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A B S T R A C T

Introduction: Crashes resulting from a failed interaction be-
tween drivers and vulnerable road users, such as pedestrians or
cyclists, can lead to severe injuries or fatalities, especially after
failed overtaking maneuvers on rural roads where designated
refuge areas are often absent, and impact speeds high. This the-
sis contains two studies that shed light on driver interaction
with either 1) a pedestrian or 2) a cyclist, and oncoming traf-
fic while overtaking. Methods: The first study modeled driver
behavior in pedestrian-overtaking maneuvers from naturalistic
and field test data, quantifying the effect of the pedestrian’s
walking direction and position, as well as the presence of on-
coming traffic, on the lateral passing distance and overtaking
speed. The second study modeled cyclist-overtaking maneu-
vers with data from a test-track experiment to quantify how the
factors time gap to the oncoming traffic and cyclist lane position
affect safety metrics during the maneuver and the overtaking
strategy (i.e., flying or accelerative, depending on whether the
driver overtook before or after the oncoming traffic had passed,
respectively). Results: The results showed that, while overtak-
ing, drivers reduced their safety margins to a pedestrian when
the pedestrian was walking against the traffic direction, closer
to the lane and when oncoming traffic was present. Results for
cyclist overtaking were similar, showing that drivers left smaller
safety margins when the cyclist rode closer to the center of the
lane or when the time gap to the oncoming traffic was shorter.
Under these critical conditions, drivers were more likely to opt
for an accelerative maneuver than a flying one. The oncoming
traffic had the most influence on drivers’ behavior among all
modeling factors, in both pedestrian- and cyclist-overtaking ma-
neuvers. Conclusion: Drivers compromised the risk of a head-
on collision with the oncoming traffic by increasing the risk
of rear-ending or side-swiping the pedestrian or cyclist. This
thesis has implications for infrastructure design, policymaking,
car assessment programs, and specifically how vehicular active
safety systems may benefit from the developed models to allow
more timely and yet acceptable activations.
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1
I N T R O D U C T I O N

1.1 pedestrians and cyclists in crashes with mo-
torized vehicles

Pedestrians and cyclists are the most prominent types of vul-
nerable road users (VRUs), that represent more than half of all
worldwide deaths in traffic [4]. Differently from drivers of most
motorized vehicles, VRUs are not protected by a chassis struc-
ture. For this reason, they generally pay the highest cost in a
collision with such vehicles, which may result in severe injuries
or death.

Such collisions are particularly severe on rural roads where
infrastructure is often absent, and impact speeds high [5, 6].
Collisions on rural roads can occur in lateral or longitudinal
scenarios as a result of a failed intersection or overtaking inter-
action, respectively. Intersection crashes typically account for
the larger number of crashes, while overtaking crashes result
in more severe injuries and fatalities [7, 8]. Crashes in

overtaking
scenarios are less
common than in
crossing scenarios,
but account for
more severe injuries
and fatalities.

Overtaking crashes can occur in different phases of the over-
taking maneuver: rear-ending the VRU when approaching or
steering away, side-swiping the VRU when passing or return-
ing, and heading-on the oncoming traffic [9]. The combination of
these crash risks makes overtaking a particularly difficult ma-
neuver for drivers, in which the interaction with two other road
users plays a crucial role: the VRU and the oncoming traffic [9].

1.2 crash and injury prevention measures for

overtaking crashes

To prevent crashes and injuries in overtaking maneuvers, the
following main types of countermeasures exist: 1) infrastruc-
tural measures, 2) policymaking and 3) vehicular safety systems.

Infrastructural measures for preventing crashes between
drivers and VRUs aim at separating road users from each
other, or achieving maximum safety margins between them,
for instance, with separated walking zones or sidewalks for
pedestrians, and cycle paths or lanes for cyclists [4, 10]. The
World Health Organization provides a star rating for the safety

1
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level of roads, ranging from one star (no separation for VRUs)
to five stars (full separation). According to the global status
report 2018, 88% of all pedestrian travel and 86% of all cyclist
travel happens on 1- or 2-star roads that lack sufficient refuges
and are therefore classified as unsafe [4]. Such facts call for a
need to improve infrastructure on a global scale to ensure safe
travel for VRUs.

Policymaking aims at forcing or nudging drivers–and VRUs–
towards cautious behavior, by imposing laws or traffic regula-
tions that include recommendations for road-user behavior. For
pedestrians, for instance, the Vienna convention on road traffic
recommends walking in the opposite direction of traffic when
a sidewalk is absent, and the lane has to be shared with the
motorized traffic [11]. More than 78 countries have signed, rati-
fied, and included this recommendation in their national traffic
regulations, among them Sweden (Trafikförordning, Ch. 7, § 1)
and France (Code de la route, Art. R.412-36). To improve cyclist
safety, governments have focused on regulating the minimum
lateral distance or clearance that drivers must keep when pass-
ing a cyclist [12]. In Europe, most countries have set a minimum
passing distance of 1.5 m [12]. In Australia, this distance is even
stratified by speed: 1.0 m in speed zones of 60 km/h or less, and
1.5 m in higher-speed zones [13]. However, drivers’ compliance
with these rules was found to be critically low in Australia, due
to the perceived difficulty to keep such distances in certain sit-
uations and the difference in perceived level of safety between
drivers and cyclists [14]. In the United States of America, sev-
eral states have introduced the rule of keeping a minimum pass-
ing distance to cyclists of more than three feet [15].To date, there is no

global regulation for
passing distances.

Vehicular safety systems comprise passive and active safety
systems. While passive safety systems aim at mitigating the
consequences of a crash with a VRU, e. g., with a pop-up hood
or a pedestrian protection airbag system [16], active safety sys-
tems focus on preventing a crash from occurring. While pas-
sive safety systems can act upon contact, active safety systems
need to predict whether a crash will happen or not. If the ac-
tive safety system predicts that a crash will happen, the sys-
tem can intervene by issuing a warning to the driver or by au-
tonomously controlling the vehicle to prevent the crash. Com-
mon active safety systems are forward-collision warning (FCW)
and autonomous emergency braking (AEB) systems. Forward-
collision warning systems issue a warning to alert a driver of a
collision threat with a road user in front of the vehicle. In the
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overtaking scenario, an FCW system would activate if a rear-
end collision with the VRU is impeding, for instance, because
the driver is distracted and fails to see the VRU. If the driver
does not react to the issued warning, AEB can slow down the
vehicle without inputs from the driver, to avoid the rear-end
collision with the VRU [17]. Active safety systems represent
the main focus of application for the results of this thesis.

Since 2018, the European new car assessment program (Euro
NCAP) tests AEB and FCW systems for pedestrian- and cyclist-
collision avoidance [8, 18]. Among the tested scenarios, the car-
(pedestrian or bicyclist)-longitudinal-adult (CPLA and CBLA,
respectively) scenarios are related to the work of this thesis be-
cause they can be represented by the approaching phase of an
overtaking maneuver [19]. Both scenarios describe system tests
that are carried out for a range of car speeds, from 20 to 80

km/h. The VRU lateral position is varied between two values
of overlap: 25% and 50%, representing typical scenarios on rural
and urban roads, respectively [8, 19]. The overlap is defined as
the ratio of the VRU’s lateral position within the car’s width.
For the 25% case, only FCW systems are tested for correct ac-
tivation timing, while for the 50% case, only AEB systems are
tested. The VRU speed is set to 5 km/h for the CPLA scenario,
and 15 km/h and 20 km/h for the CBLA scenario with 50%
and 25% overlap, respectively. The scoring criteria for FCW and
AEB systems are that a warning is issued before 1.7 s time-to-
collision (TTC), and that the vehicle must not make contact with
the VRU, respectively [19]. It should be noted that there are on-
going efforts also in other regions of the world to introduce
active safety systems for VRU protection in NCAPs [20, 21].

1.3 driver modeling to improve active safety

The decision for an active safety system to activate or not is
a commonly known issue in the research and development of
such systems. If the system triggers once the driver was well
aware of the collision threat and would have reacted, the driver
may perceive the activation as unnecessary, also commonly re-
ferred to as false-positive activation. With the accumulation of
false-positive activations, the driver might perceive such activa-
tions as a nuisance and eventually turn off or ignore the system.
This action from the driver, in turn, eliminates any safety ben-
efit of the system [22], and can come at particularly high costs
for the safety of VRUs.
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The challenge is, therefore, to tune the timing of an interven-
tion such that the intervention can happen as early as possible
while keeping the risk of a false-positive intervention as low as
possible. With a timely intervention, complete collision avoid-
ance can be ensured [23–25], which is particularly important
considering collisions with VRUs that may suffer injuries al-
ready at low impact speeds. A cyclist, for instance, could lose
balance and control of the bicycle as a consequence of even a
slight contact or disturbance induced by an overtaking vehicle,
because a bicycle is an inherently unstable vehicle [26].

Modeling the driver’s behavior has been proposed as a way
to improve active safety systems by means of earlier, but yet
accepted, interventions [23, 25]. Incorporating driver models in
the algorithm of active safety systems, therefore, aims to ensure
a complete collision avoidance with the VRU [24], while ensur-
ing that the driver does not perceive an intervention as unjusti-
fied. Active safety systems that utilize driver models may then
achieve a higher acceptance and trust by the driver, and, in
return, achieve a higher safety benefit, especially for VRUs. In
overtaking scenarios, such driver models could, for instance, in-
dicate if a driver would decide to overtake in a certain scenario,
which is an important information for active safety systems to
identify the threat of a rear-end collision with the VRU [27].

Various types of driver models have been developed that ad-
dress a variety of aspects of driver behavior. Such models typi-
cally use measurements from the vehicle network and a subse-
quent processing of those measurements to express driver be-
havior to inform the decision making in an active safety system
[25, 28].

Driver models can be roughly characterized by their mod-
eling level, objective, algorithmic type, and application area [28].
Michon developed a hierarchical framework for driver mod-
els that address different hierarchical levels of driving: opera-
tional for short-time scales, tactical for a medium-time scales
and strategic for long-time scales [29]. The objective of mod-
els may be of reactive, or in other words descriptive, nature to
describe general behavioral trends in conducted driving, or of
predictive nature to deliver a specific quantity in real-time to the
decision making of an active safety system [28]. The algorith-
mic type describes the methodology that the model is built on,
which can be data-driven classification or regression, or inspired
by cognitive science [28, 30]. Application areas for driver models
are primarily active safety systems, while other areas exist.
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Recent research has shown that more advanced automated
driving systems may as well benefit from models of driver
behavior. Abe et al. showed that drivers’ trust in automated
overtaking or passing maneuvers might be improved when the
systems exhibit a more conservative behavior compared to hu-
mans, by initiating earlier steering and by keeping longer lat-
eral distances than human drivers would do [31].

Driver models can also help to estimate the benefits of ac-
tive safety systems in virtual simulations [32]. In these virtual
simulations, the computational models of driver behavior are
used both to create potential safety-critical events and to math-
ematically describe the driver’s reaction in these events. Results
showed that the choice of driver model mattered more for FCW
than for AEB systems [33].

1.4 the value of drivers’ comfort zone for active

safety

Already in 1936, Gibson and Crooks introduced the concept of
a field of safe travel that describes the field of possible collision-
free paths that a driver may take at a given moment [34]. The
field of safe travel changes its shape continuously with the ap-
pearance of obstacles like other road users. The driver’s task is
to navigate the vehicle to stay within the field of safe travel to
avoid collisions with other road users, such as in an overtaking
maneuver [34, 35]. Summala described the field of safe travel
as a safety zone and further argued that drivers and other road
users might feel uncomfortable when their field of safe travel
is compromised by, e. g., keeping short distances between each
other [36]. Driver behavior is, therefore, influenced by both the
safety zone as an objective measure of collision risk, and the
comfort zone as a more subjective measure of the driver’s per-
ceived comfort and risk. The safety zone is an objective measure
of risk as it describes the risk of colliding due to the kinematic
circumstances, while the comfort zone is subjective as it may
depend on driver characteristics [37].

Ljung Aust and Engström developed the ideas about the
driver’s safety and comfort zone further into a generic frame-
work that can be applied to active safety system development
[37]. Drivers are described to not take corrective actions as
long as they are within the comfort zone. Once drivers leave
the comfort zone, i. e., perceive discomfort, a corrective action
can be expected. If the corrective action does not happen, an
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Figure 1: Illustration of the driver’s comfort zone (green area) during a cyclist-overtaking
maneuver with oncoming traffic, objectively defined based on the distances to
the other road users. The comfort zone expresses the area in which the driver
perceives no discomfort. In the safety zone (orange area), the driver perceives
discomfort, and when exceeding the safety zone, the driver may risk a collision
(red area). Figure inspired by [34].

active safety system may intervene to bring the driver back into
the comfort zone, before exiting the safety zone, i. e., before a
collision occurs [37–39].

Active safety system interventions may be more accepted
when happening outside of the driver’s comfort zone [38, 39].
This idea was exemplified for a pedestrian-crossing scenario
in a test-track study by Lubbe et al., that addressed drivers’
normal behavior in the interaction with the pedestrian [22].
Therein, Lubbe et al. argued that the boundary of the driver’s
comfort zone may be represented by the 90th percentile of the
data for a safety metric like TTC to the crossing pedestrian [22].
Boda et al. exemplified this idea for a cyclist-crossing scenario
in a test-track study, by retrieving the 95th percentile from a
mathematical model of drivers’ TTC to the point of visibility
and arrival to the intersection when being asked to behave nor-
mally in the interaction with the cyclist [40].

It should be noted that the expression “comfort zone” has
been both referred to the subjective perception of comfortable
driving, as well as objective metrics (e. g., distances, TTC) that
can numerically quantify driver’s comfort and can be directly
measured [9, 12]. In a cyclist-overtaking maneuver, for instance,
the comfort zone based on objectively measurable distances lies
within the safety zone, and both zones are shaped by the inter-
action partners, the cyclist, and the oncoming traffic (Fig. 1).

1.5 interactions in traffic

The field of safe travel and the perceived comfort of drivers,
as well as other road users, is strongly linked to their interac-
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tion. With an increase in traffic volume, interactions between
road users have accordingly increased in numbers. Successful
interaction between road users is necessary to keep traffic safe
and comfortable for everyone [41, 42]. Markkula et al. described
interaction as a space-sharing conflict between road users:

“A situation where the behaviour of at least two
road users can be interpreted as being influenced
by the possibility that they are both intending to oc-
cupy the same region of space at the same time in
the near future.” [42]

Thalya et al. proposed a definition of interaction as a goal-
oriented process that can be guided by the intentions of the
involved road users:

“In traffic, interaction among road users is a cyclic
process (including perception, planning, and action)
that occurs when two or more road users share the
infrastructure. Interaction is based on predictions
and expectations and its main goal is to keep road
users safe and comfortable while satisfying their
need for mobility. Interaction may also serve to
communicate one’s intentions and to probe the
intentions of others.” [41]

Thalya et al. operationalized their interaction concept in a
step-wise process inspired by concepts from software develop-
ment and exemplified this process for a driver-cyclist interac-
tion in an overtaking maneuver [41]. In the overtaking maneu-
ver, interactions typically occur between the driver of the ego
vehicle, the cyclist, and the oncoming traffic. The driver usually
applies the turn indicator to communicate the intent to over-
take to the other involved road users. The cyclist, for instance,
can move to the right to give way to the ego vehicle to overtake.
The oncoming vehicle can slow down or give an indication with
the headlights to the driver to initiate the overtaking [41]. For a
pedestrian, similar ways of interaction may apply, with the dif-
ference that a pedestrian has higher maneuverability compared
to a cyclist and, therefore, the eye contact may be of great im-
portance [43].

Interaction has been described as a result of implicit and ex-
plicit communication, followed by a reaction from the interac-
tion partners [42, 44]. Implicit communication describes the ef-
fect that a road user’s own behavior or perception may have on
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other road users, e. g., by eye contact [42, 44]. Explicit commu-
nication, on the other hand, does not necessarily aim to affect
a road user’s own behavior, but another road user, e. g., by sig-
naling or requesting [42]. It should be noted that interaction
models do not only consider interactions between fully human
road users, but also between automated vehicles and other road
users [42].

1.6 existing research on interactions in overtak-
ing maneuvers

Substantial research has been done on interactions in car-
overtaking maneuvers [45–47], while cyclists-overtaking ma-
neuvers have only recently come into focus [9, 48], and
pedestrian-overtaking maneuvers have not gained attention up
to date.

Various types of data collection have studied drivers overtak-
ing cyclists and can be clustered into four groups: 1) naturalistic
(driving and cycling) studies, 2) field tests, 3) test-track experi-
ments, and 4) simulator studies. These types of data collection
typically compromise the accuracy and precision of measuring
the interaction between the road users with the ecological va-
lidity of the found results. Most of these studies have focused
on overtaking metrics at the moment of passing, like the lateral
clearance to the cyclist or the passing speed.

Among naturalistic studies, naturalistic driving (ND) studies
represent the most prominent methodology, while naturalistic
cycling studies are a more recent and promising to investigate
traffic from the cyclist’s perspective [13, 49]. Naturalistic driv-
ing data are generally viewed as the type of data with the high-
est ecological validity because they are collected unobtrusively
in daily driving by participants of the ND study [12, 32]. On
the other hand, ND data can contain a variety of confounders
from environmental factors. Field test (FT) data are collected in
real traffic as ND data; however, in planned scenarios, includ-
ing repetitions, making them less ecologically valid than ND
data, but potentially less confounded. Test-track (TT) data are
collected in constructed scenarios, including repetitions like FT
data, however, not in real traffic but instead on designated test
tracks. Test-track data can, therefore, be described as less eco-
logically valid compared to both ND and FT data. It should be
noted, though, that TT data can still be ranked higher in terms
of ecological validity than, for instance, simulator data that do
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not preserve motions cues [40, 44]. Simulator studies make use
of a virtual environment that is more straightforward to set up
and allows testing more critical scenarios than the other types
of environments, however, at the cost of a reduced ecological
validity [27, 44].

Existing studies on cyclist-overtaking maneuvers can be
roughly sorted into four main groups of research focus that
are associated to important elements of the overtaking scenario
and affect overtaking interaction: 1) the infrastructure in place,
2) the overtaken cyclist, 3) the oncoming traffic, and 4) the over-
taking vehicle’s driver. Figure 2 gives an overview of existing
studies, ordered by focus area and type of data collection.

Infrastructure related factors seemed to have found most at-
tention in the literature to date. Studies that investigate the
influence of infrastructure have focused on several aspects of
road design. Kay et al., for instance, reported that centerline
rumble strips, i. e., haptic markings to prevent lane departures,
decreased the likelihood of drivers to enter the adjacent road
and thereby decreased the lateral clearance when passing the
cyclist [50]. Bella and Silvestri found in a simulator study that
a wider bicycle lane ensured a higher lateral clearance to the
cyclist [51]. Llorca et al. confirmed this trend for paved road
shoulders in a naturalistic cycling study [52]. However, Feng
et al. and Beck et al. found that drivers kept a smaller distance
to the cyclist in the presence of an on-road bike lane, a paved
shoulder, or parked cars, from naturalistic driving and cycling
studies, respectively [13, 53]. In a simulator study, Mecheri et al.
found that a narrowing of the lane width resulted in a shorter
lateral clearance, even though drivers maintained similar pass-
ing speeds [54]. In the same study, Mecheri et al. reported that
a widening of the road shoulder had no significant effect on
lateral clearance and passing speeds [54]. Drivers were further
found to keep larger distances to cyclists in curve segments by
cutting the curve [51].

Cyclist-related factors have not gained the same level of atten-
tion as infrastructure-related factors. Walker found that drivers
kept a closer lateral distance from the cyclist when the cyclist
was riding farther away from the road edge [55]. Savolainen
et al. found that drivers were more likely to enter the adjacent
lane when cyclists rode closer to the travel lane, which is in line
with Walker [56]. Walker further reported smaller lateral dis-
tances when the cyclist changed appearance, e. g., wore a hel-
met [55], however, later relativized the effect of cyclist appear-
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Walker et al. (2007)
Savolainen et al. (2013)
Walker et al. (2014)

Feng et al. (2018)
Bianchi Piccinini et al. (2018)
Kovaceva et al. (2019)

Naturalistic study
Field test
Simulator study

Driver

Data collection type

Savolainen et al. (2013)
Dozza et al. (2016)
Bianchi Piccinini et al. (2018)
Kovaceva et al. (2019)
Farah et al. (2019)

Oncoming traffic

Kay et al. (2014)
Bella and Silvestri (2017)

Feng et al. (2018)
Beck et al. (2019)
Mecheri et al. (2020)

Infrastructure

Cyclist

Llorca et al. (2017)

Figure 2: Overview of cyclist-overtaking maneuvers studied in previ-
ous research, ordered by focus area (oncoming traffic, infras-
tructure, cyclist and driver), and data type (color-coded).
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ance [48]. All of those studies used naturalistic data, from ul-
trasonic range sensors installed on the bicycle or external cam-
era observations. Furthermore, these studies did not precisely
quantify the lateral position of the cyclist.

Oncoming traffic was mentioned by Savolainen et al. to
reduce the likelihood of drivers to enter the adjacent lane [56],
and Dozza et al. even found it to be the most influential factor
on driver behavior, reducing the driver’s safety margins to the
cyclists during the whole overtaking maneuver [9]. While the
study by Dozza et al. was conducted in an FT with a LIDAR
recording system, from the cyclist’s perspective, Kovaceva et
al. confirmed this result with ND data, i. e., from the driver’s
perspective [12]. Bianchi Piccinini et al. found in a simulator
study that the driver’s tendency to overtake the cyclist de-
creased when the time gap to the oncoming traffic was shorter
[57]. The decrease in the time gap to the oncoming traffic even
reduced safety margins to the cyclist if the driver decided
to overtake [57]. Based on the simulator data from Bianchi
Piccinini et al., Farah et al. derived a mathematical model of the
overtaking strategy decision and lateral clearance, dependent
on the time gap to the oncoming traffic and the driver’s speed,
showing that the overtaking strategy may be better to predict
than the lateral clearance [27].

Driver-related attributes and behavioral insights have not
earned much attention in research, yet, possibly due to the rar-
ity of cyclist-overtaking maneuvers found in large ND studies
that may give such insights. For instance, the driver’s cognitive
state has up to date not gained much attention, even though
existing research has suggested relevant implications. Feng et
al. reported that in a ND study, 7.8% of all cyclist-overtaking
maneuvers were done by distracted drivers [53]. In another
research based on ND data, the influence of gender, age, and
psychological traits was also investigated. Female drivers, for
instance, revealed more cautious behavior in overtaking ma-
neuvers than male drivers [12]. Furthermore, older drivers and
drivers with higher sensation seeking could be associated with
giving less space to the cyclist [12].

1.7 research gaps and objectives

The main gaps in research on VRU-overtaking maneuvers have
been identified as the lack of research on pedestrian-overtaking
maneuvers and the lack of detailed analysis of driver behav-
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ior during cyclist-overtaking maneuvers. Several studies have
investigated the influence of the lateral position of the cyclist
but did not precisely quantify it. Furthermore, while most stud-
ies about cyclist-overtaking maneuvers have focused on safety
metrics during the passing phase, only a few have investigated
safety metrics during other overtaking phases.

Existing research has rarely made use of mathematical mod-
els to describe and predict driver behavior, specifically with
the aim to improve active safety systems that prevent crashes
during all overtaking phases. Most of these studies developed
driver-cyclist and driver-pedestrian interaction models for
crossing scenarios [40, 58, 59], while there is a lack of studies
developing interaction models for overtaking scenarios [27].

The following three objectives of the overall PhD studies will
address these gaps in the previous research:

1. Explain and develop a descriptive1 model of driver behav-1 In this context,
“descriptive” refers

to a model that aims
at representing

driver behavior in
statistical terms,
i. e., what factors

influence the
behavior by how

much.

ior in pedestrian-overtaking maneuvers from FT and ND
data

2. Explain and develop a descriptive model of driver behavior
in cyclist-overtaking maneuvers from TT data

3. Develop predictive2 driver models from cyclist-overtaking

2 A “predictive”
model aims at

predicting elements
of driver behavior

during the driving
task, such that the

model could be
better suited for a

safety system.

maneuvers that can be integrated into a safety system

The driver models that address the objectives generally focus
on different phases of the overtaking maneuver, as depicted in
Figure 3. paper i and ii in this thesis address the first two
objectives and most of the overtaking phases, for pedestrian-
and cyclist-overtaking maneuvers, respectively, by developing
data-driven models. paper iii and iv are future work for the
rest of the PhD studies and will address objective 3. While pa-
per i and ii aim at delivering a descriptive model of driver
behavior on a tactical level, paper iii and iv will deliver mod-
els of more predictive nature that represent driver behavior on
an operational level and are meant to run real-time in a safety
system.

paper i was developed within the DIV project that focuses
on driver interaction with both pedestrians and cyclists. pa-
pers ii and iii are part of the MICA project and, therefore,
focus on cyclists, as paper iv will do in the continuation
(MICA2) project.
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I

Objective 1: Analyze pedestrian-overtakings

Objective 2: Analyze cyclist-overtakings

Objective 3: Models for safety systems

II

Focus on description

Focus on prediction

1 Approaching 2 Steering away 3 Passing 4 Returning

III
1 2 1 2 3

1 2 3 4

IV

Figure 3: Overall picture of the PhD studies, showing the four planned papers and how they
address the three objectives of the PhD, as well as different overtaking phases, and
modeling goals (focus on description or prediction). paper iii and iv are future
work for the second part of this project to reach the PhD degree.





2
M E T H O D O L O G Y

2.1 overtaking maneuver : objective definition

and assessment of crash risks

This thesis concerns the scenario of an overtaking maneuver in
which the following road users are involved: 1) the ego vehi-
cle performing the overtaking, 2) a VRU (pedestrian or cyclist)
being overtaken, and possibly 3) an oncoming vehicle (Fig. 4).

To further structure the analysis and modeling of overtaking
maneuvers, this thesis made use of a four-phase approach, ex-
emplified in Figure 4. In the first phase, the approaching phase,
the driver has recognized the scenario and the present road
users, and has to react by either steering to perform a flying
maneuver (i. e., before the oncoming traffic has passed or when
oncoming traffic is absent), or by braking to perform an accel-
erative maneuver (i. e., reaccelerating after letting the oncoming
traffic pass first) [9, 34]. The second phase, the steering away
phase, begins once the driver starts to steer away from the
collision path with the VRU, and ends when the driver has
reached a sufficient lateral clearance to the cyclist. During the
third phase, called passing phase, the driver keeps a somewhat
constant lateral clearance to the VRU in order to pass it, while
possibly entering the adjacent lane. The fourth phase, the re-
turning phase, begins once the driver starts to steer the vehicle
back to its initial lateral position and ends when reaching this
position [9, 12].

During an overtaking maneuver, a driver is exposed to dif-
ferent crash risks that can be associated with the four different
overtaking phases. So-called safety metrics can be defined to ex-
press the criticality of those crash risks. Safety metrics express,
for instance, how close the driver gets to the other involved
road users [1, 12]. A decrease in a safety metric can generally
be associated with an increased risk of crashing [2]. Figure 4

(panel b) exemplifies these crash risks (1-4) and safety metrics
for a cyclist-overtaking maneuver. In the approaching phase,
and possibly in the steering away phase, the risk of a rear-
end crash with the cyclist (1) is prevalent, expressed by the
safety metric TTC to the cyclist at the moment of steering away

15
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Steering away PassingApproaching Returning

TTC

MLC

(a) Pedestrian-overtaking maneuver.

MLC

Steering away PassingApproaching Returning

MDR

1

2

3

4
TTCcyc

TTConc

(b) Cyclist-overtaking maneuver.

Figure 4: Overtaking phases and safety metrics definitions, depicted for a flying overtaking
maneuver of a pedestrian (panel a) and a cyclist (panel b) in the presence of
an oncoming vehicle. TTCcyc is the time-to-collision (TTC) to the cyclist at the
beginning of the steering away phase. MLC is the minimum lateral clearance
to the pedestrian or cyclist during the passing phase. TTConc is the TTC to the
oncoming vehicle at the beginning of the retuning phase. MDR is the minimum
(Euclidean) distance between the rectangular bounding boxes of the cyclist and
the ego vehicle during the returning phase.

(TTCcyc). In the passing phase, the driver is exposed to two dif-
ferent crash risks, a side-swipe crash with the cyclist (2, highest
risk when being right next to the cyclist), and a head-on crash
with the oncoming vehicle (3, highest risk at the end of the
passing phase). The side-swipe crash risk due to too close pass-
ing is expressed by the safety metric minimum lateral clearance
(MLC), i. e., the minimum lateral distance between ego vehicle
and cyclist during the passing phase. The head-on crash risk is
expressed by the safety metric TTConc, the TTC to the oncoming
vehicle at the end of the passing phase. During the returning
phase, the predominant crash risk is a side-swipe crash with
the cyclist (4), due to a too early return into the original lane,
expressed by the safety metric minimum (Euclidean) distance
returning (MDR). For pedestrian-overtaking maneuvers, MLC
and TTC to the pedestrian were the investigated safety metrics
(Fig. 4, panel a), representing the crash risks for a rear-end and
a side-swipe collision.

This thesis investigated how a variety of factors related to
the involved road users influence driver behavior in overtaking
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maneuvers: 1) the lateral position of the VRU, 2) the travel direc-
tion (only for pedestrians), and 3) the presence and timing of
oncoming traffic. The factor lateral position has been studied in
research that mainly focused on infrastructure, and in research
focusing on active safety systems and NCAPs [8, 56]. The travel
direction of a pedestrian has mainly been studied as a means
of implicit communication via eye contact [43, 60]. The factor
oncoming traffic has gained much attention in recent studies
on cyclist-overtaking maneuvers that showed its significant in-
fluence on driver behavior [9, 12, 57]. The effect of these factors
on safety metrics and maneuver strategy choice (flying or accel-
erative) were analyzed and modeled in this thesis.

2.2 data sets

This thesis leveraged different types of data sets to derive de-
scriptive models of driver behavior, each inheriting characteris-
tic benefits and drawbacks from its nature. For the analysis of
pedestrian-overtaking maneuvers in paper i, ND and FT data
were used, while for the analysis of cyclist-overtaking maneu-
vers in paper ii, only TT data were used.

The ND data for paper i were acquired from the ND study
UDRIVE, the first large-scale European ND study up to date
[61]. With an extraction algorithm for cyclist-overtaking ma-
neuvers, adapted from [12], pedestrian-overtaking maneuvers
were identified. The safety metrics MLC to the pedestrian and
overtaking speed while passing were reconstructed from the
MobilEye camera output. With the help of manual annotations,
the factors pedestrian walking direction (same or opposite com-
pared to the traffic in the lane), walking position (lane edge or
paved shoulder), and oncoming traffic (present or absent), were
identified.

The FT data for paper i were collected on a straight rural
road in Tuve, Sweden (Fig. 5, panel a). The data were collected
by a pedestrian, equipped with a custom-developed LIDAR
data logger. The data logger recorded the distances to the ve-
hicles on the road while keeping track of the movement of the
pedestrian through an inertial measurement unit (IMU). The
data from LIDAR and IMU were combined and filtered to re-
move unwanted artifacts, like detections of the ground or the
surrounding vegetation. From the filtered data, MLC and over-
taking speed were estimated. The pedestrian was walking in
four different configurations, resulting from the interaction of



18 methodology

(a) Field test data collection to record pedestrian-overtaking maneuvers.

(b) Test-track data collection to record cyclist-overtaking maneuvers.

Figure 5: Collected data sets used in this thesis. Panel a shows a photo
from the field test data collection performed for paper i.
Panel b shows a picture of the test-track experiment con-
ducted for paper ii.



2.3 bayesian regression models 19

the factors walking direction and position. The walking direc-
tion was either in the opposite or the same direction as the traf-
fic in the lane, and the position was either on the lane marking
line or about 50 cm away on the paved shoulder.

The TT data for paper ii were collected on an airfield in
Vårgårda, Sweden (Fig. 5, panel b). Participants drove the ego
vehicle to overtake a robot cyclist in the presence of a robot
oncoming vehicle at 70 km/h approaching speed. The safety
metrics TTCcyc, MLC, TTConc, and MDR were calculated from
the recorded GPS positions (Fig. 4, panel b). The cyclist’s lateral
position was controlled to be either overlapping with the ego
vehicle or not overlapping, in the approaching phase, in reference
to the Euro NCAP CBLA scenario [19]. The oncoming vehicle
was controlled to meet the ego vehicle at two different time
gaps, 7 and 10 s TTC, referred to in the following as short and
long time gap, respectively, once the driver reached 2 s TTC to
the cyclist. The lengths of the time gaps were defined in relation
to previous research on cyclist-overtaking maneuvers [57].

2.3 bayesian regression models

This thesis used Bayesian regression models to understand the
effect size from each factor on the different safety metrics and
the choice of overtaking strategy. While frequentist models ex-
press their parameters as unknown but fixed (as a point esti-
mate in other words), their Bayesian counterpart expresses pa-
rameters as unknown, but random, by a probability distribu-
tion [62]. Furthermore, while frequentist inference is generally
carried out in a dichotomous fashion, by either accepting or re-
jecting a given hypothesis, Bayesian inference aims at express-
ing the effect size by delivering a full probability distribution
[63, 64].

Bayesian regression relies on Bayes’ fundamental principle to
infer a posterior probability distribution P(θ|y) from the combi-
nation of a prior P(θ) and a likelihood P(y|θ) distribution, where
θ are the unknown parameters and y the data [62]. The basic
idea is that known, prior information is updated with new data
(likelihood) to derive an updated (posterior) belief about an un-
known quantity. This is expressed by Bayes’ rule [65]:

P(θ|y) =
P(θ)P(y|θ)∫
P(θ′)P(y|θ′)dθ′

. (1)
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Equation (1) can be challenging to compute, especially if θ
is high-dimensional [65]. There may be analytical solutions,
for instance, those that make use of so-called conjugate priors,
i. e., a prior distribution which does not change the type of the
likelihood distribution [62]. However, these strict requirements
on the type of distribution can generally not be met when
dealing with real-world data. Monte Carlo methods present
a work-around solution to derive the posterior distribution
without knowing exact information about the type of distribu-
tion, but instead by efficiently sampling from it. Specifically,
Markov chain Monte Carlo (MCMC) has evolved as an effective
and popular method to sample from the posterior distribution
while utilizing the Markov chain property. The Markov chain is
the sequence of samples from the distribution, that, in contrast
to pure Monte Carlo methods, follows the Markov property: a
sample is only dependent on its preceding sample, but none
of the samples before the preceding one [62]. To arrive at
a sufficient resolution of the posterior distribution, usually,
several chains with lengths of several thousands of samples are
needed, which makes MCMC slower in terms of computation.

This thesis expressed overtaking safety metrics and the strat-
egy choice with linear Bayesian regression models. These mod-
els are linear in the sense that they make use of a linear, so-
called, predictor, a linear combination of parameters and effects.
The predictor expresses a characteristic parameter of a chosen
distribution family.

A safety metric SM, for example, generally follows a skewed
distribution that is always larger than zero. For this reason,
paper i and ii expressed different safety metrics with a log-
normal distribution3:3 Note that a

log-normal
distribution is only

one of several
candidate

distributions that
were not explored in

this thesis like, for
instance, the

Gamma, Weibull, or
Inverse Gaussian

distribution.

SM ∼ Lognormal (µSM,σSM) . (2)

In Equation (2), µSM is the mean of the log-normal distribu-
tion, expressed by the linear predictor, and σSM the log-normal
standard deviation, usually estimated as a constant. The predic-
tor µSM can consist of population-level and group-level param-
eters and effects, related to fixed and random effects in frequen-
tist methods, respectively [66]:

µSM = XSMβ+ ZSMuSM. (3)

In Equation (3), the population-level parameters ˛ are the un-
knowns to be estimated and the effects XSM represent the mea-
sured factor values, for instance, the lateral position of the VRU.
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The group-level parameters are expressed by uSM and the cor-
responding effects by uSM. Group-level parameters express the
effect of a grouping of the data, for instance, when single partic-
ipants of an experiment account for multiple observations. The
group-level parameter, therefore, expresses the deviation due
to individual participants from the population. [66]

For the overtaking strategy model of paper ii, a Bernoulli
distribution was used to model the binary choice between a fly-
ing and an accelerative maneuver, by means of the probability
p of performing a flying maneuver:

OT ∼ Bernoulli (p) , (4)

logit(p) = log
(

p

1− p

)
= XOTβ+ ZOTuOT. (5)

The predictor in Equation (5) is set up analogously to the pre-
dictor in Equation (3). The logit function transforms the linear
predictor onto a probability scale from 0 to 1.

This thesis leveraged the R package brms to estimate the
model parameters, developed as a convenient interface to the
performance-oriented probabilistic programming language
Stan [66]. The package allows the specification of distribution
family, model formula including population- and group-level
parameters as well as interactions between parameters, and
prior distributions for all parameters. Via MCMC sampling,
brms delivers the full posterior distribution for all parameters
of the model. In this thesis, weakly informative default prior
distributions were chosen as enough data were available to
lead to a convergence of the MCMC sampling algorithm [66].4 4 With fewer data at

hand, the
importance and
influence of the
prior distribution
rises and a more
careful choice may
be required.

In a common workflow, more complex models were formu-
lated in the beginning, including all possible interactions be-
tween the parameters. These full models were then compared to
simplified versions, excluding the interaction terms, by utilizing
the R package called loo [67]. This package performs leave-one-
out cross-validation to express which model is the best one in
terms of higher predictive accuracy [67]. Given the difference in
predictive accuracy is within standard error, none of the mod-
els can be described as better than the other, and the simplified
model may be preferred over the full [1, 2].

Given the best model, predictions can be drawn from the
posterior distribution of the parameters to generate new hypo-
thetical data that are sampled from the posterior predictive dis-
tribution [65]. The posterior predictive distribution allows the
calculation of, for instance, the difference in the outcome of the
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model between the different levels of a factor. For instance, it en-
ables quantifying how much less lateral clearance drivers keep
to a pedestrian who is walking against traffic, as opposed to
walking in the same direction, and with how much uncertainty.
The uncertainty is generally quantified by the highest density
interval (HDI), which comprises, for instance, 95% of the distri-
bution. Using the HDI, it is possible to do hypothesis testing
in a very intuitive way, by comparing the HDI to a specified
null value (zero), or a so-called region of practical equivalence
around zero [68].



3
S U M M A RY O F PA P E R S

The results of this thesis are presented in the two appended
papers. The following section gives a summary of these papers.

3.1 paper i : how do drivers overtake pedestrians?
evidence from field test and naturalistic

driving data

3.1.1 Background

Significant research has been done on the interaction between
drivers and pedestrians in crossing scenarios, while overtak-
ing scenarios have not received the same level of attention, yet.
However, overtaking scenarios do represent a significant num-
ber of crashes on rural roads with generally more severe con-
sequences for the pedestrian than crossing scenarios, due to
higher impact speeds.

3.1.2 Aim

This paper aimed to–as the first study of its kind–shed light
on the behavior of drivers in pedestrian-overtaking maneuvers.
Naturalistic driving and FT data were used to investigate how
safety metrics in the approaching and passing phase are influ-
enced by three parameters factors: 1) the walking direction of
the pedestrian, 2) the walking position of the pedestrian, and 3)
the presence of oncoming traffic.

3.1.3 Methods

Two sets of data from pedestrian-overtaking maneuvers were
acquired, from the perspective of the driver and the pedestrian,
respectively: 1) from UDRIVE, the largest European ND data
set, that contains VRU positions through the onboard Mobil-
Eye camera, and 2) from an FT data collection with a pedes-
trian wearing a custom-developed LIDAR data logger. Bayesian

23
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regression models quantified the effect of the three factors on
the safety metrics MLC and overtaking speed when passing
the pedestrian. Furthermore, the TTC to the pedestrian at the
moment of steering away was analyzed for the ND data.

3.1.4 Results

Data from 77 overtaking maneuvers in the ND data set and 297

maneuvers in the FT data set were analyzed. The results show
that drivers gave less space to the pedestrian when the pedes-
trian was walking against the traffic, when oncoming traffic
was present and when the pedestrian was walking closer to
the lane edge. Under the same conditions, overtaking speed fol-
lowed a similar, but less distinct, pattern compared to MLC,
where higher speeds where observed when MLC was larger.
MLC and overtaking speed were only weakly positively corre-
lated. Both ND and FT data showed similar trends, which back
up the credibility of the results. The TTC to the pedestrian at
the moment of steering away was below the Euro NCAP thresh-
old of 1.7 s (CPLA scenario) in 8% of the cases.

3.1.5 Conclusions

Drivers were found to compensate for the risk of a head-on
crash (with the oncoming traffic) by increasing the risk of a
crash with the pedestrian. Furthermore, the pedestrian walking
direction and position affected the safety of the pedestrian. This
fact underlines the need for either a separate infrastructure or
active safety systems to prevent crashes with pedestrians. The
developed Bayesian regression models may be included in ac-
tive safety systems to enhance the adaptation of warnings and
interventions to the individual driver and lower the probability
of false-positive activations.

3.2 paper ii : how do oncoming traffic and cyclist

lane position influence cyclist overtaking by

drivers?

3.2.1 Background

Overtaking a cyclist is a challenging task for drivers, especially
when oncoming traffic is present or when the lateral clearance



3.2 paper ii 25

to the cyclist is low. Drivers are exposed to different crash risks
in different overtaking phases: 1) rear-ending the cyclist in the
approaching phase, 2) side-swiping the cyclist in the passing or
returning phase, and 3) heading-on the oncoming traffic in the
passing phase. The balancing of these crash risks affects safety
metrics and strategy choice, i. e., whether to perform a flying or
accelerative maneuver. Previous research has investigated the
timing of oncoming traffic only in simulator studies with lower
ecological validity. The lateral position of the cyclist has been
identified as an important parameter, however, not in detail.

3.2.2 Aim

This paper aimed to create a descriptive statistical model of
driver behavior during the different overtaking phases when
overtaking a cyclist on a test track. The effect of the factors
lateral position of the cyclist and timing of the oncoming traffic
on safety metrics and strategy choice were investigated.

3.2.3 Methods

A TT data set was collected on an airfield in Sweden, with par-
ticipants that were instructed to overtake a cyclist in the pres-
ence of an oncoming vehicle. The cyclist and the oncoming ve-
hicle were represented by robot dummies that could be tracked
with high accuracy via a differential global positioning system.
Bayesian regression models were used to model safety metrics
during the overtaking phases and the decision whether to per-
form a flying or accelerative maneuver, dependent on two fac-
tors: cyclist lateral position and time gap to the oncoming vehi-
cle. Posterior predictive distributions quantified the effect size
of each factor.

3.2.4 Results

Data from 18 participants were analyzed. The results showed
that safety metrics and the tendency to perform a flying maneu-
ver decreased with an increased criticality, i. e., when the cyclist
was riding closer to the center of the lane or when the time gap
to the oncoming vehicle was shorter. The time gap to the on-
coming vehicle was found to have a larger influence on driver
behavior than the cyclist’s lateral position. The interaction with
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the oncoming vehicle was visible from the lateral positioning of
the participants in accelerative maneuvers, indicated by a slight
steering maneuver to the right behind the cyclist.

3.2.5 Conclusions

The interaction with the oncoming vehicle was shown to have
the most influence on driver behavior. Drivers appeared to com-
promise the risk of a head-on crash (with the oncoming ve-
hicle) with a side-swipe crash (with the cyclist). This behav-
ior illustrates the need to develop active safety systems that
can support the driver during all overtaking phases. The fitted
Bayesian regression models can be used in active safety systems
to quantify drivers’ behavior in normal driving. By sampling
values for safety metrics from the distributions of the models,
active safety systems may gain valuable information about the
driver’s comfort zone. Furthermore, knowing the preference
of the driver, whether to perform a flying or accelerative ma-
neuver, may guide intervention timing to achieve higher accep-
tance.
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D I S C U S S I O N

4.1 overtaking pedestrians or cyclists : differ-
ences and similarities

There are some apparent differences between pedestrians
and cyclists that affect their influence on driver behavior in
overtaking maneuvers. For instance, the travel speed of cy-
clists is generally higher that of pedestrians. This fact causes
cyclist-overtaking maneuvers to take a longer time to complete
compared to pedestrian-overtaking maneuvers. Accordingly,
the passing phase of pedestrian-overtaking maneuvers is gen-
erally very short or even absent, reducing the four-phase
approach to a three-phase approach where the returning phase
directly follows the steering away phase [2]. Furthermore, dur-
ing the annotation of the UDRIVE data, drivers were observed
to initiate the returning phase even before having reached the
pedestrian. This behavior can be understood as either induced
by the mechanical delay between steering input and vehicle re-
sponse, or by the fact that certain driver may have gotten used
to overtaking pedestrians and predicting their travel behavior.

Another difference observed was that the travel direction
mattered for pedestrians, with the effect of a reduced lateral
clearance given by the driver when the pedestrian was walking
in the opposite direction of the traffic. Cyclists can be, at least
in most countries, assumed to always travel in the same direc-
tion as the traffic, even though exceptions exist that represent
important crash scenarios in some countries [69]. This thesis
suggests that a possible eye-contact, i. e., implicit communica-
tion, is an important factor in the interaction between drivers
and pedestrians [42, 43].

A similarity between both types of VRUs is that their lat-
eral position on the road has a significant influence on driver
behavior. When the pedestrian or cyclist is traveling closer to
the ego vehicle’s path, safety is most endangered. This fact can
be related to Gibson and Crooks’ theory of the field of safe
travel, which gets constrained once the VRU travels closer to
the driver’s path [34, 35]. Instead of diverting from their pass
towards the adjacent lane, where oncoming traffic may have a
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strong influence on the field of safe travel, drivers choose to
compromise the VRU’s safety margin [2].

Another similarity between drivers’ pedestrian- and cyclist-
overtaking maneuvers is the effect of oncoming traffic. No mat-
ter if a driver overtakes a pedestrian or a cyclist in the pres-
ence of oncoming traffic, safety margins to the VRU decrease
as the driver compensates the risk of a head-on collision with
the oncoming traffic with rear-ending or side-swiping the VRU.
This fact is in line with previous literature that investigated the
effect of oncoming traffic, whose head-on collision crash risk
probably represents the higher subjective threat to the driver,
compared to rear-ending the cyclist [9, 12, 57, 70]. However, it
may be argued that, due to the difference in travel speed, the
risk of a side-swipe collision with the VRU is higher in cyclist-
overtaking maneuvers, since drivers are forced into a longer
passing phase. Furthermore, evading such a collision might be
more difficult for a cyclist due to the larger maneuvering space
required by the bicycle, in contrast to a pedestrian.

It should be noted that there exist other important differ-
ences and similarities between pedestrians and cyclists that
were not under further investigation in this thesis. For instance,
due to their visual similarity from behind, specifically at longer
distances, vision systems that rely on camera observations
have great difficulty in distinguishing cyclists from pedestrians.
However, this difficulty may not be of great importance for
active safety systems as long as the distinction is possible
within the driver’s range of view, as drivers showed differ-
ences in interaction with pedestrians and cyclists. Accurately
distinguishing cyclists from pedestrians is also an important
aspect for the development of passive safety systems, as these
systems may need to behave differently, due to the different
mass distributions of pedestrians and cyclists [71].

4.2 different types of data : challenges and oppor-
tunities

Three different types of data sets were studied in this thesis
that have revealed their potentials and drawbacks. Naturalis-
tic driving data offer a great possibility to understand driver
behavior as they have the highest possible ecological validity
among different types of data sets [32, 44]. However, as this
thesis has shown, the amount of available ND data is much
higher than the number of interesting events included. Further-
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more, results for pedestrian-overtaking maneuvers showed that
trends that were distinct in FT data were less distinct in ND
data. For instance, MLC to the pedestrian decreased in both
data sets when the pedestrian was walking in the opposite di-
rection of the traffic, closer to the lane edge or when oncoming
traffic was present. This outcome can be explained by the fact
that ND data are confounded with a larger variety of environ-
mental factors compared to FT data.

Driver behavior in ND data varied in magnitude, but not in
trends, compared to FT data, and several possible explanations
exist for this artifact. Firstly, the measurement equipment pre-
cision was different in the ND and FT datasets used in this
thesis. The measurements obtained from the MobilEye camera
used in the UDRIVE ND study, in combination with the num-
ber of post-processing steps was possibly not as precise as the
ones obtained from the LIDAR device used in the FT data col-
lection. Furthermore, the ND data were confounded by a vari-
ety of environmental factors such as road and light conditions.
The difference may as well be explained with behavioral differ-
ences between Swedish and French drivers, as well as exposure
to pedestrian-overtaking maneuvers or the available infrastruc-
ture on rural roads.

Field test data are collected in a more controlled way than
ND data, which allows for collecting more data from relevant
scenarios. However, a significant amount of data reduction may
still be necessary to extract the relevant maneuvers when data
are recorded continuously. In this respect, TT data offer great
potential to deliver a more efficient way to obtain information
about a given scenario with realistic kinematics [40]. Test-track
data are well suited for the development of more complex com-
putational driver models due to their high quality in terms of
resolution and accuracy, and due to the possibility of extract-
ing very detailed aspects of driver behavior, such as the brake
pedal or steering wheel state [30, 58]. Furthermore, the control-
lability of TT data may allow for a more straightforward data
collection compared to FT data, both in terms of measurement
devices as well as ethical aspects. However, TT data collection
involves a significant amount of preparation to ensure that the
experiment can be ethically accepted and yet resembles a rel-
evant traffic scenario. This limitation of TT data prohibits, for
instance, involving other human road users that may need to
be replaced with less realistic robots, as described in paper ii

[1].
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To date, it seems like the most reasonable workflow to de-
velop as realistic driver models as possible, is by using data
from TT or FT studies, and validate them with ND data, as at-
tempted in paper i [1, 2, 58]. Even if ND data did not have the
same precision as FT data, the trends were similar across data
sets. This fact suggests that combining results from different
types of data that show similar trends represents more valid
results than each of the data sets on its own.

4.3 implications for traffic safety

This thesis confirms some of the results from previous studies,
showing that on-road separation markings seem to give drivers
the illusion that the VRU is safe and comfortable, and induce
closer overtaking maneuvers, as described in paper i. How-
ever, the same impression may not be true for the VRU, espe-
cially not in an objective sense [13]. Therefore, this thesis sup-
ports existing research by advising infrastructure design to con-
sider the physical separation between VRUs and motorized traf-
fic [10]. Furthermore, infrastructure design must ensure proper
visibility on rural roads that allows drivers to timely recognize
and account for oncoming traffic before deciding to overtake.
As well, policymaking should provide clear regulation about
the passing distance to VRUs, stratified by speed, in all coun-
tries. Such regulation also represents a challenge for the au-
thorities responsible for infrastructure design, to develop rural
roads that are wide enough to allow these minimum passing
distances. Drivers should further be educated from an early
age to follow such rules and improve compliance [14].

Active safety systems may utilize results from this thesis to
guide and personalize intervention timing. Such measures may
result in systems that can act early to ensure complete colli-
sion avoidance, while at the same time reducing the risk of a
false-positive intervention. The Bayesian regression models de-
veloped in this thesis represent the first step to achieve such
adaptive systems. The HDI from a posterior predictive distri-
bution of the model of a safety metric, representing, for in-
stance, 95% of the distribution, may quantify a driver’s com-
fort zone. Once the measured value for this metric exceeds the
HDI, specifically the HDI’s lower bound, one may assume that
the driver has exceeded the comfort zone and that an interven-
tion may be justified. For instance, the model for TTCcyc may
indicate when a driver might, in comfortable conditions, brake
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or steer to avoid a collision with the cyclist. An FCW or AEB
system may utilize this information by setting the intervention
time outside of the lower bound of the HDI of the model for
TTCcyc.

The overtaking strategy model developed for cyclist-
overtaking maneuvers in paper ii can inform an FCW or
AEB system about the probability that a driver would perform
a flying or an accelerative maneuver, based on the time gap to
the oncoming traffic and the lateral position of the cyclist. With
this knowledge, an FCW system could, for instance, warn if the
driver attempts a flying maneuver in the presence of oncoming
traffic, while the model would assign a high probability to an
accelerative maneuver instead. The fact that this model was
developed in a Bayesian fashion may result in richer informa-
tion about the driver’s uncertainty, delivering the full posterior
distribution of parameters, compared to previous work that
made use of frequentist methods [27].

The group-level parameter for the driver’s identity, intro-
duced into the Bayesian regression models, may provide
information about how much the individual driver’s behavior
variates from the overall population. It may further enable
to personalize the model to ensure that it represents the
individual driver’s behavior as accurately as possible. The
personalization, of course, requires that vehicle manufacturers
can reliably determine who is driving the vehicle.

The personalization of active safety systems may as well
solve the possible issue of regional differences between drivers
that this thesis suggests may exist for the case of pedestrian-
overtaking maneuvers. Instead of trying to account for all
possible driver characteristics in the model, it may, therefore,
be a better choice to try adapting the system to the individual
driver. In this respect, the models developed in this thesis may
serve as a prior distribution, based on the subset of the driving
population used to fit the models. This prior distribution may
then be used to derive a posterior distribution for an individual
driver, by performing an update on the prior distribution with
new data from the driver. This new data may be the measured
value of a safety metric as retrieved from an overtaking ma-
neuver. Repeating this procedure long enough may result in
a safety system that incorporates the driver’s variability into
its uncertainty. Bayesian regression models may, therefore, be
a suitable solution to represent inter- as well as intra-driver
differences.
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Autonomous driving may as well benefit from the models
developed in this thesis. Previous research has shown that hu-
mans may prefer a more cautious driving style, compared to
manual driving, from an autonomous vehicle when circum-
venting VRUs [31]. Abe et al. concluded that autonomous vehi-
cles should, to gain higher driver trust, maintain longer pass-
ing distances to the VRU than a human driver would, and
almost equal passing speeds. Such cautious behavior may be
achieved by adjusting the percentile sampled from the distribu-
tions given by the models derived in this thesis.

Euro NCAP specifies that an FCW system must warn the
driver latest 1.7 s TTC ahead of the VRU. In the CPLA scenario,
the walking direction of the pedestrian is the same as the traffic
in the lane [19]. Results from ND data in paper i showed that
8% of all drivers steered away after 1.7 s TTC, independent of
the pedestrian’s walking direction, indicating that these drivers
would have received a false-positive warning. Results from TT
data in paper ii indicated that drivers steered away from a
collision path with the cyclist long time ahead of 1.7 s TTC.
However, this may have been because the TT environment did
not resemble an as realistic environment as the ND data did [1].
In fact, Kovaceva et al. reported much shorter TTC values from
ND data [12]. It should further be noted that 1.7 s TTC may
not be enough time for a driver to ensure a complete collision
avoidance by braking. For the tested scenario of paper ii, i. e.,
with an ego vehicle speed of 70 km/h and a cyclist speed of 20

km/h, the last time for AEB to activate and ensure complete
collision avoidance is about 1.24 s, given the calculation pro-
posed by Brännström et al. [25]. Given that the system issues an
FCW at 1.7 s, the maximum driver reaction time to the warning
would be 0.46 s, which is even lower than what studies have
found for a fast driver reaction [17]. In the case of a steering re-
action, the threshold of 1.7 s may be legitimate, especially when
the lateral overlap with the cyclist is small and only requires a
small steering input from the driver. However, in the case of
a braking reaction, a larger TTC threshold may need to be de-
cided. This fact stresses the need for models that can predict if
a driver would react by braking or steering to avoid collision
with the cyclist, such as the one developed in paper ii.

Because this thesis found oncoming traffic to be such an im-
portant factor for the overtaking of VRUs, future test protocols
should consider having an oncoming vehicle present in the sce-
nario, possibly meeting the ego vehicle at different time gaps
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as done in paper ii. Oncoming traffic may as well affect the
performance of tested vehicles once systems like emergency
steering support or automatic emergency steering become in-
troduced in the protocol since these systems likely need to con-
sider oncoming traffic when deciding whether to intervene or
not [18]. A possible virtual assessment of active safety systems
by NCAPs may as well be supported by the driver models de-
veloped in this thesis [18].

4.4 limitations

Each of the data sets used in this thesis is accompanied by its
limitations. The ND data set is by its nature rife with uncon-
trolled environmental factors that may have been possible con-
founders of driver behavior but were not acknowledged. For
instance, the data set only contained French drivers who may
have been more exposed to pedestrian-overtaking maneuvers.
Furthermore, the geometry of the road and the range of visibil-
ity may have impacted driver behavior. The FT data set was, as
the ND data set, restricted to one geographical location (Swe-
den), and may have lacked realism compared to the ND data.
For instance, in the FT data set, due to safety reasons, the pedes-
trian had to wear a neon-colored warning vest that may have in-
fluenced driver behavior. Even though trends found from both
data sets were similar, their overall offset was non-neglectable,
reducing the generalizability of the derived models. The TT
data set was collected in an even more artificial setup com-
pared to the ND and FT data sets, as the airfield was a perfectly
straight road stretch with clear visibility.

The interaction models in this thesis represent models of
drivers’ comfort behavior. However, to capture the complete
(bi-directional) interaction, models of the VRU’s comfort may
be necessary. Such behavioral models for VRUs may adopt sim-
ilar concepts as exists for drivers, as exemplified by Lee et al.
for the case of cyclist-cyclist interactions [3]. Furthermore, the
interaction between the driver and the oncoming traffic was
not studied in great detail in this thesis. The results of paper

ii suggested that drivers may communicate with the oncoming
traffic, by steering back into their lane behind the oncoming
traffic, to signalize to the oncoming traffic to pass first. This
interaction between the driver and the oncoming traffic, there-
fore, deserves to be studied from both road users’ perspectives
to confirm this way of communicating.
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Furthermore, the factors included in the models were binary,
making the models less general than if continuous, real-valued,
factors were used. The lateral position of the VRU and the time
gap to the oncoming traffic, for instance, could be expressed
by a continuous factor. However, some factors are binary by
nature, e. g., the pedestrian’s walking direction during an over-
taking maneuver. Future work may investigate models that use
continuous metrics to improve the performance in an active
safety system.

4.5 future work

Even though the Bayesian regression models developed in pa-
per i and ii may serve for prediction purposes to improve
an active safety system, their main aim was to describe driver
behavior. Future work in paper iii should focus on devel-
oping predictive driver models that can be run in real-time,
for instance, to compare the driver’s actual behavior (as read
from sensors in the vehicle) with the behavior predicted by
the model. A model that can predict in real-time whether a
driver would perform a flying or accelerative maneuver is an
important step and planned to be included in paper iii. Such
a model could continuously inform the decision-making layer
of an active safety system about which collision avoidance strat-
egy a driver may prefer and, therefore, adjust the warning time
and intervention strategy accordingly, to improve acceptance.
Finally, a predictive driver model that considers later overtak-
ing phases like passing or returning should be developed in
paper iv to improve safety systems that may assist the driver
to safely and comfortably circumvent the cyclist while not inter-
fering with the oncoming traffic. In this context, the potential
benefit of driver models for systems that act once the criticality
of the situation is very high should be evaluated. Such a situa-
tion can occur when the distance or time to the other road users
is very small, which is the case once the driver has completed
the approaching phase. Active safety systems that address high-
criticality situations include, for instance, automatic emergency
steering that could prevent a rear-end collision with the VRU
or a head-on collision with the oncoming traffic and may act
later compared to AEB [72]. When active safety systems fail to
prevent the crash, passive safety systems will need to mitigate
the consequences of any potential collision with the VRU or the
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oncoming traffic. The benefit of driver models for passive safety
systems should, therefore, undergo investigation.

Future driver models should as well consider the driver’s
gaze pattern as it is an important aspect of the driver’s response
process. Such information may support the usage of cognitive
science inspired modeling techniques, such as evidence accu-
mulation or drift-diffusion [30, 73]. Recent work on predictive
processing of information in the driving task has shown that
expected and perceived looming, i. e., the optical expansion of
an obstacle may be responsible for driver actions [30, 58, 74].
In this respect, the visual sensory inputs associated with the
cyclist and the oncoming traffic become important parameters
to account for, especially when targeting more critical scenarios
compared to the ones described in this thesis. The development
of these biologically inspired models may be of great interest, as
well as their comparison with more machine learning inspired
versions [75].

Furthermore, a higher maneuver criticality may be beneficial
for the development of models to improve active safety systems
by understanding more about the limits of drivers’ comfort un-
der certain conditions. A higher criticality may be achieved on a
test track by unexpectedly letting the oncoming traffic appear,
for instance, after a curve, or by letting the cyclist unexpect-
edly swerve into the driver’s path due to a sudden obstacle.
Higher criticality may as well be expected in the passing and
returning phase, when TTConc and the distance to the cyclist
are small and, therefore, the risk of head-on and side-swipe col-
lision high. Even a slight misjudgment by the driver about the
positions of the cyclist or the oncoming traffic may, therefore,
result in catastrophic consequences. A TT environment is an
appropriate environment to test more critical maneuvers in an
ecologically valid and yet ethically acceptable way with virtual
road users. A driver-vehicle-in-the-loop system may be the best
solution to simulate virtual obstacles, e. g., a virtual cyclist, to
the driver and to thereby avoid using physical obstacles [76, 77].
Realistic models of the cyclist’s behavior in obstacle avoidance ,
as developed by Lee et al., become important resources to sup-
port such simulations [3]. Bayesian regression models can give
richer information compared to their frequentist counterparts
but can be computationally demanding to fit. Future work may
investigate how frequentist methods could express driver be-
havior in a simpler model that is yet well suited for integration
into an active safety system. Alternative Bayesian methods that
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aim at performance and the applicability to larger data sets,
such as variational Bayesian inference, may as well be consid-
ered [78].



5
C O N C L U S I O N S

This thesis suggests that oncoming traffic has the most influ-
ence on driver behavior when overtaking VRUs, leading to a
decreased safety of the VRU because drivers compensate the
risk of a head-on collision with the risk to crash into the VRU.
The fact that safety metrics were reduced in the presence of on-
coming traffic shows that the risk compensation was subjective
for the driver, and not necessarily objective for all involved road
users. This fact stresses the need for active safety systems that
can detect and track oncoming traffic at far distances, and that
can assist the driver during the whole overtaking maneuver not
to compromise VRU safety.

Results indicate that the behavior of the VRU influences
driver behavior: lateral positioning of the VRU is a relevant
factor for both cyclists and pedestrians, while the direction
of travel is an important confounding factor in pedestrian-
overtaking maneuvers. This fact calls for appropriate infras-
tructure like physical separation, that allows safe traveling for
VRUs and not only consists of on-road painted refuges. Fur-
thermore, the fact that overtaking speed and lateral clearance
only weakly correlated during overtaking maneuvers shows
that VRU safety is at stake and calls for action from policy-
makers to prescribe a minimum passing distance that may be
stratified by speed.

This thesis suggests that active safety systems should be
adaptable to individual drivers to reduce the risk of false-
positive interventions. Such personalization may be achieved
with Bayesian models that can be continuously updated with
new data of the driver’s overtaking behavior and allow the
sampling of realistic behavioral parameters of individual
drivers. Bayesian regression models, therefore, do not only
deliver statistical results to describe driver behavior with all its
uncertainty but may also predict elements of driver behavior to
improve interventions of active safety systems. Data for fitting
such models may stem from test-track experiments or field
tests, but the resulting models should eventually be validated
on naturalistic data to prove their plausibility.

37
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The CPLA and CBLA scenarios of the Euro NCAP test proto-
col represent relevant scenarios for assessing active safety sys-
tems that address VRU safety in overtaking maneuvers, and
this thesis confirms their overall compatibility with drivers’ be-
havior. However, to add more realism, the factor of oncom-
ing traffic may need to be introduced in future test scenar-
ios. The 1.7 s TTC requirement for warning onset may not be
enough to completely avoid a collision with the cyclist by brak-
ing, and should, therefore, undergo further investigation. The
driver models developed in this thesis may also support the de-
velopment of future virtual test scenarios for assessing safety
systems so that interactions among road users may be properly
estimated.

While the main focus of this thesis was to obtain models that
describe driver behavior in statistical terms, future work should
focus on developing models that aim at predicting drivers’ de-
cision making and actions in real-time, to facilitate their incor-
poration in active safety systems. Such models should address
driver behavior during all overtaking phases.
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