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An insight towards food-related microbial sets through metabolic modelling and 

functional analysis 

Simonas Marcišauskas 

Department of Biology and Biological Engineering 

Chalmers University of Technology 

Abstract 

The dietary food digestion depends on the human gastrointestinal tract, where host cells and 

gut microbes mutually interact. This interplay may also mediate host metabolism, as shown by 

microbial-derived secondary bile acids, needed for receptor signalling. Microbes are also 

crucial in the production of fermented foods, such as wine and dairy. Kefir is fermented milk 

processed by the symbiotic community of bacteria and yeasts. One such species is a yeast 

Kluyveromyces marxianus. Its thermotolerance is a desired trait in biotechnology since it may 

reduce the cooling demands during cultivation. 

The systems biology tools allow analysing various size microbial communities under the 

different functional scope. For example, the homology prediction tools can give detailed 

functional insights when working with metagenomics data. The whole-cell metabolic processes 

can be summarised in genome-scale metabolic models (GEMs), which enable to predict the 

metabolic capabilities and allow for the integration of omics data. 

The work shown in this thesis includes i) in silico analysis of food-related microbes; ii) the 

development of GEMs and RAVEN. With a focus on bile acid metabolism, hundreds of human 

gut microbes were annotated based on metagenomics data, thereby suggesting the differences 

in the potential for bile acid processing between healthy and diseased subjects. These findings 

may be exploitable once aiming to restore the bile acid metabolism for the patients having 

inflammatory bowel disease. Also, the metabolism of yeast K. marxianus was characterised in 

genome-scale. Two K. marxianus strains from kefir grains were isolated, sequenced, 

assembled, and functionally annotated. They were compared with the other ten strains, 

providing the core and dispensable physiological features for K. marxianus. Furthermore, the 

first GEM for K. marxianus, namely iSM996, was reconstructed. It was integrated with 

transcriptomics data to predict its metabolic capabilities in rich medium and high-temperature 

conditions. The results might be useful to optimise strain-specific medium for high-temperature 

applications. The final paper comprises the efforts to improve the usability for RAVEN, a 

toolbox for GEM reconstruction and analysis. Altogether the outcomes of this thesis suggest 

the potential applications for medicine and industrial biotechnology, which may be facilitated 

by the newly upgraded RAVEN toolbox. 

 

Keywords: bile acids, comparative genomics, genome-scale metabolic model, gut, 

Kluyveromyces marxianus, next-generation sequencing, RAVEN, systems biology, 

thermotolerance, transcriptomics 
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Introduction 

Nature presents numerous living forms that successfully adapt to their niche environments. 

Such cases are driven by specific capabilities of individual species or by the collective efforts 

of biological communities (Merino et al. 2019). Upon suitable environmental factors, the 

survival strategy requires an efficient assimilation system for essential nutrients. Such a system 

relies on the physiological capabilities for the species of interest and its co-inhabitants. In such 

an environment, a unicellular organism is an individual competitor which has a standalone 

ability to obtain the required metabolites, including their sensing, extracellular pre-processing, 

transporting into the cell and intracellular bioprocessing. Meanwhile, the higher (multicellular) 

eukaryotes have more complex environments for nutrient uptake. For instance, the human gut 

microbiome is a result of a symbiosis between the host cells and a high number of microbial 

species (Cani 2018). Although much effort has been made to annotate the adaptation patterns, 

there are still many microbial communities and individual species which are yet to be 

characterised. A better understanding of these novel organisms may reveal new candidates for 

the microbial cell factories or contribute to the higher quality of healthcare. 

A variety of high-throughput experimental techniques, such as next-generation sequencing, 

metagenomic profiling, mass spectrometry and flow cytometry, can provide a detailed overview 

of individual microbes or microbial communities. One can utilise bioinformatics tools to pre-

process and analyse experimental data, but such approaches are often limited to particular data 

types. This issue can be resolved by systems biology approaches, which enable the integration 

of several data types, thereby allowing to draw more solid insights or identify the 

complementary experiments required for further investigation. Genome-scale metabolic models 

(GEMs) are the systems biology platforms to predict the metabolic capabilities and allowing 

the integration of multi-omics data. However, many published GEMs have compatibility 

problems due to poor standardisation and lack of curation after release. While the functionality 

of these GEMs depends on their authors, the tools used for the GEM reconstruction and analysis 

may prevent the newly developed models from incompatibility problems. 

This thesis comprises several functional level bioinformatic analyses for microbial species, 

which are in some way related to the human digestive system where the food breakdown takes 

place. The human gut is continuously modulated by ingested food through its microbial and 

nutritional content. Fermented foods are known with a positive impact on the human gut 

microbiome due to their probiotic and prebiotic properties, determined by their microbial and 

nutritional composition correspondingly. The species considered in this work inhabit the human 

gastrointestinal tract or contribute to the production of kefir, a fermented milk beverage 

acknowledged of its probiotic and prebiotic attributes. Also, the thesis aims to reduce GEM 

compatibility problems by an updated toolbox for GEM modelling. 

Firstly, a metagenomic study was conducted for a cohort of gut microbes capable of modulating 

bile acid metabolism, which is known to facilitate the dietary fat uptake. A comparative 

approach was sought to estimate bile acid biotransformation potential between the groups of 

healthy and patients experiencing dysbiosis due to inflammatory bowel disease. This work aims 
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to comprehend the differences in bile acid metabolism between these groups and provide 

strategies to restore bile acid metabolism in the patients. 

Secondly, an effort has been made to characterise a non-conventional yeast Kluyveromyces 

marxianus, found in kefir culture. Its thermotolerance, high growth rate and ability to 

metabolise a more extensive selection of substrates makes it a promising candidate of microbial 

cell factory. A functional comparison was performed for a dozen of K. marxianus strains 

followed by reconstruction of a consensus GEM for this species. Pangenome identification and 

investigation of the metabolic bottlenecks upon stress conditions serve as a basis for the further 

K. marxianus research and optimisation for industrial exploit. 

Finally, the thesis presents RAVEN 2, an updated toolbox for metabolic modelling, which aims 

to facilitate GEM reconstruction, curation and analysis. 
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Background 

The human gut microbiome 
One can describe the human gastrointestinal tract (GIT) as a passageway where the food 

digestion, absorption, and excretion take place. Human GIT consists of the several specialised 

organs like mouth, stomach, small intestine and large intestine, which form the human digestive 

system together with other accessory organs, including the tongue, salivary glands, pancreas, 

liver and gallbladder (Cheng et al. 2010). The human GIT is densely colonised by 

microorganisms, including bacteria, archaea, eukaryotes and viruses. Known as the human gut 

microbiome (Thursby & Juge 2017), this microbial community is prevailed (97%) by bacterial 

phyla Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria (Rosenbaum et al. 2015). 

Although the human gut microbiota utilises food nutrients to ensure its viability, it significantly 

complements to the metabolic capabilities of the host. Such examples include energy harvest 

(den Besten et al. 2013), vitamin production (Conly & Stein 1992), gut homeostasis (Natividad 

& Verdu 2013), immune system maturation and modulation (Bäumler & Sperandio 2016; 

Gensollen et al. 2016). For instance, at the phylum level, Bacteroidetes degrade polysaccharides 

and produce acetate (Xu et al. 2007) while Firmicutes use the latter as a substrate to produce 

butyrate (Louis & Flint 2017), the primary energy source for colonocytes (Litvak et al. 2018). 

Human GIT segments vary in respect of physiochemical factors like the power of hydrogen 

(pH) and the levels of digestive enzymes, bile salts and hydrochloric acid (Savage 1977). Such 

variations have a substantial impact on the local microbial density. The stomach and the part of 

small intestine comprise the upper GIT, which is responsible for the food digestion and 

absorption. For instance, the absorbed nutrients in the upper GIT are amino acids, lipids, 

carbohydrates and vitamins. While the stomach has a low pH due to the high level of 

hydrochloric acid, the small intestine has a neutral pH and is enriched with the digestive 

enzymes and bile acids. Such dynamic conditions affect the microbial colonisation, which is 

relatively low density in the upper GIT, having approximately 104-106 colony-forming units 

per millilitre (CFU/mL) (Bik et al. 2006; Zoetendal et al. 2012). Meanwhile, the lower GIT, 

comprising small and large intestine, has a higher food-derived nutrient availability. These 

conditions are much more favourable for the gut microbiome as shown by the significantly 

higher microbial density, being as high as 1011-1012 CFU/mL (Claesson et al. 2011). Some 

microbial species from the lower GIT can produce vitamins, e.g. vitamin K2, which are 

subsequently absorbed by the host (Conly & Stein 1992). 

Human gut colonisation begins during the infant age and continues for two years when the 

microbial composition reaches a similar state as in adults (Korpela & de Vos 2018). The gut 

microbiome is a complex, personal and highly dynamic ecosystem that is shaped by diet, 

probiotics, the host lifestyle and immune system, diseases and usage of antibiotics (Figure 1). 
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Figure 1. Schematic illustration of the critical factors which shape the human got microbiome. Diseases 
include neurological disorders, diabetes, inflammatory bowel disease, obesity and cystic fibrosis. 
Adapted from (Issa Isaac et al. 2019) 

 

The primary factor which shapes the gut microbial composition is diet because the differences 

in nutrients may promote the growth for different microbial species. For example, higher fibre 

availability promotes gut microbial diversity and short-chain fatty acid production (Holscher 

2017). Besides nutrients, the food may also contain probiotics, the bacterial species which have 

a positive impact on gut microbiome development. Lactobacilli and Bifidobacteria are probiotic 

species, which survive during the ingestion through the stomach and help to reduce the 

symptoms for diseases, like inflammatory bowel syndrome, and have the beneficial effects on 

host immune system (Khani et al. 2012). In addition to dietary factors, lifestyle impact is also 

significant. Previous studies showed that smoking might contribute to increased Bacteroides-

Prevotella part in individuals (Lutgendorff et al. 2008). Moreover, smoking and low physical 

activity were associated with altered microbial composition in the colon (Huxley et al. 2009). 

And stress has an impact on colonic motor activity, leading to modified gut microbial 

composition and lower levels of Lactobacillus (Conlon & Bird 2014). There were also studies 

showing that antibiotics usage can result in microbial dysbiosis and thereby contribute to 

diseases like diabetes, obesity, asthma, rheumatoid arthritis, autism and inflammatory bowel 

disease (Zhang & Chen 2019). Naturally, diseases are also important factors affecting the 

microbial composition in the human gut in causing obesity (Ley et al. 2005) and cystic fibrosis 

(Burke et al. 2017). 
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Bile acid metabolism and its role in host physiology 
Bile acids (BAs) are sterols which facilitate digestion and absorption of fats and fat-soluble 

vitamins in GIT. Primary BAs are synthesised in the liver and then conjugated with glycine or 

taurine. These conjugated are also known as bile salts (BSs), which are accumulated in the 

gallbladder and at the required time secreted into the duodenum, the first section of the small 

intestine (Figure 2). In humans, the most common BAs are cholate (CA) and 

chenodeoxycholate (CDCA). 

 

 

Figure 2. The relationship between gut microbiota and liver by enterohepatic circulation. Firstly, primary 
bile salts are produced in the liver and secreted into the gut, where they play an essential role in 
regulating the gut microbial composition. Secondly, some primary bile salts are functionally converted 
by gut bacteria into secondary bile acids, then reabsorbed into the circulation system and in the liver 
converted back to the primary bile salts. Circles filled with green colour show primary bile salts while 
secondary bile acids are shown as red-filled circles. Adapted from (Li et al. 2016) 

 

When compared with BAs, BSs are less hydrophobic and more soluble in the small intestine. 

They, therefore, can act as emulsifiers by providing access for lipases to perform fat digestion. 

The vast majority (95%) of primary BAs are absorbed back via enterohepatic circulation 

pathway in the ileum, the third and the final section of the small intestine. Meanwhile, the 

remaining 5% are bio-transformed into secondary BAs or excreted to faeces (Mullish et al. 

2018). Secondary BAs are BS derivatives having fewer functional groups and obtained through 

dehydroxylation, dehydrogenation or epimerisation (Dawson & Karpen 2015). An example of 

such a biotransformation process is shown in Figure 3. 
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Figure 3. An overall scheme of primary bile salt (BS) biotransformation process in the large intestine. It 
starts with primary BS deconjugation, done by bacterial extracellular BS hydrolase (Bsh). Primary bile 
acids (BAs) are then transported into bacterial cells using BaiG membrane transporter, which is not 
shown in the scheme. The following intracellular modifications include BA conjugation with coenzyme A 
(CoA) followed by its oxidation. In the next step, CoA is transferred from BA to cholate. The last 
biotransformation steps are three reduction steps. Key intermediate metabolites are denoted in bold, 
the associated gene names are indicated in italics, and the other reactants/products are meant in regular 
font style. 
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The scheme suggests that BS biotransformation is beneficial to gut bacteria by providing the 

ability to ensure the redox balance. Although secondary BAs are more hydrophobic and 

therefore more toxic to gut microbiome and the host than primary ones, they mediate the host 

metabolic pathways using receptor signalling, including farnesoid X receptor (FXR), the liver 

X receptor (LXR), the G-protein coupled bile acid receptor TGR5 and vitamin D receptor 

(VDR) (de Aguiar Vallim et al. 2013). Most secondary BAs and BSs are reabsorbed by the host 

and transported to the liver, where they are converted back to the primary BSs. 

 

Kefir and its microbial community 
Human beings have utilised milk fermentation for thousands of years. This technology offers 

various beneficial properties to dairy products, such as extended shelf life, higher digestibility, 

enriched flavour and nutritional composition. Although fermented milk has been spontaneously 

made with empirical cultures for centuries, the research pioneered by Pasteur and Metchnikoff 

allowed to decipher the fermentation process and standardise the production for several dairy 

products (Kroger et al. 1992). Microbial fermentation starter cultures depend on the target dairy 

product, and lactic acid bacteria (LAB), including genera of Lactobacillus, Lactococcus and 

Leuconostoc, are always involved in the fermentation process of milk and other beverages 

(Oberman & Libudzisz 1998). However, LAB are seldom accompanied by acetic acid bacteria 

(AAB), yeasts or moulds. 

Kefir is a fermented milk drink obtained using a mesophilic symbiotic culture of bacteria and 

yeasts (SCOBY) as inoculum. It is commonly produced from cow’s, sheep’s or goat’s milk. A 

kefir SCOBY, also known as kefir grains, is a microbial cauliflower-like structure comprising 

a matrix of polysaccharides, proteins and lipids which embed microbes into a biofilm (Ninane 

et al. 2005). The most common microbial species appearing in kefir grains are LAB (e.g. genera 

Lactobacillus, Lactococcus, Leuconostoc, Bifidobacterium), AAB (e.g. genera Acetobacter, 

Gluconobacter) and yeasts (e.g. Kluyveomyces marxianus, Saccharomyces cerevisiae, 

Kazachstania unispora) (Prado et al. 2015). The size of kefir grains grow in each milk 

fermentation cycle (Leite et al. 2013; Lopitz-Otsoa et al. 2006). Kefir is generally produced 

overnight at room temperature. Its production process is illustrated in Figure 4. 
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Like milk, kefir grains are mostly populated by LAB, but their genus level composition differs. 

Although Streptococcus spp. is the most dominant LAB in both environments, kefir grains 

contain more bacterial species from genus Lactobacillus than Leuconostoc. Kefir grains have 

also been reported to have a higher fraction of yeasts and a lower fraction of other species than 

milk. A kefir SCOBY is very stable and robust against contaminant species, mainly from 

Pseudomonas and Escherichia genera. Due to rapid acidification and kefir SCOBY species 

spread to milk, the kefir microbiological composition becomes more like kefir grains than milk. 

The nutritional profile of kefir depends on milk type and fermentation conditions, but when 

compared with unprocessed dairy, it is usually enriched with free amino acids, lipids (i.e. 

acylglycerols), carbohydrates (i.e. glucose, galactose), free fatty acids, vitamins (i.e. A, B, C, 

K), minerals (i.e. magnesium, calcium, phosphorus), ammonium, carbon dioxide, ethanol, 

acetate, biogenic amines (i.e. cadaverine, putrescine, spermidine) and flavour compounds (i.e. 

lactate, acetate, pyruvate, butyrate, diacetyl, acetaldehyde) (Rosa et al. 2017). Such a wide 

variety of nutrients is achieved by kefir microbial culture, whose major functional groups are 

summarised in Table 1. 

 

 

 

 

milk 

kefir 

grains 

kefir 

Figure 4. Kefir production scheme and the microbial composition of cow’s milk, kefir grains and kefir 
obtained from cow’s milk. The colours in the circle graphs denote species in the following categories: 
(i) lactic acid bacteria (LAB): Streptococcus spp. (blue), Lactobacillus spp. (orange), Leuconostoc spp. 
(grey); (ii) yeasts (yellow); (iii) other species (light blue). No composition data were available in (i) milk 
for Lactococcus spp. and yeasts; (ii) kefir grains and kefir for Leuconostoc spp. and other species. It 
was therefore assumed that in all such cases the abundance was equal to 1%. Figure generated using 
data from (Quigley et al. 2013; Simova et al. 2002). 
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Table 1. The major microbial functional groups of kefir culture. 

Microbial Group Function Result References 

Homofermentative 

LAB 

Ferment lactose into lactate A lower, slightly 

acidic pH, 

preventing the 

growth of pathogens 

(Issa & 

Tahergorabi 

2019) 

Lactobacillus 

kefiranofaciens 

Produces kefiran Facilitates the 

growth of kefir 

grains 

(Zajšek et al. 

2011) 

Heterofermentative 

LAB 

Ferment lactose into lactate, 

ethanol and CO2 

Antimicrobial 

activity for LAB due 

to CO2 

(Vardjan et 

al. 2013) 

Leuconostoc 

mesenteroides, 

Lactococcus lactis 

Ferment citrate into aroma 

compounds diacetyl and 

acetoin 

Kefir with enriched 

flavour 

(Leite et al. 

2013) 

AAB Ferment lactose to acetate, 

produce vitamin B 

Provide vitamins 

needed for other 

species to grow 

(Rea et al. 

1996) 

Propionibacteria Ferment lactose into 

propionate, ethanol and CO2 

Kefir enriched with 

propionate, which 

contributes to the 

lower cholesterol 

level once consumed 

(Issa & 

Tahergorabi 

2019) 

Fungi Hydrolyse milk proteins into 

amino acids, breakdown milk 

fats into fatty acids, synthesise 

complex B vitamins, and 

aroma compounds 

Provide nutrients for 

other species to 

grow, kefir with 

enriched flavour 

(Demir 2020; 

Lopitz-Otsoa 

et al. 2006) 
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Kluyveromyces marxianus: a promising cell factory with 
controversial traits 

A non-conventional yeast Kluyveromyces marxianus, also recognised as Candida kefyr, is an 

aerobic homothallic organism known of its fast growth, thermotolerance and ability to utilise a 

wide range of sugars. Depending on the strain, K. marxianus has multiple chromosomes ranging 

from 6 to 12. Their genome sizes vary from 10.3 to 13.3 million base pairs (Mbp) but have a 

consistent guanine-cytosine (GC) content, ranging between 40.0-40.8%. Unlike its sister 

species Kluyveromyces lactis, K. marxianus is highly polymorphic and may have haploid, 

diploid or even triploid genome (Ortiz-Merino et al. 2018). A phylogenetic tree featuring 

Saccharomyces cerevisiae and other species from Kluyveromyces genus is shown in Figure 5. 

 

 

Figure 5. Evolutionary relationships between K. marxianus and other yeasts. The tree shows the 
phylogenetic relations between the genus Kluyveromyces and Saccharomyces cerevisiae. Some key 
phenotypic traits are also included in the table for comparison. Adapted from (Lane & Morrissey 2010) 

 

While K. marxianus and K. lactis exhibit the fastest growth rate and distinctive lactose 

hydrolysation attribute, only K. marxianus is thermotolerant and able to assimilate inulin. 

However, K. marxianus does not metabolise cellulose and maltose due to the absence of α-

galactosidase. This yeast is also known as Crabtree negative. 

Since K. marxianus has been isolated mainly from dairy products, it contains GRAS (Generally 

Regarded as Safe) and QPS (Qualified Presumption of Safety) status and is therefore suitable 

for applications in the food and pharma industry. However, the past studies suggested a 

controversial image towards its impact on human health. Whereas B0399 strain was recognised 

as probiotic (Maccaferri et al. 2012), K. marxianus was reported to cause 0.2% of invasive 

candidiasis infection cases (Dufresne et al. 2014). 

Thermotolerance, fast growth, ability to metabolise various sugars and high protein secretion 

capacity make K. marxianus a promising microbial cell factory proteins (Fonseca et al. 2008; 

Lane & Morrissey 2010). This species was therefore successfully applied in numerous studies 

for the production of the endogenous enzymes including inulinase (Bender et al. 2006), β-

Species
Lactose 

assimilation
Inulinase μmax, h

-1 Glucose 

fermentation

Maximum 

temperature, °C 

Saccharomyces cerevisiae - - 0.37 + 35

Kluyveromyces aestaurii - - n/a + 35

Kluyveromyces nonfermentans - - n/a - 42

Kluyveromyces wikerhamii - - 0.43 + 37

Kluyveromyces lactis + - 0.50 + 37

Kluyveromyces marxianus + + 0.60 + 52

Kluyveromyces dobzhanskii - - n/a + 35
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galactosidase (Bansal et al. 2008), β-glucosidase (Barron et al. 1995) and β-xylosidase (Rajoka 

& Khan 2005). 

 

Computational tools for species annotation and analysis 
Next-generation sequencing. The rapid progress in high-throughput genome sequencing 

technologies significantly reduced sequencing costs, so that the ability to apply the sequencing 

is now in reach for individual research groups at an affordable price. The current sequencing 

technologies are known as next-generation sequencing (NGS), also referred to as the second 

generation of sequencing. One can use NGS methods to collect different omics data types, such 

as genomics, transcriptomics, epigenomics, for a given organism. NGS is also amenable in 

metagenomic analysis, allowing to identify and characterise microbial species from microbial 

communities of soil, seawater, food and the human gut. Figure 6 shows a typical workflow for 

NGS analysis. 
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Figure 6. A generalised pipeline for (meta)genome annotation from whole-genome shotgun (WGS) 
sequencing data. Blue colour denotes metagenomic approach, green – approach based on de novo 
genome assembly, grey – a hybrid approach involving reference-based assembly and de novo assembly 
for unmapped reads. OTU, operational taxonomic unit; ORF, open reading frame; tRNA, transfer RNA; 
rRNA, ribosomal RNA; nDNA, nuclear DNA; mtDNA, mitochondrial DNA. 

 

Similar to traditional Sanger sequencing, NGS methods rely on procuring polynucleotide chain 

fragments up to 500 base pairs long through the massive parallelisation. For Eukaryotic species, 

the total number of the sequenced nucleotides should be at least 150 times higher than the 

estimated target genome size. However, even though such data may provide a detailed insight 

into the physiology and metabolic capabilities for the target species, the additional experiments 

may still be needed to obtain the complete genome. This includes the identification of telomeric 

regions and the gaps indicating non-sequenced regions. Sanger sequencing is indispensable to 

close such gaps due to its higher accuracy than NGS. If gap closing is not considered, such 

sequencing approach is referred to as whole-genome shotgun (WGS).  



 

13 

 

Quality trimming. The generation of high-throughput NGS data requires the appropriate in 

silico tools for evaluation and processing. Computational tools like FastQC (Andrews & others 

2010) and MultiQC (https://multiqc.info/) are indispensable for the initial assessment of the 

newly generated raw reads. In addition to reporting the overall data quality, it also checks for 

the adapter and contaminant sequences by checking their overall enrichment. Based on these 

results, one can estimate the genome size, thereby performing the adapter and quality trimming 

using trimmomatic (Bolger et al. 2014) and BBMap (Bushnell 2014) software. Regarding the 

paired-end data, both programs also identify the paired and unpaired reads (singletons) and then 

export them into separate files. Therefore, it is recommended to check the pre-processed data 

and make sure that adapter and other contaminant sequences are removed by using 

FastQC/MultiQC. 

Genome assembly. In this step, the short reads are used as input to reconstruct the target 

genome. This can be achieved by using de novo or reference-based assembly tools, listed in 

Table 2. 

  

https://multiqc.info/
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Table 2. A list of the commonly used genome assembly software. 

Name Algorithm 

Type 

Assembly 

Type 

Input 

Reads 

Reference 

ABySS De Bruijn 

Graph 

De novo Paired-end, 

single-end 

(Jackman et al. 2017) 

ALLPATHS-LG Unipath 

Graph 

De novo Paired-end, 

single-end 

(Gnerre et al. 2011) 

MaSuRCA Hybrid De novo Paired-end, 

single-end 

(Zimin et al. 2013) 

MEGAHIT De Bruijn 

Graph 

De novo Paired-end, 

single-end 

(Li et al. 2015) 

MIRA Hybrid De novo, 

reference-

based 

Paired-end, 

single-end 

(Mira et al. 2014) 

PERGA Greedy De novo Paired-end, 

single-end 

(Zhu et al. 2014) 

SGA String 

Graph 

De novo Paired-end (Simpson & Durbin 2012) 

SOAPdenovo De Bruijn 

Graph 

De novo Paired-end, 

single-end 

(Luo et al. 2012) 

SPAdes De Bruijn 

Graph 

De novo Paired-end, 

single-end 

(Bankevich et al. 2012) 

SSAKE Greedy 

 

De novo Paired-end, 

single-end 

(Warren et al. 2007) 

Velvet De Bruijn 

Graph 

De novo Paired-end, 

single-end 

(Zerbino 2010) 

 

The resulting genome consists of a number of continuous DNA fragments, i.e. scaffolds, and 

its contiguity can be checked by using N50 and L50 metrics. Provided the list of the scaffolds 

sorted by length, the N50 statistic is defined as the length of the shortest scaffold which together 

with the longer scaffolds comprise 50% of the total scaffold length while L50 indicates the 

number of such scaffolds. In general, the assembled genome with the acceptable quality should 

have N50 higher than 5000 base pairs (bp) and L50 should not exceed 500. However, in addition 
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to contiguity, the assembled genome should also be assessed for completeness. Tools like 

QUAST (Gurevich et al. 2013) and BUSCO (Simao et al. 2015) calculate the number of 

universal single-copy genes, which are expected to be found in the assembly. A high-quality 

assembly should have as many such genes as possible. These results can be used as an indicator 

to tweak the parameter settings for genome assembly software. 

Gene prediction and functional annotation. To facilitate gene prediction process, one should 

firstly annotate repetitive DNA sequences, such as low complexity regions and transposable 

elements, with programs RepeatMasker (Smit et al. 2015) or RepeatModeler (Smit & Hubley 

2015). Open reading frames (ORFs) can be identified with prediction tools like AUGUSTUS 

(Stanke et al. 2008) and  GeneMark (Ter-Hovhannisyan et al. 2008) while tRNAscan-SE (Lowe 

& Eddy 1997) and RNAmmer (Lagesen et al. 2007) are packages to locate tRNAs and rRNAs 

respectively. Once all predictions are complete and do not overlap in the genome, a ploidy 

check should be performed by ploidyNGS (https://github.com/diriano/ploidyNGS) or by 

clustering the predicted protein sequences with, e.g. CD-HIT (Fu et al. 2012). A significantly 

lower protein cluster number than the predicted proteins count indicates that the given species 

may be polyploid, therefore requiring manual curation for scaffolds before proceeding with 

gene prediction. It is also essential to identify the longest scaffolds, which do not have any 

ORFs predicted as they may be parts of mitochondrial DNA (mtDNA), which should be 

annotated separately with MITObim due to the different codon usage (Hahn et al. 2013). 

Protein annotation can be performed through Gene Ontology (GO) terms, EuKaryotic 

Orthologous Groups (KOGs) or other database-specific terms, based on sequence similarity. 

Metabolic modelling. Genome-scale metabolic models (GEMs) are valuable systems biology 

platforms as they allow to combine genome annotation, cultivation and other experimental data 

for a given species into a whole-cell metabolic network. This information is arranged in 

stoichiometric and gene-reaction matrixes and together with reaction constraints provide a 

comprehensive framework about gene-protein-reaction (GPR) associations and metabolic 

capabilities for a given species. Such a model is amenable for the further metabolic potential 

investigation through steady-state simulations, where only the biomass and several essential 

nutrients may be imbalanced. Flux balance analysis (FBA) is the most commonly used method 

in such simulations (Orth et al. 2010). Reaction constraints can be further modified according 

to simulated conditions, allowing to predict the metabolic outcomes upon these perturbations. 

GEMs have been successfully used to design strains and evaluate the cell capabilities under 

different conditions (Saha et al. 2014; Thiele & Palsson 2010). 

 

  

https://github.com/diriano/ploidyNGS
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Part I: Comparative functional analysis of bile acid 
metabolism 

Paper I: Metagenomic study of bile acid biotransformation 
 

OBJECTIVES 

This study aimed: 

• To identify bile acid biotransformation homologous proteins for gut microbial species 

and estimate their distribution at the phylum level 

• To compare the bile acid biotransformation homologues between healthy and diseased 

subjects 

• To compare primary and secondary bile acid abundances between healthy and diseased 

subjects 

 

MOTIVATION 

The previous studies hinted the relation between the human gut microbiome dysbiosis and 

altered bile acid levels (Marcobal et al. 2013; Wahlstrom et al. 2016, 2017). Although the 

efforts were made to analyse bile acid metabolism and its contribution to the human gut 

microbiome (Gothe et al. 2014; Jones et al. 2008), these analyses comprised only the partial 

sets of bile acid biotransformation gene types. The study shown in this section was therefore 

aimed to identify all the known bile acid biotransformation homologues in the human gut 

microbial species and provide the comprehensive insight into microbial-mediated bile acid role 

in the human gut microbiome. The work was based on metagenomic analysis for healthy and 

inflammatory bowel disease (IBD) patients, given that IBD patients had different gut 

microbiome composition when compared to the healthy ones (Jansson et al. 2009; Le Gall et 

al. 2011). 

ANALYSIS, RESULTS AND DISCUSSION 

I. Identification of bile salt biotransformation protein homologues 

The starting point to identify bile salt bioprocessing protein (BSBP) homologues started with 

picking the list of experimentally verified BSBPs as a reference from Clostridium scindens and 

other bacterial species from the same genus. The identification of candidate BSBP homologues 

started with the BLASTP (Altschul et al. 1990) search by querying the reference BSBPs against 

UniProt (“UniProt: a worldwide hub of protein knowledge” 2019) database. Since this database 

already included proteins which were known as the ones having or not having the bile acid 

bioprocessing activity, they were used as the positive and negative controls when the threshold 

values for hit significance was optimised for each reference BSBP. For example,  proteins from 
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Eggerthella lenta were considered as positive controls (Harris et al. 2018; Hirano & Masuda 

1981), and proteins from Helicobacter and Prevotella genera were used as negative controls 

(Han et al. 1996; Itoh et al. 1999; Yokota et al. 2012). After that, the functional domains were 

identified for putative BSBP homologues during the HMM search (Eddy 2011) against Pfam 

v31.0 (Finn et al. 2014) database. The remaining set of putative BSBP homologues was then 

queried against eggNOG v4.5.1 database using eggnog-mapper local installation (Huerta-Cepas 

et al. 2017) which ran the homology search using DIAMOND blastp (Buchfink et al. 2015). 

The putative BSBP homologues that had the same protein domains and similar functional 

annotation data from eggNOG were extracted as the final reference database, comprising 10 

613 BSBP homologues. These homologues had their taxonomic lineage annotated from 

UniProt and summarised into phylum-specific occurrence results (Table 3). 

 

Table 3. Distribution of bile acid biotransformation gene types in several bacterial phyla. The values 
show the total number of strains in each category.  

Phylum BaiA BaiB BaiCD BaiE BaiF BaiG BaiH BaiI BaiJ BaiK BaiL Bsh HSD 

Actinobacteria 86 317 25 538 146 475 67 0 15 68 44 36 182 

Bacteroidetes 158 1 2 1 0 1 2 0 3 0 23 4 264 

Firmicutes 385 13 435 20 96 244 424 2 130 92 576 889 409 

Fusobacteria 5 0 2 0 0 0 2 0 44 0 0 0 11 

Proteobacteria 114 152 92 104 460 73 85 0 31 534 84 2 598 

Verrucomicrobia 1 0 0 1 0 0 0 0 0 0 2 0 2 

 

The results suggested that many gut microbial species did not have all bile acid-inducible (Bai) 

and bile salt hydrolase (BSH) homologues when compared to C. scindens. On the other hand, 

one may hypothesise that the species which contained only a few BSBPs contained the proteins 

specific to substrates similar to bile acids. The list of putative BSBPs was also evaluated in the 

species level. Gut microbial strains having more than half bile BSBP categories were included 

in Figure 7. 
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Figure 7. Prevalence of bile salt biotransformation protein homologues in bacterial strains, where more 
than half of the reference proteins were identified. The grey and blue colour indicate the absence and 
presence of the protein homologue, respectively. 

 

The heatmap suggested that strains from the same genus had the similar pattern of BSBP 

homologues, but no species had all BSBP homologues appearing in bai operon from C. 

scindens. 

II. Comparative analysis for bile acid biotransformation genes between healthy 

and diseased groups 

This analysis involved the shotgun faecal metagenomic data mapping to corresponding genes 

for BSBPs identified in the earlier step. Such an approach allowed to obtain the differential 

abundance values for bile acid biotransformation genes (BSBGs). Both metagenomic datasets 

comprised healthy, IBD cohorts and were downloaded from European Nucleotide Archive at 

EMBL-EB under accession numbers PRJEB2054 and PRJNA389280. Firstly, the quality 

assessment was conducted for metagenomic reads with FastQC, and the singleton metagenomic 

reads were removed using BBMap. The abundance values for BSBGs were calculated with 

FMAP (Kim et al. 2016), which mapped genes to Kyoto Encyclopedia of Genes and Genomes 

(KEGG) (Ogata et al. 1999) pathway ko00121 by UniRef mapping to KEGG Orthologies 

(KOs). In the following step, the number of mapped reads was normalised in respect of the total 

number of paired reads in the corresponding metagenomic sample. This pipeline allowed to 

calculate BSBGs abundance in metagenome samples and compare bile acid biotransformation 

potential in gut microbiome between healthy and IBD subjects (Figure 8).  
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Figure 8. Quantitative comparison of normalised abundance of total BSBGs between healthy and IBD 
individuals in (a). Spanish cohort, and (b). American cohort. The shape refers to the kernel probability 
density of the data at different values. The boxplots inside the violin plot represent the interquartile range 
between the first and third quartiles with the median line inside the boxes, whereas the whiskers indicate 
the minimum and maximum values from the data distribution. The asterisks on the top indicate ns: p 
> 0.05, *: p < = 0.05, **: p < = 0.01, ***: p < = 0.001, ****: p < = 0.0001 (Mann-Whitney Wilcoxon test). 
IBD subjects diagnosed with subtype Crohn’s disease and Ulcerative colitis is abbreviated as CD and 
UC respectively. 

 

Spanish cohort (METAHIT project) comprised metagenomic data for 14 healthy and 25 IBD 

subjects, for which the abundance for BSBGs was calculated. The results suggested that the 

lower bile acid biotransformation potential in IBD patients than in a healthy group, since the 

mean for normalised BSBGs abundance values (7.8E-5) was lower than for healthy controls 

(1.1E-4). These findings coincided with the findings from another study which approached the 

same metagenomic dataset (Labbe et al. 2014). No comparisons between IBD subtypes (i.e., 

Ulcerative colitis (UC) and Crohn’s disease (CD)) were considered due to having too few CD 

samples. Correspondingly, American cohort (iHMP project) comprised metagenomic data for 

18 healthy and 65 IBD subjects, for which the abundance for BSBGs was calculated, but no 

significant differences between the healthy and IBD subject groups were found. The follow-up 

comparison of the healthy group against IBD subtypes showed the significantly lower BSBGs 

abundance in CD subjects (3.7E-5) than in healthy subjects (4.3E-5), suggesting the 

correspondingly decrease in bile acid bioprocessing potential. 

The comparative analysis of BSBG abundance was also performed in several taxonomic levels. 

Results indicated that the most prevalent phylum was Firmicutes, coinciding with the literature 

data (Jones et al. 2008). The BSBG abundance values calculated in the phylum level are shown 

in Figure 9 shows the BSBG abundance values calculated in phylum level between healthy and 

diseased subject groups. 
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Figure 9. Quantitative comparison of normalised abundance of taxonomic lineage-specific BSBGs 
between healthy and IBD individuals in the American cohort. The shape refers to the kernel probability 
density of the data at different values. The point range refers to the mean and error range value of the 
data distribution. IBD subjects diagnosed with subtype Crohn’s disease and Ulcerative colitis is 
abbreviated as CD and UC respectively. 

 

The results showed that the CD patient group had fewer BSBGs in total from Firmicutes and 

Actinobacteria than the healthy group. It was, therefore, decided to check the differences of 

BSBG abundances in family and genus levels of Firmicutes, which is the phylum with the most 

abundant BSBGs. The analysis revealed that BSBGs originating from Enterococcaceae, 

Eubacteriaceae, and Ruminococcaceae had a lower prevalence in CD and UC subject groups 

compared to the healthy group. In contrast, Clostridiaceae and Eggerthellaceae BSBGs had the 

lower numbers only in CD subject group versus healthy group. Correspondingly, the genus 

level analysis showed that BSBGs abundances originating from genera Enterococcus, 

Eubacterium, and Ruminococcus were lower in CD and UC subject groups when compared to 

a healthy group. BSBGs from Clostridium and Coprococcus genera had lower abundance 

values in CD subjects in comparison to the healthy group. The findings in genus-level analysis 

suggested that genera mentioned above could be relevant descriptors of bile acid 

biotransformation potential in IBD subject group, as also suggested in the previous study 

(Martin et al. 2018). 
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III. Comparative bile acid metabolomics analysis between healthy and diseased 

groups 

To check if IBD patients had significantly different levels of primary and secondary bile acids, 

metabolomics data from iHMP project was analysed. The levels for each bile acid were 

calculated as the proportion to the total bile acid level in the corresponding sample. The results 

showing the levels for various primary and secondary bile acids are included in Figure 10. 

 

 

Figure 10. Quantitative comparison of bile acid metabolites between healthy and IBD subjects of 
American cohort. The shape refers to the kernel probability density of the data at different values. The 
point range refers to the mean and error range value of the data distribution. The asterisks on the top 
indicate ns: p > 0.05, *: p < = 0.05, **: p < = 0.01, ***: p < = 0.001, ****: p < = 0.0001 (Mann-Whitney 
Wilcoxon test). IBD subjects diagnosed with subtype Crohn’s disease and Ulcerative colitis is 
abbreviated as CD and UC respectively. 

 

Regarding the most abundant bile acids, primary bile acid (cholate) was found in higher levels 

in IBD patient group while secondary bile acids (deoxycholate and lithocholate) were found in 

lower levels when compared to the healthy group. Since such findings were expected for the 

cases in decreased bile acid biotransformation potential as previously shown in IBD patient 

group, it can be concluded that the current results are in line with the findings of metagenomic 

data analysis (Figure 8). 
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Part II: In silico genomics analysis for yeast 
Kluyveromyces marxianus 

Paper II: Comparative genomics of 12 K. marxianus strains 
 

OBJECTIVES 

This study aimed: 

• To assemble genomes for the two newly sequenced K. marxianus isolates 

• To predict genes for the two assembled and the other eight published K. marxianus 

isolates 

• To functionally annotate the newly annotated genes for ten K. marxianus strains and the 

genes for the other two published strains 

• To perform the phylogenetic analysis for the 12 annotated strains 

• To identify the K. marxianus pangenome and perform its functional analysis  

 

MOTIVATION 

Kluyveromyces marxianus is yeast with promising potential as a cell factory. Upon having two 

newly sequenced K. marxianus isolates from kefir grains, it seemed reasonable to analyse these 

isolates in the context of all known K. marxianus isolates. The previous study included the 

analysis for multiple K. marxianus strains in ploidy level (Ortiz-Merino et al. 2018). However, 

there were no computational approaches which were aimed to reconstruct the pangenome for 

K. marxianus and analyse it through the functional context. The reported results shown in this 

section can be utilised as a starting point towards more specific functional analysis. 

ANALYSIS, RESULTS AND DISCUSSION 

I. Genome assembly for two K. marxianus isolates 

Two K. marxianus isolates, namely Olga-1 and Olga-2, were sequenced using Illumina HiSeq 

2000 platform. The sequencing data comprised the 100 bp long pair-end reads having the insert 

size between 250 bp and 300 bp. FastQC was utilised to check the quality for the reads, the 

quality trimming was conducted using trimmomatic. Several de novo tools were used to 

assemble the reads, including ABySS, MIRA, SOAPdenovo and SPAdes. The testing for k-mer 

length value was applied for De Bruijn graph-based assembly tools. The tested values for k-

mer length varied between 41 and 95. An evaluation for the resulting genome assemblies was 

made based on two criteria: genome contiguity and gene completeness. The genome contiguity 

was checked with QUAST while the gene completeness for single-copy orthologs was 

evaluated using BUSCO. The testing results showed that the most single-copy orthologs while 
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retaining the relatively high genome contiguity could be achieved when using the ABySS 

assembly tool and setting the value for k-mer length to 49. This setting was applied for both 

strains, and the corresponding assemblies were kept for the further analysis steps. 

II. Gene prediction for ten K. marxianus strains 

In addition to the two newly sequenced K. marxianus strains, gene prediction was sought for 

the other eight K. marxianus strains downloaded National Center for Biology Information 

(NCBI), including B0399, CBS4857, DMB1, IIPE453, KCTC17555, LHW-O, NRRLY-6860 

and UFS-Y2791. RepeatMasker and RepeatModeler were used to identify repeat regions in the 

genomes. Protein coding sequences (CDSs) and transfer RNAs (tRNAs) were predicted with 

the funannotate predict function from funannotate (Palmer & Stajich 2019). The protein 

evidence needed for this process was obtained from Swiss-Prot. DIAMOND (Buchfink et al. 

2015) was used to align the protein evidence to genomes and alignments were later refined by 

Exonerate (Slater & Birney 2005). After that, the alignment results were used as input for ab 

initio gene prediction tools GeneMark-ES and AUGUSTUS. EVidenceModeler (Haas et al. 

2008) was utilised to combine the predicted gene models while bedtools (Quinlan & Hall 2010) 

allowed checking these models for the length, gaps and transposable elements. The prediction 

for tRNAs was achieved with tRNAscan-SE. 

III. Functional annotation for 12 K. marxianus strains 

Functional annotation was sought for ten K. marxianus strains having the newly predicted 

protein-coding sequences and for the two other strains downloaded from NCBI: DMKU3-1042 

and NBRC1777. The annotation for the latter strains included only the identification for 

EuKaryotic Orthologous Groups (KOGs) using eggnog-mapper (Huerta-Cepas et al. 2017) 

tool. 

The functional annotation was based on predicted protein sequences, which were used as input 

to the funannotate annotate function from funannotate. Gene names for proteins were fetched 

from the best hits during DIAMOND blastp search against Swiss-Prot proteins. The annotation 

for peptidases and biosynthetic gene clusters was obtained during DIAMOND blastp search 

against MEROPS v12.0 (Rawlings et al. 2018) and MIBiG v1.4 (Medema et al. 2015) databases 

respectively. The function hmmsearch from HMMER (Eddy 2011) allowed to identify and 

annotate protein families from Pfam v32.0 and carbohydrate-active enzymes (CAZymes) from 

dbCAN v7 (Yin et al. 2012). Also, GO, and InterPro protein families were annotated using 

InterProScan local installation (Jones et al. 2014). The annotation for KOGs was obtained from 

the eggNOG database using eggnog-mapper. Phobius (Kall et al. 2005) and SignalP were used 

to identify transmembrane and secreted proteins, respectively. Secondary metabolite 

biosynthetic gene clusters were located and annotated with antiSMASH local installation 

(Medema et al. 2011). 
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IV. Phylogenetic analysis for 12 K. marxianus strains 

For K. marxianus phylogenetic analysis, the proteome for Kluyveromyces lactis NRRLY-1140 

(downloaded from NCBI) was chosen as the outgroup species. The phylogenetic tree was built 

using the proteome from K. lactis and 12 K. marxianus strains as input in the funannotate 

compare function from funannotate. Proteinortho (Lechner et al. 2011) allowed to classify 

proteins into orthologous groups. The results showed that all genomes shared 1 068 single-copy 

genes. The corresponding protein sequences were used as input in multiple sequence alignment 

with MAFFT (Katoh & Standley 2013). Poorly aligned regions were trimmed with trimAl tool 

(Capella-Gutiérrez et al. 2009). The remaining sequences were concatenated into one sequence 

having 579 506 amino acids. RAxML (Stamatakis 2014) was used to generate 100 maximum 

likelihood phylogenetic trees. The PROTGAMMALG model was considered as the amino acid 

substitution model, as suggested by the maximum likelihood criterion. Bootstrap support values 

were calculated upon 100 iterations, including resampled data sets for each iteration. Figure 11 

comprises the maximum likelihood tree with the highest likelihood value and some statistics 

for the genomes. 

 

 

Figure 11. Maximum likelihood phylogenetic tree and genome information for Kluyveromyces marxianus 
strains, for which the whole genome sequencing data was available. The tree was based on the 
concatenated protein sequence containing 1 068 genes present in all genomes. Kluyveromyces lactis 
was chosen as an outgroup. The bootstrap support is provided from 100 iterations while the scale bar 
indicated the expected substitutions per site. The species written in bold were sequenced in the current 
study. The branch length for the outgroup was scaled down 100-fold. ORFs, open reading frames. 

 

The results showed that K. marxianus genomes were between 10.64 Mbp and 11.53 Mbp in 

size while two strains had the genomes longer than 11 Mbp. Regarding the GC content, K. 

marxianus B0399 had the lowest value (38.58%) while nine isolates had this ratio above 40%. 

Gene numbers of these strains differed between 4 720 and 5 202. The strain B0399 had the 

highest number of unique proteins (132) among all compared strains. Based on the phylogenetic 

tree, 11 of 12 K. marxianus strains could be classified into two clades. The first clade included 

eight strains appearing in the upper part of the figure, in which the members were isolated from 
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soil, crops, vegetables and yoghurt. Another clade comprised the strains isolated from dairy 

products: Olga-1, Olga-2 and B0399. Although one dairy isolate (CBS4857) appeared in the 

first clade, the suggested classification coincided with “A” and “B” haplotypes as described in 

K. marxianus ploidy variation study (Ortiz-Merino et al. 2018). 

V. K. marxianus pangenome identification and its functional analysis 

The orthologous groups (OGs) identified by Proteinortho in earlier step were used to identify 

K. marxianus pangenome and core genome (Figure 12). Among the 12 K. marxianus strains 

which comprised 60 368 protein sequences, the pangenome size was 5 804 OGs while the size 

for the core genome was 3 855 OGs. The results suggested that K. marxianus pangenome was 

of closed type. The ratio between the core genome and pangenome sizes (66%) was very similar 

to the same ratio for Saccharomyces cerevisiae (Li et al. 2019). 

 

 

Figure 12. The size of K. marxianus pangenome and core genome depending on the number of the 
strains compared. For the strain combinations below 12, the calculations were based on subsampling 
all the possible strain combinations for particular strains number. Dark blue dots denote pangenome 
while light blue dots show core genome sizes. OGs, orthologous groups. 

 

The pangenome, core and accessory genomes of K. marxianus were used for functional analysis 

involving KOGs (Figure 13). Regarding the distribution for the significant KOG categories, 

pangenome consisted of 26% metabolic, 29% information storage and processing, and 31% 

cellular processes and signalling KOGs. While the proportion for these same KOG categories 

was similar in core genome (27%, 28%, 32% correspondingly), the accessory genome had the 

higher part of KOGs related to information storage and processing (32%), having the smaller 
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part of metabolic (22%) and cellular processes and signalling KOGs (29%). Regarding the 

individual KOGs and their distribution between the core and accessory genomes, the majority 

of KOGs were included in the core genome, ranging between 72.96% and 91.68%. The most 

presented KOG categories in the core genome related to were lipid transport and metabolism 

(I) and nucleotide transport and metabolism (F), extracellular structures (W) while the most 

prevalent in the accessory genome were defence mechanisms (V) and translation, ribosomal 

structure and biogenesis (J) and inorganic ion transport and metabolism (P). 

 

 

Figure 13. The distribution of K. marxianus proteins assignment to different EuKaryotic Orthologous 
Groups (KOGs) across its pangenome, core genome and accessory genome. KOGs were sorted by 
their average occurrence in pangenome. The letters in horizontal axis denote the following functional 
KOGs: (i) related to metabolism: C – energy production and conversion, E – amino acid transport and 
metabolism, F – nucleotide transport and metabolism, G – carbohydrate transport and metabolism, H – 
coenzyme transport and metabolism, I – lipid transport and metabolism, P – inorganic ion transport and 
metabolism, Q – secondary metabolites biosynthesis, transport and catabolism; (ii) related to cellular 
processes and signalling: D – cell cycle control, cell division, chromosome partitioning, M – cell 
wall/membrane/envelope biogenesis, O – posttranslational modification, protein turnover, chaperones, 
T – signal transduction mechanisms, U – intracellular trafficking, secretion and vesicular transport, V – 
defence mechanisms, W – extracellular structures, Y – nuclear structure, Z – cytoskeleton; (iii) related 
to information storage and processing: A – RNA processing and modification; B – chromatin structure 
and dynamics, J – translation, ribosomal structure and biogenesis, K – transcription, L – replication, 
recombination and repair; (iv) poorly characterised: unknown function (S).   
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Paper III: Reconstruction and analysis of K. marxianus GEM 
 

OBJECTIVES 

This study aimed: 

• To reconstruct and validate the first GEM for K. marxianus 

• To use the reconstructed GEM for metabolic capabilities evaluation in stress conditions 

• To implement the continuous development for K. marxianus GEM 

 

MOTIVATION 

The decision to reconstruct the genome-scale model for K. marxianus was based on three 

reasons. Firstly, the genome features derived from Paper II showed the genetically determined 

physiological capabilities of the cell, but not their actual utilisation during homeostasis. 

Secondly, no published metabolic model in genome-scale was available for K. marxianus. 

Finally, only a few previous studies utilised GEMs to derive and compare temperature-specific 

models so that such an approach would provide the novel insight at systems level. The genome-

scale set of metabolic reactions was therefore comprised into iSM996, the first publicly 

available GEM for K. marxianus. This model allowed to predict the in silico growth from 

various substrates and performed well when predicting various carbon source utilisation and 

the growth rates under different conditions. Condition-specific GEMs were further generated 

by integrating transcription start site sequencing (TSS-Seq) and in silico YPD data into the  

iSM996, which is publicly available as a GitHub repository and is updated under a regular basis 

to ensure its functionality and compatibility with the conventional constraint-based metabolic 

modelling tools. 

 

ANALYSIS, RESULTS AND DISCUSSION 

I. Reconstruction and validation of iSM996 

a. Reconstruction of iSM996 

The semi-automatic iSM996 model reconstruction was based on K. marxianus DMKU3-1042 

proteome (NCBI accession PRJDA65233) and databases KEGG, MetaCyc (Caspi et al. 2018), 

TransportDB (Elbourne et al. 2017) and BRENDA (Schomburg et al. 2017). The template 

model used in this study was iOD907, the GEM for the species in the same genus 

Kluyveromyces lactis (Dias et al. 2014). The RAVEN Toolbox (Wang et al. 2018) was utilised 

to generate two draft models. The first draft model contained homologous reactions from 

iOD907 and was generated using the RAVEN function getModelFromHomology, which 

performed the bi-directional BLASTP search between K. marxianus and K. lactis proteomes 
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upon default threshold values (e-value 1E-30; identity 40%; alignment length 200). 

Spontaneous reactions and reactions associated with the short homologues (less than 250 amino 

acids) from the template model were also added to this draft model. The second draft model 

was generated using the RAVEN function getKEGGModelForOrganism, which applied the 

HMMER homology search while querying K. marxianus proteome against KO specific HMM 

sets upon default threshold value (e-value 1E-50). After that, this model was compartmentalised 

with the RAVEN function predictLocalization, which utilised WoLF PSORT (Horton et al. 

2007) protein scores as input. Metabolite names and reaction reversibility information was 

imported to this draft model from iOD907, Yeast 7.6 (Aung et al. 2013) and HMR2 

(Mardinoglu et al. 2014). The distinctive reactions from the second draft model were added to 

the first draft model while resolving all the metabolite compartmentalisation discrepancies in 

favour of the first draft model. The resulting model was considered for further reconstruction 

steps. 

Since the full biomass composition data was not available for K. marxianus, the corresponding 

information from iOD907 was fetched and modified with relevant bibliographic data where 

applicable. The mass composition for protein, carbohydrate, lipid, RNA and DNA content per 

gram cell dry weight (g/gDW) was integrated from the cultivation study (Fonseca et al. 2007). 

After that, stoichiometric coefficients for these biomass components were scaled-up to 

constitute exactly one gDW in biomass pseudo reaction. The cell wall carbohydrate 

composition for glucan, mannan and chitin was obtained from the cell wall study (Nguyen et 

al. 1998). Knowing the total carbohydrates mass part in one gDW, the mass for the remaining 

cell carbohydrates trehalose and amylose was calculated. The composition for nucleotides, 

deoxynucleotides and amino acids were calculated from the genome, transcriptome (including 

tRNA and rRNA) and proteome as described in the protocol (Thiele & Palsson 2010). No 

literature data was available for K. marxianus phosphate/oxygen ratio (P/O ratio), the growth-

associated maintenance (GAM) and the non-growth associated maintenance (NGAM), so the 

corresponding data from the iOD907 was implemented to the model. 

The semi-automatic gap filling was then performed to ensure that the model could produce all 

biomass components in Verduyn medium (Verduyn et al. 1992), which was considered as the 

minimal medium in the study. The primary gap-filling reaction sources were iOD907, Yeast 

7.6 models and KEGG. The candidate reactions for the gap-filling were identified using the 

RAVEN function fillGaps and were kept in the model if no contradictions in literature were 

found. 

The final iSM996 reconstruction steps involved the manual curation, where the efforts were 

made to implement K. marxianus literature data into the model. This included the addition of 

missing uptake pathways for several carbon (Lachance 2011) sources like inulin, L-arabinose 

and D-mannitol. Biosynthetic pathways were added for the known products, including 2-

phenylethanol, phenethyl acetate and ethyl acetate. The iSM996 model was also curated for 

gene associations, EC numbers (Bairoch 2000), metabolite names, reaction elemental/charge 

balance data. The existing gene-protein-reaction (GPR) rules were checked for the substrate, 

cofactor usage and sub-cellular localisation relevance. 

As a result, the final reconstructed metabolic network for K. marxianus contained the metabolic 

features imported from Yeast 7.6 (Aung et al. 2013), HMR2 (Mardinoglu et al. 2014), 
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BRENDA, TransportDB, KEGG and MetaCyc, however, the major part of the network was 

obtained from iOD907. In comparison with iOD907, iSM996 had higher genome coverage and 

more reactions occurring in the cytosol, albeit having fewer non-S. cerevisiae genes and 

reactions occurring outside the cell (Table 4). Both species shared 886 orthologous metabolic 

genes, thereby covering 97.7% iOD907, 88.9% iSM996 genes and resembling the pairwise 

similarity of their whole genomes (94%). The reconstructed model showed a noticeable 

increase in genome coverage and gene number since the decision was made to keep the genes 

in the model even from isolated subnetworks. Although it was not possible to connect such 

associated reactions to the main subnetwork during the reconstruction, these reactions still 

characterised the genetically determined metabolic features and can be re-wired to the main 

subnetwork upon the sufficient experimental evidence. The inclusion of such isolated 

subnetworks in iSM996 increased the blocked reactions percentage. It, therefore, seemed 

reasonable to compare iSM996 with the published model for phylogenetically close species 

with desirably more detailed literature knowledge available than K. marxianus. Yeast 8.3.4 

(Sánchez et al. 2019), the yeast consensus model for the very well-studied budding yeast 

Saccharomyces cerevisiae was considered for the comparison using the GEM test suite memote 

(Lieven et al. 2018). As a result, there was a small difference in respect of the blocked reactions 

percentage, being 23.73% for iSM996 and 17.14% for Yeast 8.3.4. Moreover, iSM996 

demonstrated higher overall consistency score than Yeast 8.3.4, being equal to 88 and 67, 

respectively. The higher score was due to the higher stoichiometric consistency and higher 

reactions percentage with mass balance. So, one could conclude that iSM996 is of similar 

quality like the yeast consensus model, which has been continuously refined since 2008. 
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Table 4. Comparison between Kluyveromyces lactis GEM iOD907 and Kluyveromyces marxianus GEM 
iSM996. 

 iOD907 iSM996 

Genes 907 (17.8%) 996 (20.1%) 

S. cerevisiae homologues 691 916 

Unique 216 80 

Reactions 2 180 1 913 

Extracellular 938 507 

Cytosol 853 974 

Mitochondria 359 390 

Endoplasmic Reticulum 30 42 

Metabolites 1 477 1 531 

Extracellular 313 191 

Cytosol 822 907 

Mitochondria 296 359 

Endoplasmic Reticulum 46 74 

 

Albeit iSM996 had higher genes number, it featured fewer reactions and metabolites than 

iOD907 (Figure 14a). The main reason for this decrease was because all cytosolic metabolites 

in iOD907 had their corresponding counterparts in extracellular space while also having 

transport reactions for these metabolites between mentioned two compartments. The list of 

extracellular metabolites was revised according to the yeast consensus model, which allowed 

to decrease the number of transportable cytosolic metabolites from 313 to 182.  

Regarding the featured metabolic pathways in iSM996, the most reactions linked to transport, 

exchange reactions and amino acid, lipid, carbohydrate metabolism (Figure 14b). The model 

contained 365 transport reactions between the cell and extracellular space and 140 reactions 

between intracellular compartments. 
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Figure 14. Overview of iSM996. (a) Comparison of genes, reactions and metabolites present in iSM996 
and template model (iOD907). Green colour indicates overlapping entities, blue – specific to iOD907, 
red – specific to iSM996. (b) Distribution of reactions in each metabolic part. 
 

b. Validation of iSM996 

The validation for iSM996 was done with FBA upon minimal medium constraints. The 

qualitative checks for the in silico growth in various carbon and nitrogen sources were 

performed and compared with the literature knowledge (Figure 15a). During such testing, the 

composition for the minimal medium was modified in a way that tested substrates would be the 

sole sources for carbon or nitrogen. The model could predict the in silico growth from various 

carbon sources, including glucose, galactose, D-xylose, sucrose, lactose, cellobiose and inulin. 

The growth could also be predicted in amino acid-free minimal medium, suggesting that the 

organism was capable of de novo synthesise all the necessary amino acids. However, no growth 

could be predicted when using L-lysine and cadaverine as the sole carbon sources. The 

LYSDEGII-PWY pathway for Saccharomyces cerevisiae in MetaCyc suggests the possible 

scenario for L-lysine degradation, showing the 6-step linear pathway from L-lysine to glutarate. 

Glutarate would then be converted to crotonoyl-CoA through two reactions, thereby reaching a 

fatty acid metabolic pathway. Regarding cadaverine, it is the product of L-lysine 

decarboxylation, but its further catabolism is unknown in fungi. However, one may suggest that 

cadaverine is converted to L-lysine through the carbon fixation and then processed through the 

LYSDEGII-PWY pathway like L-lysine. It was decided not to include these reactions due to 

the high uncertainty and since none of the candidate reactions was linked to any S. cerevisiae 

genes, making the homology search for K. marxianus impossible.  

The iSM996 model was also used to find the computational explanation, why the target species 

cannot assimilate the non-growth carbon sources (Figure 15a). An investigation suggested that 

D-gluconate and N−acetyl−D−glucosamine cannot be assimilated, since the model was unable 

to transport them into the cell. The model could not predict the decomposition for melibiose, 

trehalose, starch, and myo-inositol, because the organism lacked glycoside hydrolases for these 

substrates. Although the growth could be predicted upon L-arabinose, D-arabinose cannot be 

assimilated, since K. marxianus lacks the gene linked to the redox-driven L-arabinose 

isomerisation to D-xylulose through L-arabinitol as intermediate. The growth upon D-
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glucosamine as the only carbon source was not possible, because K. marxianus does not include 

glucosamine-6-phosphate deaminase like S. cerevisiae (Flores & Gancedo 2018). 

The growth rate accuracy in minimal media was also evaluated for the iSM996 model. This 

was done by fixing the substrate uptake rates and comparing in silico growth rates with 

experimental values. The simulations (Figure 15b) suggested the strong correspondence 

between predicted and experimental growth rates, mainly when the experimental growth rates 

were below 0.3 h-1. One may hypothesise that while the value for NGAM does not significantly 

impact the growth rates, the cell considers different mass proportion for biomass components 

and different GAM value. It was therefore not possible to re-use the same biomass composition 

in a wide range of the growth rates. The biomass reactions in GEMs are usually most relevant 

for the growth rates below 0.4 h-1 while to simulate the growth in higher growth rates, more 

specific experimental data for the biomass composition, GAM and NGAM values are needed. 

 

 

Figure 15. Validation results for iSM996 in minimal medium. (a) Comparison of the in silico growth for 
various carbon and nitrogen sources against literature data. Upon the simulations for nitrogen sources, 
glucose was considered as a carbon source. (b) Comparison of in silico and experimental growth rates 
for various carbon sources in minimal medium. The squared value of the Pearson correlation coefficient 
between experimental and predicted growth values was 0.9445.   
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II. Predicting K. marxianus metabolic capabilities in microaerobic and high-

temperature conditions with iSM996 

The iSM996 model was utilised to predict K. marxianus metabolic capabilities in microaerobic 

and high-temperature conditions. The model was therefore coupled with TSS-Seq data to 

deactivate reactions associated with inactive genes, thereby constructing the condition-specific 

models. Experimental data used in this analysis was obtained from Gene Expression Omnibus 

(GEO) (Edgar et al. 2002) under accession ID GSE66600. This dataset contained K. marxianus 

gene expression values from cultivation in rich medium: yeast extract peptone dextrose (YPD) 

and yeast extract peptone xylose (YPX). Four conditions were comprised in TSS-Seq dataset: 

30°C YPD shaking (30D), 30°C YPX shaking (30X), 30°C YPD non-shaking (30DS) and 45°C 

YPD shaking (45D). The data for 30X condition was not included in the analysis, because the 

essential KmXKS1 gene, responsible for D-xylose assimilation through D-xylulose 

phosphorylation was not active, thus making the model unable to predict growth. Nonetheless, 

all four conditions were used to identify the genes which were not active at least in one of four 

conditions. Consequently, three condition-specific models were obtained having the specific 

constraints for reactions linked with inactivated genes. For the more accurate and less 

speculative predictions, the genes which were inactive in all four conditions were not used to 

block the associated reactions. The gene was identified as inactive if it had zero expression 

values in all three replicates per condition. No threshold values for expression abundance values 

were implemented in this analysis. In total, TSS-Seq data was available for 988 from 996 genes 

in iSM996 while 115 genes were found inactive in at least one condition. 

The condition-specific models were utilised to predict the maximal production capacity for the 

main biomass components (Figure 16). The objective function was fixed to 90% of the maximal 

growth rate and then maximised for production for biomass components. The integration results 

showed that the most zero-flux reactions (638) could be observed in the 45D condition, whereas 

30D and 30DS correspondingly had 544 and 541 such reactions. The results also suggested the 

tighter regulation in 45D (80 genes turned off) than in 30D (24 genes turned off) and 30DS (15 

genes turned off) conditions. FBA simulations showed the auxotrophy for riboflavin in 30DS 

and 45D. Besides, the ferroheme auxotrophy was observed in the 45D condition. To fix 

feasibility problems for these models and make then amenable for the comparison of metabolic 

profiles, the assumption was made that riboflavin and ferroheme were available in the medium 

and could be transported into the cell. These modifications allowed to make all three condition-

specific models feasible and comparable to each other. 

Reduced cost analysis suggested that L-cysteine in all three conditions was the primary growth-

limiting substrate. The growth simulations also showed that K. marxianus could gather the 

amino acid pool for the same protein amount. The auxotrophies to L-arginine and L-histidine 

were found in 30D and 45D conditions. Meanwhile, the auxotrophies specific to the high 

temperature corresponded to the previously reported L-lysine and L-isoleucine auxotrophies 

(Yarimizu et al. 2013) and previously unobserved auxotrophies to L-alanine, L-phenylalanine 

and L-tyrosine. Given the inability to de novo synthesise seven amino acids at high temperature, 

the cell may conserve the precursor metabolites for these amino acids by allowing the higher 

flux through Embden–Meyerhof–Parnas (EMP) pathway and the citric acid (TCA) cycle. On 

the other hand, the lower predicted production pool at high temperature for L-alanine, L-
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isoleucine, L-phenylalanine, L-tyrosine and L-arginine may reduce the availability for the 

biosynthesis of some proteins enriched by these amino acids. 

 

Figure 16. A radar chart showing the predicted potential for biomass precursors excessive production 
in 30D, 30DS and 45D conditions. As the magnitude is different for each metabolite, the relative 
production values are shown, where 100% indicates the largest production capacity between conditions. 
The data for the 30D condition is shown as the green polygon bordered with the dashed border while 
the corresponding data for the 30DS condition is in purple (dotted border) and the data for the 45D 
condition is in red (dot-dash border) colour. (a) Abbreviations: cAMP (3’,5’-cyclic AMP), CoA (coenzyme 
A), GSH (reduced glutathione), TTP (deoxythymidine 5’-triphosphate). (b) Abbreviations: BDG ((1->3)-
beta-D-glucan). (c) Abbreviations (by side-chain class): a) acid: Asp (L-aspartate), Glu (L-glutamate); b) 
aliphatic: Ala (L-alanine), Gly (glycine), Ile (L-isoleucine), Leu (L-leucine), Val (L-valine); c) amide: Asn 
(L-asparagine), Gln (L-glutamine); d) aromatic: Phe (L-phenylalanine), Trp (L-tryptophan), Tyr (L-
tyrosine); e) basic: Arg (L-arginine), Lys (L-lysine); f) basic aromatic: His (L-histidine); g) Pro (L-proline); 
hydroxyl-containing: Ser (L-serine), Thr (L-threonine); h) sulphur containing: Cys (L-cysteine), Met (L-
methionine). (d) Abbreviations: ergosterol (ERG), ergosterol ester (ERGE), FA (fatty acid), PA 
(phosphatidate), PC (phosphatidylcholine), PE (phosphatidylethanolamine), PMI (1-phosphatidyl-1D-
myo-inositol), PS (phosphatidyl-L-serine), TG (triglyceride). 
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Regarding the riboflavin auxotrophy in 30DS and 45D, one may identify the other possible 

advantages in addition to just conserving the building blocks. Two condition-specific strategies 

for disabling de novo riboflavin synthesis were suggested. Figure 17 shows that the main 

riboflavin precursors GTP (guanosine-5'-triphosphate) and D-ribul 5-P (D-ribulose 5-

phosphate) are metabolised in their linear pathways until their final products are used as 

precursors to produce 67dm81Drl (6,7-dimethyl-8-(1-D-ribityl)lumazine), the direct precursor 

for riboflavin. In 30DS, the expression of KmRIB3 was inactivated. This gene catalyses the final 

reactions of GTP and D-ribul 5-P (D-ribulose 5-phosphate) linear pathways (r_0939 and r_0940 

correspondingly). Meanwhile, the cell retained the interconversion ability between riboflavin 

and downstream metabolites FMN and FAD. Upon 45D, KmRIB4 and KmFMN1 genes were 

not expressed. KmRIB4 is responsible for 67dm81Drl (6,7-dimethyl-8-(1-D-ribityl)lumazine) 

production (r_0938), while KmFMN1 is involved in FMN conversion from riboflavin (r_0937). 

Upon high temperature, K. marxianus could therefore only convert between FMN and FAD or 

hydrolyse it back to riboflavin. These observations suggested the need for the organism to 

optimise the required amount for cofactors needed for ATP production (riboflavin) and other 

metabolic features associated with FMN and FAD. Upon microaerobic conditions, K. 

marxianus could freely produce all three cofactors. Meanwhile, at the high temperature due to 

the inability to convert riboflavin to FMN and FAD, one may hypothesise that the cell 

encounters ATP shortage and tries to maximise riboflavin amount. This trait may be further 

affected by limited ferroheme availability. Riboflavin is known to improve the high-

temperature tolerance once added as a supplement upon the low ATP/ADP ratio (Chen et al. 

2013). In comparison with 30D, the maximal ATP production in 45D was lower by 20%, so the 

increased ATP demand at high temperature was likely mainly related to NGAM processes if 

one assumed that ATP production was not limited by cofactors. 

 

 

Figure 17. The riboflavin biosynthetic pathway. The gene names are written in italic, while the iSM996 
reaction IDs are written in red colour. Abbreviations for metabolites: GTP (guanosine-5'-triphosphate), 
5a65prau (5-amino-6-(5-phosphoribitylamino)uracil), 5a6Drau (5-amino-6-(D-ribitylamino)uracil, D-ribul 
5-P (D-ribulose 5-phosphate), 2h3obp (2-hydroxy-3-oxobutyl phosphate), 67dm81Drl (6,7-dimethyl-8-
(1-D-ribityl)lumazine production). Abbreviations for genes: KmRIB3 (3,4-dihydroxy-2-butanone-4-
phosphate synthase), KmRIB4 (lumazine synthase), KmRIB5 (riboflavin synthase), KmFMN1 (riboflavin 
kinase), KmFAD1 (FAD synthetase), KmLTP1 (putative protein phosphotyrosine phosphatase), 
KmNPP1 (nucleotide pyrophosphatase/phosphodiesterase). 

 

Regarding the lipid pool, the same size could be predicted in all three conditions. No 

composition data were available for essential metabolite myo-inositol, so the arbitrary 
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abundance value (0.001 mmol/gDW/h) was used during the simulations, what could have the 

noticeable impact to the predicted lipid pool sizes. At microaerobic and high-temperature 

conditions the production for the remaining lipid components was restricted by turning off 

KmDGK1 gene. This gene was reported to increase the sensitivity to heat when upregulated 

(Han et al. 2008). 

The simulations also showed that upon 45D, the size for the deoxynucleotide pool was 

decreased more than 100-fold when compared with 30D. The reason for such a significant 

decrease was the lower production capability for dAMP. The suppression of genes KmISN1 and 

KmSDT1 prevented the cell to catabolise purine nucleotides for dAMP production, which 

played a significant role for 30D and 30DS conditions. This observation indicated that the cell 

tried to conserve nucleotides from degradation, coinciding with the study, which reported that 

genes linked to DNA repair were upregulated at high temperature (Lertwattanasakul et al. 

2015). 

Overall, the simulations using condition-specific models suggested that upon high-temperature 

K. marxianus inactivated some of its genes what allowed the cell to conserve the essential 

metabolites from degradation and to optimise nutrients procurement from medium through the 

introduced auxotrophies. These results may be used to the growth medium design upon the low 

oxygen availability and high temperature. 

III. Establishing the further development pipeline for iSM996 

Many published GEMs are available in standardised Systems Biology Markup Language 

(SBML) format (Olivier & Bergmann 2018), however, due to the differences in SBML levels, 

versions and libSBML (Bornstein et al. 2008) versions used to export GEMs, it is still a 

problematic issue to import these GEMs into metabolic modelling tools. To address this issue, 

the iSM996 model was placed in the GitHub repository 

(https://github.com/SysBioChalmers/Kluyveromyces_marxianus-GEM) and is further 

developed under the name of Kluyveromyces_marxianus-GEM. While the users can download 

the latest version of the model, they are also welcomed to report any compatibility or 

functionality issues, which would be responded promptly. 

  

https://github.com/SysBioChalmers/Kluyveromyces_marxianus-GEM
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Part III: RAVEN 2.0, a toolbox for GEM reconstruction 
and analysis 

Paper IV: Development of The RAVEN Toolbox 
 

OBJECTIVES 

This study aimed: 

• To update RAVEN to version 2.0 

• To establish the development policy for RAVEN 

 

MOTIVATION 

The RAVEN toolbox is a commonly used systems biology package for GEM reconstruction, 

analysis, visualisation and omics data integration (Agren et al. 2013). However, the absence of 

the new release since RAVEN v1.08 revealed an increasing number of compatibility issues and 

bugs. It is therefore reasonable to restore the development for this toolbox and establish a 

curation policy for fixing the existing bugs and compatibility issues while adding new 

functionalities. 

ANALYSIS, RESULTS AND DISCUSSION 

I. The RAVEN Toolbox 2.0 

RAVEN 2.0 features the major revision of version 1.08 and is aimed to provide the most 

efficient in silico tools for genome-scale metabolic model reconstruction, curation, visualisation 

and analysis (Figure 18). 
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Figure 18. Schematic overview of the RAVEN toolbox version 2.0. 

 

Unlike the previous RAVEN versions, RAVEN 2.0 is compatible with the other MATLAB 

(“MATLAB version 9.3.0.713579 (R2017b)” 2017) systems biology toolbox COBRA 

(Hannum et al. 2019). This was achieved by renaming the functions with overlapping names 

and introducing the new function checkFunctionUniqueness, which ensures that all the RAVEN 

function names are unique across all MATLAB paths. 

The improvements have been made to the functions for GEM import and export. The function 

for the model import importModel is now compatible with SBML Level 3 and FBC package 

v2. In previous RAVEN versions, the model export function exportModel could only export 

models in SBML Level 2 Version 1 format but now is capable of exporting models in SBML 

Level 3 format as well. Since SBML format is not suitable for tracking changes between 

different model versions, the functions for the model export to plain-text and YAML formats 

were introduced. Also, the wrapper function ravenCobraWrapper, which allows to quickly 

convert between RAVEN and COBRA model structures in MATLAB environment, was 

provided in RAVEN. 

RAVEN supports three strategies to reconstruct draft GEM: (i) based on tINIT algorithm 

(Agren et al. 2014), (ii) based on existing template model and (iii) based on public reaction 

databases. The first strategy utilises the getINITModel function, requires a GEM for the same 

species and metabolic tasks, as well as proteomics or transcriptomics data. The second approach 

requires a GEM for a phylogenetically close species. In such an approach, the functions getBlast 

and getModelFromHomology are utilised to run the bi-directional BLASTP search and then 

build the draft GEM. As an alternative, the users can now select the getDiamond function to 

run DIAMOND blastp search during homology search instead. The third approach involves the 

de novo reconstruction from KEGG or MetaCyc databases. Regarding the GEM reconstruction 
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from KEGG, users can run the getKEGGModelForOrganism function to build a GEM based 

on KEGG-supplied annotations (KEGG currently includes over 5000 species) or query its 

protein sequences for similarity to KO specific HMMs. An ability to reconstruct mode from 

MetaCyc is a new feature in RAVEN 2.0 and can be run with the 

getMetaCycModelForOrganism function that queries protein sequences with 

BLASTP/DIAMOND blastp for homology against curated enzymes by MetaCyc. The function 

addSpontaneous can be used to retrieve MetaCyc reactions which are not associated with any 

enzyme. The users who prefer to utilise both KEGG and MetaCyc for de novo GEM 

reconstruction can use the combineMetaCycKEGGModels function to merge both draft models. 

Some users may also use RAVEN to update the existing GEMs. An example of such approach 

is shown in Figure 19, where KEGG-based and MetaCyc-based model reconstruction modules 

were able to suggest the noticeably high number of new candidate reactions to be incorporated 

into iMK1208 model for Streptomyces coelicolor. 

 

 

Figure 19. Venn diagrams comparing genes and metabolites between the three de novo draft 
reconstructions and the template GEM iMK1208 for Streptomyces coelicolor. 

 

Regardless of the approach used to generate a draft GEM, the further semi-automatic curation 

is needed to ensure its functionality. It is recommended to start with the gapReport function, 

which performs the gap analysis and reports isolated subnetworks, dead-end reactions and the 

detailed report about metabolites which can be produced/consumed without any exchange 

reactions. Other mostly used functions for manual curation are related to the automatic gap 

filling (i.e. gapFill), reaction import from another GEM (i.e. addRxnsGenesMets) and GPR 

rules modification (i.e. changeGeneAssoc). Regarding de novo generated GEMs, as soon as the 

gap-filling step is complete, one can run the metabolite compartmentalisation with the 

predictLocalization function. In addition to WoLF PSORT, this function now also supports 

protein-specific scores from CELLO (Yu et al. 2006) and DeepLoc (Almagro Armenteros et 

al. 2017) subcellular localisation prediction tools, which use the protein sequences of target 

organism as input. 
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II. Development policy for RAVEN 

RAVEN is available from the GitHub repository:  

https://github.com/SysBioChalmers/RAVEN, where the modelling community can download 

the latest versions, familiarise with the GEM reconstruction pipelines from the Wiki and report 

any functionality or compatibility through posting issues. In addition to the regular RAVEN 

updates once per several months, new released RAVEN version also includes the latest KEGG 

and MetaCyc versions. 

  

https://github.com/SysBioChalmers/RAVEN
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Conclusions and perspectives 

Part I showed an effort to estimate the bile acid biotransformation capacity in the human gut 

and compare it between healthy and IBD patient groups. Firstly, the curated list of candidate 

BSBP homologues was obtained from UniProt based on sequence homology and domain 

conservation. The abundance values for BSBGs were then estimated by mapping the faecal 

metagenomics data of healthy and IBD patient groups to putative BSBPs. The results suggested 

that the IBD patient group had a lower bile acid biotransformation potential than the healthy 

group. The follow-up faecal metabolomic analysis suggested the decreased levels of secondary 

bile acids in IBD patient group, therefore supporting the hypothesis that IBD patients had the 

lower bile acid bioprocessing potential than the healthy group. While the current study assumed 

that all BSBPs contributed equally to the bile acid biotransformation potential, it would be 

beneficial to investigate their kinetic parameters, substrate specificity and contribution in bile 

acid bioprocessing in vivo for further evaluation. 

In Part II, thermotolerant yeast K. marxianus was annotated in genome-scale and comparatively 

analysed for the genomic insights of the 12 strains. A total of 5 804 and 3 855 OGs were 

identified for the pangenome and core genome, respectively. The functional core genome 

analysis suggested that the most conserved metabolic capabilities were associated to lipid and 

nucleotide metabolism. The future studies inspired by this approach may involve the more 

specific comparative genomics analysis, for instance, involving sugar transporters or heat-

sensitive proteins. 

Paper III comprised the reconstruction and analysis of the iSM996, the first publicly available 

GEM for K. marxianus. The model features 1913 reactions, 996 genes and 1531 metabolites. 

The iSM996 model could predict the carbon source utilisation and growth rates upon various 

media. This model is a reliable platform in computational studies requiring experimental data 

integration and strain design. To evaluate K. marxianus metabolic potential in microaerobic 

conditions and high temperature, the model was coupled with transcriptomics data upon YPD 

medium. In both microaerobic and high-temperature conditions, the auxotrophy to riboflavin 

was identified, suggesting that the cell had an increased demand for ATP and tried to ensure 

that respiration was not limited by cofactors availability. The results also suggested that in high-

temperature K. marxianus turned off some genes to prevent essential metabolites degradation. 

Besides, several inactive genes also introduced auxotrophies to several amino acids, suggesting 

that these amino acids may still be available in the growth medium. Such findings may 

contribute to the growth medium design upon low oxygen availability and high temperature. 

Refined predictions may be achieved by integrating additional omics data into the model in the 

future. 

In Part III the new version of RAVEN toolbox was presented. The updated toolbox includes 

the following key enhancements: (i) de novo reconstruction of GEMs based on the MetaCyc 

pathway database; (ii) a redesigned KEGG-based reconstruction pipeline; (iii) convergence of 

reconstructions from various sources; (iv) improved performance, usability, and compatibility 

with the COBRA Toolbox. The future updates of RAVEN will introduce the full compatibility 

with the COBRA model structure.  
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The results shown in this thesis did not cover all the approaches which were performed during 

the PhD project time, such as the identification and annotation of K. marxianus mitochondrial 

genomes. While it was possible to identify mitochondrial genomes, it seemed complicated to 

verify the predict mitochondrial gene structures, particularly the ones which comprised several 

subunits. Regarding metabolic modelling for K. marxianus, the efforts have been made to 

restrict the model solution space by adding the protein stability values calculated for the higher 

temperatures. However, such an approach was cancelled due to technical difficulties. Another 

cancelled approach involved the integration of the metabolomics data obtained during a kefir 

fermentation process. Such analysis would show the metabolic capabilities for K. marxianus 

during various time points of kefir fermentation, but this analysis was not continued due to the 

high uncertainty. 

Overall, this thesis illustrated several in silico ways to approach food-related microbial species. 

In metagenomics study, the cohort of human gut microbial species was annotated in a context 

of bile acid metabolism, which enabled the evaluation of bile acid biotransformation potential 

and its effect to the human gut microbiome balance. The genome-scale functional analyses for 

the thermotolerant yeast K. marxianus included the comparative genomics for different strains, 

reconstruction of a genome-scale metabolic model and its utilisation to predict metabolic 

capabilities upon stress conditions. Also, the new version of RAVEN toolbox was introduced, 

allowing to perform genome-scale reconstruction and analysis for any newly sequenced species. 
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