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Abstract

This thesis is about veri�ed computer-aided checking of mathematical proofs.
We build on tools for proof-producing program synthesis, and veri�ed com-
pilation, and a veri�ed theorem proving kernel. Using these tools, we have
produced a mechanized proof checker for higher-order logic that is veri�ed to
only accept valid proofs. To the best of our knowledge, this is the only proof
checker for HOL that has been veri�ed to this degree of rigor.

Mathematical proofs exist to provide a high degree of con�dence in the
truth of statements. The level of con�dence we place in a proof depends on its
correctness. This correctness is usually established through proof checking,
performed either by human or machine. One bene�t of using a machine for
this task is that the correctness of the machine itself can be proven.

The main contribution of this work is a veri�ed mechanized proof checker
for theorems in higher-order logic (HOL). The checker is implemented as func-
tions in the logic of the HOL4 theorem prover, and it comes with a soundness
result, which states that it will only accept proofs of true theorems of HOL.
Using a technique for proof-producing code generation (which is extended as
part of this thesis), we synthesize a CakeML program that is compiled using
the CakeML compiler. The CakeML compiler is veri�ed to preserve program
semantics. As a consequence, we are able to obtain a soundness result about
the machine code which implements the proof checker.
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Chapter 1

Introduction

This Licentiate thesis is about rigorous mechanized checking of mathematical
proofs. Its main contribution is a mechanized proof checker which is veri�ed
to be correct using state-of-the-art tools and techniques.

1.1 Motivation

Mathematical proof is used to establish strong guarantees about the truth of
statements in a general way. Empirical methods (e.g. experiments or tests) can
only be used to validate the truth of general statements for a �nite number of
instances. In contrast, the strength of mathematical proof is that it makes it
possible to show the truth of statements for all instances.

Mathematical proofs are produced and checked. Their production requires
intuition and creativity, at least as far as their statement is concerned. Checking
an existing proof is, on the other hand, a mechanical process that can be carried
out by both humans and machines. Automating this process is valuable, because
a human can then be convinced of the correctness of an argument without
performing the laborious proof checking herself, as long as she is willing to
trust the correctness of the automatic proof checker.

A mechanized proof checker is only useful if it is performing its task cor-
rectly and, therefore, we need to establish this correctness in a rigorous way.
Of course, one way to produce such evidence is to use mathematical proof. In
this work we utilize computer-aided tools called interactive theorem provers to
produce and verify the correctness of a mechanized proof checker.

1.2 Concepts in mechanized proof checking

Before we discuss the main contribution of this work, we introduce the key
concepts involved in the topic of this thesis here. In what follows, we will
explain each concept, and its relevance to this work.

Formal logic. Formal logics are mathematical languages that enable us to
make precise mathematical statements, and construct proofs in a mechanical
way. A formal logic consists of a syntax, and a well-de�ned meaning of the
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syntax, called a semantics. A logic also comes with a calculus of syntactic proof
rules for how to construct new syntactic objects from existing ones. These
rules are proven sound with respect to the semantics, meaning that they can
only be used to construct syntax that is true according to the semantics. The
advantage of using a formal logic is that any reasoning using the rules of the
language is guaranteed to result in valid proofs.

Higher-order logic (HOL). Higher-order logic is an expressive formal logic.
Its expressivity allows it to both describe the syntax and semantics of a computer
program implementation of a mechanized proof checker, and to act as the
programming language for such an implementation. The latter is not only
convenient, but also allows us to draw very strong conclusions about the
correctness of our programs.

Interactive theorem provers (ITPs). Interactive theorem provers are pro-
grams designed to aid reasoning in a formal logic. They are called interactive
because human interaction is required to guide the system when carrying out
proof (even though ITPs allow for a signi�cant degree of automation). These
proofs are checked by the system, meaning that the user can trust any theorem
produced by the system, as long as she trusts the system itself.

TheLCF-approach. The LCF-approach is a method of designing ITP systems
in a way that enables extensibility without compromising soundness. To this
end, theorems are modeled as an abstract data type in a functional programming
language (called ML, for Meta Language), accessible only by means of functions
corresponding to the primitive inferences (i.e. the basic rules) of the logic. The
LCF-approach was developed as part of the Edinburgh LCF system [13], but
the LCF-style design is still integral to most modern ITPs.

The HOL4 theorem prover. The HOL4 theorem prover [35] is an ITP for
HOL. Like most other HOL provers, it follows the LCF-approach. HOL4 includes
state-of-the-art code generation techniques that we develop and make use of
in this work. In addition, the system hosts the CakeML programming language
and its compiler, as well as a veri�ed implementation of a HOL logical kernel,
called Candle. Both CakeML and Candle are discussed below.

The LCF-style design of HOL4 ensures that all proofs carried out in the
system are reduced to a �xed set of primitive inferences. As a consequence, it is
possible to record proofs, by logging which inferences were used. These proofs
can then be checked by external programs, e.g. a checker for OpenTheory
articles; see below.

The OpenTheory framework. A mechanized proof checker requires a data
representation for the proofs it checks. One such representation is the OpenThe-
ory article format [20], which is part of the OpenTheory framework [19]. Arti-
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cles in the OpenTheory format provide a means to record and store proofs of
HOL theorems in a way that is supported by several HOL ITPs. In addition to
this, the OpenTheory framework includes its own proof checking tool [21].

The CakeML language and tools. CakeML is a functional programming
language that comes with a veri�ed compiler [36], and a proof-producing code
generation mechanism for the HOL4 system [30]. Using the CakeML tools, it is
possible to synthesize executable programs from functions in the HOL4 logic,
i.e. HOL. The correctness result of the CakeML compiler guarantees that the
resulting executables behave as their logical counterparts. These techniques
have been used to produce a veri�ed implementation of HOL called Candle,
discussed below.

TheCandle theoremprover kernel. The Candle theorem prover kernel [23]
is a veri�ed implementation of an LCF-style kernel for HOL. The Candle kernel
is veri�ed to be sound with respect to the semantics of HOL, meaning that
the kernel is guaranteed to accept only valid proof steps. Its veri�cation was
carried out using the HOL4 system by Kumar, et al. [23], and the CakeML tools
can be used to produce an executable version of the kernel.

A veri�ed OpenTheory proof checker. The OpenTheory proof checker is
a mechanized proof checker that reads OpenTheory articles, and uses the Candle
kernel to check the validity of inferences. Incorporating the Candle kernel
into our proof checker enables us to build on its soundness result. The proof
checker is compiled to executable machine code using the CakeML compiler,
which is semantics preserving. As a result, we obtain a soundness result about
the resulting machine code.

1.3 Contributions

This Licentiate thesis makes the following contributions:

(i) We extend existing techniques for proof-producing code generation to
support a larger class of programs. We show how these techniques can
be used to develop software with very strong end-to-end correctness
guarantees that reach down to the machine code that actually runs the
software.

(ii) The main product of the work described in this thesis is a new proof
checker for higher-order logic that is veri�ed to be sound. As a con-
sequence of using the CakeML tools, we are able to obtain the same
soundness result for the machine code that executes the proof checker.
To the best of our knowledge, this is the only proof checker for HOL that
has been veri�ed to this degree of rigor.
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1.4 Summary of included papers

This Licentiate thesis consists of the following two papers.

I Oskar Abrahamsson, Son Ho, Ramana Kumar, Magnus O. Myreen, Michael
Norrish, and Yong Kiam Tan. Proof-Producing Synthesis of CakeML
from Monadic HOL Functions. Published in Springer’s Journal of
Automated Reasoning, 2020.

II Oskar Abrahamsson. Averi�edproof checker for higher-order logic.
Published in Elsevier’s Journal of Logic and Algebraic Methods in Pro-
gramming, 2020.

Both papers appear in this document unedited, with the exception of adjust-
ments in typesetting.

1.4.1 Proof-Producing Synthesis ofCakeML fromMonadic
HOL Functions

Paper I, “Proof Producing Synthesis of CakeML from Monadic HOL Functions,”
introduces a tool which makes it possible to perform programming in HOL,
using state, and e�ects such as input and output (I/O), and exceptions. For the
uninitiated, one can understand this as: programming using the HOL4 logic,
and automatically translating those programs to equivalent CakeML code. The
technical contribution is based on is an extension of previous work on synthesis
of non-e�ectful CakeML programs [30]. See Chapter 2 in this thesis for Paper I.

We say that the tool is proof-producing because each run of the tool derives
a proof of correspondence, called a certi�cate, that relates the input logical
functions with the synthesized program output. The certi�cate guarantees
that execution of the resulting CakeML program will compute the same values,
and modify the state in the same way, as the input logical functions. As a
consequence, any veri�cation result about the logical input functions can be
made into a result about the synthesized CakeML code.

All useful programs (i.e. those programs that produce something observable)
perform side e�ects. By side e�ects, we mean operations such as externally
visible modi�cations to memory, and performing I/O. The work in this paper
utilizes monads [37] to allow us to write programs that produce side-e�ects
inside the logic, thereby granting us greater expressivity when using HOL as a
programming language.

These contributions were crucial to the development of the work in Paper II,
which is described below.

Statement of contribution. I contributed to the writing of this paper, par-
ticularly Section 2.7. I implemented some of the examples discussed in this
paper, including the OpenTheory proof checker, and some other examples
included in the source code repository for the tool.
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1.4.2 A veri�ed proof checker for higher-order logic
Paper II, “A veri�ed proof checker for higher-order logic,” introduces a mech-
anized proof checker for proofs of theorems in HOL that is veri�ed to be
sound down to the level of machine code that executes it. To the best of our
knowledge, it is the only proof checker for HOL that has been veri�ed to this
degree of rigor. See Chapter 3 in this thesis for Paper II.

The checker itself is a computer program, implemented using HOL as a
programming language. It reads proofs of HOL theorems represented in the
OpenTheory article format [20] as input and uses the Candle kernel [23] to
check proof steps, and outputs a verdict stating whether the proof was valid.

The proof checker is veri�ed to be sound with respect to the semantics of
HOL, meaning that it is guaranteed to accept only proofs of true theorems. We
are able to obtain this soundness result because the checker uses the Candle
theorem prover kernel [23], which is veri�ed to be sound, as its logical kernel.

This paper improves on the state-of-the-art by: (i) establishing a particularly
strong soundness result for the proof checker; and (ii) showing how such a
result can be transported to the level of the compiled machine code. The
techniques presented in Paper I are used to synthesize stateful CakeML from
the proof checker function in the logic, and to transport its soundness theorem
to the level of CakeML code. This CakeML program is compiled to executable
machine code in a proof-producing way, using the CakeML compiler [36] inside
HOL4. Our approach allows us to obtain the soundness result of the checker
also for the machine code that executes it.

Statement of contribution. I am the sole author of this article. All work
is my own, aside from the initial implementation of the OpenTheory abstract
machine, which was done by Ramana Kumar before my work started.
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Chapter 2

Proof-Producing Synthesis of CakeML
from Monadic HOL Functions

Oskar Abrahamsson, Son Ho, Hrutvik Kanabar, Ramana Kumar,
Magnus O. Myreen, Michael Norrish, and Yong Kiam Tan

Abstract. We introduce an automatic method for producing stateful ML
programs together with proofs of correctness from monadic functions in HOL.
Our mechanism supports references, exceptions, and I/O operations, and can
generate functions manipulating local state, which can then be encapsulated for
use in a pure context. We apply this approach to several non-trivial examples,
including the instruction encoder and register allocator of the otherwise pure
CakeML compiler, which now bene�ts from better runtime performance. This
development has been carried out in the HOL4 theorem prover.

Published in Journal of Automated Reasoning, 2020.
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2.1 Introduction

This paper is about bridging the gap between programs veri�ed in logic and
veri�ed implementations of those programs in a programming language (and
ultimately machine code). As a toy example, consider computing the nth
Fibonacci number. The following is a recursion equation for a function, fib, in
higher-order logic (HOL) that does the job:

fib n = if n < 2 then n else fib (n − 1) + fib (n − 2)

A hand-written implementation (shown here in CakeML [24], which has similar
syntax and semantics to Standard ML) would look something like this:

fun fiba i j n = if n = 0 then i else fiba j (i+j) (n-1);
(print (n2s (fiba 0 1 (s2n (hd (CommandLine.arguments())))));
print "\n")

handle _ => print_err ("usage: " ^ CommandLine.name() ^ " <n>\n");

In moving from mathematics to a real implementation, some issues are apparent:

(i) We use a tail-recursive linear-time algorithm, rather than the exponential-
time recursion equation.

(ii) The whole program is not a pure function: it does I/O, reading its ar-
gument from the command line and printing the answer to standard
output.

(iii) We use exception handling to deal with malformed inputs (if the argu-
ments do not start with a string representing a natural number, hd or
s2n may raise an exception).

The �rst of these issues (i) can easily be handled in the realm of logical
functions. We de�ne a tail-recursive version in logic:

fiba i j n = if n = 0 then i else fiba j (i + j ) (n − 1)

then produce a correctness theorem, ` ∀n. fiba 0 1 n = fib n , with a simple
inductive proof (a 5-line tactic proof in HOL4, not shown).

Now, because fiba is a logical function with an obvious computational coun-
terpart, we can use proof-producing synthesis techniques [30] to automatically
synthesise code veri�ed to compute it. We thereby produce something like
the �rst line of the CakeML code above, along with a theorem relating the
semantics of the synthesised code back to the function in logic.

But when it comes to handling the other two issues, (ii) and (iii), and
producing and verifying the remaining three lines of CakeML code, our options
are less straightforward. The �rst issue was easy because we were working with
a shallow embedding, where one writes the program as a function in logic and
proves properties about that function directly. Shallow embeddings rely on an

9



fibm () =
do

args ← commandline (arguments ());
a ← hd args;
n ← s2n a;
stdio (print (n2s (fiba 0 1 n)));
stdio (print "\n")

od otherwise
do

name ← commandline (name ());
stdio (print_err ("usage: " ^ name ^ " <n>\n"))

od

Figure 2.1. The Fibonacci program written using do-notation in logic.

analogy between mathematical functions and procedures in a pure functional
programming language. However, e�ects like state, I/O, and exceptions, can
stretch this analogy too far. The alternative is a deep embedding: one writes
the program as an input to a formal semantics, which can accurately model
computational e�ects, and proves properties about its execution under those
semantics.

Proofs about shallow embeddings are relatively easy since they are in the
native language of the theorem prover, whereas proofs about deep embeddings
are �lled with tedious details because of the indirection through an explicit
semantics. Still, the explicit semantics make deep embeddings more realistic.
An intermediate option that is suitable for the e�ects we are interested in
— state/references, exceptions, and I/O — is to use monadic functions: one
writes (shallow) functions that represent computations, aided by a composition
operator (monadic bind) for stitching together e�ects. The monadic approach
to writing e�ectful code in a pure language may be familiar from the Haskell
language which made it popular.

For our nth Fibonacci example, we can model the e�ects of the whole
program with a monadic function, fibm, that calls the pure function fiba to do the
calculation. Figure 2.1 shows how fibm can be written using do-notation familiar
from Haskell. This is as close as we can get to capturing the e�ectful behaviour
of the desired CakeML program while remaining in a shallow embedding.
Now how can we produce real code along with a proof that it has the correct
semantics? If we use the proof-producing synthesis techniques mentioned
above [30], we produce pure CakeML code that exposes the monadic plumbing
in an explicit state-passing style. But we would prefer veri�ed e�ectful code
that uses native features of the target language (CakeML) to implement the
monadic e�ects.

In this paper, we present an automated technique for producing veri�ed
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e�ectful code that handles I/O, exceptions, and other issues arising in the move
from mathematics to real implementations. Our technique systematically es-
tablishes a connection between shallowly embedded functions in HOL with
monadic e�ects and deeply embedded programs in the impure functional lan-
guage CakeML. The synthesised code is e�cient insofar as it uses the native
e�ects of the target language and is close to what a real implementer would
write. For example, given the monadic fibm function above, our technique
produces essentially the same CakeML program as on the �rst page (but with a
let for every monad bind), together with a proof that the synthesised program
is a re�nement.

Contributions Our technique for producing veri�ed e�ectful code from
monadic functions builds on a previous limited approach [30]. The new gener-
alised method adds support for the following features:

• global references and exceptions (as before, but generalised),
• mutable arrays (both �xed and variable size),
• input/output (I/O) e�ects,
• local mutable arrays and references, which can be integrated seamlessly

with code synthesis for otherwise pure functions,
• composable e�ects, whereby di�erent state and exception monads can

be combined using a lifting operator, and,
• support for recursive programs where termination depends on monadic

state.
As a result, we can now write whole programs as shallow embeddings and obtain
real veri�ed code via synthesis. Prior to this work, whole program veri�cation
in CakeML involved manual deep embedding proofs for (at the very least) the
I/O wrapper. To exercise our toolchain, we apply it to several examples:

• the nth Fibonacci example already seen (exceptions, I/O)
• the Floyd Warshall algorithm for �nding shortest paths (arrays)
• an in-place quicksort algorithm (polymorphic local arrays, exceptions)
• the instruction encoder in the CakeML compiler’s assembler (local arrays)
• the CakeML compiler’s register allocator (local refs, arrays)
• the Candle theorem prover’s kernel [23] (global refs, exceptions)
• an OpenTheory [19] article checker (global refs, exceptions, I/O)
In §2.6, we compare runtimes with the previous non-stateful versions of

CakeML’s register allocator and instruction encoder; and for the OpenTheory
reader we compare the amount of code/proof required before and after using
our technique.

The HOL4 development is at https://code.cakeml.org; our new synthe-
sis tool is at https://code.cakeml.org/tree/master/translator/monadic.
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Additions. This paper is an extended version of our earlier conference pa-
per [17]. The following contributions are new to this work: a brief discussion
of how polymorphic functions that use type variables in their local state can be
synthesized (§2.4), a section on synthesis of recursive programs where termina-
tion depends on the monadic state (§2.5), and new case studies using our tool,
e.g., quicksort with polymorphic local arrays (§2.4), and the CakeML compiler’s
instruction encoder (§2.6).

2.2 High-level ideas

This paper combines the following three concepts in order to deliver the con-
tributions listed above. The main ideas will be described brie�y in this section,
while subsequent sections will provide details. The three concepts are:

(i) synthesis of stateful ML code as described in our previous work [30],

(ii) separation logic [33] as used by characteristic formulae for CakeML [14],

(iii) a new abstract synthesis mode for the CakeML synthesis tools [30].

Our previous work on proof-producing synthesis of stateful ML (i) was
severely limited by the requirement to have a hard-coded invariant on the
program’s state. There was no support for I/O and all references had to be
declared globally. At the time of its development, we did not have a satisfactory
way of generalising the hard-coded state invariant.

In this paper we show (in §2.3) that the separation logic of CF (ii) can be used
to neatly generalise the hard-coded state invariant of our prior work (i). CF-
style separation logic easily supports references and arrays, including resizable
arrays, and, supports I/O too because it allows us to treat I/O components as if
they are heap components. Furthermore, by carefully designing the integration
of (i) and (ii), we retain the frame rule from the separation logic. In the context
of code synthesis, this frame rule allows us to implement a lifting feature for
changing the type of the state-and-exception monads. Being able to change
types in the monads allows us to develop reusable libraries — e.g. veri�ed �le
I/O functions — that users can lift into the monad that is appropriate for their
application.

The combination of (i) and (ii) does not by itself support synthesis of code
with local state due to inherited limitations of (i), wherein the generated code
must be produced as a concrete list of global declarations. For example, if
monadic functions, say foo and bar, refer to a common reference, say r, then r
must be de�ned globally:

val r = ref 0;
fun foo n = ...; (* code that uses r *)
fun bar n = ...; (* code that uses r and calls foo *)

12



In this paper (in §2.4), we introduce a new abstract synthesis mode (iii)
which removes the requirement of generating code that only consists of a list
of global declarations, and, as a result, we are now able to synthesise code such
as the following, where the reference r is a local variable:

fun pure_bar k n =
let
val r = ref k
fun foo n = ... (* code that uses r *)
fun bar n = ... (* code that uses r and calls foo *)

in Success (bar n) end
handle e => Failure e;

In the input to the synthesis tool, this declaration and initialisation of local
state corresponds to applying the state-and-exception monad. Expressions that
fully apply the state-and-exception monad can subsequently be used in the
synthesis of pure CakeML code: the monadic synthesis tool can prove a pure
speci�cation for such expressions, thereby encapsulating the monadic features.

2.3 Generalised approach to synthesis of
stateful ML code

This section describes how our previous approach to proof-producing synthesis
of stateful ML code [30] has been generalised. In particular, we explain how
the separation logic from our previous work on characteristic formulae [14]
has been used for the generalisation (§2.3.3); and how this new approach
adds support for user-de�ned references, �xed- and variable-length arrays,
I/O functions (§2.3.4), and a handy feature for reusing state-and-exception
monads (§2.3.5).

In order to make this paper as self-contained as possible, we start with a
brief look at how the semantics of CakeML is de�ned (§2.3.1) and how our
previous work on synthesis of pure CakeML code works (§2.3.2), since the new
synthesis method for stateful code is an evolution of the original approach for
pure code.

2.3.1 Preliminaries: CakeML semantics
The semantics of the CakeML language is de�ned in the functional big-step
style [32], which means that the semantics is an interpreter de�ned as a func-
tional program in the logic of a theorem prover.

The de�nition of the semantics is layered. At the top-level the semantics
function de�nes what the observable I/O events are for a given whole program.
However, more relevant to the presentation in this paper is the next layer down:
a function called evaluate that describes exactly how expressions evaluate. The
type of the evaluate function is shown below. This function takes as arguments
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a state (with a type variable for the I/O environment), a value environment,
and a list of expressions to evaluate. It returns a new state and a value result.

evaluate : δ state→ v sem_env→ exp list→ δ state× (v list, v) result

The semantics state is de�ned as the record type below. The �elds relevant
for this presentation are: refs, clock and �i. The refs �eld is a list of store values
that acts as a mapping from reference names (list index) to reference and array
values (list element). The clock is a logical clock for the functional big-step
style. The clock allows us to prove termination of evaluate and is, at the same
time, used for reasoning about divergence. Lastly, �i is the parametrised oracle
model of the foreign function interface, i.e. I/O environment.

δ state = 〈| clock : num ; refs : store_v list ; �i : δ �i_state ; . . . |〉
where store_v = Refv v | W8array (word8 list) | Varray (v list)

A call to the function evaluate returns one of two results: Rval res for
successfully terminating computations, and Rerr err for stuck computations.

Successful computations, Rval res , return a list res of CakeML values.
CakeML values are modelled in the semantics using a datatype called v. This
datatype includes (among other things) constructors for (mutually recursive)
closures (Closure and Recclosure), datatype constructor values (Conv), and literal
values (Litv) such as integers, strings, characters etc. These will be explained
when needed in the rest of the paper.

Stuck computations, Rerr err , carry an error value err that is one of the
following. For this paper, Rraise exc is the most relevant case.

• Rraise exc indicates that evaluation results in an uncaught exception exc.
These exceptions can be caught with a handle in CakeML.

• Rabort Rtimeout_error indicates that evaluation of the expression con-
sumes all of the logical clock. Programs that hit this error for all initial
values of the clock are considered diverging.

• Rabort Rtype_error, for other kinds of errors, e.g. when evaluating ill-
typed expressions, or attempting to access unbound variables.

2.3.2 Preliminaries: Synthesis of pure ML code
Our previous work [30] describes a proof-producing algorithm for synthesising
CakeML functions from functions in higher-order logic. Here proof-producing
means that each execution proves a theorem (called a certi�cate theorem)
guaranteeing correctness of that execution of the algorithm. In our setting,
these theorems relate the CakeML semantics of the synthesised code with the
given HOL function.

The whole approach is centred around a systematic way of proving theorems
relating HOL functions (i.e. HOL terms) with CakeML expressions. In order
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for us to state relations between HOL terms and CakeML expressions, we need
a way to state relations between HOL terms and CakeML values. For this we
use relations (int, list ·, · −→ ·, etc.) which we call re�nement invariants. The
de�nition of the simple int re�nement invariant is shown below: int i v is true
if CakeML value v of type v represents the HOL integer i of type int.

int i = (λ v . v = Litv (IntLit i))

Most re�nement invariants are more complicated, e.g. list (list int) xs v states
that CakeML value v represents lists of int lists xs of HOL type int list list.

We now turn to CakeML expressions: we de�ne a predicate called Eval in
order to conveniently state relationships between HOL terms and CakeML
expressions. The intuition is that Eval env exp P is true if exp evaluates (in
environment env ) to some result res (of HOL type v) such that P holds for res ,
i.e. P res . The formal de�nition below is cluttered by details regarding the
clock and references: there must be a large enough clock and exp may allocate
new references, refs ′, but must not modify any existing references, refs . We
express this restriction on the references using list append ++. Note that any
list index that can be looked up in refs has the same look up in refs ++ refs ′.

Eval env exp P =
∀ refs.
∃ res refs ′.

eval_rel (empty with refs := refs) env exp
(empty with refs := refs ++ refs ′) res ∧ P res

The use of Eval and the main idea behind the synthesis algorithm is most
conveniently described using an example. The example we consider here is the
following HOL function:

add1 = (λ x . x + 1)

The main part of the synthesis algorithm proceeds as a syntactic bottom-up
pass over the given HOL term. In this case, the bottom-up pass traverses HOL
term λ x . x + 1. The result of each stage of the pass is a theorem stated in
terms of Eval in the format shown below. Such theorems state a connection
between a HOL term t and some generated code w.r.t. a re�nement invariant
ref _inv that is appropriate for the type of t .

general format: assumptions ⇒ Eval env code (ref _inv t)

For our little example, the algorithm derives the following theorems for the
subterms x and 1, which are the leaves of the HOL term. Here and elsewhere in
this paper, we display CakeML abstract syntax as concrete syntax inside b · · · c,
i.e. b1c is actually the CakeML expression Lit (IntLit 1) in the theorem prover
HOL4; similarly bxc is actually displayed as Var (Short "x") in HOL4. Note that

15



both theorems below are of the required general format.

` T ⇒ Eval env b1c (int 1)

` Eval env bxc (int x ) ⇒ Eval env bxc (int x )
(2.1)

The algorithm uses theorems (2.1) when proving a theorem for the com-
pound expression x + 1. The process is aided by an auxiliary lemma for integer
addition, shown below. The synthesis algorithm is supported by several such
pre-proved lemmas for various common operations.

` Eval env x1 (int n1) ⇒
Eval env x2 (int n2) ⇒
Eval env bx1 + x2c (int (n1 + n2))

By choosing the right specialisations for the variables, x1, x2, n1, n2, the algo-
rithm derives the following theorem for the body of the running example. Here
the assumption on evaluation of bxc was inherited from (2.1).

` Eval env bxc (int x ) ⇒ Eval env bx + 1c (int (x + 1)) (2.2)

Next, the algorithm needs to introduce the λ-binder in λ x . x + 1. This
can be done by instantiation of the following pre-proved lemma. Note that
the lemma below introduces a re�nement invariant for function types, −→,
which combines re�nement invariants for the input and output types of the
function [30].

` (∀ v x . a x v ⇒ Eval (env [n 7→ v ]) body (b (f x ))) ⇒
Eval env bfn n => bodyc ((a −→ b) f )

An appropriate instantiation and combination with (2.2) produces the following:

` T ⇒ Eval env bfn x => x + 1c ((int −→ int) (λ x . x + 1))

which, after only minor reformulation, becomes a certi�cate theorem for the
given HOL function add1:

` Eval env bfn x => x + 1c ((int −→ int) add1)

Additional notes. The main part of the synthesis algorithm is always a
bottom-up traversal as described above. However, synthesis of recursive func-
tions requires an additional post-processing phase which involves an automatic
induction proof. We omit a detailed description of such induction proofs since
we have described our solution previously [30]. However, we discuss our solu-
tion at a high level in §2.5.3 where we explain how the previously published
approach has been modi�ed to tackle monadic programs in which termination
depends on the monadic state.

16



2.3.3 Synthesis of stateful ML code

Our algorithm for synthesis of stateful ML is very similar to the algorithm
described above for synthesis of pure CakeML code. The main di�erences are:

• the input HOL terms must be written in a state-and-exception monad,
and

• instead of Eval and · −→ ·, the derived theorems use EvalM and · −→M ·,

where EvalM and · −→M · relate the monad’s state to the references and foreign
function interface of the underlying CakeML state (�elds refs and �i). These
concepts will be described below.

Generic state-and-exceptionmonad. The new generalised synthesis work-
�ow uses the following state-and-exception monad (α, β, γ) M, where α is
the state type, β is the return type, and γ is the exception type.

(α, β, γ) M = α → (β, γ) exc × α

where (β, γ) exc = Success β | Failure γ

We de�ne the following interface for this monad type. Note that syntactic
sugar is often used: in our case, we write do n ← foo; return (bar n) od (as
was done in §2.1) when we mean bind foo (λn. return (bar n)).

return x = λ s. (Success x ,s)

bind x f =
λ s. case x s of (Success y ,s) ⇒ f y s | (Failure x ,s) ⇒ (Failure x ,s)

x otherwise y =
λ s. case x s of (Success v ,s) ⇒ (Success v ,s) | (Failure e ,s) ⇒ y s

Functions that update the content of state can only be de�ned once the state
type is instantiated. A function for changing a monad M to have a di�erent
state type is introduced in §2.3.5.

De�nitions and lemmas for synthesis. We de�ne EvalM as follows. A
CakeML source expression exp is considered to satisfy an execution relation
P if for any CakeML state s , which is related by state_rel to the state monad
state st and state assertion H , the CakeML expression exp evaluates to a result
res such that the relation P accepts the transition and state_rel_frame holds
for state assertion H . The auxiliary functions state_rel and state_rel_frame will
be described below. The �rst argument ro can be used to restrict e�ects to
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references only, as described a few paragraphs further down.

EvalM ro env st exp P H =
∀ s.

state_rel H st s ⇒
∃ s2 res st2 ck .

(evaluate (s with clock := ck) env [exp] = (s2,res)) ∧
P st (st2,res) ∧ state_rel_frame ro H (st ,s) (st2,s2)

In the de�nition above, state_rel and state_rel_frame are used to check that
the user-speci�ed state assertion H relates the CakeML states and the monad
states. Furthermore, state_rel_frame ensures that the separation logic frame
rule is true. Both use the separation logic set-up from our previous work on
characteristic formulae for CakeML [14], where we de�ne a function st2heap
which, given a projection p and CakeML state s , turns the CakeML state into a
set representation of the reference store and foreign-function interface (used
for I/O).

The H in the de�nition above is a pair (h ,p) containing a heap assertion
h and the projection p. We de�ne state_rel (h ,p) st s to state that the heap
assertion produced by applying h to the current monad state st must be true
for some subset produced by st2heap when applied to the CakeML state s . Here
* is the separating conjunction and T is true for any heap.

state_rel (h ,p) st s = (h st * T) (st2heap p s)

The relation state_rel_frame states: any frame F that is true separately from
h st1 for the initial state is also true for the �nal state; and if the references-
only ro con�guration is set, then the only di�erence in the states must be in
the references and clock, i.e. no I/O operations are permitted. The ro �ag is
instantiated to true when a pure speci�cation (Eval) is proved for local state
(§2.4).

state_rel_frame ro (h ,p) (st1,s1) (st2,s2) =
(ro ⇒ ∃ refs. s2 = s1 with refs := refs) ∧
∀F .

(h st1 * F ) (st2heap p s1) ⇒
(h st2 * F * T) (st2heap p s2)

We prove lemmas to aid the synthesis algorithm in construction of proofs.
The lemmas shown in this paper use the following de�nition of monad.

monad a b x st1 (st2,res) =
case (x st1,res) of

((Success y ,st),Rval [v ]) ⇒ (st = st2) ∧ a y v
| ((Failure e ,st),Rerr (Rraise v)) ⇒ (st = st2) ∧ b e v
| _ ⇒ F

Synthesis makes use of the following two lemmas in proofs involving monadic
return and bind. For return x , synthesis proves an Eval-theorem for x . For bind,
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it proves a theorem that �ts the shape of the �rst four lines of the lemma and
returns a theorem consisting of the last two lines, appropriately instantiated.

` Eval env exp (a x ) ⇒
EvalM ro env st exp (monad a b (return x )) H

` ((assums1 ⇒ EvalM ro env st e1 (monad b c x ) H ) ∧
∀ z v .

b z v ∧ assums2 z ⇒
EvalM ro (env [n 7→ v ]) (snd (x st)) e2 (monad a c (f z )) H ) ⇒

assums1 ∧ (∀ z . (fst (x st) = Success z ) ⇒ assums2 z ) ⇒
EvalM ro env st blet n = e1 in e2c (monad a c (bind x f )) H

2.3.4 References, arrays and I/O
The synthesis algorithm uses specialised lemmas when the generic state-and-
exception monad has been instantiated. Consider the following instantiation of
the monad’s state type to a record type. The programmer’s intention is that the
lists are to be synthesised to arrays in CakeML and the I/O component IO_fs is
a model of a �le system (taken from a library).

example_state =
〈| ref1 : int; farray1 : int list; rarray1 : int list; stdio : IO_fs |〉

With the help of getter- and setter-functions and library functions for �le I/O,
users can conveniently write monadic functions that operate over this state
type.

When it comes to synthesis, the automation instantiates H with an ap-
propriate heap assertion, in this instance: ASSERT. The user has informed
the synthesis tool that farray1 is to be a �xed-size array and rarray1 is to be
a resizable-size array. A resizable-array is implemented as a reference that
contains an array, since CakeML (like SML) does not directly support resizing
arrays. Below, REF_REL int ref1_loc st .ref1 asserts that int relates the value held
in a reference at a �xed store location ref1_loc to the integer in st .ref1. Similarly,
ARRAY_REL and RARRAY_REL specify a connection for the array �elds. Lastly,
STDIO is a heap assertion for the �le I/O taken from a library.

ASSERT st =
REF_REL int ref1_loc st .ref1 * RARRAY_REL int rarray1_loc st .rarray1 *

ARRAY_REL int farray1_loc st .farray1 * STDIO st .stdio

Automation specialises pre-proved EvalM lemmas for each term that might
be encountered in the monadic functions. As an example, a monadic function
might contain an automatically de�ned function update_farray1 for updating
array farray1. Anticipating this, synthesis automation can, at set-up time, au-
tomatically derive the following lemma which it can use when it encounters
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update_farray1.

` Eval env e1 (num n) ∧ Eval env e2 (int x ) ∧
(lookup_var bfarray1c env = Some farray1_loc) ⇒
EvalM ro env st bArray.update (farray1,e1,e2)c
(monad unit exc (update_farray1 n x )) (ASSERT,p)

2.3.5 Combining monad state types
Previously developed monadic functions (e.g. from an existing library) can be
used as part of a larger context, by combining state-and-exception monads with
di�erent state types. Consider the case of the �le I/O in the example from above.
The following EvalM theorem has been proved in the CakeML basis library.

` Eval env e (string x ) ∧
(lookup_var bprintc env = Some print_v) ⇒
EvalM F env st bprint ec (monad unit b (print x )) (STDIO,p)

This can be used directly if the state type of the monad is the IO_fs type.
However, our example above uses example_state as the state type.

To overcome such type mismatches, we de�ne a function li�M which can
bring a monadic operation de�ned in libraries into the required context. The
type of li�M r w is (α, β, γ) M → (ε, β, γ) M, for appropriate r and w .

li�M r w op = λ s. let (ret ,new) = op (r s) in (ret ,w (K new) s)

Our li�M function changes the state type. A simpler lifting operation can be
used to change the exception type.

For our example, we de�ne stdio f as a function that performs f on the
IO_fs-part of a example_state. (The fib example in §2.1 used a similar stdio.)

stdio = li�M (λ s. s.stdio) (λ f s. s with stdio updated_by f )

Our synthesis mechanism automatically derives a lemma that can transfer
any EvalM result for the �le I/O model to a similar EvalM result wrapped in the
stdio function. Such lemmas are possible because of the separation logic frame
rule that is part of EvalM. The generic lemma is the following:

` (∀ st . EvalM ro env st exp (monad a b op) (STDIO,p)) ⇒
∀ st . EvalM ro env st exp (monad a b (stdio op)) (ASSERT,p)

And the following is the transferred lemma, which enables synthesis of HOL
terms of the form stdio (print x ) for Eval-synthesisable x .

` Eval env e (string x ) ∧
(lookup_var bprintc env = Some print_v) ⇒
EvalM F env st bprint ec (monad unit exc (stdio (print x ))) (ASSERT,p)

Changing the monad state type comes at no additional cost to the user; our
tool is able to derive both the generic and transferred EvalM lemmas, when
provided with the original EvalM result.
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2.4 Local state and the abstract synthesis mode

This section explains how we have adapted the method described above to also
support generation of code that uses local state and local exceptions. These
features enable use of stateful code (EvalM) in a pure context (Eval). We used
these features to signi�cantly speed up parts of the CakeML compiler (see §2.6).

In the monadic functions, users indicate that they want local state to be
generated by using the following run function. In the logic, the run function
essentially just applies a monadic function m to an explicitly provided state st .

run : (α, β, γ) M→ α→ (β, γ) exc
run m st = fst (m st)

In the generated code, an application of run to a concrete monadic function,
say bar, results in code of the following form:

fun run_bar k n =
let
val r = ref ... (* allocate, initialise, let-bind all local state *)
fun foo n = ... (* all auxiliary funs that depend on local state *)
fun bar n = ... (* define the main monadic function *)

in Success (bar n) end (* wrap normal result in Success constructor *)
handle e => Failure e; (* wrap any exception in Failure constructor *)

Synthesis of locally e�ectful code is made complicated in our setting for
two reasons: (i) there are no �xed locations where the references and arrays
are stored, e.g. we cannot de�ne ref1_loc as used in the de�nition of ASSERT in
§2.3.4; and (ii) the local names of state components must be in scope for all of
the function de�nitions that depend on local state.

Our solution to challenge (i) is to leave the location values as variables (loc1,
loc2, loc3) in the heap assertion when synthesising local state. To illustrate, we
will adapt the example_state from §2.3.4: we omit IO_fs in the state because I/O
cannot be made local. The local-state enabled heap assertion is:

LOCAL_ASSERT loc1 loc2 loc3 st =
REF_REL int loc1 st .ref1 * RARRAY_REL int loc2 st .rarray1 *

ARRAY_REL int loc3 st .farray1

The lemmas referring to local state now assume they can �nd the right variable
locations with variable look-ups.

` Eval env e1 (num n) ∧ Eval env e2 (int x ) ∧
(lookup_var bfarray1c) env = Some loc3) ⇒
EvalM ro env st bArray.update (farray1,e1,e2)c
(monad unit exc (update_farray1 n x )) (LOCAL_ASSERT loc1 loc2 loc3,p)

Challenge (ii) was caused by technical details of our previous synthesis
methods. The previous version was set up to only produce top-level declarations,
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which is incompatible with the requirement to have local (not globally �xed)
state declarations shared between several functions. The requirement to only
have top-level declarations arose from our desire to keep things simple: each
synthesised function is attached to the end of a concrete linear program that is
being built. It is bene�cial to be concrete because then each assumption on the
lexical environment where the function is de�ned can be proved immediately
on de�nition. We will call this old approach the concrete mode of synthesis,
since it eagerly builds a concrete program.

In order to support having functions access local state, we implement a
new abstract mode of synthesis. In the abstract mode, each assumption on the
lexical environment is left as an unproved side condition as long as possible.
This allows us to de�ne functions in a dynamic environment.

To prove a pure speci�cation (Eval) from the EvalM theorems, the automa-
tion �rst proves that the generated state-allocation and -initialisation code
establishes the relevant heap assertion (e.g. LOCAL_ASSERT); it then composes
the abstractly synthesised code while proving the environment-related side
conditions (e.g. presence of loc3). The �nal proof of an Eval theorem requires
instantiating the references-only ro �ag to true, in order to know that no I/O
occurs (§2.3.3).

Type variables in local monadic state
Our previous approach [30] allowed synthesis of (pure) polymorphic functions.
Our new mechanism is able to support the same level of generality by permitting
type variables in the type of monadic state that is used locally. As an example,
consider a monadic implementation of an in-place quicksort algorithm, quicksort,
with the following type signature:

quicksort : α list → (α → α → bool) → (α state, α list, exn) M
where α state = 〈| arr : α list |〉

The function quicksort takes a list of values of type α and an ordering on
α as input, producing a sorted list as output. However, internally it copies
the input list into a mutable array in order to perform fast in-place random
accesses.

The heap assertion for α state is called POLY_ASSERT, and is de�ned below:

POLY_ASSERT A loc st = RARRAY_REL A loc st .arr

Here, A is a re�nement invariant for logical values of type α. This parametri-
sation over state type variables is similar to the way in which location values
were parametrised to solve challenge (i) above.

Applying run to quicksort, and synthesising CakeML from the result gives
the following certi�cate theorem which makes the stateful quicksort callable
from pure translations.

` (list a −→ (a −→ a −→ bool) −→ exc_type (list a) exn)
run_quicksort brun_quicksortc
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Here exc_type (list a) exn is the re�nement invariant for type (α list, exn) exc.
For the quicksort example, we have manually proved that quicksort will

always return a Success value, provided the comparison function orders values
of type α. The result of this e�ort is CakeML code for quicksort that uses state
internally, but can be used as if it is a completely pure function without any
use of state or exceptions.

2.5 Termination that depends on monadic state

In this section, we describe how the proof-producing synthesis method in
§2.3 has been extended to deal with a class of recursive monadic functions
whose termination depends on the state hidden in the monad. This class of
functions creates new di�culties, as (i) the HOL4 function de�nition system is
unable to prove termination of these functions; and, (ii) our synthesis method
relies on induction theorems produced by the de�nition system to discharge
preconditions during synthesis.

We address issue (i) by extending the HOL4 de�nition system with a set
of congruence rewrites for the monadic bind operation, bind (§2.5.2). We then
explain, at a high level, how the proof-producing synthesis in §2.3 is extended
to deal with the preconditions that arise when synthesising code from recursive
monadic functions (§2.5.3).

We begin with a brief overview of how recursive function de�nitions are
handled by the HOL4 function de�nition system (§2.5.1).

2.5.1 Preliminaries: function de�nitions in HOL4

In order to accept recursive function de�nitions, the HOL4 system requires a
well-founded relation to be found between the arguments of the function, and
those of recursive applications. The system automatically extracts conditions
that this relation must satisfy, attempts to guess a well-founded relation based
on these conditions, and then uses this relation to solve the termination goal.

Function de�nitions involving higher-order functions (e.g. bind) sometimes
causes the system to derive unprovable termination conditions, if it cannot
extract enough information about recursive applications. When this occurs, the
user must provide a congruence theorem that speci�es the context of the higher-
order function. The system uses this theorem to derive correct termination
conditions, by rewriting recursive applications.

2.5.2 Termination of recursive monadic functions

By default, the HOL4 system is unable to automatically prove termination
of recursive monadic functions involving bind. To aid the system in extract-
ing provable termination conditions, we introduce the following congruence
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theorem for bind:

` (x = x ′) ∧ (s = s ′) ∧
(∀ y s ′′. (x ′ s ′ = (Success y ,s ′′)) ⇒ (f y s ′′ = f ′ y s ′′)) ⇒
(bind x f s = bind x ′ f ′ s ′)

(2.3)

Theorem (2.3) expresses a rewrite of the term bind x f s in terms of rewrites
involving its component subterms (x , f , and s), but allows for the assumption
that x ′ s ′ (the rewritten e�ect) must execute successfully.

However, rewriting de�nitions with (2.3) is not always su�cient: in addition
to ensuring that the e�ect x in bind x f executed successfully, the HOL4
system must also know the value and state resulting from its execution. This
problem arises because the monadic state argument to bind is left implicit in
user de�nitions. We address this issue by rewriting the de�ning equations of
monadic functions using η-expansion before passing them to the de�nition
system, making all partial bind applications syntactically fully applied. The
whole process is automated so that it is opaque to the user, allowing de�nition
of recursive monadic functions with no additional e�ort.

2.5.3 Synthesising ML from recursive monadic functions
The proof-producing synthesis method described in §2.3.2 is syntax-directed
and proceeds in a bottom-up manner. For recursive functions, a tweak to this
strategy is required, as bottom-up traversal would require any recursive calls
to be treated before the calling function (this is clearly cyclic).

We begin with a brief explanation of how our previous (pure) synthesis
tool [30] tackles recursive functions, before outlining how our new approach
builds on this.

Pure recursive functions. As an example, consider the function gcd that
computes the greatest common divisor of two positive integers:

gcd m n = if n > 0 then gcd n (m mod n) else m

Before traversing the function body of gcd in a bottom-up manner, we simply as-
sume the desired Eval result to hold for all recursive applications in the function
de�nition, and record their arguments during synthesis. This results in the fol-
lowing Eval theorem for gcd (where Eq is de�ned as Eq a x = (λ y v . (x = y ) ∧ a y v ),
and is used to record arguments for recursive applications):

` (n > 0 ⇒
Eval env bgcdc ((Eq int n −→ Eq int (m mod n) −→ int) gcd)) ⇒
Eval env bgcdc ((Eq int m −→ Eq int n −→ int) gcd)

(2.4)

and below is the desired Eval result for gcd:

` Eval env bgcdc ((Eq int m −→ Eq int n −→ int) gcd) (2.5)
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Theorems (2.4) and (2.5) match the shape of the hypothesis and conclusion
(respectively) of the induction theorem for gcd:

` (∀m n. (n > 0 ⇒ P n (m mod n)) ⇒ P m n) ⇒ ∀m n. P m n

By instantiating this induction theorem appropriately, the preconditions in (2.4)
can be discharged (and if automatic proof fails, the goal is left for the user to
prove).

Monadic recursive functions. Function de�nitions whose termination de-
pends on the monad give rise to induction theorems which also depend on
the monad. This creates issues, as the monad argument is left implicit in the
de�nition. As an example, here is a function linear_search that searches through
an array for a value:

linear_search val idx =
do

len ← arr_length;
if idx ≥ len then return None else
do

elem ← arr_sub idx ;
if elem = val then return (Some idx ) else linear_search val (idx + 1)

od
od

When given the above de�nition, the HOL4 system automatically derives the
following induction theorem:

` (∀ val idx s.
(∀ len s ′ elem s ′′.

(arr_length s = (Success len ,s ′)) ∧ ¬(idx ≥ len) ∧
(arr_sub idx s ′ = (Success elem ,s ′′)) ∧ elem 6= val ⇒
P val (idx + 1) s ′′) ⇒

P val idx s) ⇒
∀ val idx s. P val idx s

(2.6)

The context of recursive applications (arr_length and arr_sub) has been extracted
correctly by HOL4, using the congruence theorem (2.3) and automated η-
expansion for bind (see §2.5.2).

However, there is now a mismatch between the desired form of the EvalM
result and the conclusion of the induction theorem: the latter depends explictly
on the state, but the function depends on it only implicitly. We have modi�ed
our synthesis tool to account for this, in order to correctly discharge the nec-
essary preconditions as above. When preconditions cannot be automatically
discharged, they are left as proof obligations to the user, and the partial results
derived are saved in the HOL4 theorem database.
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2.6 Case studies and experiments

In this section, we present the runtime and proof size results of applying our
method to some case studies.

Register allocation. The CakeML compiler’s register allocator is written
with a state (and exception) monad but it was previously synthesized to pure
CakeML code. We updated it to use the new synthesis tool, resulting in the
automatic generation of stateful CakeML code. The allocator bene�ts signi�-
cantly from this change because it can now make use of CakeML arrays via the
synthesis tool. It was previously con�ned to using tree-like functional arrays for
its internal state, leading to logarithmic access overheads. This is not a speci�c
issue for the CakeML compiler; a veri�ed register allocator for CompCert [8]
also reported log-factor overheads due to (functional) array accesses.

Tests were carried out using versions of the bootstrapped CakeML compiler.
We ran each test 50 times on the same input program, recording time elapsed in
each compiler phase. For each test, we also compared the resulting executables
10 times, to con�rm that both compilers generated code of comparable quality
(i.e. runtime performance). Performance experiments were carried out on an
Intel i7-2600 running at 3.4GHz with 16 GB of RAM. The results are summarized
in Table 2.1. Full data is available at https://cakeml.org/ijcar18.zip. 1

Table 2.1. Compilation and run times (in seconds) for various CakeML bench-
marks. These compare a version of the CakeML compiler where the register
allocator is purely functional (old) against a version which uses local state and
arrays (new).

Timing Benchmark

kn
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dix sm
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norm
al-
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m tai
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�b pid
ig-

its life log
ic

Compile (old) 18.15 16.34 8.86 9.16 9.51 12.31
Run (old) 19.58 23.53 16.60 15.47 25.59 23.33

Compile (new) 1.21 1.46 0.99 1.02 1.05 1.62
Run (new) 19.90 22.91 16.70 15.64 24.17 22.33

In the largest program (knuth-bendix), the new register allocator ran 15
times faster (with a wide 95% CI of 11.76–20.93 due in turn to a high standard
deviation on the runtimes for the old code). In the smaller pidigits bench-
mark, the new register allocator ran 9.01 times faster (95% CI of 9.01–9.02).

1These tests were performed for the earlier conference version of this paper [17] comparing two
earlier versions of the CakeML compiler. The compiler has changed signi�cantly since then but we
have we kept these experiments because they provide a fairer comparison of register allocation
performance with/without using the synthesis tool to generate stateful code.
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Across 6 example input programs, we saw ratios of runtimes between 7.58 and
15.06. Register allocation was previously such a signi�cant part of the compiler
runtime that this improvement results in runtime improvements for the whole
compiler (on these benchmark programs) of factors between 2 and 9 times.

Speeding up the CakeML compiler. The register allocator exempli�es one
way the synthesis tool can be used to improve existing, veri�ed CakeML pro-
grams and in particular, the CakeML compiler itself. Brie�y, the steps are:
(i) re-implement slow parts of the compiler with, e.g., an appropriate state
monad, (ii) verify that this new implementation produces the same result as the
existing (veri�ed) implementation, (iii) swap in the new implementation, which
synthesizes to stateful code, during the bootstrap of the CakeML compiler.
(iv) The preceeding steps can be repeated as desired, relying on the automated
synthesis tool for quick iteration.

As another example, we used the synthesis tool to improve the assembly
phase of the compiler. A major part of time spent in this phase is running the
instruction encoder, which performs several word arithmetic operations when it
computes the byte-level representation of each instruction. However, duplicate
instructions appear very frequently, so we implemented a cache of the byte-level
representations backed by a hash table represented as a state monad (i). This
caching implementation is then veri�ed (ii), before a veri�ed implementation
is synthesized where the hash table is implemented as an array (iii). We also
iterated through several candidate hash functions (iv). Overall, this change
took about 1-person week to implement, verify, and integrate in the CakeML
compiler. We benchmarked the cross-compile bootstrap times of the CakeML
compiler after this change to measure its impact across di�erent CakeML
compilation targets. Results are summarized in Table 2.2. Across compilation
targets, the assembly phase is between 1.25 to 1.64 times faster.

Table 2.2. CakeML compiler cross-compile bootstrap time (in seconds) spent in
the assembly phase for its various compilation targets. † For the ARMv8 target,
the cross-compile bootstrap does not run to completion at the point of writing.
This is for reasons unrelated to the changes in this paper.

Timing Cross-Compilation Target
ARMv6 ARMv8 (†) MIPS RISC-V x64

Assembly (old) 8.86 - 8.69 9.21 8.27
Assembly (new) 6.43 - 6.94 6.7 5.04

OpenTheory article checker. The type changing feature from §2.3.5 en-
abled us to produce an OpenTheory [19] article checker with our new synthesis
approach, and reduce the amount of manual proof required in a previous ver-
sion. The checker reads articles from the �le system, and performs each logical
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inference in the OpenTheory framework using the veri�ed Candle kernel [23].
Previously, the I/O code for the checker was implemented in stateful CakeML,
and veri�ed manually using characteristic formulae. By replacing the manually
veri�ed I/O wrapper by monadic code we removed 400 lines of tedious manual
proof.

2.7 Related work

E�ectful code using monads. Our work on encapsulating stateful compu-
tations (§2.4) in pure programs is similar in purpose to that of the ST monad [26].
The main di�erence is how this encapsulation is performed: the ST monad relies
on parametric polymorphism to prevent references from escaping their scope,
whereas we utilise lexical scoping in synthesised code to achieve a similar
e�ect.

Imperative HOL by Bulwahn et al. [9] is a framework for implementing
and reasoning about e�ectful programs in Isabelle/HOL. Monadic functions are
used to describe stateful computations which act on the heap, in a similar way
as §2.3 but with some important di�erences. Instead of using a state monad,
the authors introduce a polymorphic heap monad – similar in spirit to the
ST monad, but without encapsulation – where polymorphism is achieved by
mapping HOL types to the natural numbers. Contrary to our approach, this
allows for heap elements (e.g. references) to be declared on-the-�y and used as
�rst-class values. The drawback, however, is that only countable types can be
stored on the heap; in particular, the heap monad does not admit function-typed
values, which our work supports.

More recently, Lammich [25] has built a framework for the re�nement of
pure data structures into imperative counterparts, in Imperative HOL. The
re�nement process is automated, and re�nements are veri�ed using a program
logic based on separation logic, which comes with proof-tools to aid the user
in veri�cation.

Both developments [9, 25] di�er from ours in that they lack a veri�ed
mechanism for extracting executable code from shallow embeddings. Although
stateful computations are implemented and veri�ed within the con�nes of
higher-order logic, Imperative HOL relies on the unveri�ed code-generation
mechanisms of Isabelle/HOL. Moreover, neither work presents a way to deal
with I/O e�ects.

Veri�ed compilation. Mechanisms for synthesising programs from shallow
embeddings de�ned in the logics of interactive theorem provers exist as com-
ponents of several veri�ed compiler projects [5, 18, 29, 30]. Although the main
contribution of our work is proof-producing synthesis, comparisons are rele-
vant as our synthesis tool plays an important part in the CakeML compiler [24].
To the best of our knowledge, ours is the �rst work combining e�ectful compu-
tations with proof-producing synthesis and fully veri�ed compilation.
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CertiCoq by Anand et al. [5] strives to be a fully veri�ed optimising compiler
for functional programs implemented in Coq. The compiler front-end supports
the full syntax of the dependently typed logic Gallina, which is rei�ed into a
deep embedding and compiled to Cminor through a series of veri�ed compila-
tion steps [5]. Contrary to the approach we have taken [30] (see §2.3.2), this
rei�cation is neither veri�ed nor proof-producing, and the resulting embedding
has no formal semantics (although there are attempts to resolve this issue [6]).
Moreover, as of yet, no support exists for expressing e�ectful computations
(such as in §2.3.4) in the logic. Instead, e�ects are deferred to wrapper code
from which the compiled functions can be called, and this wrapper code must
be manually veri�ed.

The Œuf compiler by Mullen et al. [29] is similar in spirit to CertiCoq in that
it compiles pure Coq functions to Cminor through a veri�ed process. Similarly,
compiled functions are pure, and e�ects must be performed by wrapper code.
Unlike CertiCoq, Œuf supports only a limited subset of Gallina, from which it
synthesises deeply embedded functions in the Œuf-language. The Œuf language
has both denotational and operational semantics, and the resulting syntax
is automatically proven equivalent with the corresponding logical functions
through a process of computational denotation [29].

Hupel and Nipkow [18] have developed a compiler from Isabelle/HOL to
CakeML AST. The compiler satis�es a partial correctness guarantee: if the
generated CakeML code terminates, then the result of execution is guaranteed
to relate to an equality in HOL. Our approach proves termination of the code.

2.8 Conclusion

This paper describes a technique that makes it possible to synthesise whole
programs from monadic functions in HOL, with automatic proofs relating the
generated e�ectful code to the original functions. Using the separation logic
from characteristic formulae for CakeML, the synthesis mechanism supports
references, exceptions, I/O, reusable library developments, encapsulation of
locally stateful computations inside pure functions, and code generation for
functions where termination depends on state. To our knowledge, this is the
�rst proof-producing synthesis technique with the aforementioned features.

We hope that the techniques developed in this paper will allow users of
the CakeML tools to develop veri�ed code using only shallow embeddings.
We hope that only expert users, who develop libraries, will need to delve into
manual reasoning in CF or direct reasoning about deeply embedded CakeML
programs.
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Chapter 3

A veri�ed proof checker for
higher-order logic

Oskar Abrahamsson

Abstract. We present a computer program for checking proofs in higher-
order logic (HOL) that is veri�ed to accept only valid proofs. The proof checker
is de�ned as functions in HOL and synthesized to CakeML code, and uses the
Candle theorem prover kernel to check logical inferences. The checker reads
proofs in the OpenTheory article format, which means proofs produced by vari-
ous HOL proof assistants are supported. The proof checker is implemented and
veri�ed using the HOL4 theorem prover, and comes with a proof of soundness.

Published in Journal of Logic and Algebraic Methods in Programming, 2020.
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3.1 Introduction

This paper is about a veri�ed proof checker for theorems in higher-order
logic (HOL). A proof checker is a computer program which takes a logical
conclusion together with a proof object representing the steps required to
prove the conclusion, and returns a verdict whether or not the proof is valid.

Our checker is designed to read proof objects in the OpenTheory article
format [19]. OpenTheory articles contain instructions on how to construct
types, terms and theorems of HOL from previously known facts. The tool starts
with the axioms of higher-order logic as its facts, and uses a previously veri�ed
implementation of the HOL Light kernel (called Candle) [23] to carry out all
logical inferences. If all commands are successfully executed, the tool outputs
a list of all proven theorems together with the logical context in which they
are true.

The proof checker is implemented as a function (shallow embedding) in the
logic of the HOL4 theorem prover [35]. We verify the correctness of the proof
checker function, and prove a soundness theorem. This theorem in the HOL4
system guarantees that any theorem produced as a result of a successful run of
the tool is a theorem in HOL.

Using a proof-producing synthesis mechanism [17] we synthesize a CakeML
program from the shallow embedding. The resulting program is compiled to
executable machine code using the CakeML compiler. Compilation is carried
out completely within the logic of HOL4, enabling us to combine our soundness
result with the end-to-end correctness theorem of the CakeML compiler [36].
This gives a theorem that guarantees that the proof checker is sound down to
the machine code that executes it.

Contributions In this work we present a veri�ed proof checker for HOL. To
the best of our knowledge, this is the �rst veri�ed implementation of a proof
checker for HOL. As a consequence of using the CakeML tools, we are able to
obtain a correctness result about the executable machine code that is the proof
checker program.

Overview To reach this goal we require:
(i) a �le format for proof objects in HOL for which there exists sample

proofs;
(ii) tool support for reasoning about the correctness of the actual implemen-

tation of our proof checker (as opposed to a model); and
(iii) a convincing way of connecting the correctness of the proof checker

implementation with the machine code we obtain when compiling it.
We address (i) by using the OpenTheory framework [19]. Although originally
designed with theory sharing between theorem provers in mind, the framework
includes a convenient format for storing proofs, as well as a library of theorems.
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The issue (ii) is tackled by implementing our proof checker in a computable
subset of the HOL4 logic. In this way we are able to draw precise conclusions
about the correctness of our program without the overhead of a program logic.
Additionally, the implementation of the Candle theorem prover kernel [23] and
its soundness proof lives in HOL4: we can use this result directly, as opposed
to assuming it.

Finally, (iii) is addressed using the CakeML compiler toolchain. The CakeML
toolchain can produce executable machine code from shallow embeddings of
programs in HOL4. The compilation is proof-producing, and yields a theorem
which states the correctness of the resulting machine code in terms of the
logical functions from which it was synthesized. Consequently, any statement
about the logical speci�cation can be made into a statement about the machine
code that executes it.

We start by introducing the OpenTheory framework, the CakeML compiler
and the Candle theorem prover kernel (§3.2). We then explain, at a high level,
the steps required to produce the proof checker implementation and verify its
correctness (§3.3).

We show the details of the implementation (and speci�cation) of the tool
as a shallow embedding in the logic (§3.4), and how this shallow embedding
is automatically re�ned into an equivalent CakeML program using a proof-
producing synthesis procedure (§3.5).

We compile the synthesised program into machine code, and obtain a
correctness theorem relating the machine code with the shallow embedding
(§3.7). Following this, we state a theorem describing end-to-end correctness
(soundness) of the proof checker, and describe how the proof is carried out
using the existing soundness result of the Candle kernel (§3.8).

Finally, we comment on the results of running the checker on a collection
of article �les, and compare its execution time to that of an existing (unveri�ed)
tool implemented in Standard ML (§3.9).

Notation Throughout this paper we use typewriter font for listings of
ML program code, and sans-serif for constants and italics for variables in
higher-order logic. The double implication ⇐⇒ stands for equality between
boolean terms, and all other logical connectives (e.g.⇒, ∧, ∨, ¬, . . . ) have their
usual meanings.
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3.2 Background

In this section we introduce the tools and concepts used in the remainder of
this paper.

3.2.1 The OpenTheory framework
The purpose of the OpenTheory framework [19] is to facilitate sharing of
logical theories between di�erent interactive theorem provers (ITPs) that use
HOL as their logic. Several such systems exist; e.g. HOL4 [35], HOL Light [16],
ProofPower-HOL [7]. Although the logical cores of these tools coincide to
some degree, the systems built around the logics (e.g. theory representation,
and storage) are very di�erent.

The aim of OpenTheory is to reduce the amount of duplicated e�ort when
developing theories in these systems. It attempts to do so by de�ning:

• a version of HOL contained within the intersection of the logics of these
tools, and

• a �le format for storing instructions on how to construct de�nitions and
theorems in this logic.

Collections of type- and constant de�nitions, terms and theorems are bun-
dled up into theories, and instructions for reconstructing theories are recorded
in OpenTheory articles. An OpenTheory article is a text �le consisting of a
sequence of commands corresponding to primitive inferences and term con-
structors/destructors of HOL.

Article �les are usually produced by instructing a HOL theorem prover to
record all primitive inferences used in the construction of theorems. In order
to reconstruct the theory information, the OpenTheory framework de�nes an
abstract machine that operates on article �les. The machine interprets article
commands into calls to a logical kernel, which in turn reconstructs the theory
elements.

We have constructed our proof checker to read input represented in the
OpenTheory article format. Our proof checker is a HOL function that is a
variation on the OpenTheory abstract machine. In particular, we have left the
machine without its built-in logical kernel, and let the Candle theorem prover
kernel perform all logical reasoning.

3.2.2 The Candle theorem prover kernel
The Candle theorem prover kernel is a veri�ed implementation of the HOL
Light logical kernel by Kumar et al. [23]. The kernel is implemented as a
collection of monadic functions [37] in a state-and-exception monad in the
logic of the HOL4 theorem prover, and is proven sound with respect to a formal
semantics which builds on Harrison’s formalization of HOL Light [15].
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As discussed in §3.2.1, we will use the Candle theorem prover kernel to
execute all logical operations in our proof checker. Clearly, the main advantage
of using the Candle kernel over implementing our own is its soundness result,
which guarantees the validity of all HOL inferences executed by the kernel.

We return to Candle in §3.4, where we explain how our proof-checker is
constructed on top of the the Candle kernel; and in §3.8, where we show how
to utilize its soundness result when verifying the end-to-end correctness of our
checker.

3.2.3 The CakeML ecosystem
CakeML is a language in the style of Standard ML [28] and OCaml [27]. The
language has a formal semantics, and supports most features familiar from
Standard ML, such as references, I/O and exceptions.

The CakeML ecosystem consists of:

(i) the CakeML language and its formal semantics;
(ii) the end-to-end veri�ed CakeML compiler, which can be run inside HOL;

(iii) tools for generating and reasoning about CakeML programs.

The CakeML compiler is an optimizing compiler for the CakeML language.
The compiler backend supports code generation for multiple targets, including
32- and 64-bit �avors of Intel and ARM architectures, RISC-V and MIPS. The
compiler is formally veri�ed to produce machine code that is semantically com-
patible with the source program it compiles [36]. The compiler implementation,
execution and veri�cation is carried out completely within the logic of the
HOL4 theorem prover.

Using the proof-producing synthesis mechanism of the CakeML ecosystem
[17] together with the CakeML compiler’s top-level correctness theorem, the
system produces a theorem relating the resulting executable machine code with
its logical speci�cation. This enables us to extract useful, veri�ed programs
from logical functions in HOL4.

In §3.5 we show how we use the CakeML toolchain to synthesize a CakeML
program from the logical speci�cation of our proof checker; in §3.7 this program
is compiled to machine code.

3.3 High-level approach

There are several parts involved in our proof checker development; a framework
for storing logical theories (§3.2.1), a veri�ed theorem prover kernel (§3.2.2),
and a veri�ed compiler (§3.2.3). In this section we explain, at a high level, how
these parts come together into a veri�ed program for checking HOL proofs.

Our program implementation consists chie�y of functions within the HOL4
logic, because this simpli�es veri�cation greatly. The CakeML compiler, on
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the other hand, operates on CakeML abstract syntax. Consequently, we must
�rst move from logical functions to CakeML syntax; and �nally, to executable
machine code. Furthermore, the compilation is carried out within the logic of
the theorem prover.

3.3.1 Terminology: levels of abstraction
There are clearly several layers of abstraction involved. Here is the terminology
we will use:

• the de�nition of the OpenTheory abstract machine,
• a shallow embedding which implements the de�nition,
• a deep embedding that is a re�nement of the shallow embedding, and
• the machine code which is obtained from compiling the deep embedding.

The shallow embedding is a function in the logic of HOL4. The deep embedding
is CakeML abstract syntax synthesized from the shallow embedding. This
abstract syntax is represented as a datatype in the logic. Finally, the machine
code is a sequence of bytes which can be linked to produce an executable that
runs the proof-checker.

3.3.2 Overview of steps
We now turn to an overview of the steps we take to produce the veri�ed proof
checker:

A.1 We begin by constructing a shallow embedding from the de�nition of the
OpenTheory abstract machine. The shallow embedding is a monadic func-
tion in the logic of HOL4. As previously mentioned in §3.2.1, the logical
kernel is left out; what is left is a machine that performs bookkeeping
of theory data (i.e. theorems, constants and types). The actual work of
logical reasoning is left to the veri�ed Candle kernel.
Concretely, we achieve this by implementing our shallow embedding in
the same state-and-exception monad as the Candle logical kernel. In this
way we are able to include the Candle kernel implementation as part of
our program.

A.2 We synthesize deeply-embedded CakeML code from the shallow embed-
ding of Step A.1 using a proof-producing mechanism. As a result of this
synthesis we obtain a certi�cate theorem stating that the deep embedding
is a re�nement of the shallow embedding.

A.3 We prove a series of invariants for the shallow embedding. These invari-
ants are needed in order to make use of the main soundness theorem
of the Candle theorem prover. We will return to the details of these
invariants in §3.8.

37



A.4 Using the existing Candle soundness theorem, we prove that any valid
sequent produced by a successful run of the shallowly embedded proof
checker is in fact true by the semantics of HOL. With the aid of the
certi�cate theorems from A.2, we are able to conclude that the same
holds for the deeply-embedded CakeML program.

A.5 Finally, the CakeML compiler is used to compile the deep embedding
from A.2 into executable machine code. The compilation is carried out
completely within the HOL4 logic, and produces a theorem that the
machine code is compatible with the deep embedding. By combining this
theorem with the results from A.2 and A.3, we obtain a theorem asserting
that the machine code is a re�nement of shallow embedding from A.1.

Finally, we connect the theorems from parts A.3 and A.5. The result is a theorem
establishing soundness for the machine code that executes our proof checker.

Before we can describe the �nal end-to-end correctness theorem (§3.8),
we will describe the OpenTheory abstract machine (§3.4), how we synthesize
code from the shallow embeddings (§3.5), extend our program with veri�ed I/O
capabilities (§3.6), and �nally, compile it to machine code (§3.7).

3.4 The OpenTheory abstract machine

The OpenTheory framework de�nes a �le format (articles) for storing logical
theories, and an abstract machine for extracting theories from such �les. In this
section we describe the operation of the abstract machine, and explain how we
construct a shallow embedding in the HOL4 logic which implements it.

The OpenTheory machine is a stack-based abstract machine, which con-
structs types, terms and theorems of HOL by executing commands that update
the machine state in various ways. Its operation is as follows. Commands are
read from the input (a proof article), and interpreted into one of two types of
actions:

(i) logical operations, such as inferences, constructor- or destructor applica-
tions on logical syntax; or

(ii) commands used to organize the machine state in various ways, such as
stack and other data structures.

At any time during the run of the machine, theorems and de�nitions may be
�nalized by committing them to a special store. Once �nalized, these theorems
are never touched again.

3.4.1 Machine state

The state maintained by the machine during execution is the following:
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• A stack of objects. We shall describe these objects shortly, but they include
e.g. terms and types of HOL. The stack is the primary source of input
(and destination for output) of commands.

• A dictionary, mapping natural numbers to objects. The dictionary enables
persistent storage of objects that would otherwise be consumed by stack
operations.

• A special stack dedicated to storing exported theorems. Once the produc-
tion of a theorem is complete, it is pushed onto the theorem stack. Once
there, it cannot be manipulated any further.

• A list of external assumptions on the logical context in which theorems
are checked. Concretely, these assumptions are logical statements taken
as axioms during the run of the machine, allowing for some modularity
in theory reconstruction. For technical reasons, we leave this part out of
our implementation; see §3.10 for further discussion.

We construct the record type state to represent the machine state. Here stack, dict
and thms represent the aforementioned object stack, dictionary, and theorem
stack, respectively. We also store a number linum for reporting the current
position in the article �le in case of error.

state = 〈|
stack : object list;
dict : object num_map;
thms : thm list;
linum : int
|〉

3.4.2 Objects
All commands in the OpenTheory machine read input from the stack. Di�erent
commands accept di�erent types of input, ranging from integer- and string
literals, to terms of HOL. We unify these types under a datatype called object.
See Figure 3.1 for the de�nition of object.

In summary, the type object is made up of:
• syntactic elements of HOL (Type, Term, and Thm);
• references (by name) to variables and constants in HOL (Var and Const);

and
• auxiliaries used in the construction of the above, such as lists and literals

(List, Num, and Name).

3.4.3 Commands
Commands fetch input by popping object type elements from the stack. Those
commands that produce results push these onto the stack.

39



object =
Num int
| Name string
| List (object list)
| TypeOp string
| Type type
| Const string
| Var (string × type)
| Term term
| Thm thm

Figure 3.1. The type of OpenTheory objects. Those commands executed by
the OpenTheory machine that take inputs and/or produce results use the type
object.

As an example, consider the proof command called deductAntisym. The
command deductAntisym pops two theorems (th1 and th2) from the stack, and
calls on Candle to execute the inference rule DEDUCT_ANTISYM_RULE on these.
Finally, the result is pushed back onto the stack.

Here is the de�nition of deductAntisym (using do-notation for monadic
functions, which is familiar from Haskell):

deductAntisym s =
do
(obj ,s) ← pop s; th2 ← getThm obj ;
(obj ,s) ← pop s; th1 ← getThm obj ;
th ← DEDUCT_ANTISYM_RULE th1 th2;
return (push (Thm th) s)

od

Here, s (of type state) represents the state of the abstract machine. The internal
commands pop and push are used for manipulating the object stack, and the
function getThm extracts a value of type thm from an object with constructor
Thm (or raises an exception otherwise). Finally, the machine executes the
following primitive inference of HOL Light [16] on the theorems th1 and th2:

Γ ` p ∆ ` q

(Γ− {q}) ∪ (∆− {p}) ` p = q
DEDUCT_ANTISYM_RULE

At the time of writing, there are 36 commands in the OpenTheory article
format. For each proof command in the article format we implement the cor-
responding operation as a monadic HOL function. In addition, we implement
some internal commands (such as push and pop above) to access and/or manip-
ulate the machine state. For a complete listing of article commands and their
semantics, see [20].
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3.4.4 Wrapping up
Finally, we wrap our proof command speci�cations up into a function called
readLine. The function readLine is the shallow embedding of the OpenTheory
abstract machine. This function takes a machine state and a line of text (corre-
sponding to a proof command) as input, and returns an updated state. If the
execution of a command fails, an exception is raised and execution halts. The
full de�nition of readLine is shown in Appendix 3.A.

3.5 Proof-producing synthesis of CakeML

At this stage we have a shallow-embedded implementation of the OpenTheory
abstract machine in HOL4 (see §3.4), together with the functions that make up
the Candle theorem prover kernel. We apply a proof-producing synthesis tool
[17] to the shallow embedding, and obtain the following:

• a deeply-embedded CakeML program, that can be compiled by the CakeML
compiler; and

• a certi�cate theorem stating that the deep embedding (the program) is a
re�nement of the shallow embedding (the logical functions).

The certi�cate theorem produced by the synthesis mechanism is absolutely
vital for the veri�cation carried out in §3.8, as it eliminates the gap between the
shallow- and deeply embedded views of the proof checker program (cf. §3.3).
Using the certi�cate, we may turn any statement about the shallow embedding
into a statement about the semantics of the deep embedding.

3.5.1 Re�nement invariants
Before discussing the certi�cate theorem for our proof checker, we will take a
step back and look at certi�cate theorems in general. This is the general shape
of a certi�cate theorem produced by the proof-producing synthesis:

` INV x v

Here, INV is a relation stating that the deeply-embedded CakeML value v is a
re�nement of the shallow embedding x . We call INV a re�nement invariant.

The CakeML tools de�ne several re�nement invariants for most basic types
(integers, strings, etc.), as well as higher-order invariants; e.g. for expressing
re�nements of function types. Here is the invariant −→, connecting the HOL
function f and the CakeML function g :

` (A −→ B) f g
where the types are

f : α→ β
A : α→ v→ bool (speci�es re�nement of values of type α)
B : β → v→ bool (speci�es re�nement of values of type β)

(3.1)
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Certi�cate theorems in the style of the Theorem (3.1) are generally obtained
when synthesizing pure CakeML programs from logical functions. The CakeML
tools de�ne two alternative re�nement invariants for dealing with (potentially
e�ectful) monadic functions: ArrowP, and ArrowM. The invariant ArrowM is
used in place of −→ to express re�nement of monadic functions. The invariant
ArrowP extends ArrowM to permit side-e�ects; e.g. state updates.

3.5.2 Certi�cate theorem

Here is the certi�cate theorem for our shallow embedding readLine:

` ArrowP F (hol_store,p) (Pure (Eq string_type line_v))
(ArrowM F (hol_store,p) (EqSt (Pure (Eq reader_state_type state_v)) state)

(Monad reader_state_type hol_exn_type)) readLine readline_v
(3.2)

The speci�cs of the symbols involved in this theorem are outside the scope of
this paper; see e.g. [17]. In short, the Theorem (3.2) states that readline_v is a
re�nement of readLine. Here, readline_v is the deep embedding that was synthe-
sized from readLine. The invariants ArrowP and ArrowM tell us that readline_v
was synthesized from a (curried) monadic function.

3.6 Proof checker program with I/O

Our proof-checker implementation is just about ready to be compiled; all that
remains is to provide the synthesized deep embedding from §3.5 with input
from the �le system. We achieve this by wrapping the deep embedding in a ML
program which takes care of I/O. The veri�cation of the wrapper is explained
in §3.6.2. Here is the listing for the wrapper program.

fun reader_main () =
let
val _ = init_reader ()

in
case CommandLine.arguments () of
[fname] => read_file fname

| [] => read_stdin ()
| _ => TextIO.output TextIO.stdErr msg_usage

end;

The program reader_main is parsed into a deeply embedded CakeML program.
Here is an overview of the functionality performed by reader_main:

(i) The program starts by initializing the logical kernel, in particular it
installs the axioms of higher-order logic (init_reader).

42



(ii) An article is read from a �le (read_file), or standard input (read_stdin),
and split into commands. These commands are then passed one by one to
readLine (see §3.4) until the input is exhausted, or an exception is raised.

(iii) In case of success, the program prints out the proved theorems, together
with the logical context in which they are theorems. In case of failure,
the wrapper reports the line number of the failing command and exits.

We intentionally leave out listings of read_file and read_stdin for brevity.
See Appendix 3.B for the full listings.

3.6.1 Speci�cation
Unlike previous stages of development (§3.5), the program reader_main must
be manually veri�ed to implement its speci�cation. We de�ne a logical func-
tion reader_main as the speci�cation of reader_main. It is de�ned in terms
of two functions read_file and read_stdin, corresponding to read_file and
read_stdin, respectively. See Appendix 3.C for the de�nitions of read_file
and read_stdin.

We de�ne reader_main as follows:

reader_main fs refs cl =
let refs = snd (init_reader () refs) in
case cl of

[fname] ⇒ read_file fs refs fname
| [] ⇒ read_stdin fs refs
| _ ⇒ (add_stderr fs msg_usage,refs ,None)

The arguments to the function reader_main is a model of the �le system, fs ;
a list of command line arguments, cl ; and a model of the Candle kernel state
(i.e. the contents of references at runtime), refs .

Both read_file and read_stdin are de�ned in terms of our shallow embedding
readLine. Consequently, reader_main becomes the top-level speci�cation for the
entire proof checker program.

3.6.2 Veri�cation using characteristic formulae
To show that reader_main adheres to its speci�cation reader_main (see A.3 in
§3.3) we prove a theorem using the characteristic formulæ (CF) framework for
CakeML [14]. The CF framework provides a program logic for ML programs.
Program speci�cations in CF are stated using Hoare-style triples

{|P |} f · a {|Q|}

where P and Q are pre- and post-conditions on the program heap, expressed in
separation logic; and f · a denotes the application of f to the argument list a.
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Correctness of main program This is the theorem we prove to assert that
reader_main_v (the deeply-embedded syntax of reader_main) implements its
speci�cation reader_main:

` (∃ s. init_reader () refs = (Success (),s)) ∧ input_exists fs cl ∧
unit_type () unit_v ⇒
{|commandline cl ∗ stdio fs ∗ hol_store refs|}

reader_main_v · [unit_v ]
{|POSTv res.
〈unit_type () res〉 ∗ stdio (fst (reader_main fs refs (tl cl)))|}

(3.3)

Here, ∗ is the separating conjunction; commandline, stdio, and hol_store are heap
assertions for the program command line, �le system, and the state of the
Candle logical kernel, respectively; and POSTv binds the function return value,
for use in the post-condition. The exact details of the Theorem (3.3) are not
important here; for an in-depth treatment, see [14].

Theorem (3.3) is the main speci�cation of our deeply-embedded proof
checker program reader_main_v. It should be read as: “if the program reader_-
main_v is executed from any initial state in which kernel initialization succeeds,
and if any input exists on the �le system, then the program terminates with a
result of type unit, and produces exactly the output that reader_main does.”

The proof of Theorem (3.3) makes use of the certi�cate theorem from §3.5.2
which gives the semantics of the synthesized code readline_v in terms of the
logical function readLine.

Summary We conclude this section by summarizing our e�orts so far.

(i) We have constructed a shallow embedding of the OpenTheory abstract
machine, on top of the Candle theorem prover kernel (§3.4).

(ii) We have synthesized deeply-embedded CakeML from the shallow embed-
ding, and obtained a certi�cate theorem (§3.5).

(iii) Finally, in this section, we have extended our deep embedding in code
which handles I/O operations, and veri�ed that the sum of the parts
implements the semantics of the shallow embedding.

Below, we show how the CakeML compiler is used to compile reader_main_v
to executable machine code, while at the same time producing a proof of
re�nement.

3.7 In-logic compilation

In this section we explain how the proof checker program from §3.6 is compiled
in a way which allows us to obtain a strong correctness guarantee on the
machine code produced by the compilation.

The CakeML compiler supports two modes of compilation:
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(i) compilation of deep embeddings inside the HOL4 logic, by evaluating
the shallow-embedded compiler under a call-by-value semantics;

(ii) compilation of source �les (read from the �le system) using a veri�ed
compiler executable.

In mode (i), the compiler produces a theorem which states that the resulting
machine code is a re�nement of the input program. This theorem is the CakeML
compiler top-level correctness theorem specialized on the program it compiles,
its speci�cation, and the target architecture.

The CakeML compiler comes with backends for multiple architectures:
x86-64, ARMv6, ARMv8, RISC-V, and MIPS [12]. The models used for reasoning
about the machine code of these targets were speci�ed using the L3 speci�ca-
tion language [11], and were not designed speci�cally for use in the CakeML
compiler.

We apply the in-logic compilation mode (i) to the deeply-embedded CakeML
program from §3.6. In what follows, reader_main_v is the deep embedding of the
proof checker program, and reader_main is its top-level speci�cation (semantics).

Here is the theorem we obtain when compiling reader_main_v:

` input_exists fs cl ∧ wfcl cl ∧ wfFS fs ∧ STD_streams fs ⇒
(installed_x64 reader_code (basis_�i cl fs) mc ms ⇒
machine_sem mc (basis_�i cl fs) ms ⊆
extend_with_resource_limit { Terminate Success (reader_io_events cl fs) } ) ∧
let (fs_out ,hol_refs ,final_state) = reader_main fs init_refs (tl cl)
in

extract_fs fs (reader_io_events cl fs) = Some fs_out

(3.4)
In brief, this theorem states that the semantics of the machine code of the
compiled program reader_code only includes behaviors allowed by the shal-
low embedding reader_main. We will explain Theorem (3.4) in the following
paragraphs.

Assumptions on the environment Theorem (3.4) contains the following
assertion, which ensures that reader_code is executed in a machine state ms
where the necessary code and data are correctly installed in memory:

installed_x64 reader_code (basis_�i cl fs) mc ms

The arguments to installed_x64 are the concrete machine code reader_code, a
machine state ms , and an architecture-speci�c con�guration, mc. In addition,
it takes an oracle basis_�i cl fs , which represents our assumptions about the
�le system and command line.

Out-of-memory errors The top-level correctness result of the CakeML com-
piler guarantees that any machine code obtained from compilation is seman-
tically compatible with the observable semantics of the source program that
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was compiled. Concretely, compatible means “equivalent, up to failure from
running out of memory.” This is expressed in Theorem (3.4) by the following
lines:

machine_sem mc (basis_�i cl fs) ms ⊆
extend_with_resource_limit { Terminate Success (reader_io_events cl fs) }

Here, machine_sem denotes the semantics of the machine code produced during
compilation, and extend_with_resource_limit {· · · } is the set of all pre�xes of
the observable semantics of the source program, as well as all those pre�xes
concatenated with a �nal event that denotes failure.

Observable semantics The CakeML compiler’s correctness is stated in terms
of observable events. This semantics consists of a (possibly in�nite) sequence of
I/O events that modify our model of the world in some way. The following line
states that the result of running these computations amounts to the same mod-
i�cations of the �le system model fs , as the program speci�cation reader_main
does:

extract_fs fs (reader_io_events cl fs) = Some fs_out

With the help of Theorem (3.5) we have established a convincing connection
between the logical speci�cation of our proof checker (§3.4), and the machine
code which executes it. Consequently, any claims made about the shallow-
embedded proof checker can be transported to the level of machine code. In
the next section, we bring all of these results together to form a single top-level
correctness theorem.

3.8 End-to-end correctness

In this section we present the main correctness theorem for the OpenTheory
proof checker. This theorem is a soundness result which ensures that the
executable machine code that is the compiled proof checker (§3.7) only accepts
valid proofs of theorems. In particular, we show that any theorem constructed
from a successful run of the OpenTheory proof checker is in fact true by the
semantics of HOL. This result is made possible by the soundness theorem of
the Candle theorem prover kernel [23].
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Here is the soundness result for the OpenTheory proof checker.

` input_exists fs cl ∧ wfcl cl ∧ wfFS fs ∧ STD_streams fs ⇒
(installed_x64 reader_code (basis_�i cl fs) mc ms ⇒
machine_sem mc (basis_�i cl fs) ms ⊆
extend_with_resource_limit

{ Terminate Success (reader_io_events cl fs) } ) ∧
∃ fs_out hol_refs s.

extract_fs fs (reader_io_events cl fs) = Some fs_out ∧
(no_errors fs fs_out ⇒
reader_main fs init_refs (tl cl) = (fs_out ,hol_refs ,Some s) ∧
hol_refs.the_context extends init_ctxt ∧
fs_out = add_stdout (flush_stdin (tl cl) fs)

(print_theorems s hol_refs.the_context) ∧
∀ asl c.

mem (Sequent asl c) s.thms ∧
is_set_theory µ ⇒
(thyof hol_refs.the_context,asl) |= c)

where no_errors fs fs_out = (fs.stderr = fs_out .stderr)

(3.5)

The �rst part of Theorem (3.5) is identical to the machine code correctness
theorem (3.4) in §3.7. In short, it states that the machine code reader_code
faithfully implements the shallow embedding reader_main; see §3.7 for details.

The interesting parts of Theorem (3.5) are the last few lines, starting at the
existential quanti�cation ∃ fs_out . The lines

no_errors fs fs_out ⇒
reader_main fs init_refs (tl cl) = (fs_out ,hol_refs ,Some s) ∧ . . .

state: if no errors were displayed on screen, then the OpenTheory proof checker
successfully processed all commands in the article, and returned a �nal state s
of type state.

The next few lines contain information about this �nal state; in particular,
that:

• all constructed theorems (those in s.thms; see §3.4) are true under the
semantics of HOL;

• the logical context (hol_refs .the_context) in which these theorems are
true is the result of a sequence of valid updates to the initial context of
the Candle kernel; and

• the result displayed on screen (add_stdout · · ·) by the program is a textual
representation of the logical context and the constructed theorems.

Before moving on, we note a somewhat particular feature of Theorem (3.5);
namely the requirement is_set_theory µ. In brief, is_set_theory assumes the
existence of a set theory expressive enough to contain the semantics of HOL; it
is used in the Candle soundness result to lift syntactic entailment to semantic
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entailment. We will touch on the subject brie�y in §3.8.1, but refer readers to
Kumar, et al. [23] for an in-depth discussion.

We will use the remainder of this section to explain how we obtain a
soundness result for the shallow embedding from §3.4. We then compose
this result with the machine code theorem from §3.7 in order to obtain the
Theorem (3.5).

3.8.1 The Candle soundness result

In this section we explain what is required to make use of the Candle soundness
result when proving our top-level correctness theorem (3.5). The formalization
of the Candle logical kernel is divided in two parts: a calculus of proof rules for
constructing sequents, and a formal semantics. Both systems are de�ned in the
logic of HOL4.

We will not attempt to explain the formalization at any greater depth as
this is well outside the scope of this work. However, a basic understanding
of some of the techniques used to obtain the Candle soundness result will be
necessary to arrive at Theorem (3.5) in §3.8.

Syntactic predicates The Candle proof development de�nes a number of
predicates on syntactic elements of HOL. The most important of these is the
relation THM, which states that a sequent is the result of a valid inference in
HOL, in a speci�c context. It is de�ned in terms of a proof rule for HOL, `:

THM ctxt (Sequent asl c) = (thyof ctxt ,asl) ` c

Here, ` is an inductively de�ned relation that makes up the proof calculus
(i.e. syntactic inference rules) of the higher-order logic implemented by the
Candle logical kernel. We leave out the de�nition of ` here; see e.g. [23, 15] for
a description of the calculus.

For the proof rule ` to establish validity of inferences, it imposes some
restrictions on terms and types used in inferences; e.g. terms must be well-
typed, constants and types must be de�ned prior to use, and type operators
must be used with their correct arity. These restrictions are established by the
relations TYPE and TERM.

Soundness Finally, any statement about ` (and consequently, THM) can
be turned into a statement about semantic entailment, thanks to the main
soundness result of the Candle kernel [23]:

is_set_theory µ ⇒ ∀ hyps c. hyps ` c ⇒ hyps |= c

We make use of this in §3.8.3 to lift a syntactic result about our proof checker
into the semantic domain.
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3.8.2 Preserving invariants

In order to establish soundness for our proof checker, we need to show a result
which states that all theorems constructed by the proof-checker are in fact true
theorems of HOL. In this section we explain how this is achieved by proving a
preservation result for the shallow embedding from §3.4.

We will obtain this result in three steps, by:

(i) de�ning a property for the type object, which will establish the relevant
invariants (THM, etc.) on the HOL syntax carried by object (§3.4.2);

(ii) de�ning a property for the OpenTheory machine state type state (§3.4.1),
imposing the object property from (i) on all its objects; and

(iii) proving that the property from (ii) is preserved under the shallow em-
bedding readLine (§3.4.4).

Object predicate We start by addressing Step (i), and de�ne a property on
objects:

OBJ ctxt obj =
case obj of

List xs ⇒ every (OBJ ctxt) xs
| Type ty ⇒ TYPE ctxt ty
| Term tm ⇒ TERM ctxt tm
| Thm thm ⇒ THM ctxt thm
| Var (n ,ty) ⇒ TERM ctxt (Var n ty) ∧ TYPE ctxt ty
| _ ⇒ T

The function OBJ asserts that all types are valid, e.g. type operators exist in the
context ctxt , and have the correct arity (TYPE); and that all terms are well-typed
in ctxt , and contain only de�ned constants (TERM).

State predicate Next, we carry out Step (ii) by lifting the properties OBJ and
THM to the state type. We do this with a function called READER_STATE:

READER_STATE ctxt state =
every (THM ctxt) state.thms ∧
every (OBJ ctxt) state.stack ∧
∀n obj .

lookup (Num n) state.dict = Some obj ⇒
OBJ ctxt obj

The important part about READER_STATE is that THM holds for all HOL sequents
in the theorem stack state .thms; enforcing OBJ on the stack and dictionary is
simply a means to achieving this.

Preservation theorem Finally, we take care of Step (iii). We prove the fol-
lowing preservation theorem, which guarantees that THM holds for all sequents
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in the program state, at all times during execution:

` STATE ctxt refs ∧ READER_STATE ctxt st ∧
readLine line st refs = (res ,refs ′) ⇒
∃upd .

STATE (upd ++ ctxt) refs ′ ∧
∀ st ′. res = Success st ′ ⇒ READER_STATE (upd ++ ctxt) st ′

(3.6)

The relation STATE connects the logical context ctxt with the concrete state
of the Candle kernel at runtime. The context ctxt is modeled as a sequence
of updates (e.g. constant- and type de�nitions, new axioms, etc.). With this in
mind, Theorem (3.6) can be read as: “the relations STATE and READER_STATE
are preserved under readLine, up to a �nite sequence of valid context updates
to the initial context ctxt .”

Using Theorem (3.6), we are able to prove that THM holds for all theorems
kept in the state at all times, as long as the function readLine starts from an
initial state where this is true (e.g. the empty state). In §3.8.3 we compose this
result with the Candle soundness result (§3.8.1), and show that soundness holds
for our shallow embedded proof checker.

3.8.3 Soundness of the shallow embedding
With Theorem (3.6) in §3.8.2, we showed that any sequent constructed by the
proof checker at runtime is the result of a valid inference in HOL. In this
section we lift this result into a theorem about soundness, by using the Candle
soundness result shown in §3.8.1.

Our soundness theorem is stated in terms of the proof checker speci�cation
reader_main from §3.6.1:

` is_set_theory µ ∧
reader_main fs init_refs cl = (fs_out ,hol_refs ,Some s) ⇒
(∀ asl c.

mem (Sequent asl c) s.thms ⇒
(thyof hol_refs.the_context,asl) |= c) ∧

hol_refs.the_context extends init_ctxt ∧
fs_out = add_stdout (flush_stdin cl fs) (print_theorems s hol_refs.the_context)

(3.7)
With this theorem, we have all ingredients required to obtain the main correct-
ness Theorem (3.5) from §3.8:

• Theorem (3.7) is stated in terms reader_main, and guarantees that the
main proof checker program from §3.6 is sound.

• Theorem (3.4) shows that the machine code reader_code is a re�nement
of the program in §3.6.

Because both these theorems are stated in terms of reader_main, the results can
be trivially composed in the HOL4 system to produce the desired theorem (3.5).
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3.9 Results

Our proof checker was used to check a few articles from the OpenTheory
standard library. These articles were selected based on the number of proof
commands contained in the article (i.e. their size); larger article �les exist in
the standard library, but require signi�cantly more time to process. All articles
were successfully processed without errors.

We have evaluated the performance of our proof checker program, and
compared it to an existing (unveri�ed) tool [21], built using three Standard ML
compilers: MLton [1], Poly/ML [3] and Moscow ML [2]. Tests were carried out
on a Intel i7-7820HQ running at 2.90 GHz with 16 GB RAM, by recording time
elapsed when running each tool 10 times on the same input. The results of the
performance measurements are shown in Table 3.1.

Table 3.1. Comparison of average running times when running each tool 10
times on each input. Times are formatted as (mean± σ).

bool.art base.art real.art word.art

# commands 62k 1718k 1285k 2121k

OPC 0.353± 0.002 s 9.730± 0.156 s 7.260± 0.018 s 12.05± 0.133 s

MLT 0.076± 0.002 s 1.967± 0.016 s 1.526± 0.008 s 2.629± 0.015 s
PML 0.160± 0.002 s 6.597± 0.192 s 4.410± 0.060 s 7.623± 0.165 s
MML 0.934± 0.008 s 85.01± 0.655 s 46.45± 0.137 s 121.9± 0.395 s

OPC/MLT 4.63 4.95 4.76 4.58
OPC/PML 2.21 1.48 1.65 1.58
OPC/MML 0.38 0.11 0.16 0.10

where OPC is our veri�ed proof-checker binary
MLT is the OpenTheory tool compiled with MLton
PML ———— ” ———— Poly/ML
MML ———— ” ———— Moscow ML

When compared against the OpenTheory tool [21], our proof checker runs
a factor of 4.7 times slower than the MLton compiled binary on average, and
1.7 times slower than the Poly/ML binary on average. A signi�cant portion of
this slowdown is caused by poor I/O performance, as our proof checker spends
about half of its time performing system calls for I/O. It is di�cult to determine
the exact cause of the remainder of the slowdown; our HOL implementation
is di�erent from that of the OpenTheory tool, and the performance of the
executable code generated by the compilers used in this test varies greatly (cf.
Table 3.1). We expect that improvements to CakeML I/O facilities will improve
the performance of our proof checker.
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3.10 Discussion and related work

In this work we have implemented and veri�ed a proof checker for HOL that
checks proofs in the OpenTheory article format. The proof checker builds on
the veri�ed Candle theorem prover kernel by Kumar, et al. [23], and uses the
CakeML toolchain [17, 36, 24] to produce a veri�ed executable binary. To the
best of our knowledge, this is the �rst fully veri�ed proof checker for HOL.

We have left out some features present in the OpenTheory article format
when implementing our checker. In particular, theories in the OpenTheory
framework support external assumptions, such as constant de�nitions, type
operators, and axioms. Our proof checker implementation (§3.4) does not
currently support external assumptions, because of the way in which constants
and type operators are treated in the readLine function. However, we believe it
could be extended to do so without compromising soundness.

The main motivation behind the OpenTheory article format is mainly
theorem export. Our tool checks the validity of proofs by carrying out all
inferences required to reconstruct theorems, and if the reconstruction succeeds,
we know by the correctness result in §3.8 that the theorem must be valid.
However, this approach is not without its drawbacks, as there is no way to tell
the checker what theorem we expect it to prove. Hence, if proof recording has
gone awry (for whatever reason), it is possible that we prove a di�erent (albeit
still true) theorem.

HOL proof checkers It appears that proof checkers for higher-order logic
are few and far between.

The OpenTheory framework [19] includes a tool called the OpenTheory
tool [21], written in Standard ML. Among other things, the tool is capable of
checking OpenTheory articles in the same way our veri�ed proof checker is.
When compared to the OpenTheory tool (§3.9), our tool runs slower, and sup-
ports fewer of the features available in the OpenTheory framework. However,
the correctness of the OpenTheory tool has not been veri�ed in any way.

The HOL Zero system by Adams [4] is a theorem prover for higher-order
logic with a particular focus on trustworthiness. Unlike ours, the system is
not formally veri�ed; instead, its claims of high reliability are grounded in a
simple and understandable design of the logical kernel on which the tool builds.
Unlike other HOL provers, the tool is not interactive, but rather, it acts as a
proof-checker of sorts.

Veri�ed proof checkers The IVY system (McCune and Shumsky [34]) is a
veri�ed prover for �rst-order logic with equality. IVY relies on fast, trusted
C code for �nding proofs, and veri�es the resulting proofs using a checker
algorithm which has been veri�ed sound using the ACL2 system [22].

Ridge and Margetson [34] implements a theorem prover for �rst-order logic,
and veri�es it complete and sound with respect to a standard semantics. The
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development and veri�cation is carried out in Isabelle/HOL [31], and includes
an “algorithm which tests a sequent s for �rst-order validity.” The algorithm
can be executed within the Isabelle/HOL logic, by using the rewrite engine.

The Milawa theorem prover (Davis and Myreen [10]) is perhaps the most
impressive work to date in the space of veri�ed theorem provers. Milawa is
an extensible theorem prover for a �rst-order logic, in the style of ACL2 [22].
The system starts out as a simple proof checker, and is able to bootstrap itself
into a fully-�edged theorem prover by replacing parts of its logical kernel at
runtime. In [10], the authors verify that Milawa is sound down to the machine
code which executes it, when run on top of their veri�ed LISP implementation
Jitawa.

3.11 Summary

We have presented a veri�ed computer program for checking proofs of theorems
in higher-order logic. The proof checker program is implemented in CakeML,
and is compiled to machine code using the CakeML compiler. The program
reads proof articles in the OpenTheory article format, and has been formally
veri�ed to only accept valid proofs. To the best of our knowledge, this is the
�rst formally veri�ed proof checker for HOL.

The proof checker implementation and its proof is available at GitHub:
code.cakeml.org/tree/master/candle/standard/opentheory

Acknowledgements The original implementation of the OpenTheory stack
machine in monadic HOL was done by Ramana Kumar, who also provided
helpful support during the course of this work. The author would also like to
thank Magnus Myreen for feedback on this text. Finally, the author thanks the
anonymous reviewers for their helpful comments.
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3.A OpenTheory abstract machine

The de�nition of the shallow-embedded OpenTheory machine (§3.4.4).

readLine line s =
if line = "version" then
do
(obj ,s) ← pop s; getNum obj ;
return s

od
else if line = "absTerm" then
do
(obj ,s) ← pop s; b ← getTerm obj ;
(obj ,s) ← pop s; v ← getVar obj ;
tm ← mk_abs (mk_var v ,b);
return (push (Term tm) s)

od
else if line = "absThm" then
do
(obj ,s) ← pop s; th ← getThm obj ;
(obj ,s) ← pop s; v ← getVar obj ;
th ← ABS (mk_var v) th;
return (push (Thm th) s)

od
else if line = "appTerm" then
do
(obj ,s) ← pop s; x ← getTerm obj ;
(obj ,s) ← pop s; f ← getTerm obj ;
fx ← mk_comb (f ,x );
return (push (Term fx ) s)

od
else if line = "appThm" then
do
(obj ,s) ← pop s; xy ← getThm obj ;
(obj ,s) ← pop s; fg ← getThm obj ;
th ← MK_COMB (fg ,xy);
return (push (Thm th) s)

od

. . .
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. . .

else if line = "assume" then
do
(obj ,s) ← pop s; tm ← getTerm obj ;
th ← ASSUME tm;
return (push (Thm th) s)

od
else if line = "axiom" then
do
(obj ,s) ← pop s; tm ← getTerm obj ;
(obj ,s) ← pop s; ls ← getList obj ;
ls ← map getTerm ls;
th ← find_axiom (ls ,tm);
return (push (Thm th) s)

od
else if line = "betaConv" then
do
(obj ,s) ← pop s; tm ← getTerm obj ;
th ← BETA_CONV tm;
return (push (Thm th) s)

od
else if line = "cons" then
do
(obj ,s) ← pop s; ls ← getList obj ;
(obj ,s) ← pop s;
return (push (List (obj ::ls)) s)

od
else if line = "const" then
do
(obj ,s) ← pop s; n ← getName obj ;
return (push (Const n) s)

od
else if line = "constTerm" then
do
(obj ,s) ← pop s; ty ← getType obj ;
(obj ,s) ← pop s; nm ← getConst obj ;
ty0 ← get_const_type nm;

. . .
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tm ←
case match_type ty0 ty of

None ⇒ failwith "constTerm"

| Some theta ⇒ mk_const (nm ,theta);
return (push (Term tm) s)

od
else if line = "deductAntisym" then
do
(obj ,s) ← pop s; th2 ← getThm obj ;
(obj ,s) ← pop s; th1 ← getThm obj ;
th ← DEDUCT_ANTISYM_RULE th1 th2;
return (push (Thm th) s)

od
else if line = "def" then
do
(obj ,s) ← pop s; n ← getNum obj ;
obj ← peek s;
if n < 0 then failwith "def" else

return (insert_dict (Num n) obj s)
od

else if line = "defineConst" then
do
(obj ,s) ← pop s; tm ← getTerm obj ;
(obj ,s) ← pop s; n ← getName obj ;
ty ← type_of tm;
eq ← mk_eq (mk_var (n ,ty),tm);
th ← new_basic_definition eq ;
return (push (Thm th) (push (Const n) s))

od
else if line = "defineConstList" then
do
(obj ,s) ← pop s; th ← getThm obj ;
(obj ,s) ← pop s; ls ← getList obj ;
ls ← map getNvs ls;
th ← INST ls th;
th ← new_specification th;
ls ← map getCns ls;
return (push (Thm th) (push (List ls) s))

od
. . .
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else if line = "defineTypeOp" then
do
(obj ,s) ← pop s; th ← getThm obj ;
(obj ,s) ← pop s; getList obj ;
(obj ,s) ← pop s; rep ← getName obj ;
(obj ,s) ← pop s; abs ← getName obj ;
(obj ,s) ← pop s; nm ← getName obj ;
(th1,th2) ← new_basic_type_definition nm abs rep th;
(_,a) ← dest_eq (concl th1);
th1 ← ABS a th1;
th2 ← SYM th2;
(_,Pr) ← dest_eq (concl th2);
(_,r) ← dest_comb Pr ;
th2 ← ABS r th2;
return (push (Thm th2) (push (Thm th1) (push (Const rep)

(push (Const abs) (push (TypeOp nm) s)))))
od

else if line = "eqMp" then
do
(obj ,s) ← pop s; th2 ← getThm obj ;
(obj ,s) ← pop s; th1 ← getThm obj ;
th ← EQ_MP th1 th2;
return (push (Thm th) s)

od
else if line = "hdTl" then
do
(obj ,s) ← pop s; ls ← getList obj ;
case ls of
[] ⇒ failwith "hdTl"

| h ::t ⇒ return (push (List t) (push h s))
od

else if line = "nil" then return (push (List []) s)
else if line = "opType" then
do
(obj ,s) ← pop s; ls ← getList obj ;
args ← map getType ls;
(obj ,s) ← pop s; tyop ← getTypeOp obj ;
t ← mk_type (tyop ,args);
return (push (Type t) s)

od
. . .
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else if line = "pop" then do (_,s) ← pop s; return s od
else if line = "pragma" then
do
(obj ,s) ← pop s;
nm ← handle (getName obj ) (λ e. return "bogus");
if nm = "debug" then failwith (state_to_string s) else return s

od
else if line = "proveHyp" then
do
(obj ,s) ← pop s; th2 ← getThm obj ;
(obj ,s) ← pop s; th1 ← getThm obj ;
th ← PROVE_HYP th2 th1;
return (push (Thm th) s)

od
else if line = "ref" then
do
(obj ,s) ← pop s; n ← getNum obj ;
if n < 0 then failwith "ref" else
case lookup (Num n) s.dict of

None ⇒ failwith "ref"

| Some obj ⇒ return (push obj s)
od

else if line = "refl" then
do
(obj ,s) ← pop s; tm ← getTerm obj ;
th ← REFL tm;
return (push (Thm th) s)

od
else if line = "remove" then
do
(obj ,s) ← pop s; n ← getNum obj ;
if n < 0 then failwith "ref" else
case lookup (Num n) s.dict of

None ⇒ failwith "remove"

| Some obj ⇒ return (push obj (delete_dict (Num n) s))
od

. . .
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else if line = "subst" then
do
(obj ,s) ← pop s; th ← getThm obj ;
(obj ,s) ← pop s; (tys ,tms) ← getPair obj ;
tys ← getList tys;
tys ← map getTys tys;
th ← handle_clash (INST_TYPE tys th) (λ e. failwith "the impossible");
tms ← getList tms;
tms ← map getTms tms;
th ← INST tms th;
return (push (Thm th) s)

od
else if line = "sym" then
do
(obj ,s) ← pop s; th ← getThm obj ;
th ← SYM th;
return (push (Thm th) s)

od
else if line = "thm" then
do
(obj ,s) ← pop s; c ← getTerm obj ;
(obj ,s) ← pop s; h ← getList obj ;
h ← map getTerm h;
(obj ,s) ← pop s; th ← getThm obj ;
th ← ALPHA_THM th (h ,c);
return (s with thms := th ::s.thms)

odelse if line = "trans" then
do
(obj ,s) ← pop s; th2 ← getThm obj ;
(obj ,s) ← pop s; th1 ← getThm obj ;
th ← TRANS th1 th2;
return (push (Thm th) s)

od
else if line = "typeOp" then
do
(obj ,s) ← pop s; n ← getName obj ;
return (push (TypeOp n) s)

od
. . .
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else if line = "var" then
do
(obj ,s) ← pop s; ty ← getType obj ;
(obj ,s) ← pop s; n ← getName obj ;
return (push (Var (n ,ty)) s)

od
else if line = "varTerm" then
do
(obj ,s) ← pop s; v ← getVar obj ;
return (push (Term (mk_var v)) s)

od
else if line = "varType" then
do
(obj ,s) ← pop s; n ← getName obj ;
return (push (Type (mk_vartype n)) s)

od
else
case s2i line of

Some n ⇒ return (push (Num n) s)
| None ⇒

case explode line of
"" ⇒ failwith ("unrecognised input: " ˆ line)
| "\"" ⇒ failwith ("unrecognised input: " ˆ line)
| #"""::c::cs ⇒

return
(push (Name (implode (front (c::cs)))) s)

| _ ⇒ failwith ("unrecognised input: " ˆ line)
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3.B Listings of CakeML code

The listing for read_stdin (§3.6).

fun read_stdin () =
let

val ls = TextIO.inputLines TextIO.stdin
in

process_list ls init_state
end;

The listing for read_file (§3.6).

fun read_file file =
let

val ins = TextIO.openIn file
in

process_lines ins init_state;
TextIO.closeIn ins

end
handle TextIO.BadFileName =>

TextIO.output TextIO.stdErr
(msg_filename_err file);

The listing for process_list, which calls process_line on a list of
commands.

fun process_list ls s =
case ls of

[] => TextIO.print
(print_theorems s (Kernel.context ()))

| l::ls =>
case process_line s l of

Inl s =>
process_list ls (next_line s)

| Inr e =>
TextIO.output TextIO.stdErr (line_fail s e);
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The listing for process_lines, which reads a proof command (string)
from an input stream, and calls process_line on the result, until the input
is exhausted.

fun process_lines ins st0 =
case TextIO.inputLine ins of

None =>
TextIO.print (print_theorems st0 (Kernel.context ()))

| Some ln =>
case process_line st0 ln of

Inl st1 =>
process_lines ins (next_line st1)

| Inr e =>
TextIO.output TextIO.stdErr (line_fail st0 e))`;

The listing for process_line, which calls a synthesized version of
readLine (§3.5) on a proof command (§3.4.3).

fun process_line st ln =
if invalid_line ln then

Inl st
else

Inl (readline (preprocess ln) st)
handle Fail e => Inr e;
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3.C Speci�cations for CakeML code

The de�nition of readLines, which calls on readLine (§3.4.4, and Ap-
pendix A) to process a list of proof commands (§3.4.3).

readLines lines st =
case lines of
[] ⇒ return (st ,lines_read st)
| l ::ls ⇒

if invalid_line l then readLines ls (next_line st) else
do

st ′ ← handle (readLine (preprocess l) st)
(λ e. failwith (line_num_err st e));

readLines ls (next_line st ′)
od

The de�nition of read_file (§3.6.1).

read_file fs refs fname =
if inFS_fname fs (File fname) then
case readLines (all_lines fs (File fname)) init_state refs of
(Success (s ,_),refs) ⇒

(add_stdout fs (print_theorems s refs.the_context),refs ,Some s)
| (Failure (Fail e),refs) ⇒ (add_stderr fs e ,refs ,None)

else (add_stderr fs (msg_filename_err fname),refs ,None)

The de�nition of read_stdin (§3.6.1).

read_stdin fs refs =
let fs ′ = fastForwardFD fs 0 in
case readLines (all_lines fs (IOStream "stdin")) init_state refs of
(Success (s ,_),refs) ⇒

(add_stdout fs ′ (print_theorems s refs.the_context),refs ,Some s)
| (Failure (Fail e),refs) ⇒

(add_stderr fs ′ e ,refs ,None)
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