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Abstract

We study the question of when a {0, 1}-valued threshold process associated to a mean
zero Gaussian or a symmetric stable vector corresponds to a divide and color (DC)
process. This means that the process corresponding to fixing a threshold level h
and letting a 1 correspond to the variable being larger than h arises from a random
partition of the index set followed by coloring all elements in each partition element 1
or 0 with probabilities p and 1− p, independently for different partition elements.

While it turns out that all discrete Gaussian free fields yield a DC process when the
threshold is zero, for general n-dimensional mean zero, variance one Gaussian vectors
with nonnegative covariances, this is true in general when n = 3 but false for n = 4.

The behavior is quite different depending on whether the threshold level h is zero
or not and we show that there is no general monotonicity in h in either direction. We
also show that all constant variance discrete Gaussian free fields with a finite number
of variables yield DC processes for large thresholds.

In the stable case, for the simplest nontrivial symmetric stable vector with three
variables, we obtain a phase transition in the stability exponent α at the surprising
value of 1/2; if the index of stability is larger than 1/2, then the process yields a DC
process for large h while if the index of stability is smaller than 1/2, then this is not
the case.
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1 Introduction, notation, summary of results and background

1.1 Introduction

A very simple mechanism for constructing random variables with a (positive) depen-
dency structure is the so-called divide and color model introduced in its general form in
[15] but having already arisen in many different contexts.

Definition 1.1. A {0, 1}-valued process X := (Xi)i∈S is a divide and color model or color
process if X can be generated as follows. First choose a random partition π of S accord-
ing to some arbitrary distribution, and then independently of this and independently
for different partition elements in the random partition, assign, with probability p, all
the variables in a partition element the value 1 and with probability 1− p assign all the
variables the value 0. This final {0, 1}-valued process is then called the color process
associated to π and p. We also say that (π, p) is a color representation of X.
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As detailed in [15], many processes in probability theory are color processes; ex-
amples are the Ising model with zero external field, the fuzzy Potts model with zero
external field, the stationary distributions for the voter Model and random walk in
random scenery.

While certainly the distribution of the color process determines p, it in fact does not
determine the distribution of π. This was seen in small cases in [15], and this lack of
uniqueness was completely determined in [7].

Since the dependency mechanism in a color process is so simple, it seems natural
to ask which {0, 1}-valued processes fall into this context. We mention that it is trivial
to see that any color process has nonnegative pairwise correlations and so this is a
trivial necessary condition. In this paper, our main goal is to study the question of which
threshold Gaussian and threshold stable processes fall into this context. More precisely,
in the Gaussian situation, we ask the following question. Given a set of random variables
(Xi)i∈I which is jointly Gaussian with mean zero, and given h ∈ R, is the {0, 1}-valued
process (Xh

i )i∈I defined by

Xh
i := I(Xi > h)

a color process? In the stable situation, we simply replace the Gaussian assumption by
(Xi)i∈I having a symmetric stable distribution. (We will review the necessary background
concerning stable distributions in Subsection 1.4.) For the very special case that I is
infinite, h = 0 and the process is exchangeable, this question was answered positively,
both in the Gaussian and stable cases, in [15]. The set of threshold stable vectors is a
much richer class than the set of threshold Gaussian vectors. As such, it is reasonable to
study both classes.

Since all the marginals in a color process are necessarily equal, if h 6= 0, then a
necessary condition in the Gaussian case for (Xh

i )i∈I to be a color process is that all the
Xi’s have the same variance. Therefore, when considering h 6= 0, we will assume that
all the (Xi)’s have variance one. However, it will be convenient not to make this latter
assumption when considering h = 0. For the stable case, we will simply assume that all
the marginals are the same.

It has been seen in [15] that p = 1/2 and p 6= 1/2 (corresponding to h = 0 and h 6= 0

in the Gaussian setting) behave very differently generally speaking. This was also seen
in [3] and we will continue to see this here.

We finally note that the questions looked at here significantly differ from those studied
in [15]. In the latter paper, one looked at what types of behavior (ergodic, stochastic
domination, etc.) color processes possess while in the present paper, we analyze which
random vectors (primarily among threshold Gaussian and threshold stable vectors) are
in fact color processes.

1.2 Notation and some standard assumptions

Given a set S, we let BS denote the collection of partitions of the set S. We denote
{1, 2, 3, . . . , n} by [n] and if S = [n], we write Bn for BS . |Bn| is called the nth Bell number.
We denote by Pn the set of partitions of the integer n.

A random partition of [n] yields a probability vector q = {qσ}σ∈Bn ∈ RBn . Similarly, a
random {0, 1}-valued vector (X1, . . . , Xn) yields a probability vector ν = {νρ}ρ∈{0,1}n ∈
R{0,1}

n

. The definition of a color process yields immediately, for each n and p ∈ [0, 1], an
affine map Φn,p from random partitions of [n], i.e., from probability vectors q = {qσ}σ∈Bn
to probability vectors ν = {νρ}ρ∈{0,1}n . This map naturally extends to a linear mapping
An,p from RBn to R{0,1}

n

. The image of An,p was determined in [7]. Loosely speaking,
for p 6= 1/2, the image is the set of signed measures with marginal p, and, for p = 1/2,
the image is the set of signed measures which have a {0, 1}-symmetry. In many cases, we
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will have a signed measure mapping to our given process and the work involves showing
that this signed measure is in fact a probability measure, telling us that the process is a
DC process. A signed measure mapping to a given process in this way is called a formal
solution, or a signed color representation.

While perhaps not standard terminology, we call a Gaussian vector standard if each
marginal has mean zero and variance one.

Standing assumption. Whenever we consider a Gaussian or symmetric stable vector,
we will assume it is nondegenerate in the sense that for all i 6= j, P (Xi 6= Xj) = 1.

Some further notation which we will use is the following.

νx1,...,xn or ν(x1, . . . , xn) .
will denote the probability that {X1 = x1, . . . , Xn = xn} for a {0, 1}-valued process
(X1, . . . , Xn).

ν(x1,...,xn)(h) or νh(x1, . . . , xn) .
will denote, given a Gaussian or stable vector (X1, . . . , Xn), the probability that the
h-threshold process is equal to (x1, . . . , xn); i.e., the probability that P (Xh

i = xi; i ∈
[n]). We use νh to denote the corresponding probability measure on {0, 1}n.

q13,2 .
as an illustration, will denote, given a random partition with n = 3, the probability
that 1 and 3 are in the same partition and 2 is in its own partition.

If we have a partition of a set of more than three elements, q13,2 will then mean the
above but with regard to the induced (marginal) random partition of {1, 2, 3}.

N(0, A) .
will denote a Gaussian vector with mean zero and covariance matrix A.

When a threshold h 6= 0 we will in general only state results for h > 0. However, since
Xh = (Xh

i )i = 1−X−h, the analogous results for h > 0 follows.

1.3 Description of results

In Section 2, we present positive results concerning the question of the existence of
a color representation for the threshold zero case for discrete Gaussian free fields and
more generally for Gaussian vectors whose covariance matrices are so-called inverse
Stieltjes, meaning that the off-diagonal elements of the inverse covariance matrix are
nonpositive. This essentially follows from the known fact that the distribution of the signs
of a discrete Gaussian free field (DGFF), conditioned on their absolute values, is that of
an Ising Model with nonnegative interaction constants depending on the conditioned
absolute values. The latter fact has been observed in [11]. However, it turns out that a
threshold zero Gaussian process can be a color process even if its covariance matrix is
not inverse Stieltjes. We also relate the class of inverse Stieltjes vectors with the set of
tree-indexed Gaussian Markov chains.

In Section 3, we provide an alternative proof that threshold zero tree-indexed Gaus-
sian Markov chains are color processes using the Ornstein-Uhlenbeck process. This
proof has the advantage that the method leads to our first result for stable vectors,
namely that a threshold zero tree-indexed symmetric stable Markov chain is also a color
process; in this case, we use subordinators.

In Section 4, we view our Gaussian vectors from a more geometric perspective and
obtain a number of negative (and some positive) results for thresholds h 6= 0. In this
section, we will obtain our first example where we have a nontrivial phase transition in
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h. This will be elaborated on in more detail in Theorem 4.8 but we state perhaps what is
the main import of that result.

Theorem 1.2. There exists a four-dimensional standard Gaussian vector X so that Xh

is a color process for small positive h but is not a color process for large h.

Remark 1.3. Given the above it is natural to ponder over the possible monotonicity
properties in h. Proposition 4.5 implies that there is no three-dimensional Gaussian
vector with such a phase transition among those that are not fully supported, while
simulations indicate that there is also no fully supported three-dimensional Gaussian
vector with such a phase transition. On the other hand, Corollary 6.6(iii) tells us that
there are three-dimensional Gaussian vectors which are not color processes for small h
but are color processes for large h. This together with the previous result rules out any
type of monotonicity, in either direction. Perhaps however monotonicity holds (in one
direction) for fully supported vectors.

Returning to the threshold zero case, we recall that Proposition 2.12 in [15] implies
that for any three-dimensional Gaussian vector with nonnegative correlations, the corre-
sponding zero threshold process is a color process. Our next result says that this is not
necessarily the case for four-dimensional Gaussian vectors.

Theorem 1.4. There exists a four-dimensional standard Gaussian vector X with non-
negative correlations so that X0 is not a color process. X can be taken to either be fully
supported or not.

In Subsection 4.6, we extend the study of the example given in the proof of the
previous theorem to the stable case.

In Section 5, we consider the large h Gaussian case. We show that any Gaussian
vector which is not fully supported does not have a color representation for large h; see
Corollary 5.3. On the other hand, we have the following.

Theorem 1.5. If X := (X1, X2, . . . , Xn) is a discrete Gaussian free field which is standard
Gaussian, then Xh is a color process for all sufficiently large h.

For the definition of the discrete Gaussian free field see, for example, [4]. We do not
know if there is any DGFF X with constant variance for which Xh is not a color process
for some h.

In Section 6, we obtain detailed results concerning the existence of a color represen-
tation when the threshold h→ 0 and when h→∞ in the general Gaussian case when
n = 3. In the fully supported case, we have the following result which gives an exact
characterization of which Gaussian vectors have a color representation for large h. Note
that if two of the covariances are zero, then we trivially have a color representation for
all h.

Theorem 1.6. Let X be a fully supported three-dimensional standard Gaussian vector
with covariance matrix A = (aij) satisfying Cov(Xi, Xj) = aij ∈ [0, 1) for 1 ≤ i < j ≤ 3.
If aij > 0 for all i < j, then Xh has a color representation for sufficiently large h if and
only if one of the following (nonoverlapping) conditions holds.

(i) 1TA−1 > 0

(ii) mini 1
TA−1(i) = 0

(iii) mini 1
TA−1(i) < 0 and 1TA−11 < 2.

Furthermore, if exactly one of the covariances is equal to zero, then Xh does not have a
color representation for large h.

The assumption in (i) of Theorem 1.6, i.e. that 1TA−1 > 0, is sometimes called
the Savage condition (with respect to the vector 1 = (1, 1, . . . , 1)). When A = (aij) is
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the covariance matrix of a (nontrivial) two-dimensional standard Gaussian vector, then
1TA−1(1) = 1TA−1(2) = (1 + a12)−1 > 0, and hence the Savage condition always holds in
this case. If A = (aij) is the covariance matrix of a three-dimensional standard Gaussian
vector, then one can show that

1TA−1(1) =
(1 + a23 − a12 − a13)(1− a23)

detA
(1.1)

and it follows that the Savage condition holds if and only if

1 + 2 min
i<j

aij >
∑
i<j

aij . (1.2)

When 1TA−1 ≥ 0, we will refer to this as the weak Savage condition. This for example
holds for all discrete Gaussian free fields.

The rest of the results we describe in this section concern the stable (non-Gaussian)
case. In Section 7, we first look at the case n = 2. While it is trivial that having a color
representation is equivalent to having a nonnegative correlation when n = 2, in the
stable case it is not obvious, even when n = 2, which spectral measures yield a threshold
vector with a nonnegative correlation. This contrasts with the Gaussian case where
nonnegative correlation in the threshold process is simply equivalent to the Gaussian
vector having a nonnegative correlation.

We first mention, in this regard, that Theorem 4.6.1 (and its proof) and Theorem 4.4.1
in [13] (see also (4.4.2) on p. 188 there) yield the following fact where Sα(1, 0, 0) denotes
the standard one-dimensional symmetric α-stable distribution with scale one; see the
next subsection for precise definitions. For α ∈ (0, 2), if X is a symmetric 2-dimensional
α-stable random vector with marginals Sα(1, 0, 0) spectral measure Λ, then (1) if Λ

has support only in the first and third quadrants, then Xh
1 and Xh

2 are nonnegatively
correlated for all h ∈ R (and hence the threshold process is a color process) and (2) if Λ

has some support strictly inside the first quadrant, then Xh
1 and Xh

2 have strictly positive
correlation for all sufficiently large h (and hence the threshold process is a color process
for large h).

The following natural example shows that one does not need to have the spectral
measure supported only in the first and third quadrants in order for the threshold process
always to be a color process.

Proposition 1.7. Let S1, S2 ∼ Sα(1, 0, 0) be independent and let a ∈ (0, 1). Set{
X1 = aS1 + (1− aα)1/αS2

X2 = −aS1 + (1− aα)1/αS2.

(This ensures that X1, X2 ∼ Sα(1, 0, 0).) Then the following are equivalent.

(i) a ≤ 2−1/α

(ii) X0 is a color process.

(iii) Xh is a color process for all h.

We now study the question of the existence of a color representation in the symmetric
stable case when h → ∞. Our first result shows that there is a fairly large class for
which the answer is affirmative and here the method of proof comes from that used in
Theorem 1.5.
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Theorem 1.8. Let X be a symmetric stable distribution with marginals Sα(1, 0, 0) whose
spectral measure has some support properly inside each orthant. Furthermore, assume
that

2

∫
Sn−1

(x(2) ∨ 0)α dΛ(x) < 1 (1.3)

where x(2) denotes the second largest coordinate of the vector x. Then Xh is a color
process for all sufficiently large h.

The integral condition in (1.3) will hold for example if the spectral measure is
supported sufficiently close to the coordinate axes.

Next, we surprisingly obtain, in the simplest nontrivial stable vector with n = 3, a
certain phase transition in the stability exponent where the critical point is α = 1/2. We
state it here although relevant definitions will be given later on.

Theorem 1.9. Let α ∈ (0, 2) and let S0, S1, S2, S3 be i.i.d. each with distribution
Sα(1, 0, 0). Furthermore, let a ∈ (0, 1) and for i = 1, 2, 3, define

Xi = aS0 + (1− aα)1/αSi

and Xα := (X1, X2, X3). (Xα is then a symmetric α-stable vector which is invariant under
permutations; it is one of the simplest such vectors other than an i.i.d. process.)

(i) If α > 1/2, then Xh is a color process for all sufficiently large h.

(ii) If α < 1/2, then Xh is not a color process for any sufficiently large h.

The critical value of 1/2 above was independent of the parameter a, as long as
a ∈ (0, 1). If we however move to a family which has two parameters, but is still {0, 1}-
symmetric and permutation transitive, we can obtain a phase transition at any point in
(0, 2).

Theorem 1.10. Let a, b ∈ (0, 1) satisfy 2a2 + 2b2 < 1. Let c1 = c1(a, b) ∈ (0, 2) be the
unique solution to 2ac1 + 2bc1 = 1 and c2 = c2(a, b) := log 2/| log a− log b| ∈ (0,∞].

For α ∈ (c1, 2), let S1, S2, . . . , S7 be i.i.d. with S1 ∼ Sα(1, 0, 0) and define
X1 := aS1 + bS2 + bS4 + aS5 + (1− 2aα − 2bα)1/αS7

X2 := aS2 + bS3 + bS5 + aS6 + (1− 2aα − 2bα)1/αS7

X3 := bS1 + aS3 + aS4 + bS6 + (1− 2aα − 2bα)1/αS7.

Then Xα := (X1, X2, X3) is a symmetric α-stable vector which is invariant under all
permutations, and the following holds.

(i) If c2 ≤ c1, then, for all α ∈ (c1, 2), Xh
α is a color process for all sufficiently large h.

(ii) If c2 ≥ 2, then, for all α ∈ (c1, 2), Xh
α is not a color process for any sufficiently large

h.

(iii) If c2 ∈ (c1, 2), then, for all α ∈ (c1, c2), Xh
α is not a color process for any sufficiently

large h while for all α ∈ (c2, 2), Xh
α is a color process for all sufficiently large h.

In particular, for any αc ∈ (0, 2) and ε < αc, we can choose a and b so that c1 = ε and
c2 = αc, in which case Xα is defined for all α ∈ (ε, 2) and where the question of whether
the large h threshold is a color process has a phase transition at αc.

Remark 1.11. The case a > b = 0, which is not included in Theorem 1.10, corresponds
to the fully symmetric case studied in Theorem 1.9.
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1.4 Background on symmetric stable vectors

We refer the reader to [13] for the theory of stable distributions and will just present
here the background needed for our results.

Definition 1.12. A random vector X := (Xi)1≤i≤d in Rd has a stable distribution if for
all n, there exist an > 0 and bn so that if (X1, . . . , Xn) are n i.i.d. copies of X, then∑

1≤i≤n

Xi D= anX + bn.

It is known that for any stable vector, there exists α ∈ (0, 2] so that an = n1/α. The
Gaussian case corresponds to α = 2. Ignoring constant random variables, a stable
random variable (i.e., with d = 1 above) has four parameters, (1) α ∈ (0, 2] which is called
the stability exponent, (2) β ∈ [−1, 1] which is called the asymmetry parameter, (3) σ
which is a scale parameter and (4) µ which is a shift parameter. When α = 2, there is no
β parameter, µ corresponds to the mean and σ corresponds to the standard deviation
divided by

√
2, an irrelevant scaling. The distribution of this random variable is denoted

by Sα(σ, β, µ). More precisely, Sα(σ, β, µ) is defined by its characteristic function f(θ),
which, for α 6= 1 is

exp (−σα|θ|α(1− iβ(sgn θ) tan(πα/2)) + iµθ) .

See [13] for the formula when α = 1. One should be careful and keep in mind that
different authors use different parameterizations for the family of stable distributions.
Throughout this paper, we will only consider symmetric stable random variables corre-
sponding to β = µ = 0 and sometimes often assume σ = 1. The above then simplifies to
a random variable having distribution Sα(σ, 0, 0) which means its characteristic function
is f(θ) = e−σ

α|θ|α . In the symmetric case, this formula is also valid for α = 1.
Finally, a random vector in Rd has a symmetric stable distribution with stability

exponent α if and only if its characteristic function f(θ) has the form

f(θ) = exp(−
∫
Sd−1

|θ · x|α dΛ(x))

for some finite measure Λ on Sd−1 which is invariant under x 7→ −x. Λ is called the
spectral measure corresponding to the α-stable vector. For α ∈ (0, 2) fixed, different Λ’s
yield different distributions. This is not true for α = 2.

In a number of cases, we will have a symmetric α-stable vector X := (X1, . . . , Xd)

which is obtained by having
X = A(Y1, . . . , Ym)

where A is a d×m matrix and Y = (Y1, . . . , Ym) are i.i.d. random variables with distri-
bution Sα(1, 0, 0). In such a case, there is a simple formula for the spectral measure Λ

for X. Consider the columns of A as elements of Rd, denoted by x1, . . . ,xm. Then Λ is
obtained by placing, for each i ∈ [m], a mass of weight ‖xi‖α2 /2 at ±xi/‖xi‖2. See p. 69
in [13].

2 Stieltjes matrices and discrete Gaussian free fields

2.1 Inverse Stieltjes covariance matrices give rise to color processes for h = 0

Definition 2.1. A Stieltjes matrix is a symmetric positive definite matrix with non-
positive off-diagonal elements.

We will see later that the following result implies that for all discrete Gaussian free
fields X, X0 is a color process.
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Theorem 2.2. If X ∼ N(0, A) and A−1 is a Stieltjes matrix, then X0 is a color process.

In [11], it was observed that the signs of a discrete Gaussian free field is an average
of ferromagnetic Ising Models; that argument extends to the case of a Stieltjes matrix
which is given below.

Proof. Note first that as (bij) := A−1 is a Stieltjes matrix, we have that bij ≤ 0 whenever
i 6= j. This implies in particular that if fX is the probability density function of X, then

fX(x) ∝ exp

(
−xTA−1x

2

)
= exp

∑
{i,j}

−bijxixj −
1

2

∑
i

biix
2
i

 .

Now for each i, define σi := sgnXi so that Xi = |Xi|σi. Then the conditional
probability density function of (σi) given |X1| = y1, |X2| = y2, . . . , |Xn| = yn satisfies

f(σ) ∝ exp

∑
{i,j}

−bijyiyjσiσj

 .

This is a ferromagnetic Ising model with parameters βij = −bijyiyj ≥ 0 and no external
field. It is well known that the (Fortuin Kastelyn) random cluster model yields a color
representation for the Ising model after we identify −1 with 0. Since an average of color
processes is a color process, we are done.

Remark 2.3. The proof of Theorem 2.2 does not apply to other threshold levels. With
nonzero thresholds, this argument would lead to Ising model with a varying external field.
The marginals of this (conditioned) process are not in general equal, which precludes
it from being a color process, and even if the marginals were equal, there is no known
color representation in this case in general.

We end this subsection by pointing out that there are fully supported Gaussian vectors
whose threshold zero processes are color processes but whose inverse covariance matrix
is not a Stieltjes matrix.

To see this, let a ∈ (0, 1) and ε ∈ (0, 1). Then the matrix

A =

1 a a

a 1 a2 − ε
a a2 − ε 1


has eigenvalues 1 − a2 + ε and

2+a2−ε±
√

8a2+(a2−ε)2
2 . Hence A is positive definite if

ε < 1− a2. Moreover, we have

A−1 =
1

1− a2 − ε

1 + a2 − ε −a −a
−a 1−a2

1−a2+ε
ε

1−a2+ε

−a ε
1−a2+ε

1−a2
1−a2+ε


Hence, A is not an inverse Stieltjes matrix for any ε > 0, since for any ε > 0 we have
that A−1(2, 3) > 0. Consequently, if 0 < ε < 1 − a2, then A is symmetric, positive and
positive definite but not an inverse Stieltjes matrix. Finally, the fact that the threshold
zero process is a color process follows from Proposition 2.12 in [15] which states that
for n = 3, any {0, 1}-symmetric process with nonnegative pairwise correlations is a color
process.

A very important class of Gaussian vectors that have A−1 being a Stieltjes matrix are
discrete Gaussian free fields with a finite number of variables. Another example are so-
called tree-indexed Gaussian Markov chains. A Gaussian Markov chain with parameter
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a ∈ [0, 1] has state space S = R and is described by s 7→ as+ (1− a2)1/2W where W is a
standard normal random variable; this is reversible with respect the distribution of W .
From this, one can construct tree-indexed Gaussian Markov chains (see e.g. [2]).

We end this subsection by discussing a simple Gaussian vector and show that different
points of view can lead to very different color representations. To this end, consider
the fully symmetric multivariate normal X := (X1, X2, . . . , Xn) with covariance matrix
A = (aij) where aij = a ∈ (0, 1) for i 6= j and aii = 1 for all i. It is easy to check that

A−1(i, j) =

{
1+(n−2)a

(1+(n−1)a)(1−a) if i = j
−a

(1+(n−1)a)(1−a) otherwise.

Since this is a Stieltjes matrix, X0 is a color process by Theorem 2.2 and moreover,
by the proof, the resulting color representation has full support. (The fact that this
particular example is a color process is also covered by Section 3.5 in [15] using a
different method.)

Now suppose we would add a variable X0 with a00 = 1 and ai0 =
√
a for all

i ∈ {1, 2, . . . , n}. One can check that this defines a Gaussian vector (X0, X1, X2, . . . , Xn)

and it is easy to check that this is a tree-indexed Gaussian Markov chain where the
tree is a vertex with n edges coming out. If we let A0 be the covariance matrix of
Y := (X0, X1, X2, . . . , Xn), then its inverse is given by

A−1
0 (i, j) =



1+(n−1)a
1−a if i = j = 0

1
1−a if i = j > 0
−
√
a

1−a if i > j = 0
−
√
a

1−a if j > i = 0

0 otherwise.

Being a Stieltjes matrix, Y 0 has a color representation by Theorem 2.2 and the proof
yields that if we restrict the resulting color representation of Y 0 to {1, 2, . . . , n}, the
representation is supported on partitions with at most one non-singleton cluster. In
particular, this implies that when n = 4, these color representations will assign different
probabilities to the partition (12, 34), and hence the representations are distinct.

3 An alternative embedding proof for tree-indexed Gaussian
Markov chains which extends to the stable case

The purpose of this section is twofold: first to give an alternative proof of the fact
established earlier that tree-indexed Gaussian Markov chains are color processes and
then to use a variant of this alternative method to obtain a result in the context of stable
random variables.

3.1 The Gaussian case

Alternative proof that the threshold zero of a tree-indexed Markov chain is a color
process. We give this proof only for a path where the correlations between successive
variables are the same value a. The extension to the tree case and varying correlations
is analogous.

To show that X := (X1, X2, . . . , Xn) has a color representation for any n ≥ 1, we want
to construct, on some probability space, a random partition π of [n] and random variables
Y = (Y1, Y2, . . . , Yn) so that

(i) X and Y have the same distribution (which implies that their corresponding sign
processes have the same distribution) and
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(ii) (Y 0, π) is a color process (for p = 1/2) with its color representation.

To do this, let (Zt) be the so-called Ornstein-Uhlenbeck (OU) process defined by

Zt = e−tWe2t

where (Wt)t≥0 is a standard Brownian motion. It is well known and immediate to check
that Zt ∼ N(0, 1) for any t ∈ R and that Cov(Zs, Zt) = e−|s−t| for any s, t ∈ R.

Now, given n, consider the random vector Y given by(
Zlog(1/a), Z2 log(1/a), . . . , Zn log(1/a)

)
and consider the random partition π of {1, 2, . . . , n} given by i ∼ j if Zt does not hit zero
between times i log(1/a) and j log(1/a).

It is immediate from the Markovian structure of both vectors and the covariances in
the OU process that (i) holds. Next, (ii) is clear using the reflection principle (which uses
the strong Markov property) and the fact that the hitting time of 0 is a stopping time.

Remark 3.1. This argument (also) does not work for any threshold other than zero. For
it to work, one would need that for h > 0 and any time t ≥ 0, the probability that an OU
process started at h is larger than h at time t is equal to the unconditioned probability.
This however does not hold.

Remark 3.2. In [10], the author studies a similar construction as the construction above
for discrete Gaussian free fields. More precisely, the author shows that one can obtain a
color representation for a DGFF X as follows. Given X, for each pair of adjacent vertices
he adds a Brownian bridge with length determined by their coupling constant. Two
vertices are then put in the same partition element if the corresponding Brownian bridge
does not hit zero. Since DGFF’s have no stable analogue, this does not generalize to any
class of stable distributions.

3.2 The stable case

We now obtain our first result for stable vectors. Given α ∈ (0, 2) and a ∈ (0, 1),
let U have distribution Sα(1, 0, 0) and consider the Markov chain on R given by s 7→
as+(1−aα)1/αU . It is straightforward to check that U is a stationary distribution for this
Markov chain. Hence, given a tree T and a designated root, we obtain a tree-indexed α-
stable Markov chain on T . Interestingly, unlike the Gaussian case, this process depends
on the chosen root as this Markov Chain is not reversible. In particular, if (X0, X1) are
two consecutive times for this Markov chain started in stationarity, then (X0, X1) and
(X1, X0) have different distributions; one can see this by looking at the two spectral
measures.

Proposition 3.3. Fix α ∈ (0, 2), a ∈ (0, 1), a tree T with designated root ρ and consider
the corresponding tree-indexed α-stable Markov chain X on T . Then X0 is a color
process.

Proof. We give the proof only for a path and with ρ being the start of the path. The
extension to the tree case is analogous. As in the previous proof, we want to construct,
on some probability space, a random partition π of [n] and random variables Y =

(Y1, Y2, . . . , Yn) so that

(i) (X1, . . . , Xn) and Y have the same distribution, and

(ii) (Y 0, π) is a color process (for p = 1/2) with its color representation.
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We first recall (see Proposition 1.3.1 in [13], p.20) that if a standard Brownian motion
(Bt)t≥0 and S ∼ Sα/2(2 cos(πα/4)2/α, 1, 0) are independent, then S1/2B1 ∼ Sα(1, 0, 0). The
random variable S is an example of a so-called subordinator.

Now let Y1, S2, . . . , Sn, (B
(2)
t )t≥0, . . . , (B

(n)
t )t≥0 be independent with Y1 ∼ Sα(1, 0, 0),

each Si
D
= S, where S is as above and each (B

(i)
t )t≥0 being a standard Brownian motion.

Define Yi for i ∈ {2, . . . , n} inductively by

Yi+1 = aYi + (1− aα)1/αS
1/2
i+1B

(i+1)
1 .

It is clear from the above discussion that (i) holds.
Now we extend this process to all times t ∈ [1, n] as follows. Let, for t ∈ (i, i+ 1),

Yt = aYi + (1− aα)1/αS
1/2
i+1B

(i+1)
t−i .

Note that (Yt) is left-continuous and has jumps exactly at the integers. Note also that
this process never jumps over the x-axis.

Next, considering the random partition π of {1, 2, . . . , n} given by i ∼ j if Yt does
not hit zero between times i and j. Again using the reflection principle, properties of
Brownian motion and the fact that (Yt) never jumps over the x-axis it is clear that (ii)
holds.

We apply this to a particular symmetric, fully symmetric stable n-dimensional vector.
To this end, let S0, S1, . . . , Sn be i.i.d. each having distribution Sα(1, 0, 0) and for
i = 1, 2, . . . , n let

X1 := aS0 + (1− aα)1/αSi.

We claim that (X0
1 , X

0
2 , . . . , X

0
n) is a color process. To see this, consider Proposition 3.3

with a homogeneous n-ary tree and α and a being as above. By that proposition, the
threshold zero process for the corresponding tree-indexed Markov chain is a color
process.

4 A geometric approach to Gaussian vectors

4.1 The geometric picture of a Gaussian vector

In this section we switch to a more geometric perspective and view a mean zero
n-dimensional Gaussian vector as the values of a certain random function at a set of n
points in Rk for some k. This alternative description is completely well known. More
precisely, let k ≥ 1, x1, . . . ,xn ∈ Rk, and W ∼ N(0, Ik) be a standard normal distribution
in Rk. If we now let

X := (Xi)1≤i≤n := (xi ·W )1≤i≤n, (4.1)

then X is a Gaussian vector with mean zero and covariances Cov(Xi, Xj) = xi · xj . Note
that Xi having variance one corresponds to xi being on the unit sphere Sk−1 in Rk. The
above representation can always be achieved with k = n. Such a representation can
be achieved, up to rotations, in Rk if and only if X lives on a k-dimensional subspace
of Rn. We say that X has dimension k if k is the smallest integer where one has this
representation up to rotations. When we have x1, . . . ,xn ∈ Rk as above, without loss of
generality, we will always assume that x1, . . . ,xn spans Rk so that the dimension of X is
k.

Now given a standard Gaussian vector X := (Xi)1≤i≤n (recall this means the
marginals have mean zero and variance one) and h ∈ R, let (Xh

i )1≤i≤n be, as before, the
threshold process defined by Xh

i := I(Xi > h). It will be useful to have a simple way
to generate (Xh

i )1≤i≤n which can be done as follows. Assume that X is k-dimensional

EJP 25 (2020), paper 54.
Page 12/45

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP459
http://www.imstat.org/ejp/


Divide and color representations for threshold Gaussian and stable vectors

with variances all being one. We take n points x1,x2, . . . ,xn on Sk−1 corresponding
to (Xi)1≤i≤n as described above. Let Z ∼ N(0, Ik). It is well known that when Z is
written in polar coordinates (r, θ) with r ≥ 0 and θ ∈ Sk−1, then r and θ are independent
with θ uniform on Sk−1 and r having the distribution of the square root of a χ-squared
distribution with k degrees of freedom. We then have that Xh

i = 1 if and only if xi ·Z > h.
Note that {x : x · Z = h} is a random hyperplane Hh in Rk perpendicular to θ(Z) and so
Xh is equal to one for points on Sk−1 which lie on one side of Hh and zero for points lying
on the other side. Note that when h = 0, the hyperplane goes through the origin and it
is the points on the same side as θ(Z) that get value one; in particular, when h = 0, the
value of Xh

i only depends on θ(Z) and not on r(Z). However, when h > 0, the hyperplane
Hh can go through any point of the one-sided infinite line from the origin going through
θ(Z). In particular, Hh might not intersect Sk−1 at all; this would correspond exactly to
r(Z) < h.

4.2 Gaussian vectors canonically indexed by the circle

Proposition 4.1. Consider n points x1, . . . ,xn on S1 satisfying xi · xj ≥ 0 for all i, j; this
is equivalent to the correlations aij of the corresponding Gaussian process X being
nonnegative. Then X0 is a color process.

Proof. Using the nonnegative correlations of X, it is easy to check that the n points
x1,x2, . . . ,xn ∈ S1 must lie on an arc of length at most π/2. Since the distribution of a
Gaussian process is invariant under rotations, we may assume that the n points lie on the
arc 0 ≤ θ ≤ π/2. Hence we can assume that xj = eiθj with 0 ≤ θ1 < θ2 < . . . < θn ≤ π/2.

We will couple X0 with a color process together with its color representation in such
a way that X0 and the color process match exactly. We first show how one uniform point
U on S1 generates a color process together with its color representation. Let

I1 = [0, θ1], I2 = [θ1, θ2], . . . , Ik = [θk−1, θk], . . . , In+1 = [θn, π/2]

noting that the first and last arcs might be trivial. Letting Iθk be Ik rotated counterclock-
wise by θ, we note that{

Iθk : k ∈ {1, . . . , n+ 1}, θ ∈ {0, π/2, π, 3π/2}
}

partitions S1. Now for k = 1, . . . , n + 1, if U falls in I0
k ∪ I

π
2

k ∪ Iπk ∪ I
3π
2

k , we partition
{x1,x2, . . . ,xn} into the two sets J1 := {x1, . . . ,xk−1} and J2 := {xk, . . . ,xn} with the
obvious caveat when k ∈ {1, n+ 1}. Next we color J1 and J2 as follows. If U is in [0, π/2],
we color each cluster 1, if U is in [π/2, π], we color J1 0 and J2 1, if U is in [π, 3π/2], we
color each cluster 0 and if U is in [3π/2, 2π], we color J1 1 and J2 0. This clearly yields a
color process (with p = 1/2) together with its color representation. Finally observe that
this color process is exactly X0 if we use U for θ(Z).

Remark 4.2. It is easy to see that the threshold zero-process here is such that it is
constant with probability at least 1/2. Hence the proof of Theorem 1.2 in [7] also yields
it is a color process. Moreover, the color representation obtained there can be checked
to be the same as the one given above. The description of the color representation given
in the present section will however be useful when dealing with the case h 6= 0 as in
Proposition 4.5.

Remark 4.3. For any color process (Yi) with p = 1/2, for any i and j it is clear that

Cov(Yi, Yj) =
qij
4

(4.2)
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and that

P (Yi = Yj = 1) =
1

4
+
qij
4
.

In the case of Proposition 4.1, it is clear that

1− qij =
|θj − θi|
π/2

(4.3)

and hence that

P (X0
i = X0

j = 1) =
1

2
− |θj − θi|

2π
. (4.4)

Since |θj − θi| = arccos aij it follows that

P (X0
i = X0

j = 1) =
1

2
− arccos aij

2π
. (4.5)

This is of course one of many ways to derive this last expression which is known as
Sheppard’s formula (see [14]).

This discussion also leads to the formula

qij = 1− 2 arccos aij
π

. (4.6)

The proof of the following elementary lemma, based on inclusion-exclusion, is left to
the reader.

Lemma 4.4. If X := (X1, X2, X3) is {0, 1}-symmetric, then

ν000 =
ν00. + ν0.0 + ν.00

2
− 1

4
. (4.7)

In particular, using (4.4), if X corresponds to threshold zero for a mean zero Gaussian
vector, the above is equal to

1

2
− θ12 + θ13 + θ23

4π
. (4.8)

Proposition 4.5. Consider n points x1, . . . ,xn on S1 satisfying xi ·xj ≥ 0 for all i, j. Then
Xh does not have a color representation for any h 6= 0, n ≥ 3.

Proof. It suffices to prove this for h > 0 and n = 3. Since h > 0, it is clear from the
construction of Xh described in (4.1) that (0, 1, 0) has positive probability but that (1, 0, 1)

has probability zero. However, it is immediate that no color process can have this
property.

Figure 1: The image above illustrates
the situation when h = 0.

Figure 2: The image above illustrates
the situation when h > 0.
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4.3 A general obstruction for having a color representation for h 6= 0

By symmetry, we can assume h > 0.
The following is precisely a higher dimensional analogue of Proposition 4.5. The

latter is the special case n = 3 together with the fact that any three points on the circle
are in general position.

Theorem 4.6. The standard Gaussian process X associated to n points x1, . . . ,xn ∈ Sn−2

in general position (equivalently not contained in an (n− 2)-dimensional hyperplane) is
such that Xh is not a color process for any h > 0.

More generally, if X := (X1, X2, . . . , Xn) is a random vector such that

• (X1, X2, . . . , Xn−1) is fully supported on Rn−1

• there is (a1, a2, . . . , an) ∈ Rn\{0} such that a.s.

n∑
i=1

aiXi = 0 (4.9)

and
n∑
i=1

ai 6= 0, (4.10)

then Xh is not a color process for any h > 0.

Remark 4.7. Any n-dimensional standard Gaussian vector which is not fully dimensional
can be represented by points on Sn−2. When the n points are not in general position,
which can only happen if n ≥ 4, in which case the above result is not applicable, we will
see in Corollary 5.3 that nonetheless Xh is not a color process for large h. Perhaps the
simplest example of a four-dimensional Gaussian vector which is not fully dimensional
but does not correspond to points on S2 in general position appears in Figure 3. In the
next subsection, we will see in Theorem 4.8 that this case will lead us to an important
example for which we will have a phase transition.

Proof of Theorem 4.6. We will first observe that the second statement implies the first.
One can order the n points x1, . . . ,xn ∈ Sn−2 in general position such that the first
n − 1 points are linearly independent. This implies that the corresponding Gaussian
vector X = (X1, . . . , Xn) satisfies the first condition. Next, since x1, . . . ,xn are linearly
dependent (as they sit inside Rn−1) there exists (a1, a2, . . . , an) ∈ Rn\{0} such that

n∑
i=1

aixi = 0

which implies (4.9). Finally (4.10) must hold since x1, . . . ,xn are in general position.
For the second statement, note first that we can assume that |ai| > 0 for i = 1, 2, . . . , n

since we can remove the Xi’s for which ai = 0. If aj > 0 for all j (with a similar argument
if aj < 0 for all j), then for all h > 0, ν1n(h) = 0 in which case there clearly cannot be
any color representation. We hence assume that there are both positive and negative
values among the aj ’s. Furthermore since

∑n
i=1 aiXi = 0 and (X1, X2, . . . , Xn−1) is fully

supported, for any i, if we define Ii = {1, 2, . . . , n}\{i}, then the vector (Xj)j∈Ii is fully
supported. This implies in particular that we, possibly after reordering the random
variables and changing all the signs, can assume that∑

i : ai>0

|ai| <
∑

j : aj<0

|aj |

and that an > 0.
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Fix now h > 0. Now define the binary string ρ by ρ(i) = I(ai < 0) and let E be the
event that

∀j < n : Xj > h if aj < 0 and Xj ≤ h if aj > 0.

Since (X1, X2, . . . , Xn−1) is fully supported, the probability of the event E is strictly
positive. Since ∑

i : ai>0

|ai|Xi =
∑

j : aj<0

|aj |Xj ,

this implies that on E ,

Xn =
−
∑
j<n ajXj

an
=

∑
j<n : aj<0 |aj |Xj

an
−
∑
j<n : aj>0 |aj |Xj

an

≥ h ·

(∑
j<n : aj<0 |aj |

an
−
∑
j<n : aj>0 |aj |

an

)
> h

which in particular implies that νρ = 0.
On the other hand, since (X1, X2, . . . , Xn−1) is fully supported, the event

∀j < n : Xj ∈ [αh, h] if aj < 0 and Xj ∈ (h, βh] if aj > 0

has strictly positive probability for any α ∈ (0, 1) and β ∈ (1,∞). On this event we have
that

Xn =

∑
j<n : aj<0 |aj |Xj −

∑
i<n : ai>0 |ai|Xi

an

≥ h ·
α
∑
j<n : aj<0 |aj | − β

∑
i<n : ai>0 |ai|

an
.

Since ∑
j<n : aj<0

|aj | −
∑

i<n : ai>0

|ai| > an

it follows that Xn > h if α and β are both sufficiently close to one. In particular, this
implies that ν1−ρ > 0. Since νρ = 0 but ν1−ρ > 0, it follows that Xh cannot have a color
representation.

4.4 A four-dimensional Gaussian exhibiting a non-trivial phase transition

In this subsection we will study an example, corresponding to four points on S2,
for which the existence of a color representation for positive h is not ruled out by
Theorem 4.6. To this end, let θ ∈ (0, π/2] and define x1,x2,x3,x4 ∈ S2 by

x1 = (sin θ, 0, cos θ)

x2 = (0, sin θ, cos θ)

x3 = (− sin θ, 0, cos θ)

x4 = (0,− sin θ, cos θ)

and for i = 1, 2, 3, 4, let Xi = xi ·W , where W ∼ N(0, I3). Then X ∼ N(0, A) for

A =


1 cos2 θ cos2 θ − sin2 θ cos2 θ

cos2 θ 1 cos2 θ cos2 θ − sin2 θ

cos2 θ − sin2 θ cos2 θ 1 cos2 θ

cos2 θ cos2 θ − sin2 θ cos2 θ 1

 . (4.11)

EJP 25 (2020), paper 54.
Page 16/45

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP459
http://www.imstat.org/ejp/


Divide and color representations for threshold Gaussian and stable vectors

Figure 3: The picture above shows the three points x1, x2 and x3 corresponding to a
mean zero variance one Gaussian vector with a12 = a23 = 0.2 and a13 = 0.22. The bold
black lines are the positions where we could add a fourth point x4 without the existence
of a color representation for some h > 0 being ruled out by Theorem 4.6.

Geometrically, this corresponds to having four points in a square on a 2-sphere at the
same latitude, and it follows easily that

X1 +X3 = X2 +X4. (4.12)

Note that A has nonnegative entries if and only if θ ≤ π/4.
The following theorem implies Theorem 1.2.

Theorem 4.8. Let Xθ be a Gaussian vector with covariance matrix given by (4.11).
Then

(i) Xθ,0 is a color process for all θ ∈ (0, π/4],

(ii) there is θ0 > 0 such that for all θ < θ0, there exists hθ > 0 such that Xθ,h is a color
process for all h ∈ (0, hθ).

(iii) for all θ ∈ (0, π/4), there is hθ > 0 such that Xθ,h has no color representation for
any h > hθ.

Lemma 4.9. Let Xθ be a Gaussian vector with covariance matrix given by (4.11). Then
for all h, Xθ,h has a color representation if and only if there is a color representation of
(Xθ,h

1 , Xθ,h
2 , Xθ,h

3 ) which satisfies{
q123 ≥ q13,2 ≥ 0

2q12,3 − 2q13,2 ≥ q1,2,3 ≥ 0.
(4.13)

EJP 25 (2020), paper 54.
Page 17/45

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP459
http://www.imstat.org/ejp/


Divide and color representations for threshold Gaussian and stable vectors

Proof. Fix h ≥ 0 and assume first that there is a color representation (qσ) (the depen-
dence on h will be suppressed) of (νhρ ). Since the distribution of Xθ is invariant under
the action of the dihedral group, we can assume that (qσ) also is. Note that it follows
from (4.12) that ν0101 = 0, and hence ν010· = ν0100. In particular, this implies that

q1,2,3,4 = q13,2,4 = q1,24,3 = q13,24 = 0, (4.14)

and using this, we obtain (using the assumed symmetry)
q1234 = q123 − q123,4 = q123 − q13,4 = q123 − q13,2

q123,4 = q13,4 = q13,2

q12,3,4 = q2,3,4 − q14,2,3 = q1,2,3 − q12,3,4 = q1,2,3/2

q12,34 = q12,3 − q124,3 − q12,3,4 = q12,3 − q13,2 − q1,2,3/2.

(4.15)

Since this is a color representation by assumption, qσ ≥ 0 for all σ, which is equivalent
to (4.13). This proves the necessity in the first part of the lemma.

To see that we also have sufficiency, let q = (q123, q12,3, q13,2, q1,23, q1,2,3) be a color
representation of (Xθ,h

1 , Xθ,h
2 , Xθ,h

3 ) which satisfies the inequalities in (4.13). Define
qσ for σ ∈ B4 by (4.14) and (4.15) and extend to all partitions by making it invariant
under the dihedral group. Since (4.13) holds, qσ ≥ 0 for all σ ∈ P4. Also, one checks
that they sum to one and the projection onto {1, 2, 3} is q above. Using the fact that
ν010· = ν0100, one can check that the probability of any configuration is determined
by the three–dimensional marginals. From here, one verifies that this yields a color
representation of Xθ,h, as desired.

Proof of Theorem 4.8. To see that (i) holds, let h = 0. We will apply Lemma 4.9. Then
one easily verifies that the process (Xθ,0

1 , Xθ,0
2 , Xθ,0

3 ) has a signed color representation
given by 

q123 = 1− 4(ν001 + ν010 + ν100) + t

q12,3 = 4ν001 − t
q1,23 = 4ν100 − t
q13,2 = 4ν010 − t
q1,2,3 = 2t

for some free variable t ∈ R. This will give a color representation for all t which is such
that qσ ≥ 0 for all σ ∈ B3. Using (4.4) and (4.8), one easily verifies that in a Gaussian
setting, the set of equations above can equivalently be written as

q123 = 1− θ12+θ13+θ23
π + t

q12,3 = (θ12+θ13+θ23)−2θ12
π − t

q1,23 = (θ12+θ13+θ23)−2θ23
π − t

q13,2 = (θ12+θ13+θ23)−2θ13
π − t

q1,2,3 = 2t.

Rearranging, we see that these are all nonnegative if and only if

0 ∨
(∑

i6=j θij

π
− 1

)
≤ t ≤

∑
i 6=j θij − 2(θ12 ∨ θ13 ∨ θ23)

π
. (4.16)

In our specific example, we have that{
θ12 = θ23 = arccos cos2 θ

θ13 = 2θ ≥ θ12
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and hence (4.16) simplifies to

0 ∨
(

2 arccos cos2 θ + 2θ

π
− 1

)
≤ t ≤ 2 arccos cos2 θ − 2θ

π
.

Similarly, we can rewrite (4.13) as{
t ≥

∑
i6=j θij−θ13−π/2

π = 2 arccos cos2 θ−π/2
π

t ≤ 2(θ13−θ12)
π = 2(2θ−arccos cos2 θ)

π .

If we put these sets of inequalities together, and use that θ ∈ (0, π/4], we obtain the
following necessary and sufficient condition for the existence of such a t:

0 ∨ 2 arccos cos2 θ − π/2
π

≤ 2 arccos cos2 θ − 2θ

π
∧ 2(2θ − arccos cos2 θ)

π
.

Here it is easy to verify that

0 ∨ 2 arccos cos2 θ − π/2
π

≤ 2 arccos cos2 θ − 2θ

π

and that

0 ≤ 2(2θ − arccos cos2 θ)

π

and hence to see that we can always pick t so that the above inequalities hold it suffices
to show that

2 arccos cos2 θ − π/2
π

≤ 2(2θ − arccos cos2 θ)

π

for all θ ∈ (0, π/4]. To this end, note first that we can rewrite the inequality above as

arccos cos2 θ − θ ≤ π/8.

This can be verified to hold for all θ ∈ (0, π/4] by verifying that the left hand side is
increasing in θ for θ ∈ (0, π/4] and noting that

arccos cos2(π/4)− π/4 = arccos(1/2)− π/4 = π/3− π/4 = π/12 ≤ π/8.

The desired conclusion now follows.
To see that (ii) holds, note first that by Theorem 6.1 and a computation, the value of

the free parameter t corresponding to the limit of h→ 0 is given by

t = 1−
arccos

(
2 sin4 θ

(1+cos2 θ)2 − 1
)

π
.

Using the proof of (i), it follows that it suffices to show that

2 arccos cos2 θ − π/2
π

< 1−
arccos

(
2 sin4 θ

(1+cos2 θ)2 − 1
)

π
<

2(2θ − arccos cos2 θ)

π

for all sufficiently small θ. To this end, note first that at θ = 0 the first expression is equal
to −1/2 while the second and third expression are both equal to zero, and hence the first
inequality is strict for all sufficiently small θ. To compare the last two expressions, one
verifies that the derivatives of these two expressions at θ = 0 are given by 0 and 4− 2

√
2

respectvely, and hence (ii) is established.
Finally, (iii) follows from Corollary 5.3.
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4.5 A four-dimensional Gaussian with nonnegative correlations whose zero
threshold has no color representation

In this subsection, we study a particular example which will in particular yield a proof
of Theorem 1.4; see (ii) and (iii) below.

Theorem 4.10. Let (X1, X2, . . . , Xn−1) be a fully symmetric multivariate mean zero
variance one Gaussian random vector with pairwise correlation a ∈ [0, 1), and let

Xn = (X1 +X2 + . . .+Xn−1)/
√
a(n− 1)2 + (1− a)(n− 1).

ensuring that Xn has mean zero and variance one. In addition, nonnegative pairwise
correlations is immediate to check. If Xa := (X1, X2, . . . , Xn), then the following hold.

(i) When n = 3, Xa,0 is a color process for any a ∈ [0, 1).

(ii) When n ≥ 4 and a is sufficiently close to zero (or zero), Xa,0 is not a color process.

(iii) For n ≥ 4, there exists a fully supported multivariate mean zero variance one
Gaussian random variable X with nonnegative correlations for which X0 is not a
color process.

(iv) When n ≥ 4 and a is sufficiently close to one, Xa,0 is a color process.

(v) For any n ≥ 3, a ∈ [0, 1) and h > 0, Xa,h is not a color process.

Proof. (i). The claim for n = 3 follows immediately from Proposition 4.1 or Proposition
2.12 in [15].

(ii). We first consider n ≥ 4 and a = 0 and obtain the result in this case. If X0 is
a color process, then it must be the case that the color representation gives weight
1/(n − 1) to each of the n − 1 partitions which consist of all singletons except n is in
a block of size 2. This is because (1) since X1, X2, . . . , Xn−1 are independent, none of
1, 2, . . . , n− 1 can ever be in the same cluster, (2) if n is in its own cluster with positive
probability, then ν0n−11 > 0 which contradicts the fact that X1, X2, . . . , Xn−1 all negative
and Xn positive is impossible and (3) symmetry. On the other hand, by (4.6), each of the

above partition elements must have value 1−
2 arccos 1√

n−1

π . The conclusion is that if it is a
color process, then

1

n− 1
= 1−

2 arccos 1√
n−1

π
.

This is true for n = 3 (as it must be) but we show this is false for all n ≥ 4. Rearranging,
this is equivalent to

π

2
· n− 2

n− 1
= arcsin

√
n− 2

n− 1
. (4.17)

Now consider the two functions f(x) = πx2/2 and g(x) = arcsinx for x ∈ [0, 1]. Then
we clearly have f(0) = g(0) and f(1) = g(1). Moreover, one can easily check that
both functions are continuously differentiable, that their first derivatives agree only at

x =

√
1
2 ±

√
π2−4
2π (i.e. at x ≈ 0.338247 and x ≈ 0.941057) and that f ′(0) = 0 < 1 = g′(0)

and f ′(1) = π < ∞ = g′(1). This easily implies that {x : f(x) > g(x)} is of the form
(b, 1). Hence we need only check that (4.17) fails for n = 4 with the left side being larger.
However, this is immediate to check. Finally, to obtain the result for small a depending
on n, one just uses the fact that the set of color processes is closed.

(iii). Fix n ≥ 4, take a = 0 and replace Xn by X ′n := εZ + (1 − ε2)1/2Xn where Z is
another standard Gaussian independent of everything else. Then for every ε > 0, the
resulting vector X is fully supported with nonnegative correlations. However, for small ε,
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X0 cannot be a color process since the color processes are closed and the limit as ε→ 0

is not a color process by (ii).
For (iv), note that by the proof of Theorem 1.2 in [7], a sufficient condition for a

{0, 1}-symmetric process to be a color process is that ν0n ≥ 1/4. In our case, we clearly
have that for any n, ν0n → 1/2 as a→ 1, and hence the desired conclusion follows.

Finally for (v), with n ≥ 3, a ∈ [0, 1) and h > 0, this follows immediately from
Theorem 4.6.

4.6 An extension to the stable case

In this subsection, we explain to which extent the results in the previous subsection
can be carried out for the stable case. We assume now that X1, X2, . . . , Xn−1 are i.i.d.
each with distribution Sα(1, 0, 0) for some α ∈ (0, 2) and we let

Xn = (X1 +X2 + . . .+Xn−1)/(n− 1)1/α

and X := (X1, X2, . . . , Xn).
Proposition 2.12 in [15] implies, as before, that when n = 3, X0 is a color process (the

{0, 1}-symmetry is obvious and the nonnegative correlations being an easy consequence
of Harris’ inequality). Concerning whether Xh can be a color process for some n ≥ 3

and h > 0, Theorem 4.6 implies that it cannot be except perhaps when α = 1. For n ≥ 4

it seems, by using similar arguments and Mathematica, that X0 is a color process for at
most one value of α.

5 Results for large thresholds and the discrete Gaussian free
field

In the first subsection of this section, we show that non-fully supported Gaussian
vectors do not have color representations for large h. On the other hand, in the second
subsection, we give the proof of Theorem 1.5 that discrete Gaussian free fields have
color representations for large h.

5.1 An obstruction for large h

We first deal with the case n = 2, where we have the following easy result.

Proposition 5.1. Let X := (X1, X2) be a standard Gaussian vector with
Cov(X1, X2) ∈ [0, 1). Then Xh has a (unique) color representation (qσ)σ∈B2

for all h ∈ R
and limh→∞ q12(h) = 0.

This result essentially follows from Theorem 2.1 in [5] (see also Lemma 5.10 here)
but we include a proof sketch here.

Proof of Proposition 5.1. Note first that since n = 2, the nonnegative correlation immedi-
ately implies that Xh has a color representation for all h ∈ R, and hence we need only
show that limh→∞ q12(h) = 0. Since it can be easily checked that

q12(h) =
ν11(h)− ν1(h)2

ν0(h)ν1(h)

we need to show that

lim
h→∞

ν11(h)/ν1(h) = 0; (5.1)

this however is straighforward.

The previous result immediately implies the following.
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Corollary 5.2. IfX := (X1, X2, . . . , Xn) is a standard Gaussian vector with Cov(Xi, Xj) ∈
[0, 1) for all i < j and Xh has a color representation (qσ)σ∈Bn for arbitrarily large h, then

lim
h→∞

q1,2,3,...,n(h) = 1.

Interestingly, this gives the following negative result when X is not fully dimensional.

Corollary 5.3. Let (X1, X2, . . . , Xn) be a standard Gaussian vector with
Cov(Xi, Xj) ∈ [0, 1) for all i < j. If X is not fully supported, then for all sufficiently large
h, Xh is not a color process.

Proof. Since X is not fully dimensional, there must exist a linear relationship between
the variables. As a result, there must exist ρ ∈ {0, 1}n so that for all h > 0, νρ(h) = 0.
Hence, if there is a color representation (qσ(h)) for some h, it must satisfy q1,2,...,n(h) = 0.
The desired conclusion now follows from Corollary 5.2.

5.2 Discrete Gaussian free fields and large thresholds

In this section, our main goal will be to prove Theorem 1.5. Note that all our random
vectors in this section will be fully supported which we know is anyway necessary in
view of Corollary 5.3.

Before we continue, we remind the reader that a Gaussian vector X ∼ N(0, A) is a
discrete Gaussian free field if and only if

(i) A is a block matrix with strictly positive blocks,

(ii) A is an inverse Stieltjes matrix,

(iii) A satisfies the weak Savage condition, i.e. 1TA−1 ≥ 0, and

(iv) for at least one row i in each block of A, 1TA−1(i) > 0.

This correspondence will be used throughout this whole section.

We first note the following corollaries of Theorem 1.5.

Corollary 5.4. Let a ∈ (0, 1) and let X := (X1, X2, . . . , Xn) be a standard Gaussian vector
with Cov(Xi, Xj) = a for all i < j. Then Xh is a color process for all sufficiently large h.

Proof. Let A be the covariance matrix of X. Then one verifies that for i, j ∈ [n] we have

A−1(i, j) =

{
1+(n−2)a

(1−a)(1+(n−1)a) if i = j
−a

(1−a)(1+(n−1)a) if i 6= j.

Consequently, A is an inverse Stieltjes matrix. Moreover, for all j ∈ [n] we have that

1TA−1(j) =
1

1 + (n− 1)a
.

and hence 1TA−1 > 0. Applying Theorem 1.5, the desired conclusion follows.

Corollary 5.5. Let a ∈ (0, 1) and let X := (X1, X2, . . . , Xn) be a standard Gaussian vector
with Cov(Xi, Xj) = a|i−j| for all i, j ∈ [n], yielding a Markov chain. Then Xh is a color
process for all sufficiently large h.
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Proof. Let A be the covariance matrix of X. Then one verifies that for i, j ∈ [n] we have

A−1(i, j) =


1

1−a2 if i = j ∈ {1, n}
1+a2

1−a2 if i = j 6∈ {1, n}
−a

1−a2 if |i− j| = 1

0 otherwise.

Consequently, A is an inverse Stieltjes matrix. Moreover, for all j ∈ [n] we have that

1TA−1(j) =

{
1

1+a if j ∈ {1, n}
1−a
1+a if j 6∈ {1, n}

and hence 1TA−1 > 0. Applying Theorem 1.5, the desired conclusion follows.

We now state and prove a few lemmas that will be needed in the proof of Theorem 1.5.
The first of these will give sufficient conditions for Xh to be a color process for large
h in terms of the decay of the tails of ν(1S) for sets S. As usual,� means the relevant
ratio goes to zero and � means things are “equal up to constants”.

Lemma 5.6 (Theorem 1.6 in [7]). Let (νp)p∈(0,1) be a family of probability measures on
{0, 1}n. Assume that νp has marginals pδ1 + (1− p)δ0 and that for all S ⊆ [n] with |S| ≥ 2

and all k ∈ S, as p→ 0, we have that

pνp(1
S\{k})� νp(1

S) � νp(1S0S
c

) (5.2)

and

lim
p→0

∑
S⊆[n] : |S|≥2

νp(1
S0S

c

)

p
< 1. (5.3)

Then Xp ∼ νp is a color process for all sufficiently small p > 0.

Lemma 5.7. Let X := (X1, X2, . . . , Xn) be a standard Gaussian vector with strictly
positive, positive definite covariance matrix A. Assume further that A is an inverse
Stieltjes matrix and that 1TA−1 ≥ 0. Then for each S ⊆ [n], the covariance matrix
AS of XS := (Xi)i∈S is a strictly positive, positive definite inverse Stieltjes matrix with
1TA−1

S ≥ 0.

Remark 5.8. The main part of the proof of this lemma consists of showing that if the
weak Savage condition holds for a matrix A which is an inverse Stieltjes matrix, then the
weak Savage condition will also hold for any principal submatrix. Without the additional
assumption that A is an inverse Stieltjes matrix, this will not be true. To see this, take
e.g.

A =


1 0.81 0.51 0.4

0.81 1 0.3 0.5

0.51 0.3 1 0.5

0.4 0.5 0.5 1

 .

One can verify that A is a positive definite matrix for which the Savage condition holds,
but that the Savage condition does not hold for the principal submatrix corresponding to
the first three rows and columns.

Remark 5.9. Lemma 5.7 essentially proves that if X is a DGFF, then for any S ⊆ [n],
XS := (Xi)i∈S is also a DGFF.

Proof of Lemma 5.7. By induction, it suffices to show that the conclusion of the lemma
holds for S of the form [n]\{k} for some k ∈ [n]. To this end, fix k ∈ [n]. Clearly, A[n]\{k}
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is a positive and positive definite matrix. By a lemma on page 328 in [12], A[n]\{k} is also
an inverse Stieltjes matrix. Next, let (bij) := A−1. Since A is positive definite, so is A−1,
and hence bkk = eTkA

−1ek > 0. Next, since bkk > 0, for i, j ∈ [n]\{k}, it is well known that

A−1
[n]\{k}(i, j) = bij −

bikbjk
bkk

and hence for j 6= k

1TA−1
[n]\{k}(j) =

∑
i∈[n]\{k}

(
bij −

bikbjk
bkk

)
=
∑
i∈[n]

(
bij −

bikbjk
bkk

)

=

(∑
i∈[n] bij

)
bkk −

(∑
i∈[n] bik

)
bjk

bkk

=
1TA−1(j)bkk − 1TA−1(k)bjk

bkk

= 1TA−1(j)− 1TA−1(k)bjk
bkk

.

(5.4)

Since bjk ≤ 0, bkk > 0 and 1TA−1(k) ≥ 0, we obtain the inequality

1TA−1
[n]\{k}(j) ≥ 1TA−1(j).

Since this holds for all j 6= k, the desired conclusion follows.

The following lemma follows from special cases of Theorems 2.1 and 2.2 in [5] and
Theorem 3.1 in [9]. This will be needed here and also in the proofs of some lemmas
which will be used in the proof of Theorem 1.6.

Lemma 5.10. Let X be a fully supported n-dimensional standard Gaussian vector with
positive definite covariance matrix A = (aij). If the vector α := 1TA−1 has no zero
component, then as h→∞ one has that

ν(I(α(i)>0))i(h) ∼ 1

(2π)n/2
√

detA · (
∏n
i=1 |α(i)|) · hn

· exp

(
−h

2

2
· 1TA−11

)
.

Furthermore if 1TA−1(1) = 0, then

lim
h→∞

ν1n(h)

ν·1n−1(h)
=

1

2
.

We note that if n = 3, then assuming α(1) ≤ α(2) ≤ α(3), then it is immediate to check
that α(2) and α(3) are strictly positive, while α(1) can be negative, zero or positive.

Lemma 5.11. Let X := (X1, X2, . . . , Xn) be a standard Gaussian vector with strictly
positive, positive definite covariance matrix A which is an inverse Stieltjes matrix and
satisfies 1TA−1 ≥ 0. Then for any S ⊆ [n] with |S| ≥ 2 and k ∈ S, as h→∞, we have

pνh(1S\{k})� νh(1S) � νh(1S0[n]\S). (5.5)

Proof. Let S ⊆ [n] and define XS := (Xi)i∈S . Let AS be the covariance matrix of XS . By
Lemma 5.7, the matrix AS is a strictly positive, positive definite inverse Stieltjes matrix
which satisfies 1TA−1

S ≥ 0. To simplify notation, let (a
(S)
ij ) := AS and (b

(S)
ij ) := A−1

S . The
rest of the proof of this lemma will be divided into several steps
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Step 1. Fix S ⊆ [n] with |S| ≥ 2 and k ∈ S. In this step, we will prove the inequality

b
(S)
kk >

(∑
i∈S

b
(S)
ki

)2

(5.6)

or equivalently ∑
i∈S

b
(S)
ki >

(∑
i∈S

b
(S)
ki

)2

+
∑

i∈S\{k}

b
(S)
ki . (5.7)

To this end, note first that since (b
(S)
ij ) is the inverse of (a

(S)
ij ), we have that

1 =
∑
i∈S

a
(S)
ik b

(S)
ki .

SinceX is a standard Gaussian vector, we have that a(S)
kk = 1 and that a(S)

ki < 1 if i ∈ S\{k}.
Moreover, since AS is a positive definite inverse Stieltjes matrix by Lemma 5.7, we have
that b(S)

kk > 0 and that b(S)
ji ≤ 0 for i 6= j. In addition, since a(S)

ij > 0 for all i, j ∈ S, we also
obtain that ∑

i∈S\{k}

b
(S)
ki < 0. (5.8)

Combining these observations, we have

1 =
∑
i∈S

a
(S)
ik b

(S)
ki = b

(S)
kk +

∑
i∈S\{k}

a
(S)
ik b

(S)
ki > b

(S)
kk +

∑
i∈S\{k}

b
(S)
ki · 1 =

∑
i∈S

b
(S)
ki .

Since
∑
i∈S b

(S)
ki = 1TA−1

S (k) ≥ 0, it follows that

1 >
∑
i∈S

b
(S)
ki ≥ 0.

This implies in particular that

∑
i∈S

b
(S)
ki ≥

(∑
i∈S

b
(S)
ki

)2

with equality if and only if 1TA−1
S (k) = 0. This last equation, together with (5.8) im-

plies (5.6), as desired.

Step 2. In this step, we will prove that for all S ⊆ [n] with |S| ≥ 2 and k ∈ S, we have

1TA−1
S\{k}1 ≤ 1TA−1

S 1 < 1 + 1TA−1
S\{k}1 (5.9)

with the first inequality being strict if and only if 1TA−1
S (k) > 0. To this end, note first

that since A is positive definite, so is AS and AS\{k}. So, as before, b(S)
kk = eTkA

−1
S ek > 0

and if i, j ∈ S\{k} then

A−1
S\{k}(i, j) = b

(S)
ij −

b
(S)
ik b

(S)
jk

b
(S)
kk

.

Using this, we obtain

1TA−1
S\{k}1 =

∑
i,j∈S\{k}

(
b
(S)
ij −

b
(S)
ik b

(S)
jk

b
(S)
kk

)
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and

1TA−1
S 1 =

∑
i,j∈S

b
(S)
ij

= 1TA−1
S\{k}1 +

( ∑
i,j∈S\{k}

b
(S)
ik b

(S)
jk

b
(S)
kk

)
+ 2

( ∑
i∈S\{k}

b
(S)
ik

)
+ b

(S)
kk

= 1TA−1
S\{k}1 +

(∑
i∈S b

(S)
ik

)2

b
(S)
kk

.

(5.10)

Recalling that b(S)
kk > 0 and using the conclusion of Step 1, (5.9) follows, which concludes

Step 2.

Step 3. For S ⊆ [n], define JS := {j ∈ S : 1TA−1
S (j) = 0}. Note that since AS is positive

definite, we have that 1TA−1
S 1 > 0 and hence JS 6= S. In this step, we show that the

following hold for any sets S′ ⊆ S ⊆ [n].

(i) If i ∈ JS , then JS\{i} = JS\{i}.

(ii) |S\JS | ≥ 2.

(iii) JS′ ⊆ JS .

(iv) 1TA−1
(S\JS)\S′ > 0.

(v) The set {T ⊆ [n]\S : T ⊆ JS∪T } is a power set of some set.

To see that (i) holds, note first that by (5.4), for any set S ⊆ [n] and any distinct i, j ∈ S
we have that

1TA−1
S\{i}(j) = 1TA−1

S (j)− 1TA−1
S (i) ·

b
(S)
ji

b
(S)
ii

. (5.11)

From this (i) immediately follows.

For (ii), one first checks that if S has 2 elements, then JS = ∅. For larger S, we
argue by induction. Take i ∈ JS . By induction, (S\{i})\(JS\{i}) ≥ 2 which by (i) implies
(S\{i})\(JS\{i}) ≥ 2, which yields the result for S.

Next, by Lemma 5.7, AS is an inverse Stieltjes matrix which satisfies 1TA−1
S ≥ 0. In

particular, this implies that b(S)
ji ≤ 0 and 1TA−1

S (i) ≥ 0, and hence it follows from (5.11)
that

1TA−1
S\{i}(j) ≥ 1TA−1

S (j) ≥ 0; (5.12)

(iii) follows.

Next, (iv) follows easily from (iii).

We will now show that (v) holds. To simplify notation, let

ZS := {T ⊆ [n]\S : T ⊆ JS∪T }.

It suffices to show that if T1, T2 ∈ ZS and i ∈ T1, then

(a) T1\{i} ∈ ZS

(b) T2 ∪ {i} ∈ ZS .
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To see that (a) holds, fix T1 ∈ ZS and i ∈ T1. By the definition of ZS , this implies that
T1 ⊆ JS∪T1

, and hence T1\{i} ⊆ JS∪T1
\{i}. Since i ∈ T1 ⊆ JS∪T1

we have i ∈ JS∪T1
, and

hence by (i) we have JS∪T1
\{i} = JS∪T1\{i}. Combining these observations, we obtain

T1\{i} ⊆ JS∪T1\{i}, and hence T1\{i} ∈ ZS as desired. This concludes the proof of (a).
To see that (b) holds, fix T1, T2 ∈ Z2 and i ∈ T1. By the definition of ZS , we have

T1 ⊆ JS∪T1
and T2 ⊆ JS∪T2

. Since T1 ⊆ JS∪T1
, by applying (i) several times, we obtain

JS∪{i} = J(S∪T1)\(T1\{i}) = JS∪T1\
(
T1\{i}

)
.

Since i ∈ T1 ⊆ JS∪T1 , this implies in particular that i ∈ JS∪{i}. By (iii), we have that
JS∪{i}∪JS∪T2 ⊆ JS∪T2∪{i}. Since i ∈ JS∪{i} and T2 ⊆ JS∪T2 , it follows T2∪{i} ⊆ JS∪T2∪{i},
and hence T2 ∪ {i} ∈ ZS as desired.

Step 4. In this step, we will now show that for any S ⊆ [n] with |S| ≥ 2 and k ∈ S, as
h→∞, we have that

pνh(1S\{k})� νh(1S).

To this end, fix S ⊆ [n] and let JS be as in Step 3. By Step 2, for any k ∈ S\JS , we have
that

1TA−1
S\JS1 < 1 + 1TA−1

S\(JS∪{k})1. (5.13)

Since this trivially holds for k ∈ JS , it follows that these inequalities in fact hold for all
k ∈ S. Now fix k ∈ S. By Step 3 (iv) we have that 1TA−1

S\JS > 0 and 1TA−1
S\(JS∪{k}) > 0,

and hence by applying the first part of Lemma 5.10 and using (5.13), it follows that as
h→∞, we have

pνh(1S\(JS∪{k}))� νh(1S\JS ).

Applying the second part of Lemma 5.10 several times together with Step 3 (iii), we see
that

νh(1S\JS ) ∼ 2|JS |νh(1S) (5.14)

Using this, it follows that as h→∞,

pνh(1S\{k}) ≤ pνh(1S\(JS∪{k}))� νh(1S\JS ) � νh(1S)

and hence the desired conclusion holds.

Step 5. In this step, we show that for each S ⊆ [n] with |S| ≥ 2, as h → ∞, we have
that

νh(1S) � νh(1S0[n]\S). (5.15)

To this end, fix S ⊆ [n]. By an inclusion-exclusion argument, we see that

νh(1S0[n]\S) =
∑

T⊆[n]\S

νh(1S∪T )(−1)|T |.

For each T ⊆ [n]\S, let JS∪T be as in Step 3. By (5.14) applied to S ∪ T , it follows that

νh(1S∪T ) ∼ 2−|JS∪T |νh(1(S∪T )\JS∪T ).

Now note that by (5.10) and Step 3 (iii), we have that

1TA−1
(S∪T )\JS∪T 1 = 1TA−1

S∪T1.

(5.9) and induction now implies that

1TA−1
(S∪T )\JS∪T 1 = 1TA−1

S∪T1 ≥ 1TA−1
S 1 = 1TA−1

S\JS1
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with equality if and only if T ⊆ JS∪T . Since by Step 3 (iv) we have that 1TA−1
(S∪T )\JS∪T > 0,

if we combine these observations and apply Lemma 5.10, it follows that

νh(1S0S
c

) ∼
∑

T⊆Sc : T⊆JS∪T

νh(1S∪T )(−1)|T | ∼ νh(1S)
∑

T⊆Sc : T⊆JS∪T

2−|T |(−1)|T |.

By Step 3 (v), the set {T ⊆ [n]\S : T ⊆ JS∪T } is a power set of some set S0. Using this, it
follows that ∑

T⊆Sc : T⊆JS∪T

2−|T |(−1)|T | =
∑
T⊆S0

2−|T |(−1)|T | = (1− 2−1)|S0| = 2−|S0|

and hence (5.15) holds.

Since Step 4 and Step 5 together give the conclusions of the lemma, this concludes
the proof.

Remark 5.12. If we assumed Savage instead of weak Savage, the proof could be
somewhat shortened.

We are now ready to give the proof of Theorem 1.5.

Proof of Theorem 1.5. The covariance matrix for a discrete Gaussian free field is a block
matrix with each block satisfying the assumptions of Lemma 5.11. Hence, restricting to
a block, we have that for all S within this block with |S| ≥ 2 and for k ∈ S, we have that

pνh(1S\{k})� νh(1S) � νh(1S0S
c

).

The second condition in Lemma 5.6 trivially holds and hence applying this lemma, we
obtain conclude that for large h, the threshold Gaussian corresponding to this fixed block
is a color process. Since the full process is independent over the different blocks, we
easily obtain the desired result for the full process.

6 General results for small and large thresholds for n = 3 in the
Gaussian case

When Y is a {0, 1}-valued 3-dimensional random vector, and ν is the corresponding
probability measure, we know from Theorem 2.1(C) in [15] (see also Theorem 1.4 in [7])
that Y has a unique signed color representation (qσ)σ∈B3 . It is easy to verify that this
representation is given by 

q1,2,3 = ν100−ν011
(1−p)p(1−2p)

q12,3 = (1−p)ν110−pν001
(1−p)p(1−2p)

q13,2 = (1−p)ν101−pν010
(1−p)p(1−2p)

q1,23 = (1−p)ν011−pν100
(1−p)p(1−2p)

q123 = 1− ν1ν000−ν0ν111
(1−p)p(1−2p) .

(6.1)

This implies in particular that Y has a color representation if and only if (qσ)σ∈B3 is
non-negative.

6.1 h small

Our next result describes the behavior of (qσ)σ∈B3
when Y = Xh for a Gaussian

vector X, and h > 0 is small.
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Theorem 6.1. Let X be a three-dimensional standard Gaussian vector with covariance
matrix A = (aij) and θij := arccos aij . Further, let (νρ(h))ρ∈{0,1}3 be the probability
measure corresponding to Xh and let (qσ)σ∈Bn be given by (6.1). Then

limh→0 q1,2,3(h) = 2−
2 arccos

(
detA∏

i<j(1+aij)
−1
)

π

limh→0 q12,3(h) = θ13+θ23−θ12
π − 1 +

arccos
(

detA∏
i<j(1+aij)

−1
)

π

limh→0 q13,2(h) = θ12+θ23−θ13
π − 1 +

arccos
(

detA∏
i<j(1+aij)

−1
)

π

limh→0 q1,23(h) = θ12+θ13−θ23
π − 1 +

arccos
(

detA∏
i<j(1+aij)

−1
)

π

limh→0 q123(h) = 2− θ12+θ13+θ23
π −

arccos
(

detA∏
i<j(1+aij)

−1
)

π .

(6.2)

Proof. This proof will be divided into two steps.

Step 1. In this step, we will prove that

limh→0 q1,2,3(h) = 4− 4ν′000(0)
ν′0(0)

limh→0 q12,3(h) = 4ν001(0)− 2 +
2ν′000(0)
ν′0(0)

limh→0 q13,2(h) = 4ν010(0)− 2 +
2ν′000(0)
ν′0(0)

limh→0 q1,23(h) = 4ν100(0)− 2 +
2ν′000(0)
ν′0(0)

limh→0 q123(h) = 4ν000(0) + 1− 2ν′000(0)
ν′0(0) .

(6.3)

To this end, note first that by (6.1),

q1,2,3(h) =
ν100(h)− ν011(h)

ν0(h)ν1(h)(ν0(h)− ν1(h))
.

Since νρ is differentiable at zero, it follows that

lim
h→0

q1,2,3(h) = lim
h→0

ν100(h)− ν011(h)

ν0(h)ν1(h)(ν0(h)− ν1(h))

= 4 lim
h→0

ν100(h)− ν100(−h)

2h
· 2h

ν0(h)− ν0(−h)
=

4ν′100(0)

ν′0(0)
.

Similarly, again using (6.1), one has that

lim
h→0

q12,3(h) = lim
h→0

ν0(h)ν110(h)− ν1(h)ν001(h)

ν0(h)ν1(h)(ν0(h)− ν1(h))

= 4 lim
h→0

(
ν0(h)ν110(h)− ν0(−h)ν110(−h)

2h

)
· 2h

ν0(h)− ν0(−h)

= 4 · ν
′
0(0)ν110(0) + ν0(0)ν′110(0)

ν′0(0)
= 4ν110(0) +

2ν′110(0)

ν′0(0)

= 4ν001(0)− 2ν′001(0)

ν′0(0)
.

If we can show that

ν′·00(0) = ν′0·0(0) = ν′00·(0) = ν′0(0) (6.4)

then (6.3) will follow using symmetry and the fact that
∑
qσ = 1. To see that (6.4) holds,

let f be the probability density function of (X1, X2) and note that ν′0(x) is the marginal
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density of both X1 and X2. Then for any h1, h2 ∈ R we have that

d

dh2
P (X1 ≤ h1, X2 ≤ h2) =

d

dh2

∫ h1

−∞

∫ h2

−∞
f(x1, x2) dx2 dx1

=

∫ h1

−∞
f(x1, h2) dx1 = P (X1 ≤ h1 | X2 = h2) · ν′0(h2).

Differentiating with respect to h1 in the same way and then setting h1 = h2 = 0, it follows
that

ν′00·(0) = ν′0(0) (P (X1 ≤ 0 | X2 = 0) + P (X2 ≤ 0 | X1 = 0)) .

By symmetry, the two summands are each equal to 1/2, and hence ν′00·(0) = ν′0(0) as
desired. The other equalities follow by an analogous argument.

Step 2. To obtain (6.2) from (6.3), note first that by an analogous argument as above,
one obtains in general that

ν′000(0)

ν′0(0)
= P (X2, X3 ≤ 0 | X1 = 0) + P (X1, X3 ≤ 0 | X2 = 0) + P (X1, X2 ≤ 0 | X3 = 0).

Using basic facts about Gaussian vectors, one has that (X2, X3) | X1 = 0 is a Gaussian
vector with correlation

α =
a23 − a12a13√

(1− a2
12)(1− a2

13)
.

Using (4.4), it follows that

P (X2 ≤ 0, X3 ≤ 0 | X1 = 0) =
1

2
−

arccos

(
a23−a12a13√

(1−a212)(1−a213)

)
2π

and hence, by symmetry, we obtain

ν′000(0)

ν′0(0)
=

3

2
−

arccos

(
a23−a12a13√
(1−a2

12)(1−a2
13)

)
+ arccos

(
a13−a12a23√
(1−a2

12)(1−a2
23)

)
+ arccos

(
a12−a13a23√
(1−a2

13)(1−a2
23)

)
2π

.

Now recall that for any α, β ∈ [−1, 1] we have that

arccosα+ arccosβ =

{
arccos(αβ −

√
(1− α2)(1− β2)) if α+ β ≥ 0

2π − arccos(αβ −
√

(1− α2)(1− β2)) if α+ β ≤ 0.

and hence if α, β ∈ [−1, 1] satisfies α+ β ≥ 0 and αβ −
√

1− α2
√

1− β2 + γ ≤ 0, then

arccosα+arccosβ+arccos γ

=2π−arccos
(
αβγ−α

√
(1−β2)(1− vγ2)−β

√
(1−α2)(1−γ2)−γ

√
(1−α2)(1−β2)

)
.

Now let 
α = a23−a12a13√

(1−a212)(1−a213)

β = a13−a12a23√
(1−a212)(1−a223)

γ = a12−a13a23√
(1−a213)(1−a223)

.
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Using that as A is positive definite, then a12 ≤ a13a23 +
√

(1− a2
13)(1− a2

23), it follows
that we indeed have that α+ β ≥ 0. Moreover, with some work, one verifies that

αβ −
√

1− α2
√

1− β2 + γ =
−detA

(1 + a12)
√

1− a2
13

√
1− a2

23

≤ 0

and that

αβγ − α
√

(1− β2)(1− γ2)− β
√

(1− α2)(1− γ2)− γ
√

(1− α2)(1− β2)

=
detA∏

i<j(1 + aij)
− 1.

This implies in particular that

ν′000(0)

ν′0(0)
=

3

2
− arccosα+ arccosβ + arccos γ

2π

=
3

2
−

2π − arccos
(

detA∏
i<j(1+aij)

− 1
)

2π

=
1

2
+

arccos
(

detA∏
i<j(1+aij)

− 1
)

2π
.

Combining this with (4.8) and (6.3), the desired conclusion follows.

Remark 6.2. For the first part of the proof, one can also apply Theorem 1.7 in [7], but
since this does not significantly shorten the proof, we find the current proof more clear.

We now apply Theorem 6.1 to a few examples.

Corollary 6.3. Let a ∈ (0, 1) and let X := (X1, X2, X3) be a standard Gaussian vector
with Cov(X1, X2) = Cov(X1, X3) = Cov(X2, X3) = a. Then Xh is a color process for all
sufficiently small h.

Proof. Note first that by using Theorem 6.1, after a computation, we obtain
limh→0 q1,2,3(h) = 2−

2 arccos

(
a(a2−6a−3)

(1+a)3

)
π

limh→0 q12,3(h) = arccos a
π − 1 +

arccos

(
a(a2−6a−3)

(1+a)3

)
π

limh→0 q123(h) = 2− 3 arccos a
π −

arccos

(
a(a2−6a−3)

(1+a)3

)
π .

It suffices to show that the above limits are positive. Since arccosx ∈ (0, π) for all
x ∈ (−1, 1) and arccosx is strictly decreasing in x, it follows that the first of these is
strictly positive whenever

a(a2 − 6a− 3)

(1 + a)3
> −1.

By rearranging, one easily sees this to be true whenever a ∈ (0, 1). Next, since π −
arccosx = arccos(−x) for all x ∈ (0, 1) it follows that the second limit is strictly positive
whenever

a+
a(a2 − 6a− 3)

(1 + a)3
=
−a(1− a)(2 + 5a+ a2)

(1 + a)3
< 0.

which clearly holds for all a ∈ (0, 1). To see that Xh has a color representation for all
sufficiently small h > 0, it thus only remains to show that limh→0 q123(h) > 0. To this end,
first note that this is equivalent to that

3 arccos a+ arccos

(
a(a2 − 6a− 3)

(1 + a)3

)
< 2π.
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It is easy to verify that we get equality when a = 0, and hence it would be enough to
show that the left hand side is strictly decreasing in a. If we differentiate the left hand
side one we obtain, after a detailed computation, that

3

(1 + a)
√

1 + 2a
− 3√

1− a2

which is clearly negative for all a ∈ (0, 1). From this the desired conclusion follows.

Corollary 6.4. Let a ∈ (0, 1) and let X := (X1, X2, X3) be a standard Gaussian vector
with Cov(X1, X2) = Cov(X2, X3) = a and Cov(X1, X3) = a2. Then Xh is a color process
for all sufficiently small h.

Remark 6.5. With X = (X1, X2, X3) defined as a above, X is a Markov chain.

Proof of Corollary 6.4. Note first that by using Theorem 6.1, after a computation, we
obtain 

limh→0 q1,2,3(h) = 2−
2 arccos

(
−2a

1+a2

)
π

limh→0 q12,3(h) = arccos a2

π − 1 +
arccos

(
−2a

1+a2

)
π

limh→0 q13,2(h) = 2 arccos a−arccos a2

π − 1 +
arccos

(
−2a

1+a2

)
π

limh→0 q1,23(h) = arccos a2

π − 1 +
arccos

(
−2a

1+a2

)
π

limh→0 q123(h) = 2− 2 arccos a+arccos a2

π −
arccos

(
−2a

1+a2

)
π .

It suffices to show that the above limits are positive. By using the fact that π− arccosx =

arccos(−x) for all x ∈ (−1, 1) and the fact that arccosine is a strictly decreasing function,
one easily verifies that the first, second and fourth of these are strictly positive for all
a ∈ (0, 1). To see that the third limit is strictly positive for a ∈ (0, 1), we differentiate this
limit with respect to a to obtain

(a
√

1 + a2 +
√

1− a2 − (1 + a2)) · 2

(1 + a2)
√

1− a2
.

This expression can be equal to zero if and only if

a
√

1 + a2 +
√

1− a2 = 1 + a2.

Squaring both sides and simplifying, we see that this is equivalent to that√
1− a4 = a

which in turn is equivalent to that

1− a2 − a4 = 0.

This equation clearly has exactly one solution in (0, 1). Hence in particular, there can
be only one maxima or minima in (0, 1). Since limh→0 q13,2(h)(a) is continuous in a

for all a ∈ [0, 1], limh→0 q13,2(h)(0) = limh→0 q13,2(h)(1) = 0 and one easily verifies that
limh→0 q13,2(h)(0.5) > 0 it follows that limh→0 q13,2(h)(a) > 0 for all a ∈ (0, 1).

Finally, one easily verifies that the derivative of limh→0 q123(h)(a) with respect to a is
given by

(a
√

1 + a2 + (1 + a2)−
√

1− a2) · 2

(1 + a2)
√

1− a2

which has no zeros in (0, 1). Since limh→0 q123(h)(0) = 0, limh→0 q123(h)(1) = 1 and
limh→0 q123(h)(a) is continuous in a, it must be strictly increasing in a in (0, 1), and hence
it follows that limh→0 q123(h)(a) > 0 for all a ∈ (0, 1).
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6.2 h large

Before proving Theorem 1.6, we start off by giving some interesting applications of it.

Corollary 6.6. For each case below, there is at least one Gaussian vector X with non-
negative correlations which satisfies it.

(i) Xh has a color representation for all sufficiently large h and for all sufficiently small
h > 0.

(ii) Xh has no color representation for any sufficiently large h nor for any sufficiently
small h > 0.

(iii) Xh has a color representation for all sufficiently large h but not for any sufficiently
small h > 0.

(iv) Xh has a color representation for all sufficiently small h but not for any sufficiently
large h.

In particular, the property of Xh being a color process for a fixed X is not monotone in h
(in either direction) for h > 0.

Proof. .

(i) Of course one can take an i.i.d. process here. A more interesting example is as
follows. Let X be a three-dimensional standard Gaussian vector with Cov(X1, X2) =

Cov(X1, X3) = Cov(X2, X3) = a ∈ (0, 1). By combining Corollary 6.3 and Theo-
rem 1.6(i), it follows that Xh has a color representation for both sufficiently small
and sufficiently large h > 0.

(ii) LetX be a three-dimensional Gaussian vector with Cov(X1, X2)=0.05, Cov(X1, X3)=

Cov(X2, X3) = 0.6825. One can verify that this corresponds to a positive definite
covariance matrix. Using Theorem 6.1, one verifies that limh→0 q12,3(h) ≈ −0.05

and hence Xh does not have a color representation for any sufficiently small h.
Using Theorem 1.6, it follows that Xh does not either have a color representation
for large h.

(iii) Let X be a three-dimensional standard Gaussian vector with Cov(X1, X2) = 0.1,
Cov(X1, X3) = Cov(X2, X3) = 0.5. One can verify that this corresponds to a positive
definite covariance matrix. Now by Theorem 6.1, the limit limh→0 q12,3(h) ≈ −0.016

and hence Xh does not have a color representation for any sufficiently small
h > 0. Next, since the Savage condition (1.2) holds, we have that Xh has a color
representation for all sufficiently large h by Theorem 1.6.

(iv) This follows immediately from Theorem 4.8.

Example 6.7. It is illuminating to look at the subset of the set of three-dimensional
standard Gaussians for which at least two of the covariances are equal. So, we let
Xa,b = (X1, X2, X3) be a standard Gaussian vector with covariance matrix

A =

1 a a

a 1 b

a b 1


for some a, b ∈ (0, 1). One can verify that A is positive definite exactly when 2a2 < 1 + b.
Applying Theorem 1.6, one can check that Xh

a,b is a color process for all sufficiently large
h if and only if either 2a− 1 ≤ b or (2a− 1)2 < b (note both of these inequalities imply
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that 2a2 < 1 + b). Cases (i) and (ii) correspond to the first inequality holding and Case
(iii) corresponds to the first inequality failing and the second inequality holding. For a
fixed h, the set of parameters which yield a color process for threshold h is a closed set.
However the set of parameters which yield a color process for sufficiently large h is not
a closed set; for example, a = .1 and b = ε belongs to this set for every ε > 0 but not for
ε = 0.

In Figure 4, we first draw the regions corresponding to the various cases in Theo-
rem 1.6 and the region corresponding to having a positive definite covariance matrix. In
the second picture, we superimpose the region corresponding to all choices of a and b
for which Xh

a,b has a color representation for all h which are sufficiently close to zero.

Interestingly, this figure suggests that if Xh
a,b is a color process for h close to zero, then

Xh
a,b is also a color process for h sufficiently large. Moreover, the region corresponding to

the set of a and b for which Xh
a,b has a color representation for h close to zero intersects

both the regions corresponding to Cases (i) and (iii).

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

a

b

Case (i) Case (iii)

Positive definite covariance matrix Discrete Gaussian free fields

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

a

b

Case (i) Case (iii)

Positive definite covariance matrix Discrete Gaussian free fields

Color process for small h

Figure 4: The figure to the left shows, for Example 6.7, the different cases in Theorem 1.6.
A is positive definite in the blue region and to its left, Case (iii) is the green region,
Case (i) is the red region and to its left and the set of DGFFs is the orange region. Case
(ii) corresponds to the straight line b = 2a − 1. The boundary of the orange region,
which is the line b = a2, corresponds to the family of standard Gaussian Markov chains.
The boundary between the green and blue regions is the right half of the parabola
b = (2a− 1)2. Finally the two black points correspond to the two examples given in the
proof of (ii) and (iii) of Corollary 6.6. The picture to the right is the same except with
the region where there is a color representation for h sufficiently close to zero being
superimposed.

We now proceed with the proof of Theorem 1.6.

Lemma 6.8. Let X := (X1, X2) be a fully supported standard Gaussian vector with
covariance matrix A = (aij). Then ν11(h)� ν1(h) and if a12 > 0, then ν1(h)2 � ν11(h).

Proof. We have that 1TA−1 =
(
(1 + a12)−1, (1 + a12)−1

)
> 0 and hence Lemma 5.10

implies that

ν11(h) � h−2 · exp

(
−h

2

2
· 2

1 + a12

)
.

Since p1(h) � h−1 · exp
(
−h2/2

)
, p1(h)2 � h−2 · exp

(
−h2

)
and a12 < 1 by the fully

supported assumption, the result easily follows.

EJP 25 (2020), paper 54.
Page 34/45

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP459
http://www.imstat.org/ejp/


Divide and color representations for threshold Gaussian and stable vectors

Lemma 6.9. Let X be a fully supported 3-dimensional standard Gaussian vector with
covariance matrix A = (aij). If aij ∈ [0, 1) for all i < j, then

ν1(h) max({ν11·(h), ν1·1(h), ν·11(h)})
� min({ν11·(h), ν1·1(h), ν·11(h)}).

Proof. For i < j, let Aij be the covariance matrix of (Xi, Xj). Then

1TA−1
ij =

(
(1 + aij)

−1, (1 + aij)
−1
)
> 0

and hence Lemma 5.10 implies that

ν1{i,j}(h) � h−2 · exp

(
−h

2

2
· 2

1 + aij

)
(6.5)

and so

ν1(h)ν1{i,j}(h) � h−3 · exp

(
−h

2

2
·
(

1 +
2

1 + aij

))
. (6.6)

In particular, this implies that the desired conclusion follows if we can show that

max
i<j

2

1 + aij
< 1 + min

i<j

2

1 + aij
.

However, since aij ∈ [0, 1) for all i < j we have that

max
i<j

2

1 + aij
≤ 2 < 1 + min

i<j

2

1 + aij
.

Lemma 6.10. Let X be a fully supported 3-dimensional standard Gaussian vector with
covariance matrix A = (aij). If 1TA−1 > 0 and at most one of the covariances aij is
equal to zero, then

ν1(h) max({ν11·(h), ν1·1(h), ν·11(h)})� ν111(h)

� min({ν11·(h), ν1·1(h), ν·11(h)}).
(6.7)

Proof. We first show that the second of the two inequalities holds. First, since 1TA−1 > 0

by assumption, we have that

ν111(h) � h−3 · exp

(
−h

2

2
· 1TA−11

)
. (6.8)

Since
ν111(h) ≤ min({ν11·(h), ν1·1(h), ν·11(h)}),

(6.5) implies

1A−11 ≥ 2

1 + aij

for all i < j. However since h−3 � h−2, it follows that we then must have that

ν111(h)� min({ν11·(h), ν1·1(h), ν·11(h)}).

This shows that the second inequality in (6.7) holds.
Next, to show that the first of the two inequalities in (6.7) holds, we will show that

1TA−11 < 1 +
2

1 + aij
(6.9)
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for all i < j, since if this holds, then (6.6) and (6.8) immediately imply the desired
conclusion. To this end, using (1.1), one first verifies that1TA−1 > 0 is equivalent to

1 + 2 min
i<j

aij >
∑
i<j

aij . (6.10)

Similarly, (6.9) can be shown to be equivalent to

(1 + max
i<j
{aij})

∏
i<j

(1− aij) < 1−
∑
i<j

a2
ij + 2

∏
i<j

aij . (6.11)

If aij = 0 for exactly one of the covariances, then one easily verifies that (6.11) holds
when (6.10) holds. Now instead assume that aij > 0 for all i > j. If we think of a12 > 0 as
being fixed, then (6.11) holds for all a13 and a23 in the interior of the ellipse E given by

(1− a2
12)(1− x)(1− y) = 1− a2

12 − x2 − y2 + 2a12xy, x, y ∈ R.

One verifies that the boundary of E passes through the origin and the points (0, 1− a2
12),

(1− a2
12, 0), (a12, 1) and (1, a12). Since we are assuming the Savage condition (1.2), any

possible a13) and a23) under consideration necessarily lies in the region R given by

1 + 2 min({a12, x, y}) > a12 + x+ y, x, y > 0.

Hence we need only show that R ⊆ E. (See Figure 5.) To see this containment, note that

(0,0)

(0,1-a)

(1-a,0)

(a,1)

(1,a)

Figure 5: The image above shows the situation in the proof of Lemma 6.10, where we
are interested in whether a region R is contained inside a given ellipse E.

R is a polygon with vertices given by (0, 0), (0, 1− a12), (1− a12, 0), (1, a12) and (a12, 1).
We already know that the first, fourth and fifth of these vertices lie on the boundary of E
while one easily checks that the other two lie inside E. Since E is convex, and R is a
polygon, it follows that R ⊆ E.

We are now ready to give the proof of Theorem 1.6. We remark that in the proof, Case
1 and Case 2 can alternatively be proven, using the lemmas in this section, by appealing
to Lemma 5.6.
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Proof of Theorem 1.6. For each h > 0, let (qσ(h))σ∈B3
be given by (6.1). Using inclusion-

exclusion, we see that for any h > 0 we have that

q1,2,3(h) =
ν1(h)− (ν·11(h) + ν1·1(h) + ν11·(h)) + 2ν111(h)

ν0(h)ν1(h)(ν0(h)− ν1(h))
,

q12,3(h) =
(1− 2ν1(h))ν11·(h) + ν1(h)(ν·11(h) + ν1·1(h) + ν11·(h))− ν1(h)2 − ν111(h)

ν0(h)ν1(h)(ν0(h)− ν1(h))

and

q123(h) =
2ν1(h)3 + ν111(h)− ν1(h)(ν·11(h) + ν1·1(h) + ν11·(h))

ν0(h)ν1(h)(ν0(h)− ν1(h))
.

This implies that there is a color representation for large h if and only if for all large h
we have that

ν·11(h) + ν1·1(h) + ν11·(h) ≤ ν1(h) + 2ν111(h), (6.12)

ν111(h) + ν1(h)2 ≤ ν1(h)(ν·11(h) + ν1·1(h) + ν11·(h))

+ (1− 2ν1(h)) min({ν11·(h), ν1·1(h), ν·11(h)})
(6.13)

and
ν1(h)(ν·11(h) + ν1·1(h) + ν11·(h)) ≤ ν111(h) + 2ν1(h)3. (6.14)

We will check when (6.12), (6.13) and (6.14) hold for large h by comparing the decay
rate of the various tails.

Before we do this, note that by (1.1), one has that 1TA−1(1) ≤ 0 exactly when
1 + a23 ≤ a12 + a13. If this holds, then clearly a23 = mini<j(aij) and hence ν·11(h) =

min({ν11·(h), ν1·1(h), ν·11(h)}).
Without loss of generality, we assume that 0 ≤ a23 ≤ a13 ≤ a12 and that a12 > 0, since

the case a12 = a13 = a23 = 0 is trivial. Note that this assumption implies by (1.1) that

1A−1(1) ≤ 1A−1(2) ≤ 1A−1(3)

with the largest two terms being positive.
We now claim that (6.12) holds for all sufficiently large h, without making any

additional assumptions on A. To see this, note that Lemma 6.8 implies that

ν·11(h) + ν1·1(h) + ν11·(h) ≤ 3ν11·(h)� ν1(h) ≤ ν1(h) + 2ν111(h)

and hence (6.12) holds for all large h.
We now divide into four cases.

Case 1. Assume that 1TA−1(1) > 0 and a23 > 0. We will show that both (6.13) and (6.14)
hold in this case without any further assumptions. To this end, note first that since
a23 > 0, Lemma 6.8 implies that ν1(h)2 � ν·11(h). Moreover, since 1TA−1(1) =

mini∈[3] 1
TA−1(i) > 0 implies that 1TA−1 > 0, Lemma 6.10 gives

ν1(h) max({ν11·(h), ν1·1(h), ν·11(h)})� ν111(h)

� min({ν11·(h), ν1·1(h), ν·11(h)}).

Combining these observations, we obtain

ν111(h) + ν1(h)2 � ν·11(h) ∼ (1− 2ν1(h))ν·11(h)

≤ ν1(h)(ν·11(h) + ν1·1(h) + ν11·(h))

+ (1− 2ν1(h)) min({ν11·(h), ν1·1(h), ν·11(h)})

and hence (6.13) holds. Similarly, we obtain

ν1(h)(ν·11(h) + ν1·1(h) + ν11·(h))� ν111(h) ≤ ν111(h) + 2ν1(h)3.

establishing (6.14). This concludes the proof of (i).
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Case 2. Assume that 1TA−1(1) = 0 and a23 > 0. We will show that (6.13) and (6.14)
both hold in this case. To this end, note first that since 1TA−1(1) = 0, Lemma 5.10 implies
that ν111(h) ∼ ν·11(h)/2 and, since a23 > 0, Lemma 6.8 implies that ν·11(h)� ν1(h)2. This
implies in particular that

ν111(h) + ν1(h)2 ∼ ν·11(h)/2 + ν1(h)2 ∼ ν·11(h)/2

∼ 1

2
(1− 2ν1(h))ν·11(h)

=
1

2
(1− 2ν1(h)) min({ν11·(h), ν1·1(h), ν·11(h)})

and hence (6.13) holds for all sufficiently large h. Next, using Lemma 6.9, we obtain

ν1(h)(ν·11(h) + ν1·1(h) + ν11·(h))� ν·11(h)/2 ∼ ν111(h)

and hence (6.14) holds for all sufficiently large h in this case. This finishes the proof of
(ii).

Case 3. Assume that 1TA−1(1) < 0. By Lemma 5.10, we have that ν111(h) ∼ ν·11(h).
Using this, one easily checks that (6.14) holds by the same argument as in Case 2, and
hence it remains only to check when (6.13) holds. To this end, note first that if we use
the assumption that a23 ≤ a13 ≤ a12, then (6.13) is equivalent to

ν1(h)2 + ν1(h)(ν·11(h)− ν1·1(h)− ν11·(h)) ≤ ν011(h). (6.15)

Since aij < 1 for all i < j, Lemma 6.8 implies that

ν1(h)2 + ν1(h)(ν·11(h)− ν1·1(h)− ν11·(h)) ∼ ν1(h)2.

Therefore, by Lemma 5.10, we see that if 1TA−11 < 2 holds, then ν011(h) � ν1(h)2

yielding (6.15). On the other hand, if 1TA−11 ≥ 2 holds, then ν011(h)� ν1(h)2 in which
case (6.15) fails.

Case 4 Assume now that a23 = 0, i.e. that X2 and X3 are independent. Note that if
a13 = a23 = 0, then there is a color representation by Proposition 5.1, and hence we can
assume that a13 > 0. Now note that since X2 and X3 are independent by assumption, if
Xh has a color representation (qσ(h)) for some h, it must satisfy q1,23(h) = q123(h) = 0.
Using the general formula for these expressions, we obtain that

ν111(h) + ν1(h)2 = ν1(h)(ν·11(h) + ν1·1(h) + ν11·(h))

+ (1− 2ν1(h))ν·11(h)

and
ν1(h)(ν·11(h) + ν1·1(h) + ν11·(h)) = ν111(h) + 2ν1(h)3.

Using that ν·11(h) = ν1(h)2 by assumption, we see that these equations are both equiva-
lent to that

ν111(h) + ν1(h)3 = ν1(h)(ν1·1(h) + ν11·(h)). (6.16)

We will show that (6.16) does not hold for any large h. To this end, note first that if
1TA−1 > 0 and a12, a13 > 0, then by Lemma 6.10 we have that

ν111(h) + ν1(h)3 ∼ ν111(h)� ν1(h)(ν1·1(h) + ν11·(h))

and hence (6.16) cannot hold, implying that there can be no color representation for any
large h in this case.
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Next, if 1TA−1(1) = 0, then using Lemma 5.10 we get that

ν111(h) + ν1(h)3 ∼ ν·11(h)/2 + ν1(h)3 = ν1(h)2/2 + ν1(h)3 ∼ ν1(h)2/2.

Using Lemma 6.8 and the assumption that a12, a13 < 1, it follows that

ν1(h)2 � ν1(h)(ν1·1(h) + ν11·(h))

and hence (6.16) cannot hold, implying that there can be no color representation for any
large h in this case.

Finally, if 1TA−1(1) < 0 then we can use Case 3. Observing that if a23 = 0, then
detA > 0 implies that a2

12 + a2
13 < 1, we have that

1TA−11 < 2⇔ 1 +
2(1− a12)(1− a13)

1− a2
12 − a2

13

< 2

⇔ (1− a12 − a13)2 < 0

implying in particular that there can be no color representation.

7 Large threshold results for stable vectors with emphasis on the
n = 3 case

7.1 Two-dimensional stable vectors and nonnegative correlations

In this subsection, we give a proof of Proposition 1.7.

Proof of Proposition 1.7. We may stick to h ≥ 0 throughout. Since for n = 2, being a color
process is trivially equivalent to having nonnegative correlations, we can immediately
replace (ii) by X0 has nonnegative correlations and (iii) by Xh has nonnegative correla-
tions for all h. It is elementary to check that Xh

1 and Xh
2 have nonnegative correlation if

and only if

P ((1− aα)1/αS2 ≥ a|S1|+ h) ≥ P (S1 ≥ h)2. (7.1)

When h = 0 and a = 2−1/α, we have that

P ((1− aα)1/αS2 ≥ a|S1|+ h) = P (S2 ≥ |S1|) = 1/4

and

P (S1 ≥ h)2 = 1/4.

Hence we get equality in (7.1) in this case. Now note that the left hand side of (7.1) is
strictly decreasing in a. This implies that when h = 0, we get nonnegative correlations if
and only if a ≤ 2−1/α, establishing the equivalence of (i) and (ii).

We now show that (ii) implies (iii). To see this, note first that since the left hand side
of (7.1) is strictly decreasing in a, it suffices to show that (7.1) holds for all h ≥ 0 when
a = 2−1/α. To this end, note first that in this case, we have that

P ((1− aα)1/αS2 ≥ a|S1|+ h) = P (S2 ≥ |S1|+ h21/α).
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Now observe that

2P (S2 ≥ S1 + h21/α, S2 ≥ h21/α)

= 2P (S2 ≥ S1 + h21/α, S2 ≥ h21/α, S1 < 0)

+ 2P (S2 ≥ S1 + h21/α, S2 ≥ h21/α, S1 ≥ 0)

= 2P (S2 ≥ h21/α, S1 < 0)

+ 2P (S2 ≥ |S1|+ h21/α, S1 ≥ 0)

= 2P (S2 ≥ h21/α)P (S1 < 0)

+ 2P (S2 ≥ |S1|+ h21/α)P (S1 ≥ 0)

= P (S2 ≥ h21/α) + P (S2 ≥ |S1|+ h21/α)

and that

P (S1 ≥ h) = P (S2 + S1 ≥ h21/α)

= P (S2 + S1 ≥ h21/α, S1 ≥ h21/α)

+ P (S2 + S1 ≥ h21/α, S2 ≥ h21/α)

− P (S2 + S1 ≥ h21/α, S1 ≥ h21/α, S2 ≥ h21/α)

= 2P (S2 + S1 ≥ h21/α, S2 ≥ h21/α)− P (S1 ≥ h21/α)2.

Putting these observations together, we obtain

P (S2 ≥ |S1|+ h21/α)

= 2P (S2 ≥ S1 + h21/α, S2 ≥ h21/α)− P (S2 ≥ h21/α)

= P (S1 ≥ h) + P (S1 ≥ h21/α)2 − P (S2 ≥ h21/α).

In particular, we get nonnegative correlations if and only if

P (S1 ≥ h) + P (S1 ≥ h21/α)2 − P (S2 ≥ h21/α) ≥ P (S1 ≥ h)2.

Rearranging, we see that this is equivalent to

P (S1 ≥ h)− P (S1 ≥ h)2 ≥ P (S2 ≥ h21/α)− P (S1 ≥ h21/α)2

which will hold for all h ≥ 0 since P (S1 ≥ h)− P (S1 ≥ h)2 is decreasing in h for all h ≥ 0.
This establishes (iii).

7.2 h large and a phase transition in the stability exponent

In this subsection we will look at what happens when X is a symmetric multivariate
stable random variable with index α < 2 and marginals Sα(1, 0, 0), and the threshold
h > 0 is large. The fact that stable distributions have fat tails for α < 2 will result
in behavior that is radically different from the Gaussian case. We will obtain various
results, perhaps the most interesting being a phase transition in α at α = 1/2; this is
Theorem 1.9.

Proof sketch of Theorem 1.8. We show that the assumptions of Lemma 5.6 hold. First
Theorem 1.1 in [6], with k = 1, implies that (5.2) holds. Next, a computation using the
same theorem shows that the last condition in Lemma 5.6 holds if (1.3) holds.

We will now apply Theorem 1.1 in [6] to a stable version of a Markov chain.
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Corollary 7.1. Let α ∈ (0, 2) and let S1, S2 and S3 be i.i.d. with S1 ∼ Sα(1, 0, 0). Further-
more, let a ∈ (0, 1) and define X1 := S1 and X2 and X3 by

Xi := aXi−1 + (1− aα)1/αSi, i = 2, 3.

Then Xh is a color process for all sufficiently large h.

Remark 7.2. The random vector X defined by this corollary is a stable Markov chain.
We have already seen a Gaussian analogoue of this result.

Proof of Corollary 7.1. Clearly (X1, X2, X3) is a three-dimensional symmetric α-stable
random vector whose marginals are Sα(1, 0, 0). If we let A be given by 1 0 0

a (1− aα)1/α 0

a2 a(1− aα)1/α (1− aα)1/α


then X1

X2

X3

 = A ·

S1

S2

S3

 .

It follows that for each x ∈ supp(Λ), exactly one of ±(2Λ(x))1/αx is a column in A.
Moreover, each column of A corresponds to a pair of points in the support of Λ in this
way. To simplify notation, for x ∈ supp(Λ) we write x̂ := (2Λ(x))1/αx. Using Theorem 1.1
in [6] with n = 3 and k = 1, one easily verifies that this implies that

lim
h→∞

ν111(h)

ν1(h)
=

∑
x1∈supp(Λ)

∫ ∞
0

I (s1x̂1 > 1) · αs−(1+α)
1 ds1

=

∫ ∞
a−2

αs
−(1+α)
1 ds1 = a2α

and similarly that 

lim
h→∞

ν110(h)

ν1(h)
= aα(1− aα)

lim
h→∞

ν100(h)

ν1(h)
= 1− aα

lim
h→∞

ν011(h)

ν1(h)
= aα(1− aα)

lim
h→∞

ν010(h)

ν1(h)
= (1− aα)2 (7.2)

lim
h→∞

ν001(h)

ν1(h)
= 1− aα

lim
h→∞

ν101(h)

ν1(h)
= 0.

Combining this with (6.1) we obtain

limh→∞ q1,2,3(h) = (1− aα)2

limh→∞ q12,3(h) = aα(1− aα)

limh→∞ q13,2(h) = 0

limh→∞ q1,23(h) = aα(1− aα)

limh→∞ q123(h) = a2α.
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From this it follows that Xh has a color representation for all sufficiently large h if
q13,2(h) is non-negative for large h. By (6.1), q13,2(h) is given by

q13,2(h) =
ν0(h)ν101(h)− ν1(h)ν010(h)

ν1(h)ν0(h)(ν0(h)− ν1(h))
.

Here the denominator is strictly positive for all h > 0, and we know from (7.2) that
ν010(h) = (1− aα)2ν1(h) + o(ν1(h)). Hence it is sufficient to show that

lim
h→∞

ν101(h)

ν1(h)2
> (1− aα)2.

To see this, we again apply Theorem 1.1 in [6] to obtain

lim
h→∞

ν101(h)

ν1(h)2

=
1

2

∑
x1,x2∈supp(Λ)

∫ ∞
0

∫ ∞
0

I
(
s1x̂1(1) + s2x̂2(1) > 1,

s1x̂1(2) + s2x̂2(2) ≤ 1,

s1x̂1(3) + s2x̂2(3) > 1
)
α2s
−(1+α)
1 s

−(1+α)
2 ds2 ds1

=

∫ ∞
0

∫ ∞
0

I

(
a−1 > s1 > 1, s2 >

1− a2s1

(1− aα)1/α

)
α2s
−(1+α)
1 s

−(1+α)
2 ds2 ds1

= (1− aα)

∫ a−1

1

(
1− a2s1

)−α
αs
−(1+α)
1 ds1

> (1− aα)

∫ a−1

1

αs
−(1+α)
1 ds1 = (1− aα)2

which is the desired conclusion.

We can now prove Theorem 1.9 which is a stable version of the example in the proof
of (i) of Corollary 6.6.

Proof of Theorem 1.9. We start a little more generally. Let α ∈ (0, 2) and let S0, S1, . . . ,
Sn be i.i.d. with S0 ∼ Sα(1, 0, 0). Furthermore, let a ∈ (0, 1) and for i = 1, 2, . . . , n, define

Xi = aS0 + (1− aα)1/αSi.

Note first that for any n ≥ 1, (X1, X2, . . . , Xn) is clearly an n-dimensional symmetric
α-stable random vector whose marginals have distribution Sα(1, 0, 0). Moreover, for any
n ≥ 2, if we let A be the n× (n+ 1) matrix defined by

A(i, j) =


a if j = 1

(1− aα)1/α if j = i+ 1

0 otherwise

then (
X1, . . . , Xn

)T
= A ·

(
S0, S1, . . . , Sn

)T
.

It follows that for each x ∈ supp(Λ), exactly one of ±(2Λ(x))1/αx is a column in A.
Moreover, each column of A corresponds to a pair of points in the support of Λ in this
way. To simplify notation, for x ∈ supp(Λ) we write x̂ := (2Λ(x))1/αx. Using Theorem 1.1
in [6], one easily verifies that it follows that

lim
h→∞

ν1n(h)

ν1(h)
=

∑
x1∈supp(Λ)

∫ ∞
0

I (s1x̂1 > 1) · αs−(1+α)
1 ds1

=

∫ ∞
0

I (as1 > 1) · αs−(1+α)
1 ds1 = aα.

(7.3)

EJP 25 (2020), paper 54.
Page 42/45

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP459
http://www.imstat.org/ejp/


Divide and color representations for threshold Gaussian and stable vectors

Returning to the case n = 3, let, for h > 0, (q123(h), q12,3(h), q13,2(h), q1,23(h), q1,2,3(h)) be
given by (6.1). Then, symmetry and inclusion-exclusion, we have that

q1,2,3(h) =
ν100(h)− ν011(h)

ν0(h)ν1(h)(ν0(h)− ν1(h))
=
ν1(h)− 3ν11·(h) + 2ν111(h)

ν0(h)ν1(h)(ν0(h)− ν1(h))

and hence limh→∞ q1,2,3(h) = 1− aα. Similarly, one sees that

lim
h→∞

q12,3(h) = lim
h→∞

q13,2(h) = lim
h→∞

q1,23(h) = 0

and hence limh→∞ q123(h) = aα. Since the solution is permutation invariant, it follows
that we have a color representation for all sufficiently large h if and only if q12,3(h) ≥ 0

for all sufficiently large h. To see when this happens, note first that by symmetry,
ν101 + ν010 = ν011 + ν010 = ν01· and hence, using (6.1), it follows that

q12,3(h) =
ν0(h)ν110(h)− ν1(h)ν001(h)

ν0(h)ν1(h)(ν0(h)− ν1(h))
=

ν110(h)− ν1(h)ν01·(h)

ν0(h)ν1(h)(ν0(h)− ν1(h))
.

The denominator is strictly positive for all large h and by (7.3) we have that

ν01·(h) = ν1(h)− ν11·(h) = ν1(h)(1− aα) + o(ν1(h)).

The question is now how limh→∞ ν110(h)/ν1(h)2 compares with 1− aα. Using Proposition
4.9 in [6], it follows that

lim
h→∞

ν101(h)

ν1(h)2
=

{
(1− aα)2 + aα(1− aα) αΓ(2α)Γ(1−α)

Γ(1+α) if α ∈ (0, 1)

∞ else.

From this it immediately follows that Xh has a color representation for all sufficiently
large h if α ∈ [1, 2). When α ∈ (0, 1), then Xh has a color representation for all sufficiently
large h if

αΓ(2α)Γ(1− α)

Γ(1 + α)
> 1

and has no color representation for any large h if

αΓ(2α)Γ(1− α)

Γ(1 + α)
< 1.

This expression is strictly positive for all α ∈ (0, 1) and equal to 1 if α = 1/2. Furthermore,
it is equal to

αΓ(2α)Γ(1− α)

Γ(1 + α)
=

Γ(2α)Γ(1− α)

Γ(α)
= 22α−1Γ

(
α+

1

2

)
Γ (1− α) · 1√

π

where the last equality follows by using the Legendre Duplication Formula (see [1],
6.1.18, p. 256). We claim that this expression is strictly increasing in α. If we can show
this, the conclusion of the theorem will follow since we get equality at α = 1/2. To see
this, recall first that Γ′(α) = Γ(α)ψ(α), where ψ is the so-called digamma function. It
follows that the derivative of the expression above is equal to

22α−1Γ

(
α+

1

2

)
Γ (1− α) · 1√

π
·
(

2 log 2 + ψ

(
α+

1

2

)
− ψ(1− α)

)
.

Since the first term is equal to our original integral, it is clearly strictly larger than zero.
Moreover, an integral representation of ψ given in [1] (see 6.3.21, p. 259) implies that
ψ(x) is strictly increasing in x for x > 0. It follows that the second term is strictly larger
than

2 log 2 + ψ (1/2)− ψ (1) .

Using the values of the digamma function at 1/2 and 1 (see [1], 6.3.2 and 6.3.3, p. 258),
this last expression is 0. This finishes the proof.
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We next give the proof of Theorem 1.10.

Proof of Theorem 1.10. Clearly (X1, X2, X3) is a three-dimensional symmetric α-stable
random vector whose marginals are Sα(1, 0, 0).

If we define c = c(α, a, b) := (1− 2aα − 2bα)1/α and let A be given bya b 0 b a 0 c

0 a b 0 b a c

b 0 a a 0 b c


then X1

X2

X3

 = A · (S1, S2, S3, S4, S5, S6, S7)T

It follows that for each x ∈ supp(Λ), exactly one of ±(2Λ(x))1/αx is a column in A.
Moreover, each column of A corresponds to a pair of points in the support of Λ in this
way. To simplify notation, for x ∈ supp(Λ) we write x̂ := (2Λ(x))1/αx. Using Theorem 1.1
in [6], we get that

lim
h→∞

ν111(h)

ν1(h)
=

∑
x1∈supp(Λ)

∫ ∞
0

I (s1x̂1 > 1) · αs−(1+α)
1 ds1

=

∫ ∞
0

I(cs1 > 1) · αs−(1+α)
1 ds1 = cα = 1− 2aα − 2bα.

(7.4)

Similarly, we obtain

lim
h→∞

ν110(h)

ν1(h)
= 2

∫ ∞
0

I(s1 ·min({a, b}) > 1) · αs−(1+α)
1 ds1

= 2 min({a, b})α.
(7.5)

Using (6.1), it follows that
limh→∞ q123(h) = 1− 2aα − 2bα

limh→∞ q12,3(h) = 2 min({a, b})α

limh→∞ q13,2(h) = 2 min({a, b})α

limh→∞ q1,23(h) = 2 min({a, b})α

(7.6)

and as q1,2,3(h) = 1− q123(h)− q12,3(h)− q13,2(h)− q1,23(h) for h ∈ R, we also obtain

lim
h→∞

q1,2,3(h) = 1− (1− 2aα − 2bα)− 6 min({a, b})α = 2 (max({a, b})α − 2 min({a, b})α) .

Since a, b ∈ (0, 1) and 2aα + 2bα < 1 (as α > c1), it follows that all of the limits in (7.6) lie
in (0, 1) for any α ∈ (0, 1).

Let g(α) = max({a, b})α − 2 min({a, b})α for α ∈ (0,∞). If a = b, then c2 = ∞ and
g(α) = max({a, b})α − 2 min({a, b})α is negative for all α and the claim holds. If a 6= b,
then it is easy to check that c2 is the unique zero of g(α) on (0,∞) and that g is negative
(positive) to the left (right) of c2. This immediately leads to all of the claims.
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