
Localization Error Bounds for 5G mmWave Systems under I/Q Imbalance

Downloaded from: https://research.chalmers.se, 2025-06-18 02:14 UTC

Citation for the original published paper (version of record):
Ghaseminajm, F., Abu-Shaban, Z., Ikki, S. et al (2020). Localization Error Bounds for 5G mmWave
Systems under I/Q Imbalance. IEEE Transactions on Vehicular Technology, 69(7): 7971-7975.
http://dx.doi.org/10.1109/TVT.2020.2991377

N.B. When citing this work, cite the original published paper.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

(article starts on next page)



Localization Error Bounds For 5G mmWave
Systems Under I/Q Imbalance

Fariba Ghaseminajm, Zohair Abu-Shaban Senior Member, IEEE, Salama S. Ikki Senior Member, IEEE,
Henk Wymeersch Senior Member, IEEE, and Craig R. Benson Member, IEEE.

Abstract—Location awareness is expected to play a significant
role in 5G millimeter-wave (mmWave) communication systems.
One of the basic elements of these systems is quadrature am-
plitude modulation (QAM), which has in-phase and quadrature
(I/Q) modulators. It is not uncommon for transceiver hardware to
exhibit an imbalance in the I/Q components, causing degradation
in data rate and signal quality. Under an amplitude and phase
imbalance model at both the transmitter and receiver, 2D
positioning performance in 5G mmWave systems is considered.
Towards that, we derive the position and orientation error bounds
and study the effects of the I/Q imbalance parameters on the
derived bounds. The numerical results reveal that I/Q imbalance
impacts the performance similarly, whether it occurs at the
transmitter or the receiver, and can cause a degradation up to
12% in position and orientation estimation accuracy.

I. INTRODUCTION

Millimeter-wave (mmWave) systems is a major topic con-
tributing to enhancing the fifth generation (5G) mobile com-
munication systems. They offer high bandwidth, leading to
higher data rates, and use carrier frequencies from 30 GHz
to 300 GHz [1]. In parallel, location-aided systems in 5G are
numerous and serve in a wide range of applications such as
vehicular communications and beamforming.

Due to the employment of antenna arrays at both the
base station (BS) and user equipment (UE), single-anchor
localization through the estimation of the directions of arrival
and departure (DOA, DOD) and the time of arrival (TOA) is
possible. Single-anchor localization bounds for 5G mmWave
systems have been widely considered in the literature. For
example, in [2], the 3D position error (PEB) and the ori-
entation error bounds (OEB) have been studied for uplink
and downlink localization, while [3] proposed position and
orientation estimators for 2D positioning. In [4], the authors
investigated the probability of 5G localization with non-line-
of-sight paths, while [5] investigated localization bounds in
multipath MIMO systems.

Quadrature amplitude modulation (QAM) is widely used in
modern communication systems, particularly mmWave sys-
tems. In this modulation, in-phase (I) and quadrature (Q)
components should be perfectly matched. However, due to
limited accuracy in practical systems, a perfect match is
rarely possible, leading to performance degradation, including
positioning. Although the effect of IQ imbalance (IQI) on
positioning was studies previously in several papers (See for
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Fig. 1. Considered geometry including UE and BS equipped with of ULAs
with NT and NR antennas respectively.

example [6]), to the best of our knowledge, it has not been
investigated for 5G, despite its severity in mmWave systems
[7]. IQI gain and phase parameters are usually compensated
during the channel estimation phase [6], [8]. In mmWave
systems, this is the phase during which DOD, DOA, and
TOA are estimated and ultimately a position fix is obtained.
This implies that investigating IQI jointly with localization is
crucial in the context of 5G mmWave systems.

In this paper, we consider 2D mmWave uplink localization
under IQI, focusing on the RF phase-shifting model [9].
To this end, we consider gain and phase imbalance at both
the transmitter and receiver and derive the PEB and OEB.
Subsequently, we investigate the resulting PEB and OEB
degradation and obtain insights through numerical simulation.

II. PROBLEM FORMULATION

Consider an uplink transmission scenario in which a BS
is equipped with NR-antenna uniform linear array (ULA)
lying on the x-axis and centered at the origin. The BS
receives a signal from a UE with an NT-antenna ULA and
an unknown orientation angle φ0 measured from the positive
x-axis, as shown in Fig. 1. We assume that the UE location,
p = [px, py]

T, to be unknown. We assume one path between
BS and UE as line of sight (LOS) channel. Note that in the case
of multipath, the LOS provides the highest useful information
in terms of positioning [4], and due to path orthogonality [2],
it is easy to isolate it based on the received power profile.

A. Signal Model

The considered transceiver structure under I/Q mismatch is
shown in Fig. 2. Based on [10] and [11], the baseband signal,
sT(t) , [sT1

(t), · · · , sTNB
(t)]T, at the output of the RF chain

can be written as

sT(t) = αTs(t) + βTs∗(t), (1)

where s(t) , [s1(t), · · · , sNB
(t)]T is the baseband signal

containing signals drawn from a zero-mean constellation and



2

RF

RF

RF

RF

φT

φR

τ

γ

F W

s1(t)

sNB(t)

sT1(t)

sTNB
(t)

r1(t)

rNB(t)

rf1(t)

rfNB
(t)

NT NR

cos(ωct)

(1 + εT) sin(ωct+ ψT)

cos(ωct)

(1 + εR) sin(ωct+ ψR)

Fig. 2. 5G mmWave Transceiver structure under RF phase-shifting configuration (ωc = 2πfc where fc is the carrier frequency)

passed through a pulse shaping filter with PSD P (f), NB is
the number of transmitted beams and

αT ,
1

2

(
1 +mTe

jψT
)
, (2a)

βT ,
1

2

(
1−mTe

jψT
)
, (2b)

such that mT , 1+εT and εT and ψT represent the amplitude
and phase imbalance parameters of the transmitter outlined in
Fig. 2. Note that Es, the transmitted energy per symbol of
sT(t), is related to Et, the energy per symbol of s(t), by

Es =
2Et

1 +m2
T

, (3)

indicating that transmitter IQI leads to energy loss.
Denoting the DOD, DOA and propagation delay by φT, φR

and τ , respectively, a widely used model (e.g., [1], [2]) to
describe the input/output relationship of the dashed box in
Fig. 2 is

rf(t) ,
√
EsNRNTγWHaR(φR)aT

H(φT)FsT(t− τ)
+ WHn(t),∈ CNB , (4)

where γ , γR + jγI is the complex path gain, and

aT(φT) =
1√
NT

e−j
2πd
λ cosφTxT , (5)

is the transmit array response vector, d is the inter-element
spacing, and xT ,

[
−NT−1

2 ,−NT−1
2 + 1, ..., NT−1

2

]
is the

antenna location vector. aR(φR) can be similarly defined.
F = [f1, · · · , fNB

] ∈ CNT×NB and W = [w1, · · · ,wNB
] ∈

CNR×NB are the NB-beam analog transmit and receive
beamforming matrices, respectively. Furthermore n(t) ,
[n1(t), n2(t), ..., nNR(t)]

T ∈ CNR denotes zero-mean additive
white Gaussian noise with spectral density N0, with indepen-
dent real and imaginary parts.

Similar to the transmitter side, taking mR , 1 + εR, then
based on [10] and [11], the received baseband signal, r(t) ,
[r1(t), · · · , rNB

(t)]T, is

r(t) =αRrf(t) + βRr∗f (t), (6)

where the receiver IQI parameters are defined as

αR ,
1

2

(
1 +mRe

−jψR
)
, (7a)

βR ,
1

2

(
1−mRe

jψR
)
. (7b)

B. 2D localization problem

Our goal is to obtain the UE PEB and OEB using
the received signal, r(t). We achieve this in two steps:
first, we derive Fisher information of channel parameters
ϕC , {φR, φT, τ, γR, γI, εR, εT, ψR, ψT}. Then, we transfer
this Fisher information into the position domain using a
transformation of parameters.

III. FIM OF CHANNEL PARAMETERS

We now derive the Fisher Information Matrix (FIM) of the
vector of observed parameters. Namely, define

ϕC , [φR, φT, τ, γR, γI, εR, εT, ψR, ψT]
T, (8)

then, the corresponding FIM is denoted by

JC =


JφRφR

JφRφT
· · · JφRψT

JφTφR

. . . · · · JφTψT

...
...

. . .
...

JψTφR
· · · · · · JψTψT

 ∈ R9×9. (9)

The derivation of the elements in (9) depends on whether
the noise covariance matrix is a function of the parameter
in question [12]. Therefore, we digress to compute the noise
covariance matrix as follows.

Taking ro(t−τ) , γWHaR(φR)aT
H(φT)FsT(t−τ), based

on (4) and (6), we can write

r(t) =
√
EsNRNT (αRro(t− τ) + βRr∗o(t− τ))︸ ︷︷ ︸

µ(t)

+
(
αRWHn(t) + βRWTn∗(t)

)︸ ︷︷ ︸
z(t)

. (10)

In order to simplify the exposition, we assume orthogonal
beams such that WHW = σ2

b INB
, in which σ2

b is the power
per beam. This is a reasonable assumption due to the sparse
transmission in 5G mmWave channels [1]. Consequently, the
noise variance can be written as

Σz = E
[
z(t)zH(t)

]
= N0σ

2
b

(
|αR|2 + |βR|2

)
INB

(11a)

=
1

2
N0(1 +m2

R)σ
2
b︸ ︷︷ ︸

,σ2
z

INB
. (11b)

where (11a) follows from the fact that E
[
n(t)nT(t)

]
= 0,

and (11b) follows from (7). Note that as εR increases linearly,
the noise covariance at the receiver increases quadratically.
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From (11), it is clear that the only parameter in ϕC that σ2
z

depends on is εR. Thus, from [12], it can be shown that

JεRεR =
1

σ2
z

∫ T0

0

E
∥∥∥∥∂µ(t)∂εR

∥∥∥∥2

dt+
T0N

2
B

2(σ2
z)

2

(
∂σz

2

∂εR

)2

(12)

while for all the other parameters in ϕC, we have

Jxy ,
∫ T0

0

E
[
<
{
∂µH(t)

∂x
(ΣZ)

−1 ∂µ(t)

∂y

}]
dt,

=
1

σ2
z

∫ T0

0

E
[
<
{
∂µH(t)

∂x

∂µ(t)

∂y

}]
dt, (13)

where x, y ∈ {φR, φT, τ, γR, γI, εT, ψR, ψT}, T0 ≈ NsTs is
the observation time and Ns is the number of pilot symbols.
The full derivation of the elements of (9) is tedious but straight
forward, so it is provided in [13].

The parameters in ϕC can be divided into two groups: geo-
metrical parameters providing information useful for position-
ing, and nuisance parameters. We are mainly interested in the
equivalent FIM [2] of the geometrical parameters that accounts
for the nuisance parameters. Towards that, defining the vector
of geometrical parameters as ϕG , [φR, φT, τ ]

T, and the vec-
tor of nuisance parameters as ϕN , [γR, γI, εR, εT, ψR, ψT]

T,
we can write (9) in block form as

JC =

[
JG JGN

JT
GN JN

]
∈ R9×9, (14)

where JG ∈ R3×3 and JN ∈ R6×6 are the FIMs of ϕG and
ϕN, respectively, while JGN is the mutual information matrix
of ϕG and ϕN. Consequently, the EFIM of ϕG is computed
using Schur complement as [14]

Je
G = JG − JGNJ−1

N JT
GN. (15)

Note that the minus sign in (15) indicates loss of information
due to the nuisance parameters.

IV. FIM OF LOCATION PARAMETERS

As highlighted earlier, our goal is to derive the PEB
and OEB from the intermediary parameters, i.e., channel
parameter. To this end, the FIM of position and orientation,
ϕL , [px, py, φ0]

T, can be computed via a transformation of
parameters as follows [12]

Je
L , ΥJe

GΥT, (16)

where Υ is the transformation matrix, given by the Jacobean

Υ =
∂ϕT

G

∂ϕL

=


∂φR

∂px

∂φT

∂px
∂τ
∂px

∂φR

∂py

∂φT

∂py
∂τ
∂py

∂φR

∂φ0

∂φT

∂φ0

∂τ
∂φ0

 ∈ R3×3. (17)

The entries of Υ can be obtained from the relationships
between the UE and BS highlighted in the geometry shown
in Fig. 1. That is, defining c as the propagation speed

τ =
‖p‖
c
, (18a)

φR = arccos

(
px
‖p‖

)
, (18b)

φT = π − φ0 + arccos

(
px
‖p‖

)
. (18c)

Finally, for brevity, define C = (Je
G)

−1, then the PEB and
OEB under IQI can be found as

PEBIQ =
√

[C]1,1 + [C]2,2, (19a)

OEBIQ =
√
[C]3,3. (19b)

V. NUMERICAL RESULTS

A. Simulation Setup

We consider a mmWave scenario operating at f = 38 GHz.
The BS is equipped with NR = 64 antennas and located at
(0, 0). On the other hand, the UE is located in a square area,
(10 m×10 m), defined by (px, py) ∈ {(x, y) : y ≥ |x| ∩ y ≤
10
√
2− |x|} and equipped with NT = 32 antennas.

We utilize directional beamforming similar to [2], in which
beams point toward φB,l, 1 ≤ l ≤ NB, such that the transmit
and receive beamforming are respectively given by

fl ,
1√
NB

aT(φBT,l),

wl ,
1√
NB

aR(φBR,l),

where aT(φBT,l) and aR(φBR,l) have the same structure as
(5). We chose NB = 18, uniformly covering the square area,
i.e., φBR,l = π

4 + π(l−1)
2(NB−1) .

Furthermore, we assume sT(t) to be transmitted through a
unit energy ideal sinc pulse shaping filter so that the effective
bandwidth, W 2

eff = W 2/3 where W = 125 MHz. Moreover
we use the following parameters N0 = −170 dBm/Hz, Ns =
16, σ2

b = 1 and φ0 = 0. We conduct Monte-Carlo simulations
for 120 UE locations and average over 100 iterations to obtain
the PEB and OEB degradation due to IQI

PEBdeg =
PEBIQ − PEBmatch

PEBmatch
× 100%,

OEBdeg =
OEBIQ − OEBmatch

OEBmatch
× 100%

where PEBmatch and OEBmatch are defined similar to (19) after
dropping εR, εT, ψR and ψT from ϕN and setting them to zero
in (1) and (6) .

B. PEB and OEB with respect to I/Q parameters

Fig. 3 shows user PEB percentage degradation with respect
to transmitter I/Q parameters for the considered scenario. For
this figure, the receiver parameters are chosen randomly over
the ranges −0.5 ≤ εR ≤ 0.5 and −30◦ ≤ ψR ≤ 30◦. It
can be seen that minimum degradation occurs when εT =
ψT = 0. That is, transmitter I and Q branches are perfectly
matched. Moreover, the PEB percentage degradation increases
gradually as the imbalance deteriorates by diverging from the
point εT = ψT = 0. It worth noting that the general behavior
of PEB percentage degradation is almost symmetrical along
ψT, unlike εT. To see this clearer, we present Fig. 4. It is
intuitive that as εT increases, the IQI worsens and its impact
on PEB degradation increases. However, it can be seen that as
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Fig. 3. PEB degradation with respect to εT and ψT. NT = 32, NR = 64,
NB = 18 and φ0 = 0
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Fig. 4. PEB degradation at ψT = 0.
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Fig. 5. OEB degradation with respect to εT and ψT. NT = 32, NR = 64,
NB = 18 and φ0 = 0

εT decreases towards negative values, the degradation becomes
more pronounced. This occurs because the magnitude of the
quadrature carrier signal diminishes, i.e., mT sin(ωct + ψT)
and both PEBIQ and PEBmatch worsen. Considering a system-
level evaluation, it can be seen that for relevant values of εT
and ψT, there is up to 15% bound degradation due to IQI.

Fig. 5 presents the OEB percentage degradation with respect
to the transmitter I/Q parameters. In general, the behavior of
OEB degradation is similar to that of the PEB degradation
although around the corners OEB is slightly higher. In [2], it
has been shown that PEB is a function of DOD and TOA,
while OEB is a function of DOA and DOD. Therefore the
slight deterioration of OEB with respect to PEB is due the
additional in estimating DOA, arising from IQI.

As shown in Fig. 6, the PEB percentage degradation with
respect to the receiver I/Q parameters exhibits a similar
behavior to that with respect to the transmitter parameter,
except that contour plots are flipped w.r.t ψR = 0. This is
due to the different signs in (2a) and (7a). Moreover, a similar
observation can be made on the behavior of OEB with respect
to the receiver parameters [13].

VI. CONCLUSION

In this paper, we investigated the effects of I/Q imbalance
phenomenon on the position and orientation error bounds.
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Fig. 6. PEB degradation with respect to εR and ψR. NT = 32, NR = 64,
NB = 18 and φ0 = 0

We considered 2D 5G mmWave uplink localization with
analog beamforming. Our results show that PEB and OEB
degrade by similar amounts with respect to amplitude and
phase imbalance. While this degradation is symmetric with
respect to the phase imbalance, it is more significant for
negative amplitude errors than positive. We also showed that
I/Q imbalance can cause up to 12% increase in the error
of location and orientation estimation. For future work, we
will consider different transceiver structures such as IF phase-
shifting, LO phase shifting and hybrid beamforming.
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