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Collisional effects on electrostatic shock waves and heating in laser-
generated plasmas
ANDRÉAS SUNDSTRÖM
Department of Physics
Chalmers University of Technology

Abstract
Electrostatic shock waves are associated with an electrostatic field structure propa-
gating at supersonic speed through laboratory or astrophysical plasmas. Shock ion
acceleration schemes, based on the strong electrostatic field in the shock structure,
show promising potential due to the narrow energy spread of accelerated ions –
which can be applied in plasma diagnostics, the generation of warm dense matter
or medical purposes. The use of high-intensity laser pulses to generate shocks in
the laboratory commonly result in plasmas which are weakly collisional; thus col-
lisions are usually neglected in the corresponding theoretical, kinetic studies. By
contrast, this thesis considers the effects of collisions on the structure and dynamics
of electrostatic shocks as well as laser absorption and subsequent plasma heating.

First, the structure of electrostatic shocks is considered in weakly collisional plas-
mas, via a semi-analytical model. Collisions are found to cumulatively affect the
shock structure on longer time scales, despite the low collisionality. Then, the im-
pact of collisions on laser-driven plasmas is analyzed via numerical, particle-in-cell,
simulations. The importance of collisions is heightened in plasmas comprising highly
charged ions at solid density. Collisional inverse Bremsstrahlung heating is found
to be able to generate well-thermalized electrons at energy densities relevant for
warm- and hot-dense-matter applications. The strong electron heating also creates
favorable conditions for electrostatic shocks. Collisions between shock-accelerated
and upstream ions are found to increase the fraction of accelerated ions, thus boot-
strapping the shock ion acceleration. Lastly, collisional ion heating is studied in
connection to the shock. Different modeling approaches available to treat the highly
collisional, solid density plasmas may predict qualitatively different shock dynamics,
providing an opportunity for experimental model validation.

Keywords: plasma physics, laser-plasmas, electrostatic shocks, binary collisions,
inverse Bremsstrahlung, warm dense matter

iii



iv



List of publications

A Sundström, A., Juno, J., TenBarge, J. M. & Pusztai, I. 2019 “Effect
of a weak ion collisionality on the dynamics of kinetic electrostatic shocks”.
Journal of Plasma Physics 85, 905850108,
doi: 10.1017/S0022377819000023

B Sundström, A., Siminos, E., Gremillet, L. & Pusztai, I. 2020a “Fast
collisional electron heating and relaxation with circularly polarized ultrain-
tense short-pulse laser”. Journal of Plasma Physics 86, 755860201,
doi: 10.1017/S0022377820000264

C Sundström, A., Siminos, E., Gremillet, L. & Pusztai, I. 2020b “Colli-
sional effects on the ion dynamics in thin-foil targets driven by an ultraintense
short pulse laser”. Plasma Physics and Controlled Fusion 62, 085015,
doi: 10.1088/1361-6587/ab9a62

v

https://doi.org/10.1017/S0022377819000023
https://doi.org/10.1017/S0022377820000264
https://doi.org/10.1088/1361-6587/ab9a62


Acknowledgments

As this thesis marks the halfway point in my pursuits as a PhD student, it is high
time I pause for moment to thank everyone who has made this possible. First and
foremost, I have to gratefully thank István Pusztai, my supervisor, for supporting
and guiding me through this dense underbrush of physical understanding and aca-
demic life. Next, I would also like to thank my co-supervisors Laurent Gremillet and
Evangelos Siminos, they have both helped tremendously during the two last papers
in this thesis. Laurent has been especially inexhaustible in giving comments and
suggestions par excellence, which have undoubtedly improved my work in the last
year. I must also thank the whole plasma theory group at Chalmers for being such
good colleagues, and especially Tünde Fülöp for heading and managing to keep the
group together – an excellent rock-star manager.

Lastly, I cannot but thank my friends and family, all of you! I want to espe-
cially thank my sister for many years of warm and, perhaps sometimes mischievous,
friendship. A special thanks also goes out to hr. ing. Algehed for all the years of
skookum fun and evenings of intense merriment.

Andréas Sundström, Göteborg, 2020-08-10

vi



Contents

Abstract iii

List of publications v

1 Introduction 1
1.1 Laser-based ion acceleration . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 A brief overview of laser–plasma interactions . . . . . . . . . . . . 2
1.1.2 Ion-acceleration mechanisms . . . . . . . . . . . . . . . . . . . . . 3

1.2 Warm-dense-matter generation . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Kinetic modeling of plasmas 9
2.1 Kinetic theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Ensemble averages . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 The distribution function and the Vlasov equation . . . . . . . . . 12
2.1.3 Macroscopic quantities obtained from the distribution function . . 14

2.2 Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Requirements on a collision operator . . . . . . . . . . . . . . . . 15
2.2.2 The Fokker–Planck collision operator . . . . . . . . . . . . . . . . 17

2.3 Continuum Vlasov–Maxwell solvers . . . . . . . . . . . . . . . . . . . . 20
2.4 Particle-in-cell methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Laser–plasma interactions 25
3.1 Review of some of the basics concepts of laser–matter interactions . . . 25

3.1.1 Electromagnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.2 Particle motion in an electromagnetic plane wave . . . . . . . . . 28
3.1.3 Laser interaction with a plasma . . . . . . . . . . . . . . . . . . . 32

3.2 Laser-based heating of overdense plasmas . . . . . . . . . . . . . . . . . 35
3.2.1 Skin heating mechanisms – inverse bremsstrahlung, sheath inverse

bremsstrahlung, normal and anomalous skin effects . . . . . . . . 35
3.2.2 Resonant and not-so-resonant heating . . . . . . . . . . . . . . . . 37
3.2.3 “j×B” and vacuum heating . . . . . . . . . . . . . . . . . . . . . 38

3.3 Laser-induced plasma heating . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.1 Revisiting inverse bremsstrahlung . . . . . . . . . . . . . . . . . . 39

3.4 Collisional effects on electrostatic shocks . . . . . . . . . . . . . . . . . 41
3.4.1 Weakly collisional electrostatic shock model . . . . . . . . . . . . 42

vii



Contents

3.4.2 Laser-generated electrostatic shocks in more strongly collisional
laser-plasmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Summary and outlook 47
4.1 Summary of papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

References 53

viii



Chapter 1

Introduction

Lasers have fascinated not only scientists, but the public in general. Early references
in popular culture include the Bond film Goldfinger from 1964, in which the villain
explains to Bond that the device which is pointing at him is a “laser, which emits
an extraordinary light, unknown in nature. It can project a spot on the moon. Or
at closer range, cut through solid metal.” This was only four years after the first
demonstration of a working laser by Maiman in 1960. The laser portrayed in the
film was pure science fiction at the time, but now, industrial lasers cutting metal are
widely available, and already in 1973, the orbital distance of the Moon was measured
using lasers (Bender et al., 1973) – albeit with the help of retroreflectors left on the
Moon as a part of the Apollo program.

Clearly, laser science has made tremendous progress the last 60 years. One of
the crowning achievements in laser technology so far must have been the invention
of the chirped pulse amplification (CPA) in 1985 by Strickland & Mourou, which
was recognized with the 2018 Nobel prize in physics. CPA has allowed the creation
of short-duration and extremely high intensity laser pulses, which have generated
a vast range of applications at different levels of readiness, from already consumer-
available laser eye surgery, to fundamental research topics such as basic laser–matter
interaction at ever-increasing laser intensities.

At these high intensities, an irradiated target becomes exceedingly hot, and to-
gether with the strong electromagnetic fields from the laser, the atoms in the target
may no longer be able to hold on to the electrons. The target material becomes
ionized to a plasma state, which consists of a mixture of free electrons and ions.
The presence of free charged particles – as opposed to atoms which are neutral – de-
termines the nature of interaction between the laser electromagnetic fields and the
target. The work outlined in this thesis concerns studying and modeling the inter-
action of such a high-intensity (∼1020 W/cm2) laser pulse with the target plasma,
particularly in view of developing techniques for accelerating ions and creating warm
dense matter using laser–plasma interactions.

1.1 Laser-based ion acceleration
One major envisioned application of high-intensity lasers is to utilize them for par-
ticle acceleration. Indeed, electron acceleration from laser irradiation was proposed
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1. Introduction

already in 1979 by Tajima & Dawson, and finally demonstrated experimentally by
Amiranoff et al. (1998), based on a setup simulated by Joshi et al. (1984). Regarding
the use of lasers to accelerate ions, Linlor (1963) reported observations of energetic
ions only three years after the first laser, although the ∼keV energies are meager
in contrast to current results. As laser technology improved, ion energies of ∼MeV
were reported by Gitomer et al. (1986), using relatively long-duration (nanosecond)
pulses, and by Fews et al. (1994), employing sub-picosecond, high-intensity laser
pulses generated with CPA.

In more recent years, laser-accelerated ions have attracted considerable research
attention – two reviews on the subject have been written by Daido, Nishiuchi &
Pirozhkov (2012) and Macchi, Borghesi & Passoni (2013) – owing to the many
envisioned or already demonstrated applications, many of which hinge upon the
capacity of laser acceleration to produce a high number of ions in short-duration
(picosecond) bunches. This feature makes laser-accelerated protons ideal for imaging
of transient electromagnetic fields when the protons pass through plasmas (Borghesi
et al., 2002; Romagnani et al., 2005), useful for diagnostic purposes. Such fast ions
can also be used to generate warm dense matter – to be discussed in later chapters –
when they irradiate and are absorbed in a target (Patel et al., 2003; Dyer et al., 2008;
Mančić et al., 2010). Laser-generated ions could also be used to produce neutrons
through nuclear reactions (Roth et al., 2013), which would be of a similarly short
duration, not easily achievable otherwise by conventional means.

Another envisioned application of high energy ions is in ion-beam therapy. High-
energy ions display a peculiar behavior that when they are used to irradiate matter,
they deposit a large fraction of their energy at a well-defined depth, the so called
Bragg peak. This feature makes ions particularly well suited for medical treatment,
where, unlike photons or electrons, ions can be used to target tumors with limited
damage to healthy surrounding tissue. The promise of laser-based ion accelerators
here is in cost and availability (Bulanov et al., 2002; Linz & Alonso, 2007) com-
pared to conventional accelerators. While much scientific effort has been focused
towards this goal, it is still beyond the current capabilities of laser-based accelera-
tors. In order to become practical in medical use, the accelerators must be capable
of producing particle energies of several hundred MeV per nucleon, at a very narrow
energy spread and good repeatability (Giulietti & Tajima, 2016).

1.1.1 A brief overview of laser–plasma interactions

Plasmas consist of free charged particles, which all interact with, and generate their
own, electromagnetic fields. The dynamics of the plasma is therefore closely linked
with the electromagnetic fields present. The particles of the plasma may act col-
lectively, giving rise to macroscopic fields, and they may interact microscopically,
giving rise to collisional effects based on the practically random changes to indi-
vidual particle trajectories. Since there are many competing effects in the plasma,
the effects of collisions are at times insignificant to that of some other phenomena
studied. Because of this, and due to the increased complexity required to model
collisions, they are at times neglected. This work, however, has been focused on the
effects of collisions in laser-plasma settings.
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1.1. Laser-based ion acceleration

The problem of modeling the collective behavior of the plasma is very challenging,
since the field and plasma interact non-linearly – the plasma generates its own
fields which then affect the plasma. Yet, there are some simple principles which
govern the basic field–plasma interactions. Since plasmas consist of free charged
particles, they are very conductive, and low-frequency electric fields generally do not
penetrate them very well. Static fields are shielded by the redistribution of charge
in the plasma, known as Debye shielding. For oscillating fields, the plasma has a
certain response rate, the (electron) plasma frequency, above which electromagnetic
waves are transmitted. The plasma frequency depends on the electron density of the
plasma – higher density gives a higher plasma frequency. So laser-plasmas are usually
classified with respect to the laser frequency as either overdense or underdense,
meaning that the plasma either reflects or (partially) transmits the laser light.

Besides oscillations induced by external fields, there is a whole plethora of dif-
ferent plasma waves, among which the ion-acoustic wave is of central importance
to a key class of electrostatic shocks. The ion-acoustic wave propagates at a certain
speed, simply called the sound speed, cs, and that speed sets the limit for how fast
(information about) a local perturbation to the ions can propagate to other parts
of the plasma. If a strong enough perturbation is induced, such that it propagates
faster than the sound speed, it will induce an ion-acoustic shock wave – some prop-
erties of which are studied in this thesis. Among these properties is the shock speed,
usually expressed by the Mach number,M = vsh/cs, which is the ratio of the shock
speed to the sound speed (in the unperturbed plasma ahead of the shock front).
Shocks are therefore characterized by a Mach number larger than unity,M > 1.

1.1.2 Ion-acceleration mechanisms

In order to understand and develop laser-based ion acceleration, it is necessary to
first understand the mechanisms by which ions are accelerated. To accelerate a
particle, some force must act on it; in the case of a charged particle that force is
provided by an electric field. The size of the accelerator is determined by the strength
of the accelerating electric field together with the desired energy of the particles. In
conventional accelerators, such as cyclotrons, synchrotrons and linear accelerators,
that electric field is supplied as a high-power radio-frequency (RF) electromagnetic
wave. In such devices, the electric field strength is not only limited by the RF
power available, but also the material properties of the accelerator chambers – i.e.
limitations on how strong fields they can withstand without damage due to electrical
breakdown. Typically, the field strength of conventional RF accelerators is limited
to .0.1 GV/m, which means that these accelerators operate on macroscopic (meter)
scales.

The accelerating structures in laser-based accelerators, on the other hand, are
not limited by material damage thresholds. Since the material (a plasma) is already
ionized, damage due to breakdown is no longer relevant. Therefore, laser-plasma
accelerators can operate on a microscopic scale, thanks to the accelerating fields
reaching as strong as ∼GV/m (Litos et al., 2014) or even ∼TV/m (Higginson et al.,
2018), depending on the acceleration scheme. Below, three of the more common
laser-based ion-acceleration mechanisms are presented briefly.
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1. Introduction

Target normal sheath acceleration

One of the simplest, and most robustly observed, ion acceleration mechanisms is
the target normal sheath acceleration (TNSA) first described by Wilks et al. (2001).
In short, it relies on first energizing part of the target electrons with the laser;
the high-energy electrons will then tend to escape from the target, thus creating
positively charged sheaths at the plasma–vacuum boundaries, which produces a
strong electrostatic field directed outward from the plasma. This field acts to reflect
the electrons back into the target, while accelerating the surface ions. The laser
energy, first converted into electron kinetic energy, is then eventually transferred to
the target ions. Although this mechanism is rather robust and generally produce the
largest number of accelerated ions in laser ion-accelerators, TNSA typically produce
broad ion energy spectra, exponentially decreasing over several orders of magnitude.
Such large energy spread can be detrimental to applications that require well-defined
ion energies.

Since TNSA relies on the production of high-energy electrons before the ions
are accelerated, low-density targets are generally preferable. This is because the
penetration depth of the laser depends on the density of the plasma. The deeper
the laser penetrates, the larger fraction of the electrons it can energize, and thus
the stronger the sheath field will become. Recent experiments by Higginson et al.
(2018) yielded protons at a maximum energy of 94 MeV, utilizing relativistic trans-
parency (Kaw & Dawson, 1970) – to be discussed, in brief, later – in order to have
deep laser penetration.

Radiation pressure acceleration

Another ion-acceleration mechanism whose mechanism can easily be grasped is ra-
diation pressure acceleration (RPA). The concept that electromagnetic radiation
can exert a force on matter has been known for over a century (Lebedew, 1901),
and may be understood either classically or quantum mechanically by the momen-
tum carried by the electromagnetic wave or by the photons, respectively. Esirkepov
et al. (2004) proposed that this pressure may also be suitable to accelerate accelerate
ultra-thin targets as a whole. This mechanism is sometimes referred to as light sail
acceleration (Macchi, 2014). Since radiation pressure is only exerted by absorbed or
reflected radiation, it occurs only in plasmas opaque to to the laser light.

Although simple in theory, RPA is limited by the deformation of the plasma due
to transverse instabilities. As an example, if there is any small variation in plasma
density, the inertial mass resisting acceleration would be varying correspondingly.
Regions with lower density will be pushed more effectively, and some of the plasma
will even be pushed to the side, thus amplifying the density variation. Through this
process, a hole may be formed in the light sail, through which the light may “leak”
to the detriment of the ion acceleration. The light sail may also be destroyed by
relativistic transparency (Kaw & Dawson, 1970), which severely decreases the effec-
tiveness for further RPA. Recent experiments by Kim et al. (2016) have, however,
reported radiation pressure accelerated protons up to 93 MeV.
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1.2. Warm-dense-matter generation

Collisionless shock acceleration

The last ion-acceleration mechanism discussed here is called collisionless shock accel-
eration (CSA), described as early as in the sixties by Moiseev & Sagdeev (1963). It is
a slightly more involved concept in terms of the acceleration mechanism. Through
the impact of the laser pulse, a shock wave is generated which propagates at a
(moderately) supersonic speed through the plasma. In a weakly or non-collisional
plasma, the shock front consists of a very steep density gradient (of the order of
the Debye length), associated with a sharp electrostatic field capable of reflecting
part of the upstream ions. The reflected ions reach speeds up to twice the speed of
the shock – similarly to how a golf ball bounces off the golf club at roughly twice
the club’s velocity. Given the right conditions, the shock may propagate through
the plasma, continuously accelerating ions to the same speed, thus generating a
fairly monoenergetic accelerated ion population. The low spread in accelerated ion
energies is also what makes CSA an interesting alternative to TNSA, for certain
applications.

The first simulation study of electrostatic collisionless shocks was performed by
Forslund & Shonk (1970). Later numerical investigations, such as those by Denavit
(1992), Silva et al. (2004) and Fiuza et al. (2012), investigated the shock formation
due the impact of a laser pulse. CSA has recently seen experimental confirmation in
various settings (Romagnani et al., 2008; Haberberger et al., 2012; Zhang et al., 2017;
Antici et al., 2017; Pak et al., 2018). However, due to the more complicated nature of
shock waves, particularly with regards to shock formation and stability, the currently
highest proton energy reported from CSA is ∼45 MeV from the experiment by Antici
et al. (2017), which is significantly lower than the maximum energies reported for
TNSA or RPA, and also lower than the requirement for medical use in ion-beam
therapy. Still, the nearly monoenergetic spectrum of shock-accelerated ions is in
favor for CSA to be used in ion-beam therapy.

Besides the applications directly related to ion acceleration in laboratory settings,
collisionless shocks are also ubiquitous in astrophysical plasmas (Lee, Mewaldt & Gi-
acalone, 2012). Although astrophysical shocks are usually mediated by a finite ambi-
ent or self-generated magnetic field, they may bear resemblance, in certain respects,
to the essentially electrostatic shock arising in laser–plasma interactions (Dieckmann
et al., 2017).

1.2 Warm-dense-matter generation
Besides the relatively application-oriented field of laser-plasma based acceleration,
laser-generated plasmas can also be of interest to basic research fields, such as the
study of warm/hot dense matter (W/HDM). These states of matter are, as the name
suggests, characterized by a high temperature (> 1million kelvin) and at the same
time high density (comparable to the density of solids). Another way of saying this is
that the pressure is extremely high (reaching up to billions of times the atmospheric
pressure). Currently, we do not have a full understanding of the behavior of matter
under these extreme conditions. There is therefore a need to be able to create and
study W/HDM in the laboratory.
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1. Introduction

While reaching either high temperature or high density can generally be done,
achieving both simultaneously is harder to do in a controlled environment. As an
example, temperatures of tens of keV (∼108 K) are regularly reached in magnetic
confinement fusion experiments, but the particle densities are of the order of ∼1014

particles per cubic centimeter (cm−3) – as a comparison, the number density of air
at room temperature (25 meV) and atmospheric pressure is about ∼2.5×1019 cm−3.
Conversely, similarly high temperatures, at a much higher density, are reached in the
detonation of a thermonuclear weapon (commonly known as a “hydrogen bomb”),
but that can hardly be considered a controlled nor safe environment for W/HDM
experiments. The problem is, as mentioned, that the pressure becomes exceedingly
high when both the temperature and density are high.

By employing lasers, large amounts of energy can be delivered to a small volume
of matter, allowing it to be isochorically heated, i.e. heated faster than the plasma
can expand. This technique for creating W/HDM in a laboratory setting can be
used in a broad range of research disciplines such as laboratory astrophysics (Rem-
ington et al., 1999; Remington, 2005; Bailey et al., 2007; Fujioka et al., 2009), and
studies of planetary interiors (Ross, 1981; Knudson, Desjarlais & Dolan, 2008). The
goal of these studies is to emulate the extreme conditions that matter is subjected to
in some astrophysical events, e.g. supernovae explosions, or the enormous pressures
found in the cores of stars and planets. Knowledge of how matter behaves at these
pressures would benefit the broader understanding of such phenomena and help con-
strain stellar and planetary evolution models. This knowledge includes understand-
ing the equations of state under these extreme conditions (Renaudin et al., 2003;
Nettelmann et al., 2008), i.e. how temperature and pressure are related, and exper-
imental verification of high-energy-density (HED) atomic physics models (Hoarty
et al., 2013a; Faussurier & Blancard, 2019). Fast heating with compression by laser
irradiation is also the building block of inertial confinement fusion (Le Pape et al.,
2018; Drake, 2018), which aims at heating and compressing sufficiently to cause hy-
drogen nuclei to fuse together and release energy – akin to a thermonuclear weapon,
although on a much smaller scale.

Isochorically heating a plasma with lasers is not a trivial task. Since a high-
density plasma is generally reflective to light, the absorbed fraction of the laser
energy into plasma is of the order of a few percent only. However, even though laser-
based isochoric heating is challenging, there has been several successful such experi-
ments on powerful (0.1−1 PW), high-intensity (>1018 W cm−2) laser systems (Evans
et al., 2005; Gregori et al., 2005; Martinolli et al., 2006; Chen et al., 2007; Nilson
et al., 2009; Pérez et al., 2010; Brown et al., 2011; Hoarty et al., 2013b). Recently,
there have also been results by Purvis et al. (2013) and Bargsten et al. (2017),
making use of nano-wire arrays to strongly enhance the laser-to-plasma coupling
efficiency, thus creating keV-temperature plasmas with a smaller-scale laser system.

1.3 Outline
In this thesis, we will explore some aspects of shock acceleration and laser-driven
plasma heating, in particular how these processes might be affected when considering
inter-particle collisions. We first lay down a theoretical base for the kinetic modeling
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1.3. Outline

of plasmas in chapter 2; here we will also spend some time on the modeling of
collisions (§ 2.2) as well as how kinetic theory is translated to numerical simulation
methods (§§ 2.3 and 2.4).

From these fundamentals, we will study the interaction between the laser and the
plasma in order to discuss the effects of collisions on the electron heating and electro-
static shocks. Chapter 3 starts with a review of the basic theory of electromagnetic
waves and how they interact with particles and plasmas (§ 3.1), and a discussion
on plasma heating (§§ 3.2 and 3.3). This is followed by a discussion on collisional
effects on electrostatic shocks, both in weakly collisional plasmas (§ 3.4.1), with a
semi-analytical model for electrostatic shocks, and in more strongly collisional plas-
mas by studying particle-in-cell simulations of such scenarios (§ 3.4.2). The main
body of the thesis ends on chapter 4, with a summary of the enclosed papers and a
brief outlook on potential extensions of the work in said papers.
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Chapter 2

Kinetic modeling of plasmas

To fully describe a plasma, we would, in principle (hypothetically), like to solve
the equations of motion for all the particles and their interactions with each other
through the electric, Ẽ, and magnetic, B̃, fields (the ‘tilde’ denotes an exact quantity
on the microscopic level). This is done, ignoring quantum effects, by first introducing
the equations of motion with the Lorentz force acting on a charge particle in an
electromagnetic field

dp̃ia
dt = eZ∗a

[
Ẽ(r̃ia , t) + ṽia × B̃(r̃ia , t)

]
, (2.1)

where p̃ia is the momentum of particle ia, belonging to species a (e.g., electrons
or ions, denoted by a = e and a = i, respectively), and ṽia = dr̃ia/dt is its
velocity; eZ∗a is the charge of a particle of species a, in terms of the charge number
of the species, Z∗a (Z∗e = −1 for electrons), and the elementary charge, e ≈ 1.6 ×
10−19 C. As the energy of a particle may become large compared to its rest energy,
mac

2, a relativistic formulation is necessary, i.e. p̃ia = γ̃iamaṽia with γ̃ia = [1 +
(p̃ia/mac)2]1/2 = [1− (ṽia/c)2]−1/2, where ma is the rest mass of a particle of species
a, and c is the speed of light in vacuum.

Then, the electric and magnetic fields are governed by Maxwell’s (1865) equations
(in the SI convention for electromagnetism),

∇ · Ẽ = ρ̃

ε0
, ∇× Ẽ = −∂B̃

∂t

∇ · B̃ = 0, ∇× B̃ = µ0j̃ + µ0ε0
∂Ẽ

∂t
,

(2.2)

where the charge and current densities are given by the sum of the contributions
from every particle

ρ̃(r, t) =
∑
a

qa
∑
ia

δ
(
r − r̃ia(t)

)
,

j̃(r, t) =
∑
a

qa
∑
ia

ṽia(t) δ
(
r − r̃ia(t)

)
,

(2.3)

which couples back to the individual equations of motions (2.1). The summations
are performed over all plasma species, a, and the individual particles of that species,
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2. Kinetic modeling of plasmas

ia. The Dirac delta function, δ, is used here to represent the point-like nature that
the particles are assumed to have.

The problem, however, is that the indices ia hide an enormous number of par-
ticles involved. In a typical laser-plasma experiment, where the typical plasma
volumes are rather small, the number of particles might be as large as in the order
of 1015 particles involved in the plasma. Needless to say, that is too many equations
to integrate and too much information to process in practice. Some method must
therefore be devised in order to reduce the size of the problem.

2.1 Kinetic theory
One way to make the problem tractable while still, to a degree, preserving effects
of individual particle dynamics, is through kinetic theory. Kinetic theory is based
on statistical mechanics, wherein a physical system is described with the help of a
(statistical) distribution of particles in phase space, which encompasses both a (real
or configuration) spatial coordinate, r, and a momentum coordinate, p. There are,
however, other possibilities for modeling a plasma, such as with a fluid theory, where
the plasma is modeled as one or more fluids which interact electromagnetically.
While a fluid theory further reduces the complexity of the problem, it also lacks
the modeling power afforded by retaining both the configuration and momentum
spaces, which kinetic theory provides. There might, for instance, be two populations
of the same species of particles but with different momenta, e.g. a beam of fast
particles moving through a background population; this will easily be captured by
kinetic theory, while a fluid theory would struggle to capture the nature of the two
distinct populations – unless with an artificial division of the two populations into
two separate fluids.

A first step toward a kinetic description is to introduce a microscopic distribution
function, generally known as the Klimontovich distribution function (1967),

f̃a(r,p; t) =
∑
ia

δ
(
r − r̃ia(t)

)
δ
(
p− p̃ia(t)

)
, (2.4)

where [r,p] are coordinates in phase space. This distribution describes the positions
of all particles of species a in phase space. In order to write an equation for the
time evolution of the system, we need to find the derivative of f̃a with respect to
time:

∂f̃a
∂t

=
∑
ia

∂

∂t

[
δ
(
r − r̃ia(t)

)
δ
(
p− p̃ia(t)

)]

=
∑
ia

{
∂

∂r̃ia
[δ(r−r̃ia)] ·

dr̃ia
dt δ(p−p̃ia) + δ(r−r̃ia)

∂

∂p̃ia

[
δ(p−p̃ia)

]
·

dp̃ia
dt

}

=
∑
ia

{
∂f̃a
∂r̃ia
· ṽia + ∂f̃a

∂p̃ia
· ˙̃pia

}
,

(2.5)

where ˙̃pia = dp̃ia

/
dt is given by (2.1), and differentiation with respect to a vector

is to be viewed as a gradient. Note that processes which can alter the number
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2.1. Kinetic theory

of particles of a specific species, such as ionization/recombination, are ignored for
the moment. The next nuance is to conclude that since f̃ia only consists of delta-
functions, ṽia and ˙̃pia may be replaced by their representations with phase-space
coordinates∗ ṽ and ˙̃p (without the indices ia). These coordinates can then be lifted
outside the sum, giving

∂f̃a
∂t

= ṽ ·
∑
ia

∂f̃a
∂r̃ia

+ ˙̃p ·
∑
ia

∂f̃a
∂p̃ia

. (2.6)

From the definition of f̃a in (2.4), it follows that

∑
ia

∂f̃a
∂r̃ia

= −∂f̃a
∂r

and
∑
ia

∂f̃a
∂p̃ia

= −∂f̃a
∂p

, (2.7)

which finally gives the Klimontovich equation

∂f̃a
∂t

+ v · ∂f̃a
∂r

+ Z∗aK̃ · ∂f̃a
∂p

= df̃a
dt = 0, (2.8)

where

K̃ = K̃(r,v; t) =
˙̃p
Z∗a

= e[Ẽ(r, t) + v× B̃(r, t)] (2.9)

is introduced to represent the Lorentz force acting on a particle of charge e. (In gen-
eral, however, Z∗aK̃ may be extended to represent any net force, e.g. gravity, acting
on a test particle of species a at time t and position r.) The Klimontovich equation
is a special case of Liouville’s theorem for statistical dynamics, which sates that a
phase-space distribution function of a system governed by Hamiltonian mechanics
remains constant along any phase-space trajectory, i.e. df̃

/
dt = 0.

The evolution of the system is now described by (2.8), together with Maxwell’s
equations (2.2) and the extension of the charge and current densities in (2.3),

ρ̃(r, t) =
∑
a

qa

∫
d3p′ f̃a(r,p′; t),

j̃(r, t) =
∑
a

qa

∫
d3p′ v′f̃a(r,p′; t).

(2.10)

So far, however, little has changed in terms of complexity. There are still 6Na

unknown variables behind r̃ia and p̃ia , where Na is the number of particles of species
a. So for transparency, f̃a should really be written as f̃a(r,p; t | {r̃ia , p̃ia}

Na

ia ), where
{r̃ia , p̃ia}

Na

ia = r̃1, p̃1 . . . r̃Na
, p̃Na

is a shorthand for the collection of every particle
phase-space coordinate. Some method for condensing every individual particle into
a more manageable number of parameters is needed.

∗Even though p formally is the phase-space coordinate, not v, the latter can in principle be
treated as one, since they are directly related via v = p/(γma), which is independent of the state
of the system.
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2. Kinetic modeling of plasmas

2.1.1 Ensemble averages
In order to simplify the 6Na variables in (2.8), we make use of the concept of
ensemble averaging. In principle, we are solving a system of partial differential
equations (PDEs), which requires the initial conditions for 6N variables, three for
every r̃ia(t=0) and p̃ia(t=0), respectively, over every species. The solution for any
specific set of initial conditions gives the microstate of the system. The ensemble in
this context is the collection microstates which yield the equivalent macrostate of
the system. That means choosing a large number of macroscopic system variables
(integrated variables) and resolutions for them, and then taking the set of all initial
conditions that share the same values for the macroscopic variables, within the
margins of the resolution. An example of such integrated variables would be ρ and
j (without ‘tildes’ to denote macroscopic quantities), where a finite spatial resolution
gives margins for the exact position of every particle; further examples could be the
temperature or pressure in a given volume.

The ensemble average, 〈·〉Γ̃ , of a quantity, χ̃, is simply the average value of that
quantity over every microstate in the ensemble:

χ = 〈χ̃〉Γ̃ =
〈
χ̃({r̃i, p̃i}Ni )

〉
Γ̃

=

∫
{d3r̃id3p̃i}Ni χ̃({r̃i, p̃i}Ni )Γ̃ ({r̃i, p̃i}Ni )∫

{d3r̃id3p̃i}Ni Γ̃ ({r̃i, p̃i}Ni )
(2.11)

where Γ̃ ({r̃i, p̃i}Ni ) is the density of the microstate {r̃i, p̃i}Ni in the ensemble (the
index i is now running over all N particles in the system, from every species).
The word density in this context is akin to the use of ditto in the probability-density
function of a continuous stochastic variable: In a sense, Γ̃ ({r̃i, p̃i}Ni ) can be thought
of as the (scaled) probability density of a random microstate {r̃i, p̃i}Ni actually being
included in the ensemble.

2.1.2 The distribution function and the Vlasov equation
One of the most important ensemble averages is the ensemble average of the Klimon-
tovich distribution function,〈

f̃a(r,p; t | {r̃ia , p̃ia}
Na

ia )
〉
Γ̃

=
〈
f̃a
〉
Γ̃

(r,p; t) ≡ fa(r,p; t), (2.12)

known as the one-particle distribution function – or simply, the distribution func-
tion. Instead of retaining information of every single particle, fa now represents the
average phase-space density of particles – this is the important idea to have in mind
concerning distribution functions – which also makes fa smooth. The average sys-
tem will have fa(r,p; t)d3rd3p number of particles of species a in the phase-space
volume d3rd3p around the phase-space coordinate (r,p) at time t. In practice, ow-
ing to the large number of particles in any physically relevant system, for some finite
resolution ∆3r and ∆3p, fa(r,p; t)∆3r∆3p will be a very good representation of the
actual number of particles in any specific system. Therefore, while the information
of every single particle is lost, full information about fa for all a is, almost by
definition, sufficient to fully describe the entire macrostate of the system.
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2.1. Kinetic theory

The governing equation for the evolution of the system, may be expressed in
terms of the one-particle distribution function, by applying the ensemble average on
(2.8):

0 =
〈
∂f̃a
∂t

+ v · ∂f̃a
∂r

+ Z∗aK̃ · ∂f̃a
∂p

〉
Γ̃

= ∂fa
∂t

+ v · ∂fa
∂r

+ Z∗a

〈
K̃a ·

∂f̃a
∂p

〉
Γ̃

. (2.13)

The first two terms on the right-hand side of the equation stem from the definition
of fa and the fact that r, v and t, as phase-space coordinates, are independent
of the microstate {r̃i, p̃i}Ni of the system. It is therefore possible to lift the scalar
product with v outside the ensemble average and reverse the order of averaging and
differentiation.

Note, however, that K̃ must be retained inside the average, since it depends on
the electric and magnetic fields, which are clearly dependent on the state of the sys-
tem. Furthermore, the electromagnetic fields are also dependent on the contribution
from all the species in the system. We may therefore write〈

K̃ · ∂f̃a
∂p

〉
Γ̃

=
〈
K̃
〉
Γ̃
· ∂fa
∂p
−
∑
b

C̃ab = K · ∂fa
∂p
−
∑
b

C̃ab, (2.14)

where K = 〈K̃〉Γ̃ , and C̃ab has been introduced to represent the effect on fa through
interactions on the microscopic level, with every other species b (including with a

itself)†. What this means is that, while the exact microstate of the system may
have been sidestepped through fa, and complete knowledge of the macrostate is
given by fa, the exact evolution of fa is still affected by the interactions on the
microstate level. In other words, C̃ab represents the effect on the macrostate from
the interactions between individual particles, i.e. inter-particle collisions – see § 2.2
for more on that.

The next step is to disentangle K = e
〈
Ẽ + v× B̃

〉
Γ̃

= e(E + v ×B), where
E =

〈
Ẽ
〉
Γ̃
and B =

〈
B̃
〉
Γ̃
are the ensemble-averaged electric and magnetic fields,

respectively. Since Maxwell’s equations, (2.2), are linear, they may be directly
written in ensemble-averaged form,

∇ ·E = ρ

ε0
, (2.15a)

∇ ·B = 0, (2.15b)

∇×E = −∂B

∂t
, (2.15c)

∇×B = µ0j + µ0ε0
∂E

∂t
, (2.15d)

where

ρ = 〈ρ̃〉Γ̃ =
∑
a

eZ∗a

∫
d3p′ fa(r,p′; t) =

∑
a

ρa(r, t), (2.16a)

j =
〈
j̃
〉
Γ̃

=
∑
a

eZ∗a

∫
d3p′ v′fa(r,p′; t) =

∑
a

ja(r, t), (2.16b)

†Note that, in principle, this notation fails to include interactions between multiple particles
at once; there is a more complete formalism, known as the BBGKY hierarchy (after Bogoljubov,
1960; Born & Green, 1946; Green, 1952; Kirkwood, 1946 and Yvon, 1935), which allows for the
treatment of the microscopic interactions of arbitrarily many particles in one single collision.
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2. Kinetic modeling of plasmas

again, because of the linearity of the momentum integrals. We may now write down
(2.13) as

dfa
dt = ∂fa

∂t
+ v · ∂fa

∂r
+ eZ∗a(E + v×B) · ∂fa

∂p
=
∑
b

C̃ab, (2.17)

and these equations (2.15, 2.16 & 2.17) represent a closed, self-consistent description
of the evolution of the macro-scale system.

To reiterate, the terms on the left-hand side of (2.17) are all expressed in terms
of ensemble-averaged quantities, and they represent the system evolution due to col-
lective, macro-scale, plasma interactions. The terms on the right-hand side instead
represents the effects of individual particle interactions, i.e. collisions, on the micro-
scopic scale. In some scenarios, e.g. in a sufficiently low-density plasma, where the
particles rarely come in close contact with each other, or when the process of interest
is much faster than the timescales of collisions, the fields from individual particles
may be neglected compared to the macro-fields; in that case, C̃ab → 0 to a good
approximation, and the system is completely governed by the collective behavior of
the plasma. In such cases, where the right-hand side vanishes, the plasma is said to
be collisionless and the governing equation, (2.17) with zero on its right-hand side,
is called the Vlasov (1968) equation.

2.1.3 Macroscopic quantities obtained from the distribution
function

The distribution function can be thought of as containing all the information about
the system remaining after ensemble averaging. In order to utilize that information,
there must be some way of extracting specific quantities of the system from the
distributions. An example of two such macroscopic quantities are the charge and
current densities from (2.16). They are extracted from the distribution function by
taking moments of it.

The most basic moment of the distribution is the particle density in real space,

na = na(r, t) =
∫

d3p′ fa(r,p′; t). (2.18)

Other macroscopic quantities can be extracted via moments in a similar fashion.
For an arbitrary quantity χ = χ(r,p′; t), its macroscopic counterpart is given by

χa(r, t) ≡ 〈χ(r,p′; t)〉a = 1
na

∫
d3p′ χ(r,p′; t) fa(r,p′; t). (2.19)

From this definition, we see that, e.g., ja from (2.16), can be written in terms of a
distribution average as ja = eZ∗ana 〈v〉a = eZ∗anava. In other words, the current
density associated with species a is simply the average (or fluid) flow velocity scaled
by the charge of a particle of species a, eZ∗a, and its density, na, as one would expect
heuristically.
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2.2. Collisions

2.2 Collisions
While the Vlasov system of equations, (2.15, 2.16 & 2.17) with C̃ab → 0, is entirely
self-contained and can be integrated as is (with some “minor” complications due to
causality considerations which we will not address), we are still lacking an adequate
description of the cases where collisions cannot be neglected. Since C̃ab represents
the effect of micro-scale, inter-particle interactions, we still, in principle, require
knowledge of the microstate, {r̃i, p̃i}Ni , of the system. Ideally, we would like to
have an approximation of C̃ab that only depends on the macroscopic state. We
therefore introduce the collision operator, Ĉab = Ĉ[fa, fb], which represents the
effect of inter-particle collisions on the evolution of the distribution function. There
is now no longer a requirement for knowledge of the microstate of the system – it
only depends on fa and fb. Depending on the complexity required in the modeling,
different collision operators have been devised; naturally, these will result in different
levels of accuracy depending on situation and intended usage.

In order to not introduce unnecessary complexity due to relativistic effects, we
have here changed to a non-relativistic treatment of collisions in this section. This is
usually indicated by the use of v as the phase-space coordinate instead of p ' mav
(for v � c). Appropriate relativistic generalizations are available (Beliaev & Budker,
1956; Braams & Karney, 1987).

2.2.1 Requirements on a collision operator
Since the collision operator is meant to model the effects of the microscopic inter-
particle interactions on the macroscopic distribution function, there are limitations
on how the operator can be designed. Because the microscopic interactions obey
certain conservation properties, so must the overall macroscopic effects.

The first conservation law is that of the number of particles (ignoring collisional
ionization and nuclear reactions). The collision cannot change the number of parti-
cles. The individual collision is assumed to occur on timescales much shorter than
that of any other process in the system, which means that the collision itself only
directly changes the momenta of the colliding particles; the position of the colliding
particle is only indirectly affected through the change in its velocity. This means
that collisions cannot directly affect the density profile of a species, i.e. the rate of
change in the density due to collisions must be

∂na

∂t

∣∣∣∣∣
coll.

=
∑
b

∫
d3v′ Ĉ[fa, fb] = 0, (2.20)

at every point in space. Also, since the collisions are assumed not to affect the
species of the colliding particles, we may generalize the statement to saying that
each integral in the sum must vanish separately, not just the whole sum.

The next conserved macroscopic quantities are momentum and energy. Since
we neglect collisions which change the identity of the particles – such as collisional
impact ionization – the collisions are all elastic, hence the conservation of (kinetic)
energy. However, both momentum and energy can still be transferred between
individual particles in a collision, which means that the conservation laws have to
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2. Kinetic modeling of plasmas

be expressed in terms of the respective rates of momentum and energy transfer
between species. For momentum, we have∫

d3v′ p′Ĉ[fa, fb] = −
∫

d3v′ p′Ĉ[fb, fa], (2.21)

and for energy, ∫
d3v′

mav
′2

2 Ĉab = −
∫

d3v′
mbv

′2

2 Ĉba (2.22)

for any species a and b. In the special case of inter-species collisions (b = a), the
integrals of (2.21) and (2.22) must each vanish.

The H-theorem

A final requirement for a physical collision operator is that it should never decrease
entropy. While this property does not directly stem from the microscopic nature
of collisions – indeed, time reversibility of the microscopic processes dictates that
a system should just as well be able to spontaneously decrease its entropy – it
is a widely observed phenomenon, codified as the second law of thermodynamics.
Boltzmann (1872) introduced a quantity H (which he originally denoted “E” as it
was a substitute for entropy) to show that entropy always increases – hence the
name “H-theorem”. Yet, he proved that under the assumption that every colliding
particle is randomly chosen from the distribution of particles, which fundamentally,
through the act of ensemble averaging to create the distribution, ignores the time
reversibility of the microscopic processes, thus inevitably leading to non-decreasing
entropy.

For all practical purposes, however, we may take the increase of entropy as a
postulated requirement for a collision operator. While Boltzmann (1872) formulated
his quantity H in terms of a distribution in energy, we write it here in terms of the
phase-space distribution

Ha = Ha(t) =
∫∫

d3r′ d3v′ fa(r′,v′; t) log[fa(r′,v′; t)], (2.23)

which only differ from the thermodynamical entropy by a negative constant factor.
The rate of change may now be expressed as

dHa

dt =
∫∫

d3r′ d3v′
dfa
dt
[

log(fa) + 1
]
. (2.24)

Note that the way collisional effects are introduced in (2.17), dfa/dt may be replaced
by ∑b Ĉab. Next, the second term in the brackets vanishes due to conservation of
particle number, (2.20), which results in

dHa

dt =
∑
b

∫∫
d3r′ d3v′ Ĉab log(fa). (2.25)

The condition on the collision operator, to increase entropy, S, can therefore be
written as

dS
dt ∝ −

∑
a

dHa

dt ≥ 0. (2.26)
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Note that this condition does not mean that the entropy change has to be positive
for every species. Rather, only the net change in entropy for the whole system has
to be positive. Indeed, if two species of different temperatures are being thermody-
namically equilibrated, then the hotter species will lose entropy, ∆Hhot > 0, and the
cooler species will gain entropy, ∆Hcold < 0, while still resulting in a net entropy
gain of ∆S ∝ −(∆Hhot + ∆Hcold) > 0.

While the formulation of the H-theorem may sound rather abstract and techni-
cal, it has a more concrete effect: collisions create a drive towards a specific distribu-
tion with maximum entropy. Maxwell (1860) was first to derive this distribution on
heuristic ground, followed by Boltzmann (1872), who came to the same conclusions
after analyzing the H-theorem. The distribution in question, now known as the
Maxwell–Boltzmann distribution, is

f (MB)
a (r,v; t) = na

(2πTa/ma)d/2 exp
(
−mav

2

2Ta

)
, (2.27)

in d dimensions, for a population with density na and temperature Ta. This dis-
tribution is formulated for a non-relativistic population, where the kinetic energy,
mav

2/2, of the particles is much smaller than their rest energy, mac
2. For relativis-

tic particles, the distribution can be generalized to the Maxwell–Jüttner distribution
after Jüttner (1911); in terms of a momentum distribution, it is given as

f (MJ)
a (r,p; t) = na

4π(mac)3ΘaK2(1/Θa) exp
(
− γ

Θa

)
, (2.28)

where Θa = Ta/mac
2, K2 is the (second-order) modified Bessel function of the

second kind, and γ = γ(p) is the Lorentz factor.

2.2.2 The Fokker–Planck collision operator
While a vast number of operators, all with their own assumptions, have been used
to analyze the effects of collisions, one of the most commonly used operators is the
Fokker–Planck operator. It is based on the Coulomb interaction between charged
particles. Unlike the hard-sphere, close collisions that Maxwell (1860) and Boltz-
mann (1872) considered, which result in large angle scattering, the long range of the
Coulomb force results in the prevalence of small-angle, grazing collisions, where the
momenta of the colliding particles are only slightly changed. Therefore, the collision
operator, which acts on the distribution function, should only directly affect the
momentum space portion of the distribution.

In fact, the small-angle nudges in the momenta of the particles can be viewed
as a random walk in momentum space. When considering the large number of
particles encompassed by the distribution function, heuristically, this random walk
should result in some form of diffusion of the distribution function in momentum
space. Indeed, we may write a general form of the collision operator consisting of a
diffusion term, Dkl, and an advection/friction/drift term, Ak. The advection term
is added to account for such effects as friction when a particle is moving relative to
the background – intuitively, we would expect a fast-moving population of particles
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α
u

Zbe

b

Zae

R(t)
u′

Figure 2.1: Illustration of a Coulomb collision between a particle of species a and b, in
the rest frame of particle b. The collision has an impact parameter b and results in a
change in the trajectory of particle a by an angle α.

to slow down due to collisions with the background, not only diffuse. In general, an
advection–diffusion equation can be written on the form

df
dt = ∂

∂vk

[
Akf + ∂

∂vl

(
Dklf

)]
= Ĉ[f ], (2.29)

where tensor-index notation has been adapted (e.g. vk .= v, and like indices are
summed, such that ∂/∂vk [Akf ] = ∂/∂v · [Af ]). These terms can then be further
divided into the contributions from the different species a and b: Aab

k and Dab
kl .

Coulomb collisions

The starting point for the Fokker–Planck operator is the electrostatic interaction be-
tween two particles via the Coulomb force ZaZbe2/(4πε0R

2), where R is the distance
between the particle a and b. By limiting ourselves to binary collisions, we may
utilize the existing framework for two-body mechanics: we shift to the rest frame
of particle b and use the relative velocity u = va − vb; we view b as stationary
and use the reduced mass mab = mamb/(ma + mb) for particle a. The resulting
interaction is illustrated in Fig. 2.1, where the collision results in a deviation by an
angle α to the trajectory of particle a.

If indeed α � 1, then R can be approximated as R = R(t) ≈ [b2 + (ut)2]1/2,
and the change in velocity, ∆u, lies (almost) exclusively in the vertical direction of
Fig. 2.1. The magnitude of the change is given by the impulse due to the Coulomb
force

mab∆u ≈
∞∫
−∞

ZaZbe
2

4πε0R2(t)
b

R(t) dt = ZaZbe
2

4πε0

∞∫
−∞

b

[b2 + (ut)2]3/2 dt = ZaZbe
2

2πε0bu
, (2.30)

which gives a scattering angle

α ≈ ∆u
u
≈ ZaZbe

2

2πε0bmabu2 . (2.31)

The deflection of the velocity, i.e. the change in the direction perpendicular to the
initial trajectory, is

∆u⊥ = u sinα ≈ u
ZaZbe

2

2πε0bmabu2 = ZaZbe
2

2πε0mab

1
bu
, (2.32)
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and the corresponding slowing-down component, i.e. change in the direction parallel
to the initial trajectory, is

∆u‖ = u (cosα− 1) ≈ −u2

(
ZaZbe

2

2πε0bmabu2

)2

= −
(
ZaZbe

2

2πε0mab

)2 1
2b2u3 . (2.33)

Note that, although Fig. 2.1 illustrates the interaction of two mutually attracted
particles, i.e. oppositely charged particles, the mathematical framework holds also
for particles with the same charge.

An interesting observation here is that the scattering angle α and therefore the
changes to the velocity, depend on the relative velocity of the particles, u. A larger
velocity results in a smaller scattering angle; heuristically, this can be explained by
the shortened time the particles have to interact if their relative velocity is high.
Furthermore, the slowing-down component is much more sensitive, ∆u‖ ∝ u−3, than
the deflection component, ∆u⊥ ∝ u−1. Importantly, a similar behavior is carried
over to the advection and diffusion terms in the Fokker–Planck operator.

Another important concept in conjunction with collisional effects is the collision
frequency – often denoted with the symbol ν. It is loosely defined as the rate at
which collisions cause a significant change to the velocity of the particle, e.g. a
∼90◦ deviation in trajectory or a order-unity change in the speed of the particle.
Often, the collisionality of a plasma is measured by comparing the various collision
frequencies to the timescales of other mechanisms affecting the plasma. Linked to
the collision frequency, one can also talk about the collisional mean free path, which
gives a length scale, over which collisional effects become important.

From one collision to the statistics of many

In order to construct the Fokker–Planck collision operator, we need to treat the
Coulomb interactions statistically, and compute the probability for all possible scat-
tering outcomes of every part of fa, in the possible interaction with every part of
fb. That presents a problem, since the Coulomb interaction is long range – note for
instance that α ∝ b−1. Without any way of “cutting off” the range of the Coulomb
force, the contribution from all the different parts of the plasma would make the
collision operator divergent. Fortunately, thanks to the phenomenon known as De-
bye shielding, the range of the electrostatic potential (and hence the electric field)
is suppressed by a factor exp(−R/λD), where λD = [ε0Te/(nee

2)]1/2 is called the De-
bye length. The suppression of the electric field at distances & λD effectively gives
a lower bound on the scattering angle and avoids the divergence in the collision
operator.

Without going into any further details – for a thorough derivation, the reader is
referred to a textbook on collisions in plasmas, for instance the book by Helander &
Sigmar (2002) – the Fokker–Planck operator can be expressed in terms of the so
called Rosenbluth potentials (Rosenbluth, MacDonald & Judd, 1957)

ϕb(v) =− 1
4π

∫ fb(v′)
|v − v′|

d3v′,

ψb(v) =− 1
8π

∫
|v − v′| fb(v′) d3v′,

(2.34)
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for collisions with species b. The advection and diffusion parameters are then given
by

Aab
k =

(
1 + ma

mb

)
ZaZbe

2 log Λ
ε0ma

∂ϕb

∂vk
,

Dab
kl =− ZaZbe

2 log Λ
ε0ma

∂2ψb

∂vl∂vk
,

(2.35a)

and the Fokker–Planck operator for species a colliding with species b becomes

Ĉ[fa, fb] = ∂

∂vk

[
Aab
k fa + ∂

∂vl

(
Dab
kl fa

)]
. (2.35b)

The Coulomb logarithm, log Λ, included in the expressions for Aab
k and Dab

kl is a
consequence of the ∼R−1 dependence of the Coulomb potential, and it arises due to
an integration over all scattering angles, α, or equivalently all impact parameters, b,

log Λ ∼
∫ d(sinα)

sinα ∼
∫ db

b
∼ log

(
bmax

bmin

)
. (2.36)

The upper limit, bmax ∼ λD, in the impact-parameter integral stems from Debye
shielding, and it corresponds to a lower limit on the scattering angle αmin. How-
ever, the details of the lower limit bmin are more complicated. One approach is
to take bmin = max {λB, b⊥}, where λB = ~/pa is the deBroglie wavelength and
b⊥ = ZaZbe

2/(4πε0mabu
2) is called the impact parameter of closest approach; this

approach is commonly used in implementations of collisions in particle-in-cell codes
(§ 2.4), although this prescription has also been criticized (Mulser, Alber & Mu-
rakami, 2014).

It is crucial for the derivation of the Fokker–Planck operator that log Λ � 1,
because otherwise, the individual collisions cannot be assumed to all have a small
scattering angle. In fusion plasmas log Λ ∼ 10−20, so there the Fokker–Planck oper-
ator gives a good representation of the effects of collisions for most parts. However,
in laser-plasmas log Λ ∼ 2−7, which means that there is a significant probability of
large-angle collisions, which is a problem for the Fokker–Planck operator; in simu-
lation algorithms treating collisions in laser-plasmas, the smallness of the Coulomb
logarithm is usually handled by imposing a lower limit log Λ ≥ 2 and then modifying
the collision statistics in various ways (Sentoku & Kemp, 2008; Pérez et al., 2012).

2.3 Continuum Vlasov–Maxwell solvers
While kinetic theory immensely simplifies the modeling of a plasma, compared to
the impossibly large task of solving the equations of motion for every particle, the
set of kinetic equations is still a coupled set of PDEs, which require numerical tools
to solve, except in a very limited set of highly idealized cases. One way is to take
equations (2.15, 2.16 & 2.17), discretize them in time and onto an Eulerian‡ simu-
lation grid in phase space, and then use PDE-solving methods to find a solution for

‡The denomination “Eulerian” stems from the two flow specifications of a fluid, Eulerian and
Lagrangian, where the fluid flow field is either specified on a fixed coordinate system or along the
trajectories of “packets” of fluid, respectively. In the case of a continuum Vlasov–Maxwell solver,
the “fluid” in question is the phase-space distribution.
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fa(r,v; t). These methods are called continuum or Vlasov–Maxwell/kinetic solvers,
because they solve the Vlasov/kinetic equation coupled with Maxwell’s equations in
a continuum framework.

On the other hand, the fact that the full phase space is discretized is also one of
the main difficulties of the continuum methods. Since phase space has a minimum of
twice the number of dimensions (both r and p) as the configuration space modeled,
that means that we may have to simulate up to six dimensions, plus time. In
addition, not all areas of phase space are of the same physical relevance, e.g. some
areas might be devoid of particles or have a very low phase space density; yet, these
less important areas are still part of the computation. The computational cost can
therefore grow prohibitively fast for simulation of more than one or two spatial
dimensions.

Another complication that might arise due to the complexity of Vlasov–Maxwell
methods is that of code development. As we have seen in § 2.2.2, a rather simple
physical phenomenon, such as the slight deviation of the particle trajectory due to
their Coulomb interaction, may require rather complex expressions in terms of their
effect on the evolution of the distribution function. Effectively incorporating new
features into a Vlasov–Maxwell code may therefore be rather challenging.

However, for applications which require a fully kinetic description and can be
simulated with one or two spatial dimensions, or only require a rather low res-
olution, continuum solvers are a powerful tool. A selection of such applications
are electrostatic shocks (Svedung Wettervik, DuBois & Fülöp, 2016; Pusztai et al.,
2018; Sundström et al., 2019), which will be examined further in this thesis, kinetic
plasma instabilities (Cagas et al., 2017; Skoutnev et al., 2019), and kinetic effects
in magnetic dynamos (Rincon et al., 2016§; Pusztai et al., 2020). Furthermore,
Vlasov–Maxwell solvers may also be used as a reference; thanks to their low noise
and possibly high fidelity, their output from a standardized problem could be used
as a benchmark for other types of simulation codes, such as fluid or particle-in-cell
codes.

Additional reading on these types of simulation frameworks can be found in the
book by Shoucri (2011), or in the (very extensive) PhD thesis by Juno (2020).

Gkeyll

During the course of the work included in this thesis, one of the tools that were used
is Gkeyll¶ (Juno et al., 2018). Gkeyll is a versatile tool containing Eulerian solvers
for the (non-relativistic) Vlasov–Maxwell equations as well as for gyro-kinetic equa-
tions and various sets of multi-fluid equations. The Vlasov–Maxwell system, which
we are most interested in, is discretized in phase space with a discontinuous Galerkin
finite element method, and discretized in time with a strong stability-preserving
Runge–Kutta method, which gives fully explicit time stepping. The discontinu-
ous Galerkin method benefits from both the power of finite element methods, such
as high-order accuracy and the ability to handle complicated geometries, as well as

§Although Rincon et al. (2016) used a Vlasov–Maxwell method, they reduced the computational
cost by treating the electrons with a fluid model.

¶Code documentation can be found at: https://gkyl.readthedocs.io/en/latest/.
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2. Kinetic modeling of plasmas

from the advantages of finite volume methods, such as the introduction of limiters to
ensure the positivity of the distribution function to enforce stability and physicality
of the solution.

Beyond the collisionless Vlasov–Maxwell system, Gkeyll also supports effects of
collisions with either the BGK operator (Bhatnagar, Gross & Krook, 1954) or the
Dougherty (1964) (Dougherty & Watson, 1967) operator – the latter is sometimes
also referred to as a Lenard–Bernsein (1958) operator. While these operators satisfy
the physical requirements in § 2.2.1, they are not as advanced and lack the complex
velocity dependence found in the Fokker–Planck operator, which means that their
scope of application is limited to near-thermal distributions. A detailed account of
the implementation of the collisions in Gkeyll can be found in the recent paper by
Hakim et al. (2020).

2.4 Particle-in-cell methods
A more popular framework to simulate kinetic plasmas is the particle-in-cell (PIC)
technique (Pukhov, 2016). This method goes back to the basic idea to compute
the trajectories of individual particles, although with much fewer computational
macroparticles. Instead of the relatively complicated system of non-linear PDEs
that is used in kinetic theory, PIC methods integrate the equations of motion for
the finite number of macroparticles, (2.1), albeit with every macroparticle weighted
to represent a large number of “real”microparticles, i.e. qa andma are scaled up by a
factor, while keeping the charge-to-mass ratio qa/ma constant. The macroparticles
usually also have a finite spatial extent – their shape function – which reduces
discretization noise. When the Lorentz force on the macroparticle is computed, the
(discretized) field is interpolated together with the shape function; for more detail,
see for instance the appendix of Derouillat et al. (2018). By its nature, the PIC
solver can be viewed as a finite element solver of the Vlasov–Maxwell system using
the Lagrangian (phase-space) flow specification – as opposed to Eulerian continuum
solvers, where the (phase-space) flow is computed on a fixed grid.

Maxwell’s equations, (2.2), are solved on a grid of computational “cells”. The
charge and current densities, (2.3), are projected onto a staggered grid via the
particle shape functions. The weighting and shape of the macro particles allows
the field–plasma interaction to emulate that of the simulated system – thanks to the
scaled charge and current densities, the particle-field interaction dynamics is kept
unchanged. The PIC procedure thus consists of two operations: (i) given the position
and velocity/momentum of all particles, calculate the fields; (ii) given the fields and
previous velocity of the particle, calculate the new position and velocity/momentum
of the particle – commonly referred to as the particle pusher. These two operations
are iterated back and forth for every simulated time step, and constitute the essence
of a PIC code. In order to increase the numerical stability, more complex strategies
are employed, such as the, de facto standard, “Boris (1970) pusher”.

The PIC method benefits from its conceptually simple algorithm. By relying on
computing the trajectories of macroparticles, the method can aid the understanding
of a physical problem by allowing particles to be followed through phase space –
which would otherwise be challenging to do in a continuum framework. Furthermore,
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2.4. Particle-in-cell methods

since every particle push occurs independently between the field calculations, PIC
codes are naturally well-adapted for massively parallelized computation.

The main computational bottleneck for PIC simulations, however, is usually the
number of macro particles in the simulation. Since PIC codes do not have to include
momentum space in their computational grid, they are not as affected by higher
dimensions as Vlasov–Maxwell solvers can be. One way of viewing PIC codes is
that they solve for a random statistical sampling of the initial distribution function
in all its dimensions, thus breaking the “curse of dimensionality” with a limited
number of statistical samples – the macroparticles. However, the limited number
of macroparticles also usually results in rather noisy results due to a relatively
coarse-grained projection of the particles onto the charge and current density grid.
Unfortunately, due to the statistical nature of PIC simulations, the noise level only
decreases as ∼N̄−1/2 with the number of macroparticles, N̄ .

The field–particle interaction is limited by the finite grid resolution of the fields,
meaning that microscopic particle interactions mediated by the field – such as col-
lisions – are similarly limited by the computational grid resolution. Due to com-
putational constraints, the grid resolution is much too coarse to accurately capture
collisional effects. Instead, Monte Carlo schemes are being used to emulate the
“random kicks” the (micro) particles experience due to collisions. These schemes
operate by calculating the probability distribution for a certain angular deviation
to the particle momentum due to collisions during one simulation time step. The
most common method is to implement a scheme with binary collisions between
macroparticles (Sentoku & Kemp, 2008; Nanbu, 1997; Nanbu & Yonemura, 1998;
Pérez et al., 2012), which are mutually scattered according to the scattering proba-
bility distribution, such that momentum and energy are being conserved – at least
statistically.

The relatively simple basic principle of operation of PIC codes also means that
there are a wide variety of different PIC codes available to use more or less freely –
PIC codes are much more common than Vlasov–Maxwell codes. Together with
the fact that PIC codes can readily handle relativistic particle motion, it is no
surprise that the vast majority of laser-plasma simulations are done with PIC codes.
As with binary collisions, PIC methods can more easily be adapted to emulate
quantum mechanical effects on the macroparticles, such as interactions with photons
(e.g. emission/absorption and quantum-electrodynamical effects) or ionization, all
of which are highly non-trivial to implement in a continuum framework and may
be of great importance to laser–plasma interactions. An even remotely extensive
account of studies performed with PIC codes would be prohibitively long; in fact,
PIC simulations have become so ubiquitous that nowadays they accompany almost
all experimental findings (Faure et al., 2004; Haberberger et al., 2012; Higginson
et al., 2018; Fiuza et al., 2020).

Smilei

In cases which have required the functionalities of a PIC code, the tool used here
has been Smilei‖ (Derouillat et al., 2018). It is co-developed by high-performance-

‖Code documentation can be found at: https://smileipic.github.io/Smilei/.

23

https://smileipic.github.io/Smilei/
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computing specialists and physicists, in order to be as modular as possible and per-
form efficiently on large-scale supercomputers. Smilei is complemented by a large set
of run-time diagnostics (based on the HDF5 file format) and user-friendly (Python)
post-processing tools complements the code. The modularity of Smilei gives it ac-
cess to various additional physics modules, among which are field ionization, binary
collisions and collisional impact ionization – all of which with high relevance to the
work included in this thesis.
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Chapter 3

Laser–plasma interactions

The interaction between the electric and magnetic fields of laser light with a plasma
may in many cases be exceedingly complex, and governed by highly non-linear
physics, almost exclusively amenable to numerical computations. However, there
are some basic guiding principles which aid the understanding of various phenomena
observed in laser-plasmas. In this chapter, we will review some of the fundamen-
tals of laser–plasma interactions, and give special attention to laser-based plasma
heating.

After that, we will discuss the contributions made by the included papers in this
thesis. We will start by discussing laser-based isochoric heating and the simulation
work on inverse bremsstrahlung heating done in paper B. Then we discuss the effects
of collisions on the electrostatic shock waves from the simulations in paper C; we
also discuss the impact of the simulation algorithm used for the collisional effects,
with respect to the differing results in paper C from that of Turrell, Sherlock &
Rose (2015). Lastly, we discuss a semi-analytical model for the effects of a weak
collisionality on electrostatic shocks, developed in paper A.

3.1 Review of some of the basics concepts of laser–
matter interactions

With the advent of laser technology, came the opportunity of using and studying
highly coherent and monochromatic light, which is modeled by a plane wave, usually
with some modulation superimposed. In this section, we will review the basic con-
cepts of electromagnetism that lead to the propagation of waves in § 3.1.1, followed
in § 3.1.2 by single-particle dynamics in a plane wave field, and finally § 3.1.3 we will
consider the plasma dynamics when irradiated by laser light.

3.1.1 Electromagnetism
In this section, we will give a brief overview of concepts from electromagnetism such
as the scalar and vector potentials, plane waves and how they affect the motion
of charged particles. More detailed treatments of these concepts can be found in
textbooks on electrodynamics, such as the one by Jackson (1999), and more spe-
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3. Laser–plasma interactions

cialized textbooks on laser–plasma interactions, such as the ones by Gibbon (2005)
and Macchi (2013).

While the differential form of Maxwell’s equations (2.15) is one possibility to
describe the evolution of the electromagnetic fields, there are other formulations.
Alternatively, the electromagnetic dynamics may be described with a formalism
based on the vector and scalar potentials A and φ, respectively, where

B =∇×A and E = −∂A

∂t
−∇φ. (3.1)

These expressions with potentials are possible due to the zero divergence of the
magnetic field (2.15b), and Faraday’s law (2.15c),

0 =∇×E + ∂B

∂t
=∇×

(
E + ∂A

∂t

)
. (3.2)

Furthermore, since the potential forms of the fields (3.1) guarantee that these two of
Maxwell’s equations are satisfied, the full field dynamics can then be expressed with
the remaining two equations, Gauss’s (2.15a) and Ampère’s (2.15d) laws, rewritten
using the potential formalism:

−∇2φ− ∂

∂t

[
∇ ·A

]
= ρ/ε0, (3.3a)

−∇2A + 1
c2
∂2A

∂t2
+∇

(
∇ ·A + 1

c2
∂φ

∂t

)
=µ0j, (3.3b)

where the speed of light c = (ε0µ0)−1/2 now explicitly appears.
One advantage of the potential formalism is in the freedom to choose the gauge

of the potentials without affecting the physical fields, i.e. the transformation

A→ A +∇ϑ and φ→ φ− ∂ϑ

∂t
, (3.4)

for any function ϑ = ϑ(r, t). This allows us to choose, for instance, the Lorenz
(1867) gauge

∇ ·A + 1
c2
∂φ

∂t
= 0, (3.5)

which transforms (3.3) into two independent wave equations:

∇2φ− 1
c2
∂2φ

∂t2
= − ρ/ε0, (3.6a)

∇2A− 1
c2
∂2A

∂t2
= − µ0j. (3.6b)

Plane waves

One of the most important consequences of Maxwell’s equations is that they allow
for wave solutions. In vacuum, i.e. ρ = 0 and j = 0, (3.6) become two independent
homogeneous wave equations that permit plane wave solutions, which are harmoni-
cally oscillating in both time and space. We may make use of the harmonic nature
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of the plane wave by expressing the temporal and spatial dependence using the com-
plex exponential, exp[i(k · r − ωt)], where i is the imaginary unit, ω is the angular
frequency of the harmonic oscillation, k = kk̂ is the wave vector and k̂ is the unit
vector pointing in the direction of wave propagation. Physical (real) quantities are,
by convention, taken as the real parts of their complex counterparts.

With the introduction of the complex harmonic time dependence, time and spa-
tial derivatives are now transformed to multiplications by iω and ik, respectively.
The wave equation for the vector potential (3.6b), then becomes

k2A− ω2

c2 A = 0, (3.7)

which, a posteriori, is satisfied by

A = −iA0ê exp[i(k · r − ωt)], (3.8)

where A0 is the amplitude of the oscillation, ê is a constant unit vector describing
the polarization of the wave, and k and ω must satisfy ω/k = c, giving the speed of
wave propagation; the factor −i is just an arbitrary phase factor. We may further
specify the gauge such that the polarization of the vector potential satisfies ê·k = 0,
i.e. perpendicular to the direction of propagation, which also gives ∇ ·A = 0. By
the Lorenz condition (3.5) and the wave equation (3.6a), φ must now be a constant
in both time and space; we may thus choose φ ≡ 0. The electric and magnetic fields
of the plane wave can then be expressed as

E =− ∂A

∂t
= iωA = ωA0ê exp[i(k · r − ωt)],

B =∇×A = ik×A = kA0 k̂×ê exp[i(k · r − ωt)] = 1
c
k̂×E.

(3.9)

From the last equality, we see that B is perpendicular to both E and k.
The polarization, ê, is perpendicular to the direction of propagation, k̂, but

may otherwise be chosen without constraints. For simplicity, we may choose our
coordinate system such that k̂ = x̂. Then the wave equation allows us to choose two
linearly independent basis vectors for the polarization, e.g. the remaining Cartesian
unit vectors ŷ and ẑ. For instance, ê may be chosen as êξ = cos(ξ)ŷ+sin(ξ)ẑ, which
corresponds to linear polarization (LP), where E oscillates along one linear direction
(and B oscillates along a line perpendicular to both ê and k̂). There is, however,
also the degree of freedom to choose different (complex) phases in the oscillations
along ŷ and ẑ. For instance ê± = (ŷ ± iẑ)/

√
2 corresponds to circular polarization

(CP), named so because the fields trace out a circle in the plane perpendicular to
the direction of propagation. For ê+, the circle is traced out in a counter-clockwise
direction when looking into an oncoming wave, and clockwise for ê−. Just like
ŷ and ẑ is a basis for the polarization vector, ê+ and ê− also constitute a linearly
independent basis which can be used to represent the polarization vector. In general,
the polarization is a (complex) linear combination of either the LP or CP basis-vector
pair, yielding elliptical polarization.
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Normalized amplitude and intensity

While the vector-potential formalism is a convenient theoretical tool, in practice A
and φ are rather impractical for experimental measurements. Even the electric and
magnetic fields can be hard to measure directly in a laser pulse, due to their high
frequency. Instead, the most common measure of the “strength” of (laser) light is its
intensity, which measures the radiated power per unit area. The intensity is defined
in terms of the fields as

I = cε0
〈
|Re(E)|2

〉
τ
, (3.10)

where the average
〈
|Re(E)|2

〉
τ
of the squared physical electric field, taken over one

laser cycle τ = 2π/ω. Expressed in terms of the amplitudes, the intensity can then
be written as

I =


cε0ω2A2

0
2 = cε0E2

0
2 for LP,

cε0ω
2A2

0 = cε0E
2
0 for CP,

(3.11)

where E0 = ωA0 is the amplitude of the electric field. The different expressions for
LP and CP are due to the fact that |Re(E)| = E0 stays constant in CP, while it
oscillates at twice the wave frequency in LP.

In the context of high-intensity lasers, a normalized amplitude

a0 =
(

2Ie2

ε0ωm2
ec

3

)1/2

≈ 0.85×
(

I

1018 W cm−2

)1/2( λ

1 µm

)
, (3.12)

is used, where λ = 2π/ω is the wavelength of the wave. Note that we have here
defined a0 in terms of the intensity, which means that the physical electric and mag-
netic field amplitudes of the waves differ between linearly and circularly polarized
waves with the same a0. For future reference, we note that, inversely, the intensity
can be written as

I = cε0

2

(
ωmeca0

e

)2
≈ 1.4×1018 W cm−2 × a2

0

(
λ

1 µm

)−2

. (3.13)

3.1.2 Particle motion in an electromagnetic plane wave
The next step in studying the laser–plasma interaction, is to study the particle dy-
namics inside an electromagnetic plane wave. Instead of the Newtonian formulation
with the Lorentz force (2.1), the particle dynamics can also be described using the
(relativistic) Lagrangian of a particle moving in the vector and scalar potential fields,

L = −mc2
√

1− v2

c2 + Z∗e(v ·A− φ) = −mc2γ−1 + Z∗e(v ·A− φ), (3.14)

where m and Z∗e is the rest mass and charge of the particle, respectively, v is its
velocity and γ is the Lorentz factor. The motion of the particle is then described
via the Euler–Lagrange equations

∂L

∂rj
− d

dt
∂L

∂vj
= 0, (3.15)
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for each coordinate j (rj = x, y and z, and vj = vx, vy and vz).
One advantage of the Lagrangian formalism is that constants of motion arise

directly from various symmetries of L. One such constant of motion if the canonical
momentum,

P = ∂L

∂v
= p + Z∗eA = γmv + Z∗eA, (3.16)

where p = γmv is the ordinary (kinetic) momentum. Conservation properties of
components of the canonical momentum follow from translational symmetries in the
system; for a plane wave, (3.8), L only depends on the spatial coordinate parallel to
k̂, r‖, hence (3.15) yields that the canonical momentum component perpendicular
to k̂,

dP⊥
dt = d

dt
[
p⊥ + Z∗eA

]
= 0, (3.17)

is conserved. This is true in the case of plane waves, and since modulations in
the longitudinal direction do not affect the transverse translational symmetry of the
system, P⊥ is also conserved for a longitudinally modulated plane wave. If, however,
the wave has additional modulations in the transverse direction, P⊥ is no longer
conserved.

Regarding the parallel component of the canonical momentum, its time derivative
is also given by (3.15)

dP‖
dt = ∂L

∂r‖
= Z∗ev · ∂A

∂r‖
, (3.18)

which is generally not zero. However, we may use the Hamiltonian,

H = γmc2 + Z∗eφ, (3.19)

which describes the energy of the system, to derive a conservation relation including
P‖. Again, in a plane wave with φ ≡ 0, we have

dH
dt = d

dt
[
γmc2

]
. (3.20)

At the same time, the general relation dH/dt = − ∂L/∂t , with the fact that the
plane wave has a time dependence of the form A = A(kr‖ − ωt) and that A is the
only time dependence in L, gives

dH
dt = −∂L

∂t
= +c∂L

∂r‖
= c

d
dt
∂L

∂v‖
= c

dP‖
dt = c

dp‖
dt . (3.21)

The last equality stems from the fact that A‖ = 0, and thus P‖ = p‖ + Z∗eA‖ = p‖.
Taken together, (3.20) and (3.21), results in the conservation relation

d
dt
[
γmc− p‖

]
= 0, (3.22)

which holds for motion in any longitudinally modulated plane wave field (A‖ = 0),
since the longitudinal modulation can be described via an infinite Fourier expansion.

We may now consider a particle initially at rest, p = 0, under no influence of
any field, A = 0, which give the initial values P⊥,0 = 0 and p‖,0 = 0. If a plane
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wave field is slowly (adiabatically) brought up in amplitude, the resulting momenta
would be

p⊥ = −Z∗eA (3.23a)

and
p‖ = (γ − 1)mc, (3.23b)

which, through the relativistic energy relation, (γmc2)2 = m2c4 + c2(p2
‖ + p2

⊥), gives

p‖ = p2
⊥

2mc = (Z∗eA)2

2mc . (3.23c)

Note, however, that these expressions are still highly non-linear, because A depends
on the parallel component of the particle trajectory, r‖.

As demonstrated, the momentum of a particle moving in a plane wave field is
linked to the instantaneous vector potential (in this gauge) felt by the particle. Let
us now revisit the normalized amplitude, a0 defined in (3.12). For an electron,
Z∗e = −1 and m = me, the peak momentum should be pmax ∼ eA0, which by
combining (3.11) and (3.13) gives

pmax
⊥ ∼ mec a0. (3.24)

This relation implies that a0 is a measure of how important relativistic effects are
for electrons moving under the influence of the wave fields. For a0 � 1, relativistic
effects can be neglected, while for a0 & 1 electrons must be treated relativistically.
For a common 800 nm wavelength, titanium-sapphire laser, a0 = 1 corresponds to
an intensity of 2.2× 1018 W cm−2, which is well within current laser capabilities.

Ponderomotive force

The careful reader may have observed that (3.23b) implies that as soon as the
particle is moving, i.e. having any kinetic energy, Ukin = (γ − 1)mc2 > 0, it must
also have a positive parallel momentum component p‖ > 0 in the direction of wave
propagation. Intuitively, the particle has gained its kinetic energy Ukin from the wave
and the wave has lost the same amount of energy; then, by the energy–momentum
relation for electromagnetic radiation, the wave has also lost the momentum Ukin/c =
(γ−1)mc, which must have been transferred to the particle – as prescribed in (3.23b).

From this observation, we can conclude that the particle should be drifting along
the direction of propagation. The equations of motion in a plane wave, (3.23), may
be solved implicitly, which result in that the cycle-averaged longitudinal drift velocity
can be computed (Gibbon, 2005; Macchi, 2013)

vd = a2
0

4 + a2
0
c, for LP, and vd = a2

0
8 + a2

0
c for CP. (3.25)

It follows that there must be a net positive momentum transfer from the wave to the
particle, and hence an average force must act in the longitudinal direction, called
the ponderomotive force. However, since the drift velocity is constant for a constant
field amplitude, we must conclude that the ponderomotive force only acts when
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the amplitude is changing. In the discussion leading up to (3.23), the plane wave
amplitude was said to increase “slowly” from zero to a finite amplitude; it was during
this ramp-up in amplitude that the net longitudinal momentum was transferred to
the particle.

To find an expression for the ponderomotive force, we study an amplitude mod-
ulated plane wave

A(r, t) = a(r, t)A0(r, t) = a(r‖ − ct)A0 ê exp[i(k · r − ωt)], (3.26)

where a is a slowly varying (compared to the oscillations) amplitude envelope, which
co-propagates with the wave in the longitudinal direction. Inserting this field into
(3.23c) yields

dp‖
dt = Z∗2e2

2mc

(
A2

0
d(a2)

dt + a2 d(A2
0)

dt

)
. (3.27)

Cycle averaging will cancel the dA2
0/dt term, 〈dA2

0/dt〉τ = 0, since that term
corresponds to the net force due to a constant amplitude plane wave, which we
know must be zero since the drift velocity is constant. As for the da2/dt term,
cycle averaging does not affect it since it changes slowly compared to the oscil-
lation time of the wave. Furthermore, the total derivative may be changed to
〈da2/dt〉τ = ∂a2/∂t+vd ∂a

2
/
∂r‖ = (1−vd/c) ∂a2/∂t . For the purposes of studying

the ponderomotive force as the amplitude increases from zero, we may assume that
vd/c� 1. The remaining net (ponderomotive) force now becomes

F
‖
PM =

〈
dp‖
dt

〉
τ

' Z∗2e2

2mc
〈
A2

0

〉
τ

∂a2

∂t
= −Z

∗2e2

2m
〈
A2

0

〉
τ

∂(a2)
∂r‖

. (3.28)

For modulations in the transverse direction as well, (3.28) can (with considerable
effort∗) be generalized to

F PM = −Z
∗2e2

2m
〈
A2

0

〉
τ
∇
(
a2
)

= −Z
∗2e2

2mω2 ∇
〈
|Re(E)|2

〉
τ

= − Z∗2e2

2ε0cmω2 ∇I, (3.29)

where I = I(r, t) is the modulated intensity, as defined in (3.10). For more details
on the derivation of this general expression for the ponderomotive force, the reader
is referred to, e.g., the books by Gibbon (2005) or by Macchi (2013); a thorough
analytical and numerical treatment of the ponderomotive force in the relativistic
regime is also presented by Quesnel & Mora (1998).

From this expression for the ponderomotive force, we can make a few observa-
tions. Firstly, the ponderomotive force acts in the same direction regardless of the
particle charge, since it only depends on the square of the charge, (Z∗e)2. Secondly,
that the ponderomotive force acts to expel particles, away from regions of high in-
tensity, both in the transverse direction, and longitudinally when the intensity is
increasing. Thirdly, while the ponderomotive force acts independently of the sign of
the charge, it will still affect electrons more than ions, since FPM is inversely propor-
tional to the particle mass. In summary, the ponderomotive force will mainly affect
the electrons in a plasma, by pushing them away from regions of high intensity.

∗One of the more major challenges in this generalization is that (3.23c) no longer holds, since
A‖ 6= 0 for transversely modulated waves.
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3. Laser–plasma interactions

3.1.3 Laser interaction with a plasma
The above single-particle dynamics can be translated to, and guides the under-
standing of, laser–plasma interactions. However, since the particles in the plasma
collectively affect the macroscopic fields, the interaction is manifestly non-linear in
both the plasma and field dynamics. One of the major changes here is in the equa-
tions for the field, (3.6), which are no longer homogeneous – i.e. ρ and j are no longer
zero. We may still, however, search for a plane wave solution, albeit with a different
dispersion relation between k and ω. We take our starting point by introducing the
complex exponential form of the vector potential, (3.8), and inserting it into (3.6b),
which gives

k2A− ω2

c2 A = µ0j. (3.30)

The presence of the term on the right hand side is what changes the dispersion
relation. We must now calculate the current density, j, in terms of A.

While j can certainly be calculated using the distribution function, as in (2.16b),
for the purposes of this discussion, we may make some simplifying assumptions:
(i) we assume that the field strength is sufficiently weak, so that the dynamics
can be described non-relativistically; (ii) since the ions are much heavier than the
electrons, we assume that j = je = −eneve, i.e. that all the current stems from the
electrons; (iii) since the intensity is low, we can neglect the ponderomotive force
and the induced longitudinal drift, i.e. ve is purely in the transverse plane. With
the first and third assumption, we can write the electron (transverse) flow velocity
as

ve =
pe,⊥

me
= +eA

me
. (3.31)

Taken together with the second assumption, we can now write (3.30) as

k2A− ω2

c2 A = −µ0
e2neA

me
= − e

2neA

c2ε0me
, (3.32)

which gives the dispersion relation

c2k2 = ω2 − e2ne

ε0me
= ω2 − ω2

p, (3.33)

where
ωp ≡

√
e2ne

ε0me
(3.34)

is called the plasma frequency.
The plasma frequency measures how fast the plasma can respond to electromag-

netic perturbations. A major consequence of the dispersion relation, (3.33), is the
fact that for |ω| < ωp, k becomes imaginary, and there can be no propagating waves.
This means that a laser pulse impinging on a plasma will be reflected if the laser
frequency, ω, is lower than the plasma frequency. In practice, the laser frequency is
fixed, while the target plasma changes, so instead of comparing the laser and plasma
frequency, the plasma density is compared to the critical density

nc ≡
ε0ω

2me

e2 , (3.35)

32



3.1. Review of some of the basics concepts of laser–matter interactions

where ω is the laser/reference (angular) frequency. A plasma is thus said to be
underdense when ne < nc or overdense when ne > nc, meaning that the plasma
(partially) transmits or reflects the incoming wave, respectively. This is a basic
classification of laser-plasmas.

Laser interaction with an overdense plasma

The work in this thesis has been centered around various effects of collisions in
laser-plasma scenarios, and since collisions are more prominent in higher-density
plasmas, the work here is focused on overdense plasmas. We will therefore take a
few moments to look into some of the specifics of the interaction between the laser
light and an overdense plasma.

As noted, laser light (in general) cannot propagate through an overdense plasma,
as demonstrated by the dispersion relation (3.33). However, the fact that k becomes
imaginary for ω < ωp does not mean that the field does not penetrate the overdense
region at all. There will be an evanescent field with an exponentially decaying
amplitude profile. For a normally incident laser on a semi-infinite plasma occupying
the space x ≥ 0, we have an amplitude profile inside the plasma that is proportional
to

Aplasma(x) = A1 exp(−x/ls), (3.36)

where ls is called the skin-depth and is given by

ls = c

ωp

(
1− ω2

ω2
p

)−1/2

=
√
ε0mec2

e2ne

(
1− ω2

ω2
p

)−1/2

= λ

2π

√
nc

ne

(
1− nc

ne

)−1/2
, (3.37)

where λ is the laser wavelength (in vacuum). For highly overdense plasmas, ne � nc,
the parenthetical factor may be neglected and the skin-depth can be approximated
as ls ' c/ωp.

Next, we still consider a normally incident laser on a sharp vacuum–plasma
boundary at x = 0, and since the light is reflected from the plasma, a standing wave
is generated which will have an amplitude profile of

Avacuum(x) = 2A0 sin(−kx+ ϕ), (3.38)

where A0 is the amplitude of the incoming wave, k = 2π/λ is the vacuum wavenum-
ber and ϕ is a constant phase. By matching the values and slopes of (3.36) and
(3.38) at x = 0, we get (after some algebraic and trigonometric manipulations) the
amplitude relation and phase asA1 = 2A0(nc/ne)1/2,

tanϕ = kls = (nc/ne)1/2(1− nc/ne)−1/2.
(3.39)

The full vector potential is thus

A = −iA(x)ê exp(−iωt) = −2iA0ê exp(−iωt)×

sin(−kx+ ϕ), x < 0,(
nc
ne

)1/2
e−x/ls , x ≥ 0,

(3.40)
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Figure 3.1: Illustration of the standing wave field intensity for a plane wave field normally
incident on a plasma occupying the space x ≥ 0 with density ne = 4nc, giving a skin-depth
of kls ≈ 0.6. Note the discontinuity in the gradient of the amplitude of the B field.

which gives the fields as

E = −dA

dt = ωA(x)ê exp(−iωt), (3.41)

and
B =∇×A = −i∂A

∂x
x̂× ê exp(−iωt). (3.42)

An example of such standing wave fields is shown in Fig. 3.1, where the normalized
field intensity of E and B are plotted. Note the discontinuity in the gradient of the
B field amplitude at x = 0, which is due to the discontinuity in j at the surface of
the plasma.

The standing wave discussed here gives some important insights: (i) the laser
field penetrates the overdense plasma over a few skin-depths, ls; (ii) the on-target
intensity, at the plasma surface, is a factor (A1/A0)2 = 4nc/ne lower than the free-
propagating laser intensity. However, this description only takes into account the
effect of a cold-fluid (zero thermal spread) plasma on the electromagnetic wave.
Whereas, in reality, the laser radiation to a high degree affects the plasma as well.
Most notably, the ponderomotive force, (3.29), will push mainly the electrons deeper
into the plasma, which sets up a charge-separation layer and a static electric field
which accelerates the ions remaining in the layer into the target.

Another effect not captured by the description above, is the fact that the plasma
has an internal pressure. So just like a regular gas, the plasma will try to hydrody-
namically expand into the vacuum region, thus creating a preplasma, which more
slowly ramps up in density – from under- to overdense – thus the laser–plasma in-
teraction is not necessarily that of a sharp vacuum–plasma boundary. The creation
of a preplasma is linked to the fact that the (main) laser pulse is usually preceded
by a pre-pulse due to an amplification of parasitic spontaneous emission in the laser
system. While the main pulse can be as short as a few tens of femtoseconds, the
pre-pulse may last for as long as nanoseconds, thus pre-heating the plasma on a hy-
drodynamical time scale, during which the plasma would significantly expand and
change its shape and density profile.
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3.2. Laser-based heating of overdense plasmas

There are, of course, additional processes at play, some of which will be discussed
later on, such as particle acceleration and plasma heating, while others will be left
for other works in the field, e.g. the book by Gibbon (2005). We will, however,
conclude this section by mentioning one last laser-plasma effect which can occur
in overdense plasmas: relativistic transparency – described clearly in the paper by
Siminos et al. (2012) – where due to the “relativistic mass effect”, me → γme, the
effective critical density is increased, which may then permit transmission of the
laser pulse at higher intensities.

3.2 Laser-based heating of overdense plasmas
Perhaps the most basic outcome of irradiating a target with a high-intensity laser
wave is that the target gets hot. However, an interesting consequence of the momen-
tum relations in (3.23) is that once the laser pulse has passed, and A has returned
to zero†, the energy of the free particle also returns to zero, i.e. no net energy was
transferred from the field to the particle. This result, however, only holds in a single
propagating plane wave, and not in the standing wave established outside of the
reflective plasma, or in the evanescent wave inside of it.

On an abstract level, there are three paths that a laser pulse will take in the
interaction with a plasma: reflection, transmission or absorption. Assuming that
the plasma is sufficiently thick and overdense, we can neglect any transmission. It
would therefore be useful to briefly overview the reason why an overdense plasma
reflects radiation. From the previous discussion in § 3.1.3, we learned that if ωp >
ω, the electrons can react fast enough to collectively prevent the laser light from
shining through the plasma. When the electrons are reacting to the laser field, they
are oscillating with it. By doing so, the electrons also radiate a “response field”
themselves, as they are now accelerating charges. The response field is emitted
both forward and backward (with respect to the propagation direction of the laser
radiation); the forward-propagating response field is phase-shifted from the laser
field and acts to cancel it, while the backward-propagating response field is the
reflected laser field. Mechanisms which alter or impede the co-oscillation of the
electrons with the laser field, will therefore affect their ability to reflect the field and
thus allow for absorption of the laser energy.

3.2.1 Skin heating mechanisms – inverse bremsstrahlung,
sheath inverse bremsstrahlung, normal and anomalous
skin effects

The first mechanism that comes to mind that makes the electron oscillation less
coherent might be that of collisions. Typically, the much heavier ions will act as a
stationary background with which the oscillating electrons collide. In the collisions

†The observant reader will have noted that just because the laser pulse has a finite duration,
i.e. E(t→∞) = 0, that does not necessarily imply that A(t→∞) = 0 since A(t) =−

∫ t

−∞E(t′) dt.
If A(t→∞) 6= 0, that would mean that E has a zero-frequency component, which would violate
Gauss’s law (2.15a) in vacuum.
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with the ions, pitch-angle scattering dominates, which diffuses the oscillatory re-
sponse of the electrons to the laser field, thus causing absorption. Such collisionally
induced radiation absorption has been given the somewhat misleading name of in-
verse bremsstrahlung, after the “regular bremsstrahlung” effect which occurs when
an electron emits a photon due to a change in trajectory caused by a collision with
an ion.

In the case of a steep vacuum–plasma interface, the field inside the plasma is
evanescent, with an exponentially decaying amplitude inside the skin layer of thick-
ness ∼ls. Under these circumstances the heating is concentrated to the skin layer,
and heat is then transferred deeper into the plasma by the heated electrons. The
prototypical collisional skin heating mechanism is the normal skin effect, where the
electron–ion collisional mean free path is shorter than the skin-depth, λei . ls, and
the corresponding collision frequency is greater than the laser frequency, νei & ω.
Normal skin effect heating occurs due to collisions that strongly affect the trajecto-
ries of the electrons when they are moving under the influence of the laser field in
the skin region. However, due to the collisionality decreasing with particle energy,
the conditions for normal skin effect are seldom met in a high-intensity (a0 & 1)
experiment. An extensive analytical study of the normal and anomalous (to be
discussed) skin effects can be found in the paper by Rozmus & Tikhonchuk (1990).

Collisionless skin-layer heating

It is important to note that the individual electrons in the plasma also travel lon-
gitudinally. In the skin layer, the v ×B term of the Lorentz force will accelerate
the electrons in the longitudinal direction further into the plasma (ponderomotive
force‡). Likewise, thermal motion of the electrons deeper in the plasma means that
there are always new electron replenishing the skin layer, coming in with a velocity
close to the thermal speed, vte = (Te/2me)1/2. In the case of the normal skin effect,
collisions are strong enough (λei . ls) to significantly affect this longitudinal electron
exchange and cause heating. However, even without strong collisionality, there are
mechanisms that allow for laser-energy absorption.

One such case is when the transit time for an electron coming from inside the
plasma and being reflected back from the skin region, ∼ls/vte, is shorter than a laser
cycle, i.e. ωls/vte . 1. The electron may then be energized in the transverse plane
by the laser field near the front, and due to the reflection at the charge-separation
potential, it can bring some of that transverse momentum with it deeper into a
weak-field region inside the plasma. By bringing the transverse momentum deeper
into the plasma and shifting the position where they radiate the response field deeper
into the plasma, the electrons effectively increase the penetration depth of the laser,
thus increasing the absorption. This effect is called the anomalous skin effect, and
is described in detail by (Rozmus & Tikhonchuk, 1990), together with the normal
skin effect.

‡While the ponderomotive force as described in (3.29) is formally a cycle-averaged force from
the radiation, the periodically oscillating longitudinal force from the laser pulse is often also sim-
ply referred to as the ponderomotive force. In this case, the cycle averaging is ignored and the
ponderomotive force is simply taken as FPM(r, t) ∝∇(|Re[E(r, t)]|2).
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Another, rather similar, mechanism is the sheath inverse bremsstrahlung, first
introduced by Catto & More (1977). Like the anomalous skin effect, sheath inverse
bremsstrahlung also operates on the principle that the electrons coming from inside
the plasma are reflected at the front. However, here the skin layer transit time is
longer than the laser cycle, ωls/vte & 1, yet the reflection time in the front is still
short compared to the laser cycle. The long transit time means that the energy of
the reflected electron is adiabatically increased, on average, by the oscillating laser
field, such that the electron brings with it more energy into the plasma than it had
leaving it.

3.2.2 Resonant and not-so-resonant heating
So far, we have only discussed laser-based heating in targets with a sharp plasma–
vacuum interface. While, in practice, pre-pulse heating may cause hydrodynamical
plasma expansion, leading to a smooth density transition from under- to overdense.
In that case the laser most strongly interacts with the plasma at the critical surface,
i.e. at the depth where ne = nc. For normal incidence, the interaction is simi-
lar to what is described above in § 3.2.1, however, the picture changes for oblique
incidence§.

Consider a semi-infinite plasma which has a density ramp around x = 0 with a
gradient along the x-direction. The laser impinges on the plasma obliquely, at an
angle θ from the normal in the xy-plane, i.e. the wave vector is k = k(cos θx̂+sin θŷ).
The (linear) polarization, ê, can be chosen from two LP basis vectors, ês = ẑ
and êp = sin θx̂ − cos θŷ, corresponding to the so called s- and p-polarizations,
respectively.

In the case of a p-polarized laser wave, the electric field has a component in the
x-direction which will drive the plasma to oscillate along the density gradient, giving
rise to density waves. The laser wave is reflected at a depth where ne = nc cos2 θ,
but given the right circumstances (not too flat nor to steep density profile), the
component of the laser electric field normal to the plasma surface will reach into
the depth where ωp = ω, where it is resonant with, and will excite, the Langmuir
plasma-wave mode. The excited Langmuir wave can penetrate deep into the plasma
where it dissipates its energy, e.g. via collisional damping. This energy-transfer
mechanism is simply called resonant absorption, due to the resonant excitation of
the Langmuir wave.

Resonant absorption relies on a long scale length for the density variation in
order to drive the Langmuir wave deeper into the plasma than the laser penetrates.
For shorter density scale lengths, comparable to the oscillation amplitude of the
electrons driven by the x-component of the laser electric field, the excitation of
the Langmuir wave mode is no longer as efficient. However, another phenomenon
occurs in this scenario: the electrons oscillating near the critical surface will move
towards lower-density regions, where they will experience stronger fields and can be
accelerated to high energies before they are pushed back into the plasma, where they

§Note that the effects discussed in § 3.2.1 also work for oblique incidence. Indeed, the skin
heating mechanisms often have better absorption efficiently for oblique incidence than for normal
incidence.
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can dissipate the energy gained in the vacuum/low-density region. This mechanism
was named not-so-resonant, resonant heating by Brunel (1987) who discussed it as
a problem for an electron acceleration scheme; others have since taken to calling
this mechanism either “vacuum heating” (which we will use for a similar mechanism
discussed below) or simply the “Brunel mechanism”.

3.2.3 “j×B” and vacuum heating
Due to the velocity dependence of the magnetic force term in the Lorentz force, the
effects of the magnetic field can usually be neglected as long as the electrons are non-
relativistic, v � c. In relativistic laser pulses, a0 & 1, the electrons are relativistic,
and the magnetic field effects may become important. One absorption mechanism
based on such effects is the so called “j×B heating”, first described by Kruer &
Estabrook (1985). This mechanism is similar to the resonant and not-so-resonant
heating in that electrons are oscillating back and forth, but instead of relying on
the Ex component of an obliquely incident p-polarized wave, the j×B mechanism
works for both p- and s-polarized laser pulses, and even at normal incidence. The
longitudinal oscillation is instead driven by the v × B term of the Lorentz force.
Note that since both v and B oscillates with a frequency ω, the product will oscillate
at twice the laser frequency, 2ω. Traditionally the j×B heating refers to the heating
from oscillations within the skin depth of the plasma.

There is, however, an effect similar to the not-so-resonant heating mechanism for
sharp plasma boundaries, where electrons that exit the plasma can be accelerated
transversely by the laser electric field before being pushed back in by the v×B force.
We refer to this mechanism as vacuum heating, as described by Bauer & Mulser
(2007) and May et al. (2011). Vacuum heating relies on the temporal modulation of
the ponderomotive force, which periodically pushes the electrons into the plasma, at
twice the laser frequency; the electrostatic field from the bare ions left behind then
pulls the electrons back. In this oscillation, electrons with the right trajectories
will continue out as far as λ/4 into the vacuum region where the electric field of
the standing wave peaks, and hence where they will be most efficiently accelerated.
These electrons can be observed as bunches of high-energy electrons produced at
twice the laser frequency.

One important note for both these mechanisms is that neither j×B nor vacuum
heating work with circular polarization, since they rely on the oscillating pondero-
motive force, FPM(r, t) ∝ ∇(|Re[E(r, t)]|2). With CP, the strength of the fields
are constant (up to their slow amplitude modulation), the ponderomotive force
thus only produces a steady push inward. Since the B field strength is also con-
stant, the electrons cannot reach further than approximately one Larmor radius
∼mevte/(eB1) ' λvte/(4πca0)� λ/4, where B1 is the magnetic field strength at the
plasma surface.

3.3 Laser-induced plasma heating
One of the direct applications of laser-based plasma heating is the creation of
warm/hot dense matter (W/HDM). Here, the sudden and short-duration energy
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transfer from a high-intensity laser pulse is employed to quickly heat up the target
isochorically, i.e. “at constant volume”, before the plasma has time to hydrody-
namically expand. As discussed in the introduction to this thesis (§ 1.2), isochoric
heating is used to create W/HDM which has many further applications.

Looking back at what has been conducted so far, most laser-based isochoric heat-
ing experiments have exploited high-energy electrons generated by the laser (Mar-
tinolli et al., 2006; Chen et al., 2007; Nilson et al., 2010; Pérez et al., 2010; Santos
et al., 2017; Sawada et al., 2019). The fast electrons are generated by mechanisms
similar to j×B and vacuum heating, and are driven by a linearly polarized laser.
These electrons then heat the plasma bulk to high temperatures (0.1−1 keV), while
the plasma remains at solid-range densities. The heating of the plasma is caused by
the interaction of the fast electrons with the bulk plasma via various mechanisms.
The most direct mechanism is heating via collisions between the fast electrons and
the background plasma (Robinson et al., 2014); although, due to the decreasing col-
lisionality with temperature and particle energy, this mechanism gets increasingly
weaker for higher electron energies and as the plasma is heated. When the fast
electrons rush into the plasma, there is also a return current of slower electrons to
ensure quasi-neutrality; ohmic (collisional) dissipation of this return current will also
contribute to heat the bulk plasma (Lovelace & Sudan, 1971; Guillory & Benford,
1972; Bell & Kingham, 2003; Robinson et al., 2014). Lastly, since the fast elec-
trons come in bunches at a fixed frequency double that of the laser, the fast-electron
bunches can drive plasma waves which are collisionally damped and dissipated as
heat (Sherlock et al., 2014).

Usually, however, the heating from fast electrons results in poor spatial unifor-
mity (Dervieux et al., 2015) and relatively slow thermalization (∼ps). The slow
thermalization of the fast electrons is simply a consequence of the decreased effects
of collisions at higher energies. However, because some applications – such as veri-
fication of high-energy-density (HED) atomic physics models (Hoarty et al., 2013a;
Faussurier & Blancard, 2019) or HED states of matter models (Renaudin et al., 2003;
Nettelmann et al., 2008) – may require a well-thermalized, Maxwellian plasma, the
fast-electron methods may not be ideal since the timescale for thermalization can be
comparable to that of hydrodynamic expansion. One of the motivations behind the
work in paper B was to examine a way of generating well-thermalized, solid-density
plasmas.

3.3.1 Revisiting inverse bremsstrahlung

As previously notes, efficient creation of fast-electron bunches requires a linearly
polarized laser pulse (at least for normal laser incidence). So by using CP instead,
one can suppress the creation of the fast electrons and thus the problem of slow
thermalization. However, that also removes one of most effective channels of energy
transfer from the laser to the plasma. In paper B, we study the heating and ther-
malization of the plasma using 1D PIC simulations. By staying in one dimension,
the laser is necessarily normally incident, so there is also no possibility of resonant
or not-so-resonant absorption. We are therefore left with inverse bremsstrahlung as
the main heating mechanism. Since inverse bremsstrahlung is a purely collisional

39



3. Laser–plasma interactions

100 101 102 103

J [mJ/µm2]

10−1

100

101
∆
U

[m
J
/
µm

2
]

(a)

15 fs

30 fs

60 fs

122 fs

200 fs

400 fs

a0 = 1

a0 = 2

a0 = 5

a0 = 7

a0 = 10

a0 = 14

a0 = 1

a0 = 2

a0 = 5

a0 = 7

a0 = 10

a0 = 14

10−1 100 101
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Figure 3.2: Total simulated kinetic energy gain ∆U against (a) the laser energy J for dif-
ferent combinations of laser parameter a0 and full-width at half-maximum pulse duration
tFWHM, and (b) the inferred power-law scaling ∆Ũ ∝ a0

1.48tFWHM
1.13.

mechanism, thermalization happens on a comparable timescale.
While inverse bremsstrahlung is usually dismissed at high laser intensities, due

to the decreasing collisionality at higher particle energies, it can be increased by
using high-Z ions. Since the electron–ion collision frequency scales as the square
of the ion charge, (Z∗)2, the plasma can be made sufficiently collisional for in-
verse bremsstrahlung to play a significant role in the laser-energy absorption. Fur-
thermore, the collision frequency is also proportional to the plasma density, thus
collisions may not immediately be neglected in solid laser targets. Indeed, for solid-
density copper targets (Z∗ = 27), studied in paperB, the bulk electron temperatures
were found to be essentially equal between CP and LP, which indicates that a ma-
jority of the laser energy was absorbed via inverse bremsstrahlung – even with LP.
The main difference between LP and CP was however in the high-energy end of
the electron energy spectra, where the fast electrons generated by LP created a
high-energy tail that was slow to thermalize.

As a part of the study of the inverse bremsstrahlung heating, we performed
scans in laser intensity (a0) and pulse full-width at half-maximum duration tFWHM
(Gaussian temporal intensity profile). Figure 3.2 is reproduced from paper B and
it shows in panel (a) the scaling of the gained kinetic energy of the particles in the
plasma, ∆U , plotted against the laser pulse energy, J . From the power laws in a0
and tFWHM, a combined empirical power-law relation was inferred:

∆Ũ ∝ a0
1.48
(
tFWHM

100 fs

)1.13
. (3.43)

This scaling law was then confirmed against a wider range of combinations of various
a0 and tFWHM in Fig. 3.2b. An observation regarding this power-law scaling, is that
the absorption efficiency, ∆Ũ/J ∝ ∆Ũ/(a0

2tFWHM), scales as a0
−0.52 × tFWHM

0.13,
which means that longer-duration and lower-intensity pulses are favored for the same
pulse energy, J .
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3.4. Collisional effects on electrostatic shocks

Effects of ionization

Since the ionization level, Z∗, plays a crucial role in the collisionality of the plasma,
and thus also the heating, it is necessary to have a good understanding of it to
correctly model and simulate the collisional plasma heating. We study this through
a simulation with self-consistent ionization, via collisional impact ionization and
field ionization (Pérez et al., 2012). The laser field is found to quickly ionize the
ions at the irradiated surface of the target to Z∗ & 20. Later, collisional impact
ionization gradually brings up the ionization level to Z∗ ' 27 in the bulk of the
plasma. Importantly, since the ionization quickly reaches relatively high levels in
the skin region, where the absorption happens, the assumption of Z∗ = 27 in the
other simulations is justified for studying the absorption efficiency.

However, a side-effect of the field ionization is that a population of high-energy
electrons is created. Indeed, electrons originating from ions in the charge-separation
layer, are “injected” into a region of strong laser field, and are energized in a manner
similar to the vacuum heating mechanism with LP. Subsequently, the self-consistent
ionization simulation produced a less thermalized plasma than its fixed-ionization
counterpart.

3.4 Collisional effects on electrostatic shocks
As discussed in the introduction (§ 1.1), laser-based ion acceleration has promising
potential to supplement or replace conventional acceleration methods. In particular,
collisionless shock acceleration (CSA) has potential to produce a ion beam with
a narrow energy spread, which could potentially be used in medical applications.
Electrostatic shocks are, however, challenging to create in a reproducible fashion.
One of the main problems to overcome towards this goal is to understand the shock
formation process.

A shock wave is characterized by a disturbance propagating faster than the
speed of sound, so that the upstream plasma does not have time to react to the
shock before it arrives. The shock therefore results in rapid compression along
with fast acceleration of the plasma to the speed of the shock in the downstream
plasma. In this process, the directional kinetic energy of the shock is also dissipated
into thermal energy as the plasma passes the shock front. The dissipation can
take place either through collisional processes – as in hydrodynamic shocks – or
via collisionless mechanisms, involving longitudinal electrostatic fields generated by
space charge effects from shock compression. In the case of collisionless electrostatic
shocks, some of the ions hitting the shock front are reflected and accelerated to
twice the shock velocity in the lab frame, and thus provide a dissipation path for
the formation and continued propagation of the shock.

While “collisionless shocks”, as the name suggests, are sustained by collisionless,
collective plasma processes, inter-particle collisions are never truly zero, in a real
plasma. Indeed, collisions may even affect the dynamics of the shocks in various
ways depending on the strength of the collisionality. In this section we will take a
look at some such effects, studied in paper A and C. In the former, we study a semi-
analytical model of electrostatic shocks and investigate the effects of perturbatively
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Figure 3.3: Phase-space density plot of the ion distribution function (a) and a slice of
the ion distribution in the velocity plane at x = −0.62. The spatial coordinate, x, is
normalized to the Debye length, λD = [ε0Te/(e2ne,0)]1/2, where ne,0 is the far-upstream
electron density, and the velocity coordinate, v, is measured in the co-moving frame of
the shock wave and normalized to the ion-acoustic speed, cs = (ZiTe/mi)1/2. The dashed
curves represent phase-space separatrices, separating the four distinct regions of phase
space: passing (I), trapped (II), co-passing (III) and reflected (IV).

introducing a weak collisionality to that model. In the latter, electrostatic shocks and
shock formation is studied in solid-density high-Z∗ materials via PIC simulations;
these materials are, as discussed in § 3.3.1, among the most collisional types of laser-
plasmas, and should therefore be strongly affected by collisions.

3.4.1 Weakly collisional electrostatic shock model
The weakly collisional shock model studied in paper A is a kinetic, quasi-steady-
state model of an electrostatic shock, built upon the model by Cairns et al. (2014,
2015) and Pusztai et al. (2018). The model is kinetic, one-dimensional (1D) and non-
relativistic; it self-consistently calculates the electrostatic potential, φ(x), and the
ion distribution function, f , given the input parameters: shock Mach number,M,
the electron-to-ion temperature ratio, Te/Ti, and the ion charge number Z∗. The
core of the (collisionless) model is based upon the circumstance that ions, which
follow constant-energy trajectories in the frame co-moving with the shock, either
pass the potential barrier of the shock or are reflected, depending on which region of
phase space they belong to. These regions are: (I) the passing region, in which the
ions have sufficient kinetic energy in the shock frame to pass the shock front into the
downstream; (II) the trapped region, comprised of the islands in phase space where
ions would be trapped due to electrostatic potential oscillations downstream of the
shock; (III) co-passing region, the region from which ions can overtake the shock
and pass into the upstream; and last (IV) the reflected region, in which the ions are
reflected at the shock front. These regions are separated by a separatrix marked out
in Fig. 3.3a.

In the original collisionless model, phase-space regions II and III would be com-
pletely devoid of ions. All ions coming in from the far upstream are in either region
I or IV. Since the ions cannot cross the separatrix without collisions, there will be a
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discontinuity in the distribution function between region I and II as well as between
IV and III. This discontinuity will be highly susceptible to diffusion. Collisional
effects, in paper A, were therefore added by including a velocity-diffusion collision
operator near the line of discontinuity, which permitted a steady diffusion of ions
into regions II and III. Ions entering the trapped region (II) would then occupy a
growing boundary layer of region II near the separatrix to region I, and circulate to
fill a symmetric boundary layer near the separatrix to region III, which they would
also be able to cross. All in all, the distribution would look similar to that in Fig. 3.3,
where panel (a) displays the distribution in phase space, and panel (b) shows a slice
of the distribution in the downstream. Note the symmetry of the distribution in
region II in Fig. 3.3b.

The practical results of this diffusion of ions into the trapped and co-passing
regions of phase space is that the downstream potential oscillations grow deeper at
a rate roughly proportional to

√
νt, where νt is dubbed the collisional age of the

shock. The importance of this observation is that, since shocks can be long-lived,
even though the collisional time scale, '1/ν, is much slower than the ion time scale
of the shock, λD/cs, collisions may affect the shock if the collisional age becomes
order unity or larger, νt & 1.

Note that, the analysis in paper A starts with the assumption that the collision-
ality is indeed perturbatively small, ν � cs/λD, and as such, the model is limited to
these – close to collisionless – cases. The opposite limit is to study hydrodynamic
shocks, which are completely dominated by the effects of collisions. The intermedi-
ary parameter region, where the physics require kinetic modeling and collisions are
still important, is far less explored than either of these extremes. While the work in
paper A has approached this gap in the intermediary region from the collisionless
side, there has also been efforts at approaching from the strong-collisionality side
of the gap (Thomas et al., 2012; Keenan et al., 2018). The following sub-section in
this thesis will discuss another study of stronger collisional effects on shocks.

3.4.2 Laser-generated electrostatic shocks in more strongly
collisional laser-plasmas

The collisional model in paper A only considers single-ion-species ion–ion collisions.
The work in paper C was therefore originally motivated by the work by Turrell,
Sherlock & Rose (2015), where the effects of collisions were studied in a plasma
with multiple ion species (caesium hydride, or CsH) target. Since the shock is
electrostatic, when there are multiple ion species present, the charge-to-mass ratios,
Z∗/A where A is the (dimensionless) atomic mass number, of the ion species play
a crucial role in their interaction with the shock. Notably, hydrogen ions (protons)
have a charge-to-mass ratio of 1, while almost every other ion species have Z∗/A .
0.5, which means that hydrogen, when present, will be preferentially reflected by
the shock at a significantly larger fraction of the proton population (Pusztai et al.,
2018). In the case of CsH, one would therefore expect the hydrogen ions to be
reflected to a much higher degree than the Cs27+ ions, with Z∗/A ≈ 0.2, if collisions
were to be neglected.

Another result from the semi-analytical model, first noted by Cairns et al. (2015),
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Figure 3.4: Proton (top panel) and Cs ion (bottom panel) distributions in the shock frame
of reference, '25 fs after the laser pulse has ended, together with the shock electrostatic
potential, eφ/Te (blue solid line, right axes), with Te = 10 keV. Also shown are contours
of constant energy, E = mv2/2 + eZ(φ− φmax) (black, dashed or dotted lines). The black
dashed line is related to the separatrix in the model discussed in § 3.4.1.

is that Te � Ti in order for the shock to exist. This requirement is linked to the
fact that the sound speed, cs = (Z∗Te/mi)1/2, must be significantly larger than the
ion thermal speed, vti = (Ti/2mi)1/2, in order for the ion-acoustic wave not to be
heavily Landau damped (1946). Fortunately, one of the major effects of collisions in
the scenarios with a high-Z∗ target is the inverse bremsstrahlung heating discussed
in § 3.3.1, which heats the electrons and creates favorable conditions for electrostatic
shock formation.

The collisional interaction between multiple ion species greatly complicates the
problem. Besides velocity diffusion, there would also be an advection term linked to
the friction between the different ion species moving at different velocities through
the shock. For this reason, the work in paper C is based on collisional, 1D PIC
simulations, with various laser and plasma parameters; a circularly polarized laser
pulse was used in order to reduce unwanted side effects from high-energy electron
bunches. The results show a shock structure, shown in Fig. 3.4, which is similar
to that of the semi-analytical model from paper A. There is also a clear proton
reflection. Note that the ions in this case do cross the constant energy trajectories
shown in Fig. 3.4, that is mostly due to the decaying shock speed and amplitude,
which is not captured in the semi-analytical steady-state model; for a constant speed
and amplitude shock, there would have to be a steady supply of energy to the shock,
in order to counteract the energy lost to the reflected ions.

Intriguingly, while the simulations in paper C show clear proton reflection, as in
Fig. 3.4, the results by Turrell, Sherlock & Rose (2015) were very different, in that
they found that inter-species collisions to cause strong enough collisional friction
between the protons and Cs ions to effectively cancel all ion reflection by the shock;
the strong friction meant that the energy that would otherwise be transferred from
the shock to the reflected ions is now converted to heat in the downstream ion
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Figure 3.5: Illustration of the three stages of an electrostatic shock observed in copper
targets in paper C: initial shock-like perturbation (at time t = 110 fs), fully developed
ion-reflecting shock (t = 150 fs) and transition to a shock-remnant blast wave (t = 500 fs).

populations. This discrepancy, despite using virtually identical physical parameters,
is thought to be due to variations in the collisional algorithms for the PIC codes;
further elaboration on this discussion can be found in paper C. This difference in
outcome may be useful to experimentally verify either collision models.

Collisional self-amplifying ion reflection

Another issue on this topic is how the electrostatic shocks are formed in laser-
driven plasmas. In high-intensity laser–plasma interactions, ion reflection can arise
either from the so called “laser piston” in the radiation pressure acceleration (RPA)
regime in overdense plasmas, due to the ponderomotive force (Silva et al., 2004),
or from electron pressure gradients in near-critical-density plasmas, which drive the
expansion of the plasma out from the high-pressure region (Fiuza et al., 2012). In
the former, which is also closer to the scenarios studied in paper C, the velocity
of the laser piston, vpiston ' ca0[Z∗menc/(mine)]1/2, determines the velocity of the
shock.

In paper C, a new effect in connection with shock-reflection initialization is pre-
sented, based on collisional heating of the upstream ion population. As discussed
in § 3.4.1, ion-reflection is a fundamentally kinetic effect, where the reflected ions
come from the high-energy tail of the upstream ion population (except perhaps in
multi-ion-species cases involving hydrogen). So in order for ion reflection to oc-
cur, the upstream ion distributions must have a sufficient thermal width. What
we found in paper C, is that collisions between ions in the reflected and incoming
upstream populations lead to heating of these ions; and by heating up the incoming
ion population, more ions will be reflected, which can further strengthen the colli-
sional ion heating in the upstream. Collisions can therefore act to create an early
self-amplification of shock ion reflection – especially in high-Z∗ materials.

While this self-amplifying ion reflection has little discernible impact on the shock
formation in the CsH target, since the protons are so easily reflected from the be-
ginning, we found that it can contribute to the onset of ion-reflection in single-
ion-species targets – especially for heavier ions. In the case of CsH targets, the
laser-piston is strong enough to rapidly accelerate the protons, the starting point
from which the electrostatic shock forms. In the pure Cu target, by contrast, the
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laser pulse induces a shock-like perturbation, which outruns the laser piston but
initially does not reflect any ions, as shown in the t = 110 fs panel of Fig. 3.5. Initial
upstream ion heating, through electron–ion heat transfer, then initialized ion reflec-
tion, which self-amplifies to a fully developed, ion-reflecting, electrostatic shock, as
shown in the t = 150 fs panel of Fig. 3.5.

As the shock progresses, and a larger and larger fraction of the upstream ions
are reflected, the shock wave loses its energy to ion reflection. Finally the amplitude
and speed of the shock is no longer able to sustain ion reflection and the shock
subsides and transitions into a blast wave – a supersonic remnant of the original
shock. This is shown in the t = 500 fs panel of Fig. 3.5. The remaining blast wave
is now traveling through the upstream ion population which has been heated by
collisional stopping of the reflected ions, and the blast wave itself further heats up
the ions as they pass into the downstream.
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Chapter 4

Summary and outlook

In the previous chapters, the focus has been on the background physics, while making
a number of observations with regards to the work done in the papers included in
this thesis. In this chapter, we will briefly summarize the content of the papers and
give an outlook of possible directions of future research on the topic.

4.1 Summary of papers
The common theme of the papers has been to study collisional effects in laser-
plasma settings – laser-plasma heating and electrostatic shocks. In other studies of
these settings, the role of collisions is sometimes justifiably neglected and sometimes
overlooked. The studies have all been performed in the kinetic framework, either
as a direct semi-analytical kinetic model (paper A) or through the use of particle-
in-cell simulations (paper B and C). Paper A treats collisional effects in weakly
collisional plasmas, whereas papers B and C study the effects of collisions in cases
where the plasma has been specifically chosen to be as collisional as possible given
the circumstances.

In paper A, we expand upon a semi-analytical model from Cairns et al. (2014, 2015)
and Pusztai et al. (2018), to include velocity diffusion due to ion–ion collisions in a
single-ion-species plasma. The model is based upon a perturbative treatment in the
smallness of the collisionality, νλD/cs � 1, and is thus only suitable for electrostatic
shocks in rather weakly collisional plasmas, such as space plasmas and perhaps
low-density (gas-jet) laser-target plasmas.

The collisional velocity diffusion causes ions to enter regions of phase space where
they become trapped due to the electrostatic potential oscillation in the shock down-
stream. The accumulation of ions in the trapped regions upsets the charge balance
of the electrostatic shock, causing the downstream oscillations to grow. On the
other hand, the height of the electrostatic potential barrier at the shock front re-
mains essentially unchanged, and hence the shock-reflected fraction of incoming ions
also remains essentially unchanged. The amplitude of the downstream oscillations
are found to grow as

√
νt, where νt is dubbed the collisional age of the shock.

Since shocks can be long-lived – especially in space plasmas – and the effect of the
collisional diffusion is cumulative, collisions can become important for the shock
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dynamics, even though the collisionality is very weak.
As a complement to the semi-analytical model, we also performed kinetic simu-

lation using the Vlasov–Maxwell solver in the Gkeyll code framework. At the time,
Gkeyll only had support for the Dougherty (or Lenard–Bernsein) operator, which
does not have the same strong negative velocity dependence as the Fokker–Planck
operator. The consequence was that the collisional coupling between populations
separated by a large velocity difference became artificially strong, which quickly
broke down the shock structure. These results show a cautionary example on the
importance of choosing a collision operator suited for the situation being modeled.

In paper B, we revisit inverse bremsstrahlung as a possible energy-absorption mech-
anism for an ultraintense and ultrashort laser pulse hitting a solid copper target,
using the Smilei (Derouillat et al., 2018) particle-in-cell simulations. The electrons
are heated to temperatures of several keV. By using a circularly polarized laser
pulse, the number of high-energy electrons is reduced compared to linear polariza-
tion, which in turn leads to a faster thermalization of the electrons. The creation of
well-thermalized, hot and dense plasmas is attractive for warm-dense-matter stud-
ies. From comparisons to simulations with collisions disabled, we find that inverse
bremsstrahlung is responsible for most of the energy absorption.

A crucial element why collisions become important is the fact that the copper
plasma was ionized to a relatively high level of Z∗ = 27. To test this assumed ion-
ization level, an additional simulation was performed, where the ionization of the
individual macro-particle ions was self-consistently simulated, using both collisional
impact ionization and field ionization. In this simulation, the laser field quickly ion-
izes the skin-layer ions to Z∗ & 20, and collisional impact ionization then gradually
brings up the ionization level to Z∗ ' 27 in the whole plasma, which justifies the
assumed Z∗ = 27 in the other simulations. Importantly, since the ionization quickly
reaches relatively high levels in the skin region, where the absorption happens, the
absorbed energy becomes comparable to that of the fixed-ionization simulation.

Due to field ionization in the charge-separation layer, some electrons were freed
already inside effectively the “vacuum region”, outside the electron boundary of the
plasma. These electrons, injected into a region of strong laser field, were accelerated
to high energies similar to the vacuum heating mechanism with LP. The electron
energy spectrum of the self-consistently ionized target plasma, was subsequently less
thermalized than the fixed-ionization counterpart.

Collisional absorption was also studied with respect to variations in the laser pa-
rameters through a wide scan in laser intensity and pulse duration. A power-law scal-
ing is found, and the absorption efficiency is found to scale as (pulse amplitude)−0.52×
(pulse duration)0.13. Therefore, at fixed laser pulse energy, increasing the pulse dura-
tion rather than the intensity leads to a higher electron temperature. Furthermore,
the collisional absorption was also tested against transverse plasma instabilities by
performing a two-dimensional simulation, which showed very similar behavior as its
one-dimensional counterpart.

As a demonstration of the inverse bremsstrahlung mechanism, we also performed
simulations with a simplified setup, with frozen ions in a semi-infinite plasma and
a fixed (after a short ramp-up) intensity laser. This setup is meant to generate
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a quasi-steady-state laser-plasma, where the mechanism by which collisions cause
absorption can be isolated and investigated in isolation, apart from, e.g., effects of
intensity modulation or hot electron recirculation. Neglecting the ion motion, one
can assume that laser absorption only results from the (density of) power absorbed
by the electrons moving in the transverse laser electric field, −eneE⊥ · ve,⊥. In
a collisionless plasma, conservation of transverse canonical momentum implies that
ve,⊥ and E⊥ are perpendicular to each other and thus result in no net energy transfer.
However, collisions break the conservation of transverse canonical momentum for the
electrons (by transferring momentum to the ions) and cause a small shift in ve,⊥,
both in magnitude and phase angle, with respect to E⊥, which in turn cause a
net energy transfer from the laser to the electrons. This setup may provide a good
framework for analytical investigation of the scaling laws observed in the laser-
parameter scan.

In paper C, we investigate the impact of collisions on the ion dynamics in solid den-
sity caesium hydride and copper targets irradiated by high-intensity and ultrashort-
duration circularly polarized laser pulses. As in paper B, the study was performed
using particle-in-cell simulations employing the Smilei PIC code (Derouillat et al.,
2018). Since both target materials have a relatively high Z∗, collisions significantly
enhance the electron heating, as discussed in paper B, which creates more favorable
conditions for shock formation. In comparison, simulations made without collisions
show signs of a shock as well, although with much lower speed and amplitude than
the corresponding collisional simulations.

The results from the caesium hydride (CsH) target, are compared with previous
work by Turrell, Sherlock & Rose (2015) and significant differences are found, de-
spite simulating virtually identical setups∗. The main difference is whether or not
inter-species collisional friction would be sufficiently strong to cancel the shock ion
reflection, which is what is observed in the simulations by Turrell, Sherlock & Rose
(2015), while we do not observe such strong friction. We believe that this discrep-
ancy is due to the two different collisional algorithms used in the Smilei (Derouillat
et al., 2018) and Epoch (Arber et al., 2015) PIC codes, employed by us and Turrell,
Sherlock & Rose, respectively. The main idea is that the collisional algorithms are
originally designed to emulate the Fokker–Planck operator in low-density or high-
temperature plasmas, where the Fokker–Planck operator is valid, but the collisional
behavior then has to be modified in high-density (or low-temperature) plasmas –
which is the case for the CsH plasma at hand. This high-density/low-temperature
modification differs between the two algorithms used. We believe that the colli-
sional algorithm used by Smilei (Pérez et al., 2012) has better physical grounds for
its modification, and thus produce the more physically accurate results.

With copper targets, we find that the lack of embedded protons results in the
launch of a shock-like perturbation which initially is not capable of reflecting ions.
We conclude that collisions play an important role in promoting shock ion reflection,
due to collisional heating between the reflected and incoming upstream ion popula-
tions. This self-amplification leads to the shock ion reflection bootstrapping itself.

∗We even have simulations with exactly the same physical parameters, with the same difference
being observed.
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Figure 4.1: “Further research is needed to understand how we managed to do such a good
job.” – Randall Munroe (2020). Reproduced from https://xkcd.com/2268/ cbn 2.5

At later times, the energy lost by the shock to the increasing fraction of reflected
ions results in a demise of the shock, which transforms into a hydrodynamic blast
wave.

4.2 Outlook
While I would like to end this thesis as Randall Munroe (2020) wishes to see a re-
search paper end (Fig. 4.1), there are several avenues of improvements and further
research. A general area of research which needs more attention is a more compre-
hensive study of the effects of collisions over a broader range of collisionality, from
the collisionless to the collision-dominated regime.

Beginning with the use of inverse bremsstrahlung for isochoric heating in paper B,
one may express some concern about the still rather low efficiency of the collisional
absorption, in the order of a couple of percent. The simulated targets were all of the
same thickness, while one may expect that the target size may affect the results. For
instance, thicker targets may require a longer time for the temperature to equilibrate.
This complication could be considered with respect to practical warm/hot-dense-
matter (W/HDM) applications, preferably in collaboration with experts in (x-ray)
diagnostics of W/HDM in order to assess the impact of such effects. There would
also be opportunities to study how the various absorption mechanisms affect the
x-ray signatures of the created W/HDM.

As mentioned in the summary of this paper, the quasi-steady-state simulations
make a good basis for a (semi-)analytical model of the inverse bremsstrahlung heat-
ing. The main goal of such a model would be to understand and explain the observed
power-law scalings. This work would aim at understanding the kinetic dynamics of
the electrons due to a spread in the transverse momentum plane of phase space,
especially how that spread affects the longitudinal motion of the electrons. The an-
alytical work could be complemented by a simplified numerical model that describes
this dynamics.

In addressing ionization, we found that ionization injection of electrons into
the vacuum region with strong laser fields impacts the thermalization of the plasma.
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While this does not detract from the statement that CP produces a more thermalized
plasma than LP – since the same ionization injection would happen with LP as well –
this generation of high-energy electrons might be considered for other applications
where such electrons are desirable. In general, the effect and dynamics of field
ionization as a fast electron source has received little research attention and could
be studied more thoroughly, not only in the context of laser absorption.

There are other effects which were not studied in paperB, such as the influence of
a preplasma. The laser–plasma interaction can change quite drastically depending
on the plasma-density profile at the target front surface. It would therefore be
valuable to study the sensitivity of inverse bremsstrahlung heating with respect
to the preplasma size – both in terms of energy-absorption efficiency and how it
affects the thermalization of the electrons. Preliminary simulations indicate that the
absorption efficiency is negatively affected by including a preplasma for circularly
polarized lases pulses, but a more detailed investigation is needed.

One possibility to further broaden the study of inverse bremsstrahlung heating
in paper B would be to investigate how higher-dimensional effects might affect the
heating. A two-dimensional test was performed and presented in the paper, which
suggested that the heating is not sensitive to transverse instabilities. However, since
the ponderomotive force (3.29) depends on the gradient of the intensity, ∇I, a
study of the effects of a spatial intensity envelope would also be valuable. Ideally,
simulations should be made at larger scales, which would provide insights into how
the problem scales with the size and dimensionality of the plasma. However, due
to the high numerical resolution required to accurately model collisions, such large-
scale and high-dimensional simulations are prohibitively computationally expensive
at the moment.

From a broader perspective, the collisional heating could be studied in combi-
nation with more exotic targets. For example, only using a thin layer of high-Z∗
material to provide electron heating, and then combining it with another mate-
rial optimized for other purposes, such as to produce electrostatic shocks. Since
electrostatic shocks require a high electron temperature, but also more preferably
accelerate protons, the heating from a thin (tens of manometers) copper target
could perhaps be combined with a plastic target in order to generate a stronger
(proton-accelerating) shock than either of the target materials on their own.

Continuing with the semi-analytical studies of electrostatic shocks in paper A. The
semi-analytical model as a whole (not just the collisional diffusion), is a steady-state
model, with pure shock parameters (e.g. Mach number) as inputs to the model; it
would therefore be interesting if the model could be expanded to “real world” inputs,
such as for instance laser parameters. Yet, as seen when comparing the model, as
it stands now, with shocks from simulations (e.g., figures 3.3 and 3.4, respectively),
the semi-analytical model may still be used to constrain the local structure of a
shock in more complex settings. However, that remains to be investigated further.

While the study of velocity diffusion leads to some more general conclusions
about the effects of collisions on the shocks, our description is restricted to one type
of collisions, and only in a limited region of phase space. There is still room for
further analytical developments, such as multi-species collisions or considering the
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effects of collisional friction between the incoming and reflected ions, especially with
respect to the observations of self-amplifying ion reflection made in paper C. Both
cases would require improving the model to capture the effect of a varying collision
frequency. The latter case would furthermore require an refinement with a velocity
dependent collision frequency; the effects of which could also be studied with respect
to the diffusion and trapping in the downstream region.

Another question related to the ions orbiting in the boundary layer of the trapped
region, is whether or not these counter-streaming ion populations may excite some
instability, such as electron–ion or ion–ion acoustic instabilities (Gary, 1993). Per-
haps there are some parameter regimes which are more susceptible to such instabil-
ities. These instabilities can either be investigated analytically, or via simulations
initialized with a shock distribution calculated from the semi-analytical model.

Simulations could also be used to study the long-time limit of collisional effects,
beyond the reach of the perturbative approach in paper A, or the impact of other
aspects of collisions, e.g. friction. However, as already noted, the simulated collision
operator needs to have a sufficiently strong velocity dependent collision frequency –
ideally it should be a full Fokker–Planck operator – in order to properly model the
collisional interaction of velocity-separated populations.

Finally, we consider the simulation study in paper C of the collisional effects on
the ion and shock dynamics. Like with paper B, further studies on the sensitivity
of the problem to its dimensionality would be valuable. Electrostatic shocks are
indeed expected to be highly sensitive to transverse non-uniformities, in particular
due to the development of the strongly oblique ion–ion instability (Dieckmann et al.,
2013). Thanks to the similarities, the simulations required can likely be shared with
the those required to study higher-dimensional effects to the inverse bremsstrahlung
heating.

It would be interesting to study the effects of collisions in a slightly weaker
collisionality regime, such as lower-charge materials. In fact, from a scan in Z∗ (ar-
tificially chosen at four fixed values) performed for paper B, we can find qualitatively
different shock behaviors likely due to variations in the plasma collisionality with
Z∗. A closer examination throughout the range of collisionality could shed light
on the plasma conditions for which collisions can be neglected in shock studies. In
addition, one could investigate the impact of the laser parameters and the plasma
density profile.

One interesting consideration with respect to the different results between pa-
per C and by Turrell, Sherlock & Rose (2015), is that this difference could be used
to experimentally verify the different collision algorithms, specifically their high-
density/low-temperature corrections. Since our results differ in such a dramatic
manner as to whether or not the shock is capable of accelerating ions, its may be
possible to experimentally distinguish the two results from each other. By simu-
lating laser-driven shocks in multi-species plasmas using different algorithms, the
proton energy spectra obtained numerically could be compared to ditto of an ex-
periment. In doing so, however, care will be needed to suppress, or experimentally
differentiate, other ion acceleration mechanisms.
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