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Decisions and disease: 
a mechanism for the evolution 
of cooperation
carl‑Joar Karlsson1,2 & Julie Rowlett1,2*

In numerous contexts, individuals may decide whether they take actions to mitigate the spread 
of disease, or not. Mitigating the spread of disease requires an individual to change their routine 
behaviours to benefit others, resulting in a ‘disease dilemma’ similar to the seminal prisoner’s 
dilemma. In the classical prisoner’s dilemma, evolutionary game dynamics predict that all individuals 
evolve to ‘defect.’ We have discovered that when the rate of cooperation within a population is 
directly linked to the rate of spread of the disease, cooperation evolves under certain conditions. For 
diseases which do not confer immunity to recovered individuals, if the time scale at which individuals 
receive accurate information regarding the disease is sufficiently rapid compared to the time scale at 
which the disease spreads, then cooperation emerges. Moreover, in the limit as mitigation measures 
become increasingly effective, the disease can be controlled; the number of infections tends to zero. 
It has been suggested that disease spreading models may also describe social and group dynamics, 
indicating that this mechanism for the evolution of cooperation may also apply in those contexts.

Decisions made by individuals affect the population, not the least in disease spreading. Several researchers 
have investigated the interplay between diseases and decisions by combining compartmental models with game 
 theory1–5. Common considerations are dynamics on networks or  lattices5–18 and well-mixed  populations19–28. 
The former’s strength is that it captures the effect of population structures, while the latter’s strength is that it 
highlights the individuals’ perception of the payoff. We consider a society in which individuals choose to what 
extent they will exert preventive measures to mitigate the spread of an infectious disease. The population may 
range from having a social network structure to being well-mixed. Individuals have two choices: exert mitigat-
ing measures to prevent the spread of the disease, and do-not-mitigate, making no efforts to prevent the spread 
of the disease. Individuals do not necessarily maintain the same choice; they are free to change their behaviors 
based on their perception of cost versus benefit. The World Health  Organisation29 and numerous other references 
 including30–32 argue that it is reasonable to describe this situation with the Prisoner’s Dilemma (PD).

The payoffs may be interpreted as in Fig. 1. If both Alice and Bob defect, then they pay no cost but also receive 
no benefit, hence their payoffs are both P = 0 . Let us consider the particular example of cloth face masks. If 
Alice cooperates while Bob defects, then Alice pays the cost of buying the mask and enduring its discomforts, 
which is represented by −B < 0 . As demonstrated  in33 Alice receives a small amount of protection from her 
mask, represented by ǫ > 0 , but the main benefit is reaped by everyone else. Consequently, if Bob does not wear 
a mask, he pays no cost but receives a benefit of T > ǫ > 0 . Alice’s total payoff is therefore −B+ ǫ . Since the 
benefit to Alice is relatively small, we assume further that ǫ < B . If both Alice and Bob cooperate, then they both 
pay the cost −B , but they also receive the maximal protective benefit of T + ǫ , and their total payoffs are thus 
T − B+ ǫ . Consequently, defining

the payoffs satisfy

This particular representation of the Prisoner’s Dilemma is known as the Donor–Recipient game. The two-player 
game generalizes to a population-level  model34 in which all individuals in the population choose whether or 

C := B− ǫ,

(1)S = −C < P = 0 < R < T = R + C.
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not to mitigate the spread of disease. In a well-mixed population, everyone interacts with each other, which is 
described by a fully connected graph. In reality, however, it is possible that certain individuals never interact, 
which can be described using a social  network34–37. The presence of such a network modifies the payoffs (1), in 
such a way that if the social pressure is just right, cooperation may become more beneficial than defecting, an 
effect known as network reciprocity.

The payoffs (1) are modified by a quantity N(k), where k is the average node degree in the network, cor-
responding to the average number of social contacts each individual has. Making a standard set of simplifying 
assumptions as  in34–38 allows us to incorporate the societal network structure and nonetheless obtain tractable 
expressions which are amenable to explicit analyses; see SI § “Network Reciprocity” for further details. The payoffs 
R and P remain as in (1), whereas the network structure now modifies the payoffs S and T

The quantity N(k) increases with R, and tends to zero when k → ∞ . For intermediate values of k, this may be 
interpreted as social pressure, for example in a group of twenty persons all wearing masks, there is pressure 
to conform and also wear a mask. Consequently, N(k) increases the payoff value of S and decreases the payoff 
value of T. When k → ∞ , N(k) → 0 , and the model describes a well-mixed society. Although the model is still 
essentially based on pairwise interactions, dyadic games nonetheless are widely applicable to understanding 
societal level issues including but not limited to political  crises39, vaccine  compliance40, antibiotic  resistance41, 
and cultural  diversity42. Moreover, some argue that simple, transparent models from which insights are readily 
apparent may be of greater use than more complicated  models43.

In the society-wide disease dilemma considered here, the unique equilibrium strategy is total defection. When 
this game is used to predict behaviours according to evolutionary game dynamics, the result is always  defection44. 
Nonetheless, in many contexts which fit into a PD type game, cooperation may in fact be  observed45–51. In the 
particular case of the PD, there have been numerous mechanisms proposed for the evolution of  cooperation38,52. 
To our knowledge, it has been unknown—until now—whether cooperation emerges when the payoff is a trade-off 
between the PD and the effect on disease spreading through changes to the infection transmission rate.

Methods
Infections like those from the common cold, flu, and many sexually transmitted diseases do not confer any 
long-lasting immunity, and individuals become susceptible once they recover from infection. These diseases 
are therefore described by the SIS compartmental model. Poletti et al.53 implemented a hybrid model in which 
human decisions affect the rate at which the disease spreads. They assigned two different rates of infection cor-
responding to individuals either changing their behaviour to mitigate the spread of the disease, or not doing so. 
We follow this approach by assigning the rates of infection for cooperators and defectors, βC < βD , respectively. 
In a population comprised entirely of cooperators, susceptible individuals become infected at the rate βCI(t) . 
In a population comprised entirely of defectors, susceptible individuals become infected at the rate βDI(t) . In 
both cases, I(t) represents the pool of infectious individuals. In a mixed population, where the proportion of 
cooperators is x = x(t) , and defectors is 1− x = 1− x(t) , susceptible individuals become infected at the rate 
β(t)I(t) , where

Since the portion of cooperators and defectors changes over time, the rate of infection, β = β(t) , is also a dynami-
cal parameter, changing over time. The SIS-PD replicator equations with these considerations read

(2)S = −C + N(k), T = R + C − N(k), N(k) :=
Rk − 2C

(k + 1)(k − 2)
, k ∈ N \ {2}, N(2) := R.

(3)β(t) = (1− x(t))βD + x(t)βC .

Figure 1.  In the ‘disease dilemma’ people have the choice to cooperate, mitigating the spread of the disease, or 
defect, making no change to their regular behaviour. This is described by the non-cooperative game shown here 
in normal form. Image source and license: openc lipar t.org, CC01.0.

https://openclipart.org/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Above, the quantities on the left side are differentiated with respect to t = time. The rate at which infected indi-
viduals become susceptible again is γ . If D is the average duration of the infection, then γ = 1/D . We note that 
1− I(t) is the portion of the population which is susceptible to infection, since in this model there is no immunity.

We would like to allow susceptible individuals to change their behavior spontaneously, corresponding to cost 
and benefit considerations. Choosing to mitigate, corresponding to the transmission rate βC incurs a cost, but 
reduces the risk of infection. Choosing not to mitigate increases the transmission rate of the population but does 
not incur any cost. The choice individuals make depends on the current state of the epidemic. It is important to 
note that the choice of behavior need not occur at the same time scale as the epidemic. The decision whether or 
not to take mitigation measures is based on the information to which one has access, via email, phone, internet, 
and media. On the other hand, epidemic transmission can occur only through interpersonal contact.

To implement the fact that decision-making and disease-spreading do not necessarily occur at the same time 
scales, we introduce the parameter α1 ∈ R , which may be positive, negative, or zero. Large values of |α1| cor-
respond to frequent exposure to information regarding the disease. When α1 > 0 , this corresponds to accurate 
information recommending disease avoidance, whereas when α1 < 0 , this corresponds to (mis)-information 
which may suggest either the disease is harmless or that it is beneficial to contract the disease. The value α1 = 0 
corresponds to no information regarding the disease, or equivalently, ignoring the disease’s existence. Conse-
quently, the timescale of disease transmission is t, while the timescale at which individuals receive disease-related 
information is |α1|−1t . There is also no reason that the timescale of disease transmission is equal to the timescale 
at which individuals either pay the cost of cooperating or reap the benefits of defecting in the presence of coop-
erators. To reflect this generality, we introduce the parameter α2 > 0 , so that the timescale at which individuals 
receive PD payoffs is α−1

2 t.
The decision whether to cooperate or defect is influenced by an individual’s social contacts, as described by 

a social network  structure34–37. Recalling the PD payoffs which incorporate this network structure, (2), and with 
all of the above considerations in mind, the replicator equations for our hybrid SIS-PD model now read

Since βD > βC , if α1 > 0 , and C − N(k) > 0 , the terms in the equation for the evolution of cooperators have 
opposite signs, resulting in a competition between avoidance of disease carriers and PD reward. We note that as 
soon as C − N(k) ≤ 0 , the game ceases to be of PD-type. For further details concerning the derivation of these 
equations, see SI “Transmission rates for cooperators and defectors”.

Similar calculations lead to the replicator equations for the SIR-PD model

Above, S is the number of susceptible individuals, and the quantities on the left are all differentiated with 
respect to time. If the portion γ I(t) of infectious individuals recovers and acquires long-lasting immunity, we 
may describe the accumulated number of these individuals with a third compartment, namely R , which is 
generally the number of recovered and immune, and/or deceased, individuals. The parameter γ is the rate at 
which infected individuals either recover or die. If D is the average duration of the infection, irrespective of the 
outcome (recovery or death), then γ = 1/D , as in the SIS-PD model. This model is reasonably predictive for 
infectious diseases that are transmitted from human to human, and where recovery confers lasting resistance. 
Since Ṡ + İ + Ṙ = 0 , the triplet (x, I ,S ) describes the complete system; for further details see SI § “Transmis-
sion rates for cooperators and defectors”.

Results
The network structure may cause the game to cease to be of PD type. For k = 1 , the game is always of PD type. 
For k ≥ 2 , the game is no longer of PD type if C − N(k) ≤ 0 , which is equivalent to

If R
C

 is large, corresponding to low costs of mitigation and/or high benefit of mutual cooperation, the game may 
cease to be of PD type for sufficiently small values of k such that the above inequality holds. However, since the 
right side of (7) tends to infinity when k → ∞, for sufficiently large values of k, the game is always of PD type. 
On the other hand, when R

C
 is small, corresponding to either minimal benefit of mutual cooperation or extreme 

dI

dt
= [(1− x(t))βD + x(t)βC]I(t)(1− I(t))− γ I(t),

dx

dt
= x(t)(1− x(t))[(βD − βC)I(t)− ([T − R]x(t)+ [P − S](1− x(t)))].

(4)
dI

dt
= ([1− x(t)]βD + x(t)βC)I(t)(1− I(t))− γ I(t),

(5)
dx

dt
= x(t)(1− x(t))[α1(βD − βC)I(t)− α2(C − N(k))].

(6)

Ṡ (t) = −((1− x(t))βD + x(t)βC)S (t)I(t)

İ(t) = ((1− x(t))βD + x(t)βC)S (t)I(t)− γ I(t)

Ṙ (t) = γ I(t)

ẋ(t) = x(t)(1− x(t))(α1(βD − βC)I(t)− α2(C − N(k)))

(7)
R

C
≥ k − 1.
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costs of mitigation, then there may be no value of k such that (7) holds, and so the game is always of PD type. 
Since our focus is the emergence of cooperation for a PD type game, we henceforth assume that the game is of 
PD type, and therefore we assume that C − N(k) > 0 . We shall also assume that α1 > 0 , because if α1 ≤ 0 , all 
individuals simply evolve to defect.

SIR‑PD equilibrium points. For the SIR-PD model, the complete set of equilibrium points consists of 
(x, I ,S ∗) with

The equilibrium points with x = 0 are stable if βDS ∗ ≤ γ . When the reverse inequality holds, the equilibrium 
point is unstable. All equilibrium points with x = 1 are unstable. For the details of these calculations, see SI 
“Calculation and classification of all equilibrium points in the SIR-PD model”.

SIS‑PD equilibrium points. The equilibrium points of the SIS-PD system are the set of (x, I):

The equilibrium point, (x∗, I∗) , is well-defined as long as x∗ ∈ [0, 1] , and I∗ ∈ [0, 1), since C − N(k) > 0 , and 
α1,α2 > 0 . We compute that

We further compute

Since 1 < βD/(βD − γ ) , this condition immediately implies I∗ < 1 . We note that

Whenever it exists, the equilibrium point (x∗, I∗) is always stable (and asymptotically stable).
The equilibrium point (0, 0) is stable (and asymptotically stable) if

Since xβC + (1− x)βD ≤ βD,

with equality only if I = 0 , and hence there is no epidemic. The equilibrium point (1, 0) is never stable for PD 
payoffs. The equilibrium point (0, 1− γ /βD) , is well defined if βD ≥ γ , because 0 ≤ I ≤ 1 , and it is stable (and 
asymptotically stable) if

For PD payoffs (2), this is equivalent to

The equilibrium point (1, 1− γ /βC) is well defined if βC ≥ γ . It is stable (and asymptotically stable) if

For PD payoffs (2), this equilibrium point is stable (and asymptotically stable) when

x ∈ {0, 1}, I = 0, 0 ≤ S
∗ ≤ 1.

{

(0, 0), (1, 0),

(

0, 1−
γ

β D

)

,

(

1, 1−
γ

β C

)

,
(

x
∗, I∗

)

}

, x
∗ =

βD

βD − βC
−

γ

(βD − βC)(1− I∗)
, I

∗ =
α2(C − N(k))

α1(βD − βC)
.

I
∗ < 1 ⇐⇒

α2(C − N(k))

βD − βC
< α1.

(8)

0 ≤ x
∗ ≤ 1 ⇐⇒ α̌1 ≤ α1 ≤ α̂1, α̌1 =

βD

βD − γ

α2(C − N(k))

βD − βC
and Oα1 =

βC

βC − γ

α2(C−N(k))

βD − βC
.

βD

βD − γ
<

βC

βC − γ
=⇒

βD

βD − γ

α2(C − N(k))

βD − βC
<

βC

βC − γ

α2(C − N(k))

βD − βC
.

βD < γ , C − N(k) > 0.

dI

dt
= [(xβC + (1− x)βD)(1− I)− γ ]I ≤ 0,

α1(βD − βC)(1− γ /βD) < α2(C − N(k)).

(9)α1 < α̌1

α2(C − N(k)) < α1(βD − βC)(1− γ /βC).

(10)α̂1 < α1.

Table 1.  The asymptotically stable equilibrium points of the SIS-PD model in the specified ranges of α1 , where 
α̌1 and α̂1 are defined in (8).

Range Equilibrium

α1 < α̌1 (0, 1− γ /βD)

α̌1 ≤ α1 ≤ α̂1 (x∗ , I∗)

α̂1 < α1 (1, 1− γ /βC)



5

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:13113  | https://doi.org/10.1038/s41598-020-69546-2

www.nature.com/scientificreports/

Our results are summarised in Table 1. Figure 2 shows how the evolution of cooperation and the rate of 
infections depend on α1 and βC when βD = 1.68 and γ = 1/5 as suggested  in54. We note that these values were 
selected merely for the sake of visualisation, as our theoretical results hold for any parameter values. If both α1 and 
α2 vary, we obtain convergence to cooperation as shown in Fig. 3. Figure 4 shows that the numerical integration 
agrees perfectly with the analytical results. Note that the dependence on both α1 and α2 is actually a dependence 
on their ratio, since all the stability limits can be written as inequalities for the unknown α1/α2.

Figure 2.  The values of βD and γ above were  suggested54; however these values can be modified to any disease 
parameters. Since it is the relationship between α1 and α2 , rather than their individual values which affects the 
dynamics, we simply fix α2 = 0.1 . The value of α1 ranges along the horizontal axis. The vertical axis is used to 
indicate both the frequency of cooperators, x, as well as the frequency of infectious individuals, I, within the 
population. For sufficiently large α1 , the population evolves to cooperation. At the same time, the more effective 
the mitigation measures are, the lower βC is, which pushes the portion of infectious individuals to zero. More 
precisely, when α1 ≥ α̂1 , then limβCցγ I = 0.

Figure 3.  The evolution to cooperation depends on the relationship between α1 and α2 , when the parameters 
βD and γ are as suggested  in54 and with C − N(k) = 2 (left figure) or C − N(k) = 0.75 (right figure). Here 
the value of βC corresponds to moderately effective mitigation measures. As C − N(k) decreases, cooperating 
dominates a larger domain.



6

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:13113  | https://doi.org/10.1038/s41598-020-69546-2

www.nature.com/scientificreports/

Discussion
It has been suggested that mass media could be used to reduce HIV-infections55, and that this approach may 
explain the success in controlling HIV in  Australia56,57. If an infectious disease, like HIV, does not confer immu-
nity to those who recover from it, then SIS is a suitable model. The rate of spread for those who make no mitiga-
tion efforts, βD , is strictly larger than the rate of spread for those who make mitigation efforts, βC . Our results 
show that the relationship between the timescale of decision making and the timescale of PD payoffs is crucial. 
Decision-making is influenced by the speed at which individuals access or receive information upon which to 
base their decisions. It is reasonable to assume that the timescale of PD payoffs is similar to the timescale t for the 
spread of disease, or at least on the same order of magnitude. On the other hand, the speed at which individu-
als can access information could be much faster. This corresponds to α1 ≫ α2. When α1 > α̂1 , the equilibrium 
point (1, 1− γ /βC) exists. Consequently, for sufficiently large α1 , the unique equilibrium point of the system 
corresponds to total cooperation. Moreover, in this case the portion of the population which is infected tends 
to 1− γ /βC . We therefore also have

This shows that in the limit towards effective mitigation measures, the rate of the population which is infected 
tends to zero. We summarise these insights below.

In the context of a communicable disease which does not confer immunity, if accurate information is made 
available to all individuals quickly relative to the spread of the disease, all rational individuals acting in 
their best self interest will evolve to cooperate by taking measures to mitigate the spread. Simultaneously, 
increasingly effective mitigation measures drive the rate of infectious individuals to zero.

These insights suggest a strategy for controlling diseases which do not to confer immunity and may apply to 
SARS-CoV-2, as recent studies indicate that the disease might not confer  immunity58–60. More generally, this strat-
egy may be applied in the context of new diseases, for which it is unknown and unknowable whether contracting 
and recovering from the disease grants  immunity61. Vaccines require time for development and  testing62. It may 
therefore be prudent to use the SIS model for new communicable diseases. The value of α1 may be associated to 
the frequency of public service announcements (PSAs) which accurately convey effective mitigation measures. 
The more frequent the PSAs, the higher the value of α1 . Our results prove that when α1 becomes sufficiently 
large, cooperation emerges, and the amount of infections can be controlled. Moreover, when mitigation measures 
are made increasingly effective, in the limit the frequency of infectious individuals tends to zero. The perceived 
benefit of defecting is defined by the PD payoffs (2), so that defecting is still perceived to offer benefits if others 
cooperate. The key to the evolution for cooperation is the time scale for decision making. This can be much faster 
than the time scale at which one can actually reap the benefits of defecting. When this is the case, the population 
evolves towards cooperation. Our results are not constrained to any specific disease, but rather suggest a general 
strategy to promote the evolution of cooperation in the Donor–Recipient game when linked to the SIS model. The 

(11)lim
βCցγ

1−
γ

βC
= 0.

Figure 4.  The results from numerical integration agree with the analytical results. The values of βD and γ 
above were  suggested54. The vertical axis is used to indicate both the frequency of cooperators, x, as well as the 
frequency of infectious individuals, I, within the population. Here the value of βC corresponds to mitigation 
measures which are more effective than in Fig. 3 but still imperfect.
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SIS model has further applications to describing social and group  dynamics25. Our model may thereby provide 
a mechanism for the evolution of cooperation in social contexts as well.

Received: 15 May 2020; Accepted: 13 July 2020
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