gave significantly larger predicted runaway
currents in an ITER-like plasma. In Paper E, the improved Dreicer gen-
eration rate (described by equation (3.35)) reduced the runaway current
in a go simulation of a JET experiment, bringing it closer to the ex-
perimentally observed value. These results demonstrated that the effect
of partial screening should be accounted for in runaway modeling. For
this reason, the new generation rates have recently been implemented in
astra-strahl (Linder et al., 2020).

4.2 Fluid-kinetic coupling

Although computationally more demanding, solving the coupled fluid-
kinetic problem – formed by for example equations (2.29) and (3.20) –
is possible with certain simplifications. With such a tool, it is possible
to investigate in which regimes the reduced approach is expected to
be accurate, and identify ways to improve the reduced models. It is
also possible to obtain the distribution function as a function of radius.
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One example of a coupled fluid-kinetic tool is go+code. This tool was
used in Papers I and K to assess the validity of runaway fluid modeling
(see section 4.3.1), in Paper L to interpret synchrotron emission from a
runaway distribution, and in Paper M to study runaway formation in
the future SPARC tokamak.

go+code couples the two codes by running code once for every time
step and radial point in go. In this way, the runaway current contribu-
tion is calculated so that

jre = j − jΩ (4.3)

instead of the estimate jre ≈ nreec, which is otherwise employed by
go. Furthermore, as code does not rely on the analytical steady-state
generation rates to determine nre, the coupled tool can determine nre

with higher accuracy than stand-alone go. The go+code tool was
first outlined by Papp et al. (2015b), and improved by Vallhagen et al.
(2019). Together with further improvements to the coupling scheme and
the momentum grid used by code, this means that the computational
cost of go+code now allows for investigations of ITER-like plasmas,
contrasting previously, when only simulations for smaller tokamaks were
realistic.

In order to make go+code computationally feasible, code only uses
the test-particle collision operator described in section 2.2.1 with the
partial screening corrections given in section 2.3. To compensate for the
incorrect conductivity obtained with such an operator, the non-Ohmic
current is modified before it is supplied to go. By scanning over a
wide range of effective charge and temperature, it was found that the
conductivity with the test-particle collision operator is a Zeff-dependent
multiplicative factor of the fully relativistic conductivity σbk obtained
by Braams & Karney (1989):

σcode,tp = g(Zeff)σbk. (4.4)

In go+code, the runaway current density jre is therefore determined
by

jre = jcode,tp − σcode,tpE. (4.5)

The same method can also be used when code is run with a self-
consistent electric field. Then, the induced electric field is determined
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from the current decay rate as in equation (3.32), with the current mod-
ified such that

j = jcode,tp + [1− g(Zeff)]σbkE. (4.6)

In partially ionized plasmas, the conductivity deviates somewhat from
that obtained for the corresponding fully ionized plasma with the same
effective charge, but the effect is small unless the ionization is signifi-
cantly higher than the equilibrium state at a given temperature.

4.3 Validity of reduced kinetic models

For reduced kinetic models to be valid, it is important that the reduced
model gives an accurate estimation of jre, at least in the phase where
the runaway current gives a non-negligible contribution to the total cur-
rent. To accomplish this, reduced models must also have an adequate
description of transport, and effects of an inhomogeneous magnetic field
can sometimes be important. These topics are discussed below.

4.3.1 Accuracy of runaway current prediction

To test whether reduced kinetic models can accurately estimate the run-
away current, go+code can advantageously be compared to go, since
they have the same model for the background plasma evolution. Initial
investigations suggest that go+code often gives higher runaway cur-
rents than pure go simulations. As shown in Paper J by examining
code results, the steady-state avalanche growth rate in equation (3.40)
gives an accurate estimation of the instantaneous growth rate. This re-
sult has also been observed in go+code simulations, which furthermore
show that the assumption 〈v‖〉 ≈ c is valid for avalanche generation.
This means that the final runaway current will be accurately estimated
by reduced models, using the expression (4.1) in combination with the
runaway generation rates to determine nre, if

(i) the number density of the seed population is sufficiently well de-
scribed by the analytical formulas employed, and

(ii) the estimation j = jΩ + nreec is a good approximation.
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Condition (i) is more easily fulfilled for a large avalanche multiplication
factor Nava, which was defined in equation (3.37). In that case, the
final runaway current is only logarithmically sensitive to the initial seed
population (see Paper I). Condition (ii) means that the seed population
must be negligible, jre � jΩ, until it has reached relativistic energies
where 〈v‖〉 ≈ c is valid. As a small seed population leaves more room
for avalanche generation, it is beneficial for reduced models that the
runaway seed population is small but the plasma current sufficiently
large that many avalanche multiplications can occur. In other words,
reduced kinetic models can be expected to be more accurate in ITER-
like scenarios than for small and medium-size tokamaks.

In scenarios with limited avalanche generation, there are indications that
the reduced models perform poorly. For instance, if there is a significant
runaway generation due to the Dreicer mechanism, so that jre ∼ jΩ,
the feedback effect on the induced electric field will be inaccurate when
the runaway electrons have not yet reached relativistic speeds. The
situation is worse for hot-tail generation, which typically produces a low-
energy runaway seed where, in addition, the analytical expressions of the
number density (Smith & Verwichte, 2008) only have limited accuracy
(Aleynikov & Breizman, 2017; Stahl et al., 2016). These results imply
that reduced kinetic models must go beyond the assumption 〈v‖〉 ≈ c.
As a first step, the runaway density could be complemented by a crude
estimate of the mean parallel velocity.

Until reduced kinetic tools have been equipped with an estimation of
〈v‖〉, the hot-tail seed current in particular can be vastly overpredicted
in reduced models, and is therefore typically neglected. The effect of
neglecting the hot-tail source was examined in Paper I and K by com-
parison to go+code simulations, and it was found that the conversion
from Ohmic to runaway current was substantially larger in the coupled
simulations which included the hot-tail source. However, the go+code
simulations represent an upper limit on the hot-tail seed since they did
not consider particle transport. This effect could potentially deconfine a
large part of the hot-tail seed, as discussed in the following section.

4.3.2 Effect of transport on runaway-electron dynamics

Transport of runaway electrons is believed to have an appreciable effect
on their dynamics. This is particularly important during the thermal
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quench, where a large fraction of the hot-tail seed could be lost due to
large induced magnetic perturbations and the resulting transport along
open field lines. The runaway confinement during the thermal quench is
highly uncertain and depends on the specific scenario as well as machine
size; estimates of the seed survival fraction range from less than 0.1 % in
the small Alcator C-Mod to almost 100 % in the large ITER, with JET
and DIII-D in between at tens of percent (Izzo et al., 2011; Sommariva
et al., 2017).

As the magnetic equilibrium is fixed in most of the reduced kinetic mod-
els, they cannot predict the time evolution of the magnetic perturbations
or the spatial extent of the stochastic magnetic field line regions. There-
fore, the fraction of lost hot-tail seed particles cannot be determined
from first principles by for example go, but requires computationally
heavier approaches such as the nonlinear MHD tools jorek (Czarny &
Huysmans, 2008; Huysmans & Czarny, 2007), nimrod (Sovinec et al.,
2004), or m3d-c (Breslau et al., 2009). It is, however, possible to model
some aspects of runaway transport even in simpler tools. For example,
Boozer (2019) proposed a model for current evolution during breakup of
magnetic surfaces based on a diffusion operator that conserves magnetic
helicity. By varying the spatiotemporal extent of the stochastic magnetic
field lines in this model, it would be possible to investigate the flattening
of the radial current profile, and the change in the poloidal flux during
this period should be excluded from the avalanche multiplication factor
determined in section 3.3.2.

Several ways to include the effect of semi-static magnetic-field pertur-
bations have also been proposed. A widely used diffusion-based model
was developed by Rechester & Rosenbluth (1978), and the diffusion co-
efficient was further refined by Hauff & Jenko (2009), who based their
model on simulations of turbulent transport. A radial diffusion model
has been used by Helander et al. (2000) to study the effect of mag-
netic perturbations on avalanche generation, and the developed method
can also be generalized to more accurate formulas for avalanche gener-
ation, such as the one developed in Paper D. However, several works
point out that runaway transport induced by magnetic perturbations is
not purely diffusive, but also has an advective component (Papp et al.,
2015a; Särkimäki et al., 2016). Such an advection-diffusion model could
be implemented in reduced kinetic tools, provided that the advection
and diffusion coefficients are known.
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Apart from magnetic perturbations, runaway electrons may also experi-
ence increased transport due to the so-called Ware pinch, which causes
an inward convective particle flow. Recent work suggests that this ef-
fect can lead to a significantly different spatial distribution of runaway
electrons (McDevitt et al., 2019).

4.3.3 Effects of an inhomogeneous magnetic field

So far, we have discussed the case of cylindrically symmetrical plasmas.
Such a model of runaway dynamics can correspond to, for example, the
motion of particles close to the magnetic axis of a tokamak, where the
inverse aspect ratio ε = r/R is small (r and R were defined in figure 3.2).
A more general model can be obtained by considering a toroidally sym-
metric tokamak geometry, and noting that the the kinetic equation can
be gyro-averaged over the helical gyro-motion around the magnetic field
lines. This leaves the four phase-space variables {p‖, p⊥, r, θ} (where θ
is again the toroidal angle), of which p‖, p⊥ are integrated over in fluid
models. Such an equation is solved by for example the tool developed
by McDevitt & Tang (2019).

The four-dimensional kinetic equation can be further simplified in two
different limits. In a plasma with low collisionality, particles with suffi-
ciently large magnetic moment µB = p2

⊥/(2mB) are magnetically trapped
and make a “bouncing” motion in the poloidal angle, whereas other par-
ticles will circle the magnetic axis (Helander & Sigmar, 2005). In this
case, the kinetic equation can be orbit-averaged over the poloidal angle,
leaving a three-dimensional system in the variables {p‖, p⊥, r}. Such
an equation can be solved by numerical tools such as luke (Decker &
Peysson, 2004; Peysson & Decker, 2008; Peysson et al., 2003) and cql3d
(Chiu et al., 1998; Harvey et al., 2000). This approach has been used
to determine the effect of toroidicity on Dreicer and avalanche gener-
ation (Eriksson & Helander, 2003; Nilsson et al., 2015; Rosenbluth &
Putvinski, 1997), with order-unity reductions for both mechanisms at
finite aspect ratio.

Conversely, at higher collisionality, particles on a trapped orbit can be
collisionally de-trapped before completing an entire orbit, which causes
the bounce-averaging approach to break down, and the runaway genera-
tion rate is determined by the local values of the background parameters.
As the electric field often scales like 1/R, McDevitt & Tang (2019) found
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that the generation rate at high collisionality only depends weakly on
the radial parameter, and may even increase slightly with r in contrast
to the bounce-averaged case.

The parameter which determines the applicability of the bounce-averag-
ing and the local limit is the collisionality, which is given by (Helander
& Sigmar, 2005)

ν? ≡
νD

v

qR0

ε3/2
, (4.7)

where R0 is the on-axis major radius and q is the safety factor, which is
the ratio of the average number of toroidal turns per poloidal turn of the
magnetic field. For runaway dynamics, the energy-dependent parame-
ter νD/v could be evaluated at the critical momentum pc (McDevitt &
Tang, 2019), which was defined in equation (3.7). A small value of ν?
implies that the bounce-average approach is valid, whereas if ν? � 1,
runaway generation depends on the local electric field. If neither the
small nor the large ν? limit is applicable, it is necessary to solve the
four-dimensional kinetic equation, and it would be difficult to calculate
runaway generation rates for use in reduced kinetic models.
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Figure 4.1: Collisionality as a function of radius normalized to the minor
radius, at ITER-like, post-thermal-quench parameters: ne = 1020 m−3,
T = 10 eV, q = 2, Zeff = 1, a = 2 m and R = 6 m (all plasma parameters
are uniform in radius). The solid line shows the reference value ν? =
1, and the remaining lines show three different electric-field strengths:
E/Ec = 10 (dash-dotted line), 100 (dashed line) and 1000 (dotted line).

As an example of its numerical value, ν? is evaluated for ITER-like,
post-thermal-quench parameters in figure 4.1, assuming a fully ionized
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plasma and E � Ec (so that pc ≈ 1/
√
E/Ec � 1). The figure shows

that ν? � 1 for a large part of the parameter space studied, in particular
when considering that both avalanche and Dreicer generation are most
significant at larger electric fields, and that the electric field often peaks
close to the magnetic axis. This indicates that the local theory accu-
rately describes runaway dynamics in certain post-disruption plasmas,
and that the avalanche generation rates calculated in Papers D and E
are accurate without further corrections. This picture is largely sup-
ported by computing the spatiotemporal evolution of ν? for simulations
with go, and comparing to where the majority of runaway generation
took place. However, the analysis also showed that the bounce-averaged
limit is more appropriate if the post-disruption temperature is higher
and there is no impurity content to increase νD. A thorough investiga-
tion to determine the applicability of the the local versus the bounce
average limits has yet to be conducted, and this remains one of the open
areas for progress in advancing reduced kinetic modeling.

4.4 Experimental validation of models

Future tokamak devices require a high disruption mitigation success rate.
It is therefore crucial to have experimentally validated models which are
capable of predicting the outcome of the envisaged mitigation schemes,
but runaway modeling has not yet reached a level of maturity at which
it consistently gives agreement with experiment. Moreover, only a few
quantities related to runaway dynamics are experimentally accessible.
A further complication is that experimental measurements during dis-
ruption conditions are challenging, which results in large uncertainties
in the background plasma parameters such as the plasma composition,
density and temperature. Consequently, it is difficult to validate models
such as those developed in this thesis, but there are nevertheless some
possibilities.

Massive material injection – especially involving pellets – is particularly
difficult to both measure and model. Even if the effect of a given impu-
rity species on runaway dynamics is now understood (partially via the
work in this thesis), it is more difficult to determine the ionization states
and spatio-temporal distribution of the impurities. One aspect that is
usually not accounted for in modelling is ionization caused by runaway
electrons. Recent work indicates that a large runaway population can in-
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crease the ionization level of the impurities substantially (Garland et al.,
2020), but the runaway population is likely too small during most of the
runaway formation process for large effects. Regarding the impurity de-
position, a difficulty with massive gas injection is understanding the gas
assimilation in the machine, while shattered pellet injection allows some-
what simpler modeling of material penetration, but requires modeling
of the complicated ablation process. Therefore, studies of massive gas
(Nardon et al., 2017) and shattered pellet injection (Hoelzl et al., 2020;
Kim et al., 2019), usually aim for a qualitative rather than quantitative
agreement with experiments.

For runaway electrons, the plasma current is arguably the most reli-
able of the relevant experimental observables. In the late stage of the
current quench, it can often be assumed that most of the current is car-
ried by runaway electrons, which implies that the plasma current can
give valuable information about not only the current quench time but
also the runaway plateau current and the runaway current decay rate.
Runaway simulations typically overpredict the runaway plateau current,
which is often attributed to the rudimentary description of plasma losses,
although it is difficult to rule out experimental uncertainties or other
shortcomings of the model (Papp et al., 2013).

An aspect of the runaway current evolution which shows better agree-
ment with theory is the decay rate. The decay rate is particularly suit-
able for experimental validation, since it is one of few quantities relatively
straightforward to both predict from kinetic theory and diagnose exper-
imentally – as discussed in section 3.3.3, the decay rate is set by the
effective critical electric field if the plasma current is large. Such a com-
parison was recently conducted by Papp et al. (2019), who found that
the decay rate was consistent with the prediction E ≈ Eeff

c as calculated
by the formula in Paper C.

Another piece of information in the plasma current evolution is the
plasma current spike, which usually accompanies the onset of the dis-
ruption (Boozer, 2019). This current spike occurs due to magnetic re-
connection, and can be used to diagnose the breakup of magnetic flux
surfaces which is important for runaway transport as well as current evo-
lution (Boozer, 2019). In MHD simulations to date, the current spike
is typically too small, which may be caused by the artificially increased
resistivity typically used to reduce the computational demands (Nardon
et al., 2017). If the disagreement can be solved in the future, it could be
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possible to extract a simplified description of these MHD effects from the
simulations, which could then be used to improve the reduced kinetic
models.

Apart from the plasma current, the most important diagnostics for run-
away electrons are detectors of synchrotron and bremsstrahlung emission
(Breizman et al., 2019), which both have high sensitivity at relativistic
energies (Hollmann et al., 2015a). This emission could in principle be
used to reconstruct the runaway-electron distribution function, as op-
posed to the runaway current which saturates when the parallel velocity
approaches the speed of light. However, this inverse problem is usu-
ally ill-posed, implying that some assumptions are required to enable
inversion of the spectrum or image from synchrotron or bremsstrahl-
ung emission. A number of studies have inferred information about the
runaway electron energy, pitch-angle or radial distriubution from either
bremsstrahlung emission (Hoppe et al., 2018a; Paz-Soldan et al., 2017;
Shevelev et al., 2013), synchrotron images (Hoppe et al., 2018b; Tinguely
et al., 2018) or a combination of synchrotron and bremsstrahlung spec-
tra (Hollmann et al., 2015a). In comparisons with kinetic models, these
studies typically found that theory predicts higher energies than are
inferred from experiments, which is often attributed to losses that are
neglected in the models.

A drawback with both radiation diagnostics and the plasma current
is that they cannot quantify the runaway electron density during the
runaway generation phase. It is therefore difficult to experimentally
validate runaway generation rates, which is key to understand discrep-
ancies between models and measurements of radiation or the runaway
plateau current. There have however been some efforts also in this di-
rection. For example, Hollmann et al. (2011b) measured the growth rate
of a pre-formed runaway beam when applying an external electric field.
They found that the measured growth rate was lower than predicted by
theory, but a resolution to the inconsistency was recently proposed via
the influence of kinetic instabilities (Paz-Soldan et al., 2019). However,
since the applied electric fields were modest in comparison to those which
can be induced during a disruption, it was only possible to probe the
physics near the critical electric field. Another example is the study by
Hollmann et al. (2016), who estimated the runaway-electron seed from
the enhancement of pellet ablation by non-thermal electrons in DIII-D
experiments. Although the error bars are large, the estimated seed cur-
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rent is consistent with reaching the observed runaway plateau current
after avalanche multiplication according to equation (3.39), but exist-
ing models of hot-tail and Dreicer deviated by more than an order of
magnitude from the experimental value.

Some of the studies mentioned in the previous paragraph were conducted
in partially ionized plasmas, and thus an accurate analysis should include
the effect of partial screening. Possibly, similar studies with varying
plasma composition could offer the best validation opportunities for the
model developed through this thesis. In particular, if it were possible to
increase the accuracy of the runaway seed measurement, it would allow
for an experimental validation of the avalanche growth rate derived in
Paper D. Such a validation would be more reliable in a large, high-
current tokamak, which can have a larger avalanche multiplication and
induced electric field, and is presumably less sensitive to transport and
kinetic instabilities.
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Chapter 5

Concluding remarks

Since runaway electrons have the potential to severely damage tokamaks,
developing the understanding of their behavior is an active area in toka-
mak fusion research. In particular, it is crucial to be able to model sce-
narios with impurity injection, which is the envisaged mitigation method
in the upcoming ITER experiment. In such scenarios, the impurities are
partially ionized, meaning that the atomic nuclei are partially screened
by bound electrons when interacting with runaway electrons. This thesis
focuses on deriving a collision operator for a partially ionized plasma,
and investigates several aspects of runaway-electron dynamics in such
plasmas.

In the appended papers, we have systematically investigated the effect of
partial screening on the kinetics of fast electrons. By combining analyt-
ical derivations and numerical simulations using the tool code, we have
built up a qualitative as well as quantitative understanding of runaway-
electron dynamics in partially ionized plasmas, and contributed to more
accurate reduced kinetic models. The present chapter summarizes the
main findings of these papers. We then put these results into a broader
context by discussing their implications for runaway mitigation and a few
possible directions in which the present work can be continued.
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5.1 Summary of papers

Papers A and B were focused on the derivation of the collision oper-
ator and identifying the effect of partial screening on various aspects
of runaway dynamics. In Paper A, we presented the collision opera-
tor for partially ionized plasmas, which includes a quantum-mechanical
description of both elastic collisions with the partially screened nuclei,
and of inelastic collisions with the bound electrons. By matching the
scattering rates with bound electrons to the classical low-energy limit,
we obtained a self-contained collision operator formulated in terms of
modified collision frequencies. This operator can therefore be straight-
forwardly implemented in numerical tools, as has been done recently
in code (Paper A) as well as the works by del Castillo-Negrete et al.
(2018) and McDevitt et al. (2019). The analytical results indicated that
a detailed model of the fast-electron dynamics requires the use of the
collision operator for partially ionized plasmas. We found that neither
complete screening (i.e. treating the ion as a particle carrying the net
charge) nor no screening (treating the bound electrons as if they were
free) give good approximations of the collision frequencies; complete
screening gives a significant underestimation, whereas no screening pro-
vides a considerable overestimation of the collision frequencies. This
picture was supported by kinetic simulations using code, which showed
significant changes to the shape of the runaway distribution.

While Paper A introduced the collision operator and presented the initial
studies, the main purpose of Paper B was to present the full derivation
of the collision operator and investigate several subtle issues that arose.
Specifically, we compared the Fokker–Planck collision operator with the
more advanced Boltzmann operator. We found that the runaway distri-
butions produced with the collision operator for partially ionized plas-
mas and the full Boltzmann operator had negligible differences in all key
runaway parameters such as runaway current and density, although the
synchrotron spectrum was somewhat different in shape at large electric
fields. Consequently, the generalized collision operator introduced is ad-
equate for most purposes of runaway-electron studies in tokamaks.

The collision operator for partially ionized plasmas contains a parameter
which can be interpreted as a length scale related to the ion radius.
While Paper A presented these constants for a few ionization states,
Paper B calculated the constants for a wide range of ion species and
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compared them to previous models. We found that a previously used
simplified model without any free parameters (Kirillov et al., 1975) gave
acceptable accuracy for use in the collision operator. This will facilitate
future modeling as it reduces the need for computationally heavy density
functional theory simulations.

Some concrete results found in Papers A and Paper B were that partial
screening can increase the runaway decay rate and avalanche growth
rate, but decreases the Dreicer generation rate. This means that the
enhanced collision rates with partial screening can be both beneficial
and detrimental; enhanced damping and reduced Dreicer generation are
positive for runaway mitigation while the increased avalanche growth is
negative. Papers C, D and E were devoted to investigate, quantify and
develop models for each of these three effects.

In Paper C, the collision operator for partially ionized plasmas was ap-
plied to determine the critical electric field. The critical electric field is
not only important fundamentally since it is the threshold field above
which runaway generation can occur, but also because it sets the decay
rate of a runaway beam in an inductive device, such as a high-current
tokamak. In Paper C, we employed the approximation of fast pitch-
angle dynamics (Aleynikov & Breizman, 2015; Lehtinen et al., 1999) to
calculate the critical electric field. This resulted in an analytical formula
for the effective critical field. This formula was demonstrated to agree
within a few percent with numerical results from code, which was ex-
tended to include partial screening in the bremsstrahlung operator and
the avalanche source. The effective critical field was shown to be signif-
icantly enhanced compared to previous estimations, and it was elevated
by tens of percent by bremsstrahlung and synchrotron radiation losses.
Additionally, we used code to verify the prediction that the induced
electric field is close to the effective critical electric field during run-
away in high-current inductive devices. This prediction appears to be
consistent with recent experiments, as discussed in section 4.4.

Paper D analyzed avalanche generation in partially ionized plasmas. We
generalized the Rosenbluth & Putvinski (1997) calculation by including
the effect of partial screening as derived in Paper A. As in the original
calculation, we solved the kinetic equation in several parameter regimes,
including the behavior near the critical electric field from Paper C. By
interpolating between the different results, we obtained a semi-analytical
expression for the avalanche growth rate. This expression was success-
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fully benchmarked against kinetic simulations with code. We found
that the steady-state growth rate at high electric fields was enhanced
by the presence of partially screened nuclei. This is because the bound
electrons lead to a stronger avalanche source which dominates over the
increased collisional damping of runaway electrons.

To explore the effect in various regimes of parameter space, we deter-
mined the avalanche multiplication factor of a trace runaway seed when
the electric-field evolution follows that in section 3.2.2, and integrated
the avalanche growth rate in time. To isolate the effect of impurities
on the kinetic dynamics, the temperature was fixed for all densities, al-
though experimental predictions would certainly require a self-consistent
calculation, accounting for the effect of impurity density on the thermal
quench dynamics. In the classical calculation of the avalanche multipli-
cation factor, detailed in section 3.3.2, most of the parametric depen-
dences cancel out, which results in a robust prediction of the avalanche
multiplication factor: it only depends on the change in the poloidal flux,
as long as the induced electric field significantly exceeds the critical elec-
tric field. This exact cancellation does not arise with partially ionized
impurities since the growth rate is no longer directly proportional to
the electric field even at large induced electric fields. This means that
the potential multiplication of a runaway seed varies substantially across
parameter space. As we showed in Paper D, this can increase the ava-
lanche multiplication factor substantially. To further demonstrate the
effect, we implemented the growth rate in the runaway fluid tool go,
and calculated the final runaway current assuming a fixed runaway seed
density. We found that the new growth rate substantially increases the
runaway current if a large amount of impurities is injected to the plasma.
This highlights the need to update the avalanche growth rate in reduced
kinetic models. These results also indicate that the negative effects of
massive material injection could outweigh the positive effects when it
comes to runaway formation.

Finally, Paper E developed a tool that determines the Dreicer genera-
tion rate in partially ionized plasmas. With partially ionized impurities,
the Dreicer generation rate can decrease by several orders of magnitude,
since the increased friction and pitch-angle scattering shifts the balance
between electric-field acceleration and damping to higher energies where
there are fewer particles to be runaway accelerated. Since the Dreicer
generation rate is exponentially sensitive to the thermal properties of
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the plasma and the input data depends on many free parameters, we
used a neural network approach, which is suitable to fit complicated,
high-dimensional results. The resulting neural network was trained on
code data, and subsequently implemented in go. We demonstrated the
use of the neural network by investigating a scenario resembling an ex-
periment in the largest existing tokamak JET. In this scenario, we found
that the decreased Dreicer generation was nearly canceled by increased
avalanche generation due to partial screening. This conclusion does how-
ever not hold universally; in ITER for example, avalanche generation is
more prominent and the seed generation is dominated by non-Dreicer
sources (probably hot-tail during the non-nuclear phase), which implies
that partial screening should increase runaway generation. On the other
hand, a net decrease in runaway current could be expected in smaller,
Dreicer-dominated tokamaks.

In summary, we found that an accurate treatment of partial screen-
ing can have large and rather non-trivial effects on runaway-electron
momentum-space dynamics. These results take us one step forward in
understanding how runaway electrons can be affected by material injec-
tion. Through Papers C-E, we also contribute to the development of
reduced kinetic models. How these can be used, as well as other steps
toward a model capable of reliable experimental predictions, is discussed
in the following section.

5.2 Outlook

In this thesis, we address the runaway interaction with an assumed back-
ground density of impurities, but we do not consider how the material
was injected into and ionized by the plasma. In order to make predic-
tions for disruptions in tokamaks, these pieces need to be combined into
a single model, which also includes the evolution of the other background
plasma properties (Aleynikov & Breizman, 2017; Fehér et al., 2011; Gál
et al., 2008; Knoepfel & Spong, 1979).

With this thesis, we contribute to the development of such a model
by providing more accurate expressions for runaway generation through
the avalanche and Dreicer mechanisms. These have already been im-
plemented in go (Paper K) as well as the reduced kinetic tool astra-
strahl (Linder et al., 2020). However, the range of applicability of re-
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duced kinetic models remains unclear. To map the parameter space and
identify possible improvements of reduced kinetic models would therefore
be a highly relevant application of code and go+code. One example
of an already known area of improvement is the description of hot-tail,
as the assumption of relativistic electron velocities tends to drastically
overestimate runaway production.

One of the scenarios to investigate with more advanced reduced mod-
els is massive material injection. For instance, it would be valuable to
validate our results in Paper D obtained by go, which has a simplified
description of the background plasma evolution. These results showed
that impurity injection is not necessarily helpful for runaway mitigation
in ITER as it increases avalanche generation. This would imply that
the optimal mitigation scheme for the heat load and force during the
thermal and current quench could aggravate the runaway problem. If
integrated simulations support the results obtained with this idealized
model, it is unclear whether there are any injection parameters that
can simultaneously meet all the mitigation targets; perhaps some of the
targets need to be relaxed in order to find a suitable compromise be-
tween different sources of damage. For example, decreasing the amount
of injected material would make it more difficult to reach the targets
on radiated energy fraction and current quench length, but may possi-
bly prevent excessive runaway generation. In order to find the optimal
injection scheme, reliable and accurate simulations are needed – and
the results obtained through this thesis can give some guidance in this
respect.

An interesting finding with partial screening is that there does not nec-
essarily exist a density above which runaway generation is avoided. It
was previously believed that sufficient material injection could increase
the critical electric field until runaway formation could be entirely pre-
vented. However, we found that higher impurity or deuterium densities
decrease the temperature which, in turn, increase the induced electric
field and reduces the ionization (see Paper K). This effect seems to dom-
inate over the increase in the effective critical electric field, indicating
that with partial screening, runaway generation can be substantial up
to experimentally unattainable densities.

Before the reduced kinetic models can make reliable predictions, addi-
tional pieces are needed. Most notably, the representation of the trans-
port of runaway electrons must be improved, in particular to determine
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the fraction of runaway seed electrons that are lost during the thermal
quench. A better understanding of kinetic instabilities is also desirable.
At least in some scenarios, wave-particle instabilities may be needed to
explain experimental results (Liu et al., 2018; Paz-Soldan et al., 2019),
although it is uncertain whether these effects can be important during
disruptions in large tokamaks.

Runaway research is a high priority, since it is of the utmost importance
for the success of the fusion program that runaway electron damage can
be prevented in future devices. This thesis is one step toward experimen-
tal validation of runaway modeling, and reliable predictions for future
devices such as ITER. In the longer term, it may contribute to robust
runaway mitigation schemes which are a milestone in the development
of operational fusion power plants.
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Embréus, O., Stahl, A. & Fülöp, T. (2018), On the relativis-
tic large-angle electron collision operator for runaway avalanches in
plasmas, Journal of Plasma Physics 84 905840102, doi: 10.1017/

S002237781700099X.

Eriksson, L.-G. & Helander, P. (2003), Simulation of runaway elec-
trons during tokamak disruptions, Computer Physics Communications
154 175, doi: 10.1016/S0010-4655(03)00293-5.
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