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Alexander Sjosten

Department of Computer Science and Engineering
Chalmers University of Technology

Abstract

The use of libraries is prevalent in modern web development. But how to
ensure sensitive data is not being leaked through these libraries? This is the
first challenge this thesis aims to solve. We propose the use of information-
flow control by developing a principled approach to allow information-
flow tracking in libraries, even if the libraries are written in a language not
supporting information-flow control. The approach allows library functions
to have unlabel and relabel models that explain how values are unlabeled and
relabeled when marshaled between the labeled program and the unlabeled
library. The approach handles primitive values and lists, records, higher-
order functions, and references through the use of lazy marshaling.

Web pages can combine benign properties of a user’s browser to a finger-
print, which can identify the user. Fingerprinting can be intrusive and often
happens without the user’s consent. The second challenge this thesis aims
to solve is to bridge the gap between the principled approach of handling
libraries, to practical use in the information-flow aware JavaScript interpreter
JSFlow. We extend JSFlow to handle libraries and be deployed in a browser,
enabling information-flow tracking on web pages to detect fingerprinting.

Modern browsers allow for browser modifications through browser exten-
sions. These extensions can be intrusive by, e.g., blocking content or modi-
fying the DOM, and it can be in the interest of web pages to detect which
extensions are installed in the browser. The third challenge this thesis aims to
solve is finding which browser extensions are executing in a user’s browser,
and investigate how the installed browser extensions can be used to decrease
the privacy of users. We do this by conducting several large-scale studies
and show that due to added security by browser vendors, a web page may
uniquely identify a user based on the installed browser extension alone.

It is popular to use filter lists to block unwanted content such as ads and
tracking scripts on web pages. These filter lists are usually crowd-sourced
and mainly focus on English speaking regions. Non-English speaking re-
gions should use a supplementary filter list, but smaller linguistic regions
may not have an up to date filter list. The fourth challenge this thesis aims to
solve is how to automatically generate supplementary filter lists for regions
which currently do not have an up to date filter list.

Keywords: information-flow control, side-effectful libraries, web security,
browser fingerprinting, browser extensions, filter list generation
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Introduction

Information Flow for Web Security and
Privacy






Businesses today are completely reliant on Information Technology, and
our daily lives are moving online at a fast pace. To give a few examples, we
use streaming services to watch movies and listen to music, we visit web
pages to read the news, buy merchandise and make bank transfers, and we
use social networks to maintain social contacts with friends and families and
schedule events. With more online interaction, the need to protect user data
and privacy from attackers is increasing. Unfortunately, it is difficult to keep
private information secured, even for domain experts. Recent years have
seen hundreds of millions of users having sensitive information stolen [70].
This includes passwords [45, 34, 60, 2], phone numbers [45], and social
security numbers [59], leading to financial losses. In some cases, such as
a web page for having affairs [56], being identified by the stolen data can
lead to loss of lives [39]. However, not every data leak comes from malicious
intent.

When developing a web page, the code is usually divided into two
groups. There is first-party code, which is code written by the web page
developer, and there is third-party code, which provides a service the web
page uses but does not control. The first-party code is trusted, but it can be
difficult to isolate the first-party code from the third-party code and once
the third-party code has been loaded, it is treated as first-party code by the
browser. It is common for web pages to use third-party code to enhance
user experience. As an example, to understand how a user interacts with
a web page and collect statistics about the user’s location and browser
characteristics to help improve the user experience, web pages can employ
analytic scripts. Unfortunately, this can lead to unintended leaks of sensitive
data [64]. In a similar vein, to help yield revenue, a web page can use
advertisements. The ads are usually served through an ad network, which
will try to target ads based on information about the user. Loading ads
through ad networks is usually done through third-party code, and there
have been cases where malware has been included in the served ad, a
process known as malvertising. Malvertising has been known to happen even
in larger ad networks [62], and has hit popular services such as Spotify [55],
news outlets such as The New York Times and the BBC [54], and the London
Stock Exchange [7].

Both analytic scripts and advertisement scripts give good examples of
what can be troublesome with third-party scripts. Information about the
user is being sent to the third-party, who can use this information for mone-
tization. Indeed, to increase the probability of a user clicking on an adver-
tisement, the ad network will try and target ads specific to users. This means
that the more web pages that use the same third-party, the more data the
third-party can gather, leading to seemingly free services being paid for with
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data instead of money. Put bluntly: users can be tracked across the web by
third-parties. Although this used to be invisible to a user, the last couple of
years have seen regulations such as GDPR [5] try to increase user privacy
online. One method third-parties can use to identify different users is to
perform browser fingerprinting, where seemingly benign data from a user’s
browser is compounded into a fingerprint. The more web pages that use the
same third-party script, the more information about a potential user is given
to the third-party offering the script.

Fortunately, privacy awareness has increased, both from web pages,
browser vendors, and users. Techniques such as the Same-Origin Policy
(SOP) [11], Content Security Policy (CSP) [4], and sandboxing [6] have
emerged to help web pages better control third-party code. Browser vendors
are proposing ways they will combat fingerprinting, and users can shape
their browsing experience through the use of browser extensions, which can
help, e.g., block third-party tracking scripts and advertisement.

The goal of this thesis is to help increase security and privacy online and
will do so in four ways by:

1. defining a principled approach for tracking information flow in third-
party libraries, allowing for a trusted application to use untrusted
third-party code while ensuring no sensitive information is leaked
(Papers I-II).

2. implementing the principled approach presented in Paper II to analyze
how third-party browser fingerprinting scripts behave, compared to,
e.g., analytic scripts (Paper III).

3. presenting how browser extensions can decrease privacy by allowing
web pages to detect if a user has a specific browser extension installed
(Papers IV-V).

4. increasing privacy for smaller linguistic regions by presenting an auto-
mated way for generating filter lists for ad blocking (Paper VI).

Section 1 introduces Information-Flow Control (IFC), which is the main
security mechanism used in this thesis. Section 2 introduces browser finger-
printing, before Section 3 gives a brief background of browser extensions and
how they work. Section 4 introduces how third-party content blocking mainly
is achieved before Section 5 presents the contributions made in this thesis.

1 Information-Flow Control

In modern software development, a common way of checking an applica-
tion’s correctness is through extensive testing and code reviews. This can
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Input ——> —> Output

Input—— . Program —> Output
instructions

Input ——> —> Output

Figure 0.1: An abstract program in the batch model

find some security vulnerabilities, but severe ones are still missed (see e.g.
Heartbleed [16] and Shellshock [14]).

Language-based security is a means to express security policies and
enforcement mechanisms using programming language techniques [65].
This thesis focus on an area of language-based security called Information-
Flow Control (IFC). When modeling programs, they can be seen as a black box
and is treated as a function from inputs to outputs. Inputs of a program are
called sources and outputs are called sinks. This modeling approach is known
as a batch model and is depicted in Figure 0.1. For all useful programs, the
outputs of the program are dependent on the inputs, and the dependencies
from the sources to the sinks are defined by the program source code.

Within IFC, we are interested in tracking the information flow from
sources to sinks. This means we are interested in how the sources influence
the sinks, and is done by tracking two types of flows: explicit and implicit
flows. Explicit flows, which corresponds to data flows [46] in traditional
program analysis, is when one or more values are combined into a new
value. As an example, the assignment x = y introduces an explicit flow from
y to x. Implicit flows, which corresponds to control flows [46] in traditional
program analysis, is when a value indirectly influence another through the
control flow of the program. To illustrate, the following program contains
an implicit flow from x to y, as the value of x dictates which branch is taken
and by that, which assignment that is made to y.

1 if (x) {

2 y := true;
3 } else
4
5

——

y := false;
}

To allow for tracking the flow from sources to sinks, IFC is normally
deployed in a multi-level system [40]. The information in a multi-level system
is classified into different levels, based on a lattice. For intuition, consider the
levels unclassified = classified = secret = top secret, where C is a relation over
the partial order of the lattice, defining how the information is allowed to
flow. In this example, unclassified information is allowed to flow anywhere
in the program, but information that is classified secret is only allowed to
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flow to sinks that are either secret or top secret. When using IFC, the aim is
to enforce the information flow respect the relation =. A multi-level system
can be encoded as a two-level lattice: L = H, where L is public (or low) data
and H is secret (or high) data. The aim in this simplified setting is to enforce
a security property called noninterference [49], which dictates secret sources
do not influence public sinks.

1.1 Noninterference

Noninterference is achieved when all runs of a program, where the only
difference between the runs is the high inputs, do not differ in the low
outputs. Looking at Figure 0.2, to achieve noninterference, the crossed out
dashed red line must not exist in any run of the program.

The work in this thesis only considers a noninterference policy called
termination-insensitive noninterference (TINI), with the implication that infor-
mation leakage through termination channels is not in scope. Intuitively, if
high_valis an integer labeled H, and print is a function that will output on a
public channel, the following program is secure by state-of-the-art IFC tools
using TINL

1 for current in range (0, Number.MAX VALUE) {

2 print(current);
3 if (current == high_val) then loop_forever
4}

The for-loop does not depend on a secret, which means current will be la-
beled L. This makes the output on the public channel through print(current)
valid. However, once current == high_val, the program will execute
loop_forever, which represents an infinite loop. This ensures the last printed
public value will be the same as the secret value high_val, which indicate
there exists an implicit flow through a termination channel [35]. As TINI
does not provide any guarantees for non-terminating runs, it would be
unable to classify the program as insecure.

1.2 Enforcing Information-Flow Control

There are three main branches of IFC enforcement: static, dynamic, and hybrid.
However, as the work in this thesis regarding IFC is focused on dynamic
languages such as JavaScript, only dynamic IFC is considered. The reader is
referred to [65, 52, 43, 44, 51] for more reading about other flavors of IFC.
A dynamic enforcement is executed at runtime, with the use of modified
semantics of the language that allows for security checking. Dynamic IFC
is often more permissive when working in a dynamic language such as
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Program

Private input ———t——wc— ——> Private output

Public input —— ~+—— Public output

Figure 0.2: Noninterference. Public output should not depend on private
input

JavaScript, as it has full access to the runtime environment and the runtime
values. Runtime values are augmented with a representation of security
labels, which are copied and joined to reflect the computations of the pro-
gram. To track implicit flows, a program counter (pc) label is used to keep
track of the current execution level, which is known as the security context.
When secret data is used to compute e.g. the condition of an if-statement,
the pc is updated to reflect the label of the condition, and the body of the
if-statement is executed under secret control, which restricts the allowed
side-effects. Indeed, while under secret control, no public side-effects are
allowed to occur, as that indicates an implicit flow. However, it is not only
values that must be protected — implicit flows can also occur in the security
labels. As an example, consider the following code from [37], where 1 and t
are initially labeled L, and h is initially labeled H.

1 1 := true;

2 t := true;

3 if (h == true) then
4 t := false;

5 if (t == true) then
6 1 := false;

If implicit flows are allowed into labels, the security labels of the variables t
and 1 are upgraded if the assignments on Line 4 and Line 6 occur respectively.
The result of executing the program (which can be seen in Table 0.1) leads
to the value of 1 to be the same as the value of h, but retain the low security
label.

To prevent this issue and avoid the implicit flows into labels, the en-
forcement can be based on no sensitive-upgrades (NSU), which disallows
upgrading labels of low values when branching on secret data [36, 71]. With
NSU, the assignment on Line 4 is not allowed, as there would be a low
upgrade under secret control which would cause the program to terminate
before the leak of information occurs.



8 INTRODUCTION

Table 0.1: Trace execution, showing why side effects into labels are dangerous,
and can be used to leak secret information.

Executed code h := truefl h := false®
1 := true; 1 := truel 1 := truel
t := true; t := truel t := truel
if (h == true) then | branch taken, pc = H branch not taken
t := false; t becomes false’” t remains true”
if (t == true) then branch not taken branch taken, pc = L
1 := false; 1 remains true® 1 becomes false”
1 = truel 1 = falsel

Papers I-1I explores how IFC can be lifted to libraries written in a lan-
guage that does not support IFC. The mechanism presented in Papers I-II
follow both TINI and NSU.

Observable Tracking NSU can sometimes be too restrictive and mark
seemingly valid programs as invalid. As an example, the following program
can be argued to be secure, since low_val is never written to a public output.

1 low_val := true;
2 if (high_val == false) then low_val := false;

Similarly, if the value of a low value remains the same, a program can be
deemed secure as an attacker would not be able to gain knowledge about
the secret value high_val.

1 low_val := false;
2 if (high_val == false) then low_val := false;

To allow the latter example, one must employ value sensitivity [41], a topic
that is not covered in this thesis. In Papers I-1I both examples would be
deemed insecure if high_val is false. However, Paper IIl employs observable
tracking [38, 67], which is more permissive than NSU. As the name suggests,
observable tracking tracks the observable implicit flows, as well as explicit
flows. Observable tracking is more permissive, as it would allow implicit
flows as long as the implicit flow is not observable by an attacker. Although the
value of low_val is modified depending on high_val in the first example, it
would be deemed secure with observable tracking since that implicit flow is
not observed by an attacker.

To capture the essence of browser fingerprinting, where many different
data sources are combined, a program must not halt as soon as NSU is
triggered. This makes observable tracking a good fit for Paper 111, as it
presents an approach to detect fingerprinting.
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2 Browser Fingerprinting

When browsing a web page, many properties of the web browser and under-
lying system are accessible by the web page, such as the screen width [13]
and height [12], the user agent [9], and the language [10]. Although the
properties that are accessible by the web page are benign in isolation, com-
bining them may uniquely identify a user [47]. There are web pages, such as
Panopticlick [27] and AmIUnique [19], where users can test their fingerprint-
ability. Similarly, there are libraries such as Fingerprint]S [23] that web pages
can use to aid them in fingerprinting the users. As browser fingerprinting
can help identify a user, this can be used by third-party code to track users
during their browsing session.

What makes browser fingerprint troublesome is twofold: 1) it decreases
the privacy for users, as they can be tracked easier, and 2) the act of finger-
printing is often completely invisible for the users. For users today, there are
many different approaches how to defend themselves, ranging from using a
browser that attempts to make all look the same [31, 30], to adding random
noise to sensitive API calls known to be used when fingerprinting [32], using
privacy budgets [28], to using filter lists to block the fingerprinting script to
be loaded [24, 26]. All of these approaches indicate there is no uniformed
way of detecting fingerprinting, something Paper III attempts to find.

As browser fingerprinting follows the distinct pattern of 1) a script ac-
cessing several different properties and 2) combining the properties into
one value, searching for this pattern can help distinguish fingerprinting
scripts from other types of scripts. Paper III tackles this problem by using
observable IFC.

3 Browser Extensions

If users want to improve the web browsing experience, they can increase
web browser functionality by installing browser extensions. More privacy
aware users may install browser extensions to block advertisement on web
pages, block tracking scripts executed on web pages, or a password manager
to help make it easier to have a unique password for every service. But
this comes at a cost: extensions are given permissions which are greater
than those of a web page. As an example, an ad blocker must read the
network requests made by the web page to determine if a resource should
be blocked or not. But extensions can also inject arbitrary code [3], with
some malicious extensions injecting their own tracking scripts, allowing the
extension developer to track the users on every web page they visit [50].
Even worse, if an extension has a vulnerability, web pages may be allowed
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to execute arbitrary code with the elevated privilege of the extension [33, 1].
As it stands, the current extension model allows for web pages to exploit
browser extensions to gain access to sensitive data and bypass SOP, which
poses a threat to user privacy [66].

But there is another side to the story as well. It can be in the interest of
a web page to know which extensions a user has installed, as the presence
of an extension can lead to, e.g., financial losses due to less advertisement
revenue, or to prevent arbitrary code being injected when paying with
a credit card online or accessing an internet bank. Web pages can detect
extensions through behavioral analysis, where a web page detects extensions
by looking for effects created by the extensions. An example would be to
check if an element is present or absent on the web page, or analyzing specific
changes to the web page which can be attributed to a specific extension [69,
68]. It may be difficult to determine the exact extension using behavioral
analysis — there are, e.g., several different ad blockers which may have the
same behavior. It can also be costly, as it requires time and effort to analyze
keep up-to-date with extension updates.

Instead, one can exploit the fact that browser extensions must declare
which resources they want to inject onto a web page. These resources, which
are called web accessible resources (WARs), are then accessible from the web
page, and can be used to help detect installed extensions. In Chrome, the
resources have a specific URL pattern, which allows web pages to enumerate
known resources and request them. If the resource is accessible, the web
page knows the extension is installed. Naturally, this is not necessarily good,
which prompted Firefox to try and mitigate the enumeration by randomizing
part of the resource URL. Unfortunately, this randomization is not done often
enough, which means an extension that injects a resource will give the web
page a token which can be used for tracking, uniquely identifying a user.

These are the topics for Papers IV-V, with Paper IV exploring how many
browser extensions that can be trivially detected using WARs, and Paper V
exploring how the use of randomized extension IDs actually can decrease the
privacy for users.

4 Content blocking with filter lists

Filter lists can be used to block undesired content, with hundreds of millions
of web users using filter lists. Simply put, a filter list is a collection of rules,
dictating what resources to block, usually based on the URL. Some browsers
have implemented the use of popular filter lists to help block ads [17] and
tracking scripts [22, 24, 26], and users can also install browser extensions to
increase protection, such as AdBlock [18], Privacy Badger [29], Ghostery [25],
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and Disconnect [20]. This means filter lists can be used to maintain a secure,
private, performant, and appealing web for users. Prior work show filter
lists can help reduce data use [61], protect users from malware [57], and
improve browser performance [48, 63].

Filter lists are usually crowd-sourced, where a group of users manually
label resources to keep the filter lists up to date. Unfortunately, the popular
filter lists focus on English web pages, and non-English regions should use
a supplementary list to block regional resources not popular enough to be
blocked by the global lists. Although there are a plethora of supplementary
filter lists [21], if the regions for the supplementary list have smaller groups of
people maintaining the filter list, e.g., due to being smaller linguistic regions,
the supplementary list may be outdated or even non-existent, making the
protection of users in these regions poorer. Paper VI presents an approach
to automatically generate filter lists, focusing on three regions that have
outdated supplementary filter lists.

5 Contributions

This thesis consists of six papers. Five of the papers (Papers I-1I and Pa-
pers IV-VI) have been published in peer-reviewed conferences, and Paper III
is currently under submission. This section outlines the contributions of each
paper. In broad terms, the papers fall into four different categories, all aimed
to increase web security and privacy by:

1. defining a theoretical framework for allowing IFC in the presence of
libraries. This would allow deploying IFC tools, such as JSFlow, in
settings where the libraries are written in a language which does not
support IFC, by allowing marshaling between the labeled program
and the unlabeled library. The approach enforces TINI and is presented
in Papers I-1I.

2. bridging the gap between the theoretical framework to handle libraries
in an IFC setting by implementing library handling in JSFlow, while
also deploying JSFlow in a browser to detect browser fingerprinting.
This is presented in Paper III, where the theoretical framework of
Paper II is implemented. The resulting implementation uses the IFC
approach observable tracking.

3. looking at how the use of browser extensions can decrease privacy
since web pages can detect and identify users based on the installed
extension(s). This is based on the browser extension’s WARs, and is
presented in Papers IV-V.
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4. increasing security and privacy for smaller linguistic regions where
the supplementary filter lists are outdated by automatically generate
filter lists rules. This will allow for smaller regions to have better
supplementary filter lists and is presented in Paper VI.

The rest of this section summarizes the papers in this thesis.

5.1 A Principled Approach to Tracking Information Flow in the
Presence of Libraries

Daniel Hedin, Alexander Sjosten, Frank Piessens, and Andrei Sabelfeld

In Paper I, a principled approach to tracking information flow in a program
which use libraries was developed. There has been encouraging progress on
IFC for programs in increasingly complex programming languages. How-
ever, as programs are typically deployed in an environment with rich APIs
and powerful libraries, the need for tracking the propagation of information
in these libraries arises. These APIs and libraries are usually unavailable or
written in a different language that does not support IFC. The setting in this
paper is the program is assumed to be written in an information-flow aware
language, but the library is not. The development of the approach initially
starts with a small core language with the notion of split semantics and state-
ful marshaling, before being extended with lists and higher-order functions.
This paper aims to strike a balance between security and precision to find
a middle ground between “shallow” signature-based modeling of libraries
and “deep”, stateful approaches where library models need to be supplied
manually. The general idea for striking this balance is based on unlabel and
relabel models, which define how labels are removed when marshaling to
the library, and how they are added when marshaling back to the program.
A key aspect of this paper is lazy marshaling, which increases the precision
of the tracking since only used parts of lists and higher-order functions will
affect the label when marshaling from the library to the program. Although
not implemented in Paper I, the notion of lazy marshaling presented ex-
tends naturally to all types of structured data, including records and objects.
Soundness is proved with respect to noninterference.

The paper presented in this thesis is the extended version of the published

paper.

Statement of contribution This paper was co-authored with Daniel Hedin,
Frank Piessens, and Andrei Sabelfeld. Alexander’s contributions were to
define syntax and semantics, implement prototypes for testing the ideas,
and prove soundness of the different systems.

Appeared in: Principles of Security and Trust (POST), Uppsala, Sweden, April
2017
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5.2 Information Flow Tracking for Side-effectful Libraries

Alexander Sjosten, Daniel Hedin, and Andrei Sabelfeld

Paper Il is a continuation of Paper I, where the major contribution is the
addition of side-effects through references. As Paper I passed the model state
as an implicit parameter when marshaling between the program and the
library, handling side-effects would be difficult since every marshaled value
would have their own model state, with no obvious way of propagating
modifications made by one function to another. Instead, Paper II makes a
complete overhaul of the core system and introduces a model heap which
is part of a shared execution environment. When marshaling, instead of
passing the entire model state, we now pass the current stack of heap pointers,
ensuring side-effects from one function is propagated to all functions which
have the same pointers.

The introduced structured data in Paper I was modified to accommodate
the model heap, and records, references, and side-effects were added. Lazy
marshaling remained and was extended to include the records. To allow for
modeling of side-effects, the model language was extended with side-effect
constraints, which models how the side-effects can manipulate data. The
theoretical work in this paper is formalized in Coq [15], showing the system
is sound with respect to noninterference.

Papers I-II provides a theoretical core for how to track information flow
in stateful libraries with structured data and higher-order functions.

The paper presented in this thesis is the extended version of the published

paper.

Statement of contribution This paper was co-authored with Daniel Hedin
and Andrei Sabelfeld. Alexander’s contributions were to define the syntax
and semantics, conduct the case study on a file system library, creating the
examples and implementing the prototype.

Appeared in: International Conference on Formal Techniques for Distributed
Objects, Components, and Systems (FORTE), Madrid, Spain, June 2018

5.3 EssentialFP: Exposing the Essence of Browser Fingerprinting

Alexander Sjosten, Daniel Hedin, and Andrei Sabelfeld

Paper 111 ties the knot between the theory presented in Paper II and practical
use. In the setting of Paper 111, “libraries” corresponds to the DOM API in the
browser. It presents EssentialFP, a principled approach to detecting browser
fingerprinting on the web. EssentialFP employs observable IFC to detect the
pattern of 1) gathering information from a wide browser API surface, and 2)
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communicating the information to the network, which captures the essence
of fingerprinting.

The implementation of EssentialFP leverages, extends, and deploys
JSFlow [53] in a browser, showing it is possible to spot fingerprinting
on the web by evaluating it on several different categories of web pages.
The evaluated categories are analytics, authentication, bot detection, and
fingerprinting-enhanced Alexa top pages, and we can see a clear distinction
between, e.g., analytics and fingerprinting-enhanced web pages.

As Paper III demonstrates how IFC tracking is possible within the DOM
API, it would be possible to extend this in the future to also include browser
extensions to see if the attacks presented in Papers IV-V can be detected
using IFC as well.

Statement of contribution This paper was co-authored with Daniel Hedin
and Andrei Sabelfeld. Alexander’s contributions were to help with the
implementation of the library handling presented in Paper II, create the
crawler, conduct the empirical study, and analyze the results.

Under submission

5.4 Discovering Browser Extensions via Web Accessible
Resources

Alexander Sjosten, Steven Van Acker, and Andrei Sabelfeld

Web pages can perform browser fingerprinting by combining seemingly
benign properties in the browser and specific configurations of the hard-
ware [47, 58, 42, 27]. Similarly, web pages can detect browser extensions
based on their behavior [69, 68]. Paper IV shows how some extensions can
be detected by web pages without analyzing the behavior and explores what
knowledge can be gained by a web page about a user’s installed extensions.
It uses the fact that browser extensions must declare resources they want to
inject as web accessible resources (WARs), which becomes public resources [8]
and can easily be fetched by any web page.

This work includes a large-scale empirical study, consisting of download-
ing all free extensions for Chrome and Firefox, as well as crawling the Alexa
top 100,000 pages to determine if WARs are used to detect extensions in the
wild. It also includes a discussion of potential measures to avoid this kind of
extension detection.

It is worth to point out that the empirical study for Firefox mainly fo-
cuses on extensions based on the old extension model, and not the current
WebExtensions.

The paper presented in this thesis is the extended version of the published

paper.
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Statement of contribution This paper was co-authored with Steven Van
Acker and Andrei Sabelfeld. Alexander’s contributions were the extensions
experiment (all but the Alexa part), as well as defining the measures and
develop the prototype for detecting extensions.

Appeared in: Proceedings of the Seventh ACM on Conference on Data and Appli-
cation Security and Privacy (CODASPY), Scottsdale, AZ, USA, March 2017

5.5 Latex Gloves: Protecting Browser Extensions from Probing
and Revelation Attacks

Alexander Sjosten, Steven Van Acker, Pablo Picazo-Sanchez,
and Andrei Sabelfeld

To help combat the probing of browser extensions used in Paper IV, Fire-
fox randomized the ID, which is part of the URL to a WAR, of a browser
extension for their extension model WebExtensions. Unfortunately, the ran-
domized ID is rarely re-generated, which exacerbates the extension detection
problem by allowing attackers to use the randomized ID as a reliable finger-
print. Paper V presents revelation attacks, where extensions reveal themselves
by injecting content, and with this their random extension ID, on web pages.
Once the random extension ID and the injected resource is in the hand of
the web page, it can start to probe for other known resources to try and iden-
tify the extension. Paper V demonstrates how a combination of revelation
and probing can uniquely identify 90% of all extensions injecting content,
despite a randomization scheme, and presents a series of large-scale studies
to estimate the possible implications of both probing and revelation attacks.
Lastly, the paper presents Latex Gloves: a browser-based mechanism
that enables control over which extensions are loaded on which web pages,
implemented as a proof of concept which blocks both classes of attacks.

Statement of contribution This paper was co-authored with Steven Van
Acker, Pablo Picazo-Sanchez, and Andrei Sabelfeld. Alexander’s contribu-
tions were developing the attacks, conducting empirical studies to decide
which browser extensions are vulnerable, and designing the defence against
both classes of attacks.

Appeared in: Network and Distributed System Security Symposium (NDSS),
San Diego, CA, USA, February 2019
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5.6 Filter List Generation for Underserved Regions

Alexander Sjosten, Peter Snyder, Antonio Pastor, Panagiotis Papadopoulos,
and Benjamin Livshits

Filter lists play a crucial and growing role in protecting and assisting web
users. The vast majority of popular filter lists are often crowd-sourced, where
a large number of people manually label resources related to undesirable
web resources, such as ads and trackers. Unfortunately, crowd-sourcing in
regions of the web serving languages with (relatively) few speakers can
perform poorly. Paper VI addresses this problem with a deep browser instru-
mentation called PageGraph, which allows for accurately generate request
chains, which is a chain of requests which ended with a resource being
loaded, and an ad classifier which combines perceptual and page-context
features to remain accurate across multiple languages.

With the request chains, the aim is to find as high a point as possible to
block an ad, without breaking the web page. This is applied to three regions
of the web which had poorly maintained filter lists: Sri Lanka, Hungary, and
Albania, generating several new filter list rules and increased the overall
blocking by 30.1% across the regions.

This paper was the result of an internship at Brave Software during the
summer of 2019.

Statement of contribution This paper was co-authored with Peter Snyder,
Antonio Pastor, Panagiotis Papadopoulos, and Benjamin Livshits. Alexan-
der’s contributions were to help developing the browser instrumentation
PageGraph, the full implementation of the hybrid classifier (aside from the
perceptual classifier), conducting all the experiments, the inclusion chain
creation, and the filter list rule generation.

Appeared in: Proceedings of the Web Conference (WWW), Taipei, Tniwan, April
2020
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