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Symmetry structures in dynamic models
of biochemical systems
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Understanding the complex interactions of biochemical processes underlying
human disease represents the holy grail of systems biology. When processes
are modelled in ordinary differential equation (ODE) fashion, the most
common tool for their analysis is linear stability analysis where the long-
term behaviour of the model is determined by linearizing the system
around its steady states. However, this asymptotic behaviour is often insuffi-
cient for completely determining the structure of the underlying system. A
complementary technique for analysing a system of ODEs is to consider the
set of symmetries of its solutions. Symmetries provide a powerful concept
for the development of mechanistic models by describing structures corre-
sponding to the underlying dynamics of biological systems. To demonstrate
their capability, we consider symmetries of the nonlinear Hill model describing
enzymatic reaction kinetics and derive a class of symmetry transformations for
each order of the model. We consider a minimal example consisting of the
application of symmetry-based methods to a model selection problem,
where we are able to demonstrate superior performance compared to ordinary
residual-based model selection. Moreover, we demonstrate that symmetries
reveal the intrinsic properties of a system of interest based on a single time
series. Finally, we show and propose that symmetry-based methodology
should be considered as the first step in a systematic model building and in
the case when multiple time series are available it should complement the
commonly used statistical methodologies.
1. Introduction
The development of mathematical models is crucial in data-driven fields where
the mechanism of the underlying system is of interest. In systems biology,
mechanistic models of ordinary differential equations (ODEs) are often con-
structed to describe the change in abundance of intracellular components
such as mRNA or proteins over time. A proposed biological mechanism is typi-
cally combined with the law of mass action [1], yielding polynomial models.
Under certain assumptions, e.g. regarding the relative abundance of different
components, the models can be simplified giving rise to other types of non-
linear rate equations which are common in enzyme kinetics [2]. A classical
example is Michaelis–Menten kinetics or, more generally, the Hill equation
describing the dynamics of a reaction forming a product, catalysed by an
enzyme, in a situation where the concentration of the substrate is substantially
higher than that of the enzyme [1]. These rate equations are the building blocks
in the construction of mechanistic models in systems biology where each model
implicitly proposes an underlying mechanism for the system at hand.

The prevailing strategies for constructing mechanistic models are based on
data using a top down approach. Given an experimental time series describing
the change in the quantity of an intracellular component over time, numerous
methods for model selection are based on residual analysis [3] using the least
squares [1] cost functionmeasuring the Euclidean distance between themeasured
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data and the model predictions. Several proposed models are
then evaluated and the one that minimizes the cost function is
selected. Other more sophisticated methods include the
Akaike information criteria [3–5], Bayesian model selection
[3–5], cross validation [6,7] and bootstrapping methods
[3,5,8] which for example take the model complexity in
terms of the number of parameters into account. All these stat-
isticalmethods relyon data (implying that experimental design
is an integral part of model selection [9,10]) which limits their
applicability in cases when data are scarce or when several
models describe the data equally well in terms of the residual
analysis, e.g. due to experimental errors which are large
compared to the intrinsic variation across candidate models.

Model development can alternatively be conducted using
mathematical analysis without any experimental data in a
bottom up approach. This is traditionally used e.g. in population
dynamics [11], where the methodology consists in comparing
different mathematical models of the same system [12] in terms
of their agreementwithproperties derived fromprior knowledge
of the system rather than statistical measures. The most common
tool for analysingODEmodels in biology is linear stability analysis
[1,13]where the long-term behaviour of themodel is determined
by linearizing the system around its steady states. However, this
asymptotic behaviour is often insufficient for completely deter-
mining the structure of the underlying system. An alternative
technique for analysing a system of ODEs is to consider the set
of symmetries of its solutions [14–16]. The mathematical
framework for such methods is that of group theory and rep-
resentation theory, and more generally differential geometry.
Symmetry methods have been used to classify ODE models
according to their symmetry groups [17] and, conversely, identi-
fying symmetries realized in a system allows for a constructive
approach tomodellingwhere the symmetries are mademanifest
in constructing the mechanistic model.

The symmetry framework is well established and enor-
mously successful for model construction in mathematical
physics (e.g. as the foundational principle of the standard
model of elementary particle physics [18,19]). In fact, it has
also found applications within mathematical biology such as
animal locomotion [20], and can be used to find solutions to
ODEs describing biological systems based on the extensive
analysis of nonlinear reaction–diffusion type systems and
their symmetries in mathematical physics [21,22]. However, as
an approach to construct models in systems biology in general,
and reaction kinetics in particular, the symmetry framework is
not widely used. Since the framework incorporates intrinsic
properties of a system at all time scales, a symmetry-basedmeth-
odology could arguably represent an untapped potential for
systems biology in the context of model development in
particular and the analysis of dynamical models in general.

The aim of this paper is to elucidate the role of sym-
metries in systems biology by demonstrating a minimal
example of the application of symmetry methods to model
selection in enzyme kinetics. Specifically, provided a time
series of the concentration of a substrate of an enzyme over
time, and a number of candidate kinetic models describing
the data approximately equally well in terms of the residuals,
we apply a symmetry-based method to select the model that
is best able to represent the time-series data. As the metho-
dology is not commonly used in systems biology, we begin
by establishing the framework and deriving a certain class
of symmetries of the Hill models used in enzyme kinetics.
Subsequently, we evaluate the proposed method applied to
model selection among a set of three candidate Hill models.
Finally, we discuss the benefits, validity and limitations of
the proposed methodology.
2. Method
We start by providing a brief theoretical background and intro-
duce the notation that should be sufficient for understanding
the implemented symmetry framework. A detailed derivation
of the implemented symmetries as well as the methodology for
model selection and validation can be found in the electronic
supplementary material.

2.1. The Hill model
The Hill class of models, describing the enzymatically catalysed
conversion of a substrate to a product, are defined by the ODE

dS
dt

¼ Vn(S, t) (2:1)

with

Vn(S, t) ¼ �vmax
Sn

Km þ Sn
, (2:2)

where n [ Nþ is the order of the model, S is the substrate concen-
tration and t is the time. The parameters vmax and Km,
respectively, correspond to the maximum reaction rate and the
substrate concentration at half of the maximum reaction rate.
In all cases, physical solutions to (equation (2.1)) satisfy S≥ 0
ensuring that Ωn(S, t) is well defined.

Symmetry properties of the models are most easily analysed
in terms of dimensionless time and concentration

t ¼ vmaxt

K1=n
m

and y ¼ S

K1=n
m

, (2:3)

in terms of which the model (equation (2.1)) becomes

dy
dt

¼ vn(t, y), (2:4)

with

vn(t, y) ¼ � yn

1þ yn
: (2:5)

2.2. Symmetry transformations
A point transformation with parameter e [ R acting on the (τ, y)-
plane

Ge: (t, y) 7! (t̂, ŷ) (2:6)

is a symmetry of the Hill model if it maps a solution of (equation
(2.4)) to another solution. In other words, the set of solutions to
(equation (2.4)) is closed under the action of a symmetry Γϵ. The
family of such symmetry transformations parametrized by ϵ
forms a (representation of a) one-parameter Lie group.

There is no time dependence in the expression (equation (2.5))
for the derivative of the concentration, implying that time trans-
lation is a manifest symmetry of the theory. The corresponding
point transformations are

Ge: (t, y) 7! (tþ e, y), (2:7)

under which ωn are invariant for all model orders n.
In the context of elucidating structural properties of a model

ωn from its symmetries, we will also consider point transform-
ations Γϵ which form a representation of a one-parameter Lie
group but which are not symmetries of the model in the sense
that the set of solutions is not closed under Γϵ.
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It can be shown that the point transformation

Gn
e :(t, y) 7! (�yee þ (tþ y)e�(n�1)e, yee) (2:8)

is a symmetry of the Hill model ωm(τ, y) of order m for m = n but
not for m ≠ n. The symmetry transformation (equation (2.8)) is,
therefore, unique to the Hill model of order n, which means
that it can be used to distinguish between different Hill
models. The action of the symmetry transformation on solutions
to the Hill models of order n = 1, 2, 3 is illustrated in figure 1.

2.3. Symmetry-based model selection
Given an experimentally acquired time series and a set of candidate
models, themodel selection problem consists in determiningwhich
candidatemodel is best able to describe the experimental data, or to
conclude that neither of the candidates evaluated represent the data
sufficiently well. In situations where several models fit the data
approximately equally well in the least-squares sense, they may
still be differentiated by the extent to which they capture the
global structure of the time series.

One way to achieve a comparison of this structural agree-
ment is by using the fact that the space of solutions to a model
is closed under the action of a symmetry transformation of that
model, but not under general transformations in (τ, y)-space.
Consequently, the true model generating the time series should
have the property that the least-squares error is (approximately)
invariant if the following steps are implemented. Initially, a sym-
metry transformation Γϵ is applied to the data, then a model is
fitted to the transformed data, the inverse transform is applied
to the model and finally the least-squares residuals are computed
for the original time series. The invariance is exact in the limit of
vanishing errors.

Conversely, if a symmetry transformation Γϵ of an incorrect
candidate model is applied in the same way the transformation
will distort the time series and the quality-of-fit is expected to
decrease. In particular, for a one-parameter group of symmetries,
we expect that the residuals will increase as a function of the par-
ameter ϵ (at least locally in a neighbourhood of ϵ = 0). The effect
on the quality-of-fit resulting from the procedure described
above is illustrated in figure 2.

The information about the dependence of the quality-of-fit
on the transformation parameter ϵ can be used to complement
the information obtained from the ordinary model fitting pro-
cedure. Thus, the purpose of the method for model selection
described here is not to replace the common approach in systems
biology, but rather to augment it using structural information
about the candidate models (in the form of their symmetries)
to provide additional information regarding their ability to
represent a dataset.

2.4. Evaluation set-up
To evaluate the symmetry-based model selection methodology,
we consider a set-up where a time series of substrate concen-
trations is simulated using a Hill model of order nSim.
Subsequently, a number of candidate Hill models, of different
orders nFit are fitted to the simulated data using the ‘classical’
least-squares approach and the symmetry-based methodology
described above.

The classical approach is based on the root mean squared (RMS),
ρ0 (electronic supplementary material, Eqn. S33 in S5), where the
selection criteria is that the model with the best fit, i.e. smallest
value of ρ0, is selected. To calculate the statistical significance of
the fitting of the candidate models to a single generated time
series, the evaluation procedure is repeated N times and confi-
dence intervals of the fits at the one standard error level are
calculated. In this setting, models can be distinguished when
their confidence intervals are not overlapping.
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The symmetry-based methodology is based on the RMS ρ(ϵ)
(electronic supplementary material, Eqn. S32 in S5) as a function
of the transformation parameter ϵ. As in the classic case, confi-
dence intervals of the RMS values are calculated as the
evaluation is repeated N times. The selection criteria for the sym-
metry-based methodology is that the model with the lowest
RMS-value as ϵ increases is selected where it is required that
the confidence intervals of the candidates do not overlap.

It should be noted that it is not obvious what range of the
transformation parameter ϵ is required in order to differentiate
between the candidate models using the symmetry-based
approach, or indeed if it is at all possible. In the examples con-
sidered in this paper, the range of ϵ is extended until the RMS
curve ρ(ϵ) of each model reaches a steady state. If no such state
is obtained, the range is extended until convergence becomes
prohibitively slow for the nonlinear optimizer or separation of
candidate models is considered apparent.

2.5. Validation set-up
In order to establish the validity of the symmetry-based meth-
odology, we investigate the case of a point transformation
which is not a symmetry for one and only one of the candidate
models. The time translation transformation Γϵ in (equation
(2.7)) is a symmetry of all Hill models, and therefore it is
expected that the goodness-of-fit is approximately independent
of the parameter ϵ for all model orders. We define the relative
RMS, Δ(ϵ) as

D(e) ¼ r(e)
r0

� 1, (2:9)

where the value Δ(ϵ) = 0 corresponds to the transformation
having no effect on the fitting procedure. Using this metric,
the proposed symmetry-based model selection procedure is
implemented with the common translation symmetry with the
expectation that it will not be possible to distinguish between
the various candidates.
3. Results
3.1. The symmetry-based methodology outperforms

residual-based fitting
The evaluation procedure described in the previous section is
implemented for three cases, namely nSim = 1, 2, 3. For each
case, the three candidate models with nFit = 1, 2, 3 are fitted to
a simulated time series using both the classical and the
symmetry-based method. The procedure is repeated N = 5
times and the correspondingconfidence intervals are calculated.
For the implemented noise levels and values of the kinetic par-
ameters, i.e. vmax and Km, used in the simulations, the classical
quality-of-fit is similar for all candidate models (figure 3).

For the Hill model of order n= 1 (i.e. nSim = 1), the classical
approach cannot distinguish between the fitted models of
order n= 1, 2 (i.e. nFit = 1, 2) as the confidence intervals of the
RMS ρ0 overlap (figure 4a). However, the symmetry-basedmeth-
odology clearly rejects the models with nFit = 2, 3 and selects the
true model with nFit = 1 on the interval ϵ∈ [0, 5] (figure 4b).

In the case of the Hill model of order n = 2 (i.e. nSim = 2),
the classical approach cannot distinguish between the
models, as the confidence intervals of the RMS fitting overlap
(figure 4c), while the symmetry-based methodology again
selects the true model. Over the range ϵ∈ [0, 4] the confi-
dence intervals of the various models clearly separate using
the symmetry-based methodology (figure 4d ) and the correct
model with nFit = 2 is selected as it has the lowest RMS-value
ρ(ϵ). In fact, this effect is exaggerated when the range of the
transformation parameter is increased to ϵ∈ [0, 10] (figure
4e) and it is evident in this case that the true model would
be selected using the symmetry-based approach.

As in the previous cases, the symmetry-based metho-
dology outperforms the classical approach even for the Hill
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model of order n = 3 (i.e. nSim = 3). The classical approach
rejects the first model with nFit = 1 while it cannot distinguish
between the nFit = 2, 3 models as their confidence intervals
overlap (figure 4f ). For a short range of the transformation
parameter ϵ∈ [0, 1.5], the symmetry-based methodology
reaches the same conclusion (figure 4g). Thus, for small
values of the transformation parameter ϵ the symmetry-
based methodology rejects the first model while it cannot
distinguish between the other models as their confidence
intervals of ρ(ϵ) overlap. However, by increasing the range
of the transformation parameter to ϵ∈ [0, 15] it is clear that
the true model with nFit = 3 is selected and that the incorrect
model with nFit = 2 is rejected (figure 4h).

3.2. The translation symmetry cannot distinguish
between models

As expected, the common translation symmetry does not dis-
tinguish between the candidate models. For all three datasets
generated with the models nSim = 1, 2, 3, the relative RMS Δ(ϵ)
is zero within numerical errors. Accordingly, the manifest
translation transformation (equation (2.7)) is incapable of dis-
tinguishing between the candidate models nFit = 1, 2, 3. This
result validates the fundamental assumption of the symmetry-
based methodology, namely that the symmetries Γϵ of the
candidate models must be distinct in order to differentiate
between them. Furthermore, it provides a consistency check
of the method by using a symmetry transformation different
from the specific transformations Gn

e in (equation (2.8)) used
to generate the results in figure 4. The details of the validation
of the methodology is provided in electronic supplementary
material, S6.
4. Discussion
The construction, analysis and validation of mechanistic
models of complex cellular processes represent the heart of
systems biology. We present a minimal example of the use
of symmetries on the very building blocks of kinetic modelling
in systems biology, by deriving symmetries of the Hill
equation. Moreover, we demonstrate that symmetries reveal
intrinsic properties of a system of interest by presenting an
example of a methodology for selecting Hill models based
on a single time series. In fact, with one time series of substrate
concentration over time no single candidate model corre-
sponding to the fitted Hill models (nFit = 1, 2, 3) can be
identified using classical model fitting while the symmetry-
based methodology identifies the correct one in all cases
(figure 4). We also validate the underlying assumption of the
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methodology, namely that the symmetries of the candidate
models must be distinct, by implementing the common trans-
lation symmetry in the proposed methodology (see electronic
supplementary material, figure S3). Thus, this provides a mini-
mal example of the fact that symmetries can be used to deduce
intrinsic properties of a system where few data are available in
a way that regular model fitting cannot.

Importantly, the symmetry-based model selection is not
based on the assumption that any of the candidate models is
in fact the correct model of the underlying system. If all evalu-
ated transformations Γϵ cause a significant increase in ρ with
the transformation parameter ϵ, or if no steady state is reached,
the conclusion is to reject all of the transformations at hand as
symmetries of the system. Similarly, if several models reach a
steady state with negligible increase in the error they are the
both to be consideredviable candidates for describing the under-
lying process, and the symmetry method cannot distinguish
between them. Conversely, if several symmetries are identified
any mathematical model of the system must respect all of
them. Therefore, the symmetry-based evaluation described in
the present paper should more accurately be considered as the
first step in a systematic model construction as opposed to
simply a methodology for selecting among candidate models.

In cases where multiple time series are available, it is
possible to estimate the log-likelihood function and thereby
use statistical methods such as the AIC or BIC criteria for
model selection. However, if the actual underlying mechan-
isms of the studied system is of interest then symmetries
can still provide novel insights that classical model selection
methodologies cannot. Accordingly, symmetries are not
meant to replace the already existing statistical method-
ologies for model selection but rather to complement them
in the construction of mechanistic models.

Although the symmetry principle applied in the example
discussed in the present paper extends other classes of
models and to arbitrary values of the Hill coefficient n, the
simple implementation of the principle in our algorithm is
not expected to be generally applicable. In particular, the
dynamics of the Hill model becomes faster as n increases
and its solutions correspondingly more nonlinear. Accommo-
dating this fact, or similar effects in dynamical systems beyond
the Hill model, might require modifications to the cost func-
tion used in the curve fitting optimization problem or even
the introduction of a non-trivial transformation of the data
series in order to make it amenable to symmetry analysis.

Similarly, the symmetry method is expected to be appli-
cable to more complex models, such as systems of ODEs,
but requires an extended analysis and implementation. As
for the case of a single ODE, symmetries specific to the
system at hand must be explicitly constructed for each case,
and the higher level of complexity of the dynamics requires
more sophisticated algorithms to be implemented. The
extension of the analysis presented in the present paper to
more general models of (systems of) ODEs constitutes a
potential direction for future research.

A further natural continuation of the work presented here
is the automatization of the methodology for identifying
model symmetries in an algorithmic fashion. This would
entail the usage of numerical combined with algebraic
methods [16], in order to allow for systematic model structure
identification for larger models describing the dynamics of
e.g. large intracellular pathways. Such an automatization
requires the formulation of a criteria for the range of the
transformation parameter ϵ in order to determine whether
or not a certain transformation constitutes a symmetry. In
addition, the methodology relies on Taylor expansions locally
around ϵ≈ 0 and it is not evident when the derived trans-
formation ceases to be accurate. Furthermore, as discussed
above, the range of the transformation parameter is crucial
when using the symmetry-based methodology as a means
of selecting one model among multiple candidates. For
example, over the range ϵ∈ [0, 1.5] in the case of the dataset
generated with the model with nSim = 3, the methodology
cannot distinguish between the models with nFit = 2 and
nFit = 3 (figure 4g) while over the range ϵ∈ [0, 15] (figure 4h)
the correct model corresponding to nFit = 3 is selected and
the incorrect model with nFit = 2 is rejected.

As the ultimate goal of systems biology is to gain compre-
hensive mechanistic understanding of how complex functions
emerge from the interaction of biomolecules, symmetries con-
stitute a forceful constituent in modelling where the
underlying process is of interest. As fundamental properties
of a given system can be described by their corresponding
symmetries, where energy conservation corresponds to invar-
iance under time translations, it is of interest to be able to
deduce the symmetries governing the system directly from
the available data. By studying which symmetries a system
obeys, it is possible to derive the corresponding dynamic
models from those symmetries [15,16,23,24]. This study
serves as an example of how this very potent methodology
can be introduced into dynamic modelling in systems biology.
As the symmetry framework is well established in physics, the
prospects of constructing, understanding and analysing
models using symmetries in systems biology are exciting.
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