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THE LANGLANDS DUAL AND UNITARY DUAL

OF QUASI-SPLIT PGSOE
8

CAIHUA LUO

Abstract. This paper serves two purposes, by adopting the classical
Casselman–Tadić’s Jacquet module machine and the profound Langlands–
Shahidi theory, we first determine the explicit Langlands classification for

quasi-split groups PGSOE
8 which provides a concrete example to guess the

internal structures of parabolic inductions. Based on the classification, we
further sort out the unitary dual of PGSOE

8 and compute the Aubert duality

which could shed light on the final answer of Arthur’s conjecture for PGSOE
8 .

As an essential input to obtain a complete unitary dual, we also need to de-
termine the local poles of triple product L-functions which is done in the
appendix. As a byproduct of the explicit unitary dual, we verified Clozel’s
finiteness conjecture of special exponents and Bernstein’s unitarity conjecture
concerning AZSS duality for PGSOE

8 .

Introduction

Let PGSOE
8 be an adjoint quasi-split group of type D4 over a non-archimedean

field F of characteristic zero, where E is a cubic field extension of F . As part of the
Langlands program, it is pivotal to understand the decomposition of induced repre-
sentations and classify the unitary dual. Following Harish-Chandra, Knapp–Stein
and others developed the R-group theory to determine the structure of tempered
induced representations (cf. [23, 44]), and based on the R-group theory Winarsky
[52], Keys [20], and others have completely determined the structure of tempered
principal series for split p-adic Chevalley groups. As for generalized principal se-
ries (tempered or not), Shahidi [42] has built up the profound Langlands–Shahidi
theory to tackle this problem and produced quite fruitful results [11, 43]. Along
another direction, Casselman [6], Rodier [34], Tadić–Sally [45, 47], Janzten [19],
and others have developed the Jacquet module machine to analyze the constituents
of non-tempered principal series representations. But it is still far from its com-
pleteness (to the author’s knowledge). Motivated by the work of Rodier on regular
characters, it should be reasonable to believe the existence of an internal structure
for the non-tempered principal series. On the other hand, in light of unitary dual,
Vogan and his collaborators have produced many influential works and created a
unitary kingdom (cf. [24, 49–51]). As a test, some low rank groups have been
computed (cf. [12–14, 25, 29, 31, 35, 37]). From the perspective of global Langlands
conjectures, AZSS (Aubert, Zelevinsky, Schneider–Stuhler) duality also plays an
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important role in formulating Arthur’s conjecture [1] (as always cited as Aubert
duality). It is conjectured that the AZSS duality preserves unitarity (cf. [3, 36])
and corresponds to the switch of SL2-components of the A-parameter on the Galois
side (see [17]). In this paper, we will carry out the project for PGSOE

8 , whilst a

similar result of the unitary dual of SpinE8 will be discussed somewhere else, and
we hope to finish the Langlands dual for Sp6 in the near future to get a glimpse of
possible internal structures of the decomposition of principal series. Even though
the Jacquet module method applied here is not completely new, we want to empha-
size that our ε-revised method originating from Muić’s work on G2 (cf. [31]) should
work for all (relative) rank 2 groups and it is much more intuitive. On the other
hand, as PGSO8 is closely related to G2, one may expect a similar result as G2

concerning the unitary dual of PGSOE
8 . But new phenomenon appears, there are

two isolated families of unitary representations of PGSOE
8 instead of one isolated

family of unitary dual for G2, i.e.,

Iα(1, Iα(χ1, χ
−1
1 ) ⊗ 1) with χ1∣F×

=1, χ1 ≠ 1

and

Iβ(3, 1⊗ Iβ(χ2, χ
−1
2 )) with χ2 ○NE/F = 1 , χ2 ≠ 1.

We also want to point out that the determination of local poles of the triple prod-
uct L-function is completely new, even the global problem is known by Ikeda (cf.
[18]). In the meantime, we expect that such a detailed study could play a role on
the understanding of Arthur’s conjecture for G2 as G2 is a triality-twisted ellip-
tic endoscopic group of PGSO8. Finally, we would like to mention that recently
Tadić has made major progress on the unitary dual of relative rank at most 3
parabolic inductions of classical groups (cf. [48]). We also would like to mention
that recently, via Casselman–Tadić’s Jacquet module machine, we have generalized
Rodier’s structure theorem for regular principal series (cf. [34]) and Muller’s irre-
ducibility theorem for principal series (cf. [32]) to their counterparts for generalized
principal series (cf. [26, 27]). All of those should be regarded as preliminary steps
to understand the internal structures of parabolic inductions.

Here is an outline of the paper. In the first section, we establish notation and
recall some basic structure results for PGSOE

8 with E/F a cyclic extension and
some basic representation theory facts. As the non-Galois case is almost the same,
we will treat it as a remark accordingly throughout the paper. Finally, we will
do some basic computations for later use. In the second section, we compute
the explicit Langlands classification for PGSOE

8 , while the last section is devoted
to sorting out the unitary dual and showing the unitarizability of two isolated
families Iα(1, Iα(χ1, χ

−1
1 ) ⊗ 1) with χ1∣F×

=1, χ1 ≠ 1, and Iβ(3, 1⊗ Iβ(χ2, χ
−1
2 )) with

χ2 ○NE/F = 1, χ2 ≠ 1.

1. Preliminaries

Let F be a non-archimedean field of characteristic zero, let F̄ be the algebraic
closure of F , and let E be a cubic Galois field extension of F with Gal(E/F ) = ⟨σ⟩.
Write F × (resp., F̄ ×, E×) to be the group of invertible elements in F (resp., F̄ ,
E). Denote by ∣ ⋅ ∣ the absolute value of F and by ∣ ⋅ ∣ ○ NE/F the absolute value
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of E with NE/F the normal map from E to F , and write νF = ∣ ⋅ ∣ ○ det and νE =
∣ ⋅ ∣ ○NE/F ○det. Given such an E, we know there is an associated adjoint quasi-split

group G = PGSOE
8 of type D4. For simplicity, we also write G to be G(F ) if no

confusion arises with similar notions for other groups.
Denote by T a maximal torus and by B = TU a Borel subgroup of PGSOE

8 . We
know that the absolute root lattice

X∗(T ) = Z ⟨α1 = e1 − e2, α2 = e2 − e3, α3 = e3 − e4, α4 = e3 + e4⟩ ,

and the absolute coroot lattice

X∗(T ) = Z ⟨e∗1 , e∗1 + e∗2 ,
1

2
(e∗1 + e∗2 + e∗3 − e∗4),

1

2
(e∗1 + e∗2 + e∗3 + e∗4)⟩ ,

where {e∗i } is the basis dual to {ei}.
As G is an adjoint group and T splits over E, thus we may parameterize T (F )

in the following way:

t ∈ T (F ) ↔ t =He∗1
(t1)H 1

2 (e
∗
1+e

∗
2+e

∗
3−e

∗
4)
(tσ1 )H 1

2 (e
∗
1+e

∗
2+e

∗
3+e

∗
4)
(tσ

2

1 )He∗1+e
∗
2
(t2),

where t1 ∈ E×, t2 ∈ F ×, and Hγ∨(t) ∶= γ∨ ⊗ t ∈ X⋆(T ) ⊗ F̄ × for a coroot γ∨ ∈
X∗(T ). Under the natural restriction map from absolute roots to relative roots
as in [8, 3.2], we denote by α the relative short root given by the restriction of
any αi with i = 1, 3, 4, by β the relative long root of the restriction of α2, and by
Φ+E ∶= {α, β, α + β, 2α + β, 3α + β, 3α + 2β} the set of relative positive roots
which is of type G2. As α is a character of F × × F × mapping (t, t2) to t for
any t, t2 ∈ F ×, we naturally extend it to be a character of E× × F × defined by
(t1, t2) ↦ t1 for any t1 ∈ E× and t2 ∈ F ×. Accordingly, the coroot α∨ naturally
extended to E× is defined by t1 ↦ (t21,NE/F (t1)−1) for any t1 ∈ E×. Then we have
a∗T ∶=X∗(T )F ⊗Z R = R ⟨α,β⟩ and the positive Weyl chamber

C+ = (a∗T )+ ∶= {x ∈ a∗T ∶ (x,α∨) > 0, (x, β∨) > 0} = {s1α + s2β ∶ 3
2
s2 < s1 < 2s2},

where α∨ and β∨ are coroots of α and β, respectively, and

(α,α∨) = 2, (β, β∨) = 2, (α,β∨) = −1 and (β,α∨) = −3.

For any root γ ∈ Φ+E , we denote wγ to be the corresponding reflection in the
Weyl group W = ⟨wα, wβ⟩ of G which satisfies that

wα = wα1
wα3

wα4
and wβ = wα2

;



LANGLANDS DUAL & UNITARY DUAL OF QUASI-SPLIT PGSOE
8 295

here wαi
, i = 1, 2, 3, 4, is the simple reflection corresponding to αi in the absolute

Weyl group WD4
of type D4. Thus an easy calculation shows that

wα.e
∗
1 = −e∗1 + (e∗1 + e∗2),

wβ .e
∗
1 = e∗1 ,

wα.
1

2
(e∗1 + e∗2 + e∗3 − e∗4) = −

1

2
(e∗1 + e∗2 + e∗3 − e∗4) + (e∗1 + e∗2),

wβ .
1

2
(e∗1 + e∗2 + e∗3 − e∗4) =

1

2
(e∗1 + e∗2 + e∗3 − e∗4),

wα.
1

2
(e∗1 + e∗2 + e∗3 + e∗4) = −

1

2
(e∗1 + e∗2 + e∗3 + e∗4) + (e∗1 + e∗2),

wβ .
1

2
(e∗1 + e∗2 + e∗3 + e∗4) =

1

2
(e∗1 + e∗2 + e∗3 + e∗4),

wα.(e∗1 + e∗2) = (e∗1 + e∗2),

wβ .(e∗1 + e∗2) = −(e∗1 + e∗2) + e∗1 +
1

2
(e∗1 + e∗2 + e∗3 − e∗4) +

1

2
(e∗1 + e∗2 + e∗3 + e∗4).

For Levi subgroups of PGSOE
8 , we have the following isomorphisms (please refer

to [9, Formula (2.28)] for Pβ and [8, Formula (3.2)] or [38, Formula (1.1)] for the
dual of Pα):

B = TU ∶ T
∼ �� E× × F ×

t
� �� (α(t), β(t)),

Pα =MαNα ∶ Mα
∼ �� GL2(E) ×F ×/ΔE×

t = (t1, t2) � �� (diag(t1, 1), t−12 ),
Pβ =MβNβ ∶ Mβ

∼ �� E× ×GL2(F )/ΔF ×

t = (t1, t2) � �� (t−11 ,diag(t2, 1)),

where Δ ∶ E× ↪ GL2(E) × F × is given by x ↦ (x ⋅ diag(1, 1),NE/F (x)), and Δ ∶
F × ↪ E× ×GL2(F ) is given by y ↦ (y, y ⋅ diag(1, 1)).

Under the above realization, we have an explicit description of the Weyl group
action on (t1, t2) ∈ T (F ) given by w.t ∶= wtw−1 for any w ∈ W and t ∈ T (F ) which
is listed as follows under the above isomorphism T (F ) ≃ E× ×F × ∶ t↦ (t1, t2):

wα(t1, t2) = (t−11 ,NE/F (t1)t2), wβ(t1, t2) = (t1t2, t−12 ).
See Figure 1.

W.T ∶ (t1, t2)
wα �� (t−11 ,NE/F (t1)t2)

wβ
�� (t−11 NE/F (t1)t2,NE/F (t1)

−1t−12 )

wα

��

.(t−11 , t−12 ) (t−11 t−12 , t2)
wβ

�� (t1t2,NE/F (t1)
−1t−22 )

wα�� (t1NE/F (t1)
−1t−12 ,NE/F (t1)t

2
2)

wβ
��

Figure 1. W -action on torus

Similarly, an explicit description of the Weyl group action on characters (χ1, χ2)
of T (F ) ≃ E× × F × defined by χw ∶= χ ○ Ad(w) and w.χ ∶= χ ○ Ad(w−1) for any
w ∈W and χ ∶ E× ×F × → C

× is listed as shown in Figure 2..
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χW ∶ (χ1, χ2)
wα �� (χ−11 χ2 ○NE/F , χ2),

wβwα
�� (χ−11 χ1 ○NE/Fχ2 ○N

−1
E/F , χ1χ

−1
2 ),

wαwβwα

��

(χ−11 , χ−11 χ2)

wβwαwβwαwβwα

��

, (χ1χ2 ○N
−1
E/F , χ1χ

−2
2 )

wαwβwαwβwα
�� , (χ1χ1 ○N

−1
E/Fχ2 ○NE/F , χ−11 χ2

2)
wβwαwβwα
��

(χ−11 , χ−12 ).

Figure 2. W -action on character

Let R(G) be the Grothendieck group of admissible smooth representations of
finite length of G with similar notions for other groups. We denote by rγ the
normalized Jacquet functor w.r.t. Pγ , and by r∅ the normalized Jacquet functor
w.r.t. B. Now we recall that (cf. [4, 6])

rα(Iα(σ)) = σ +w3α+2β .σ + Iα(wα+β .r∅(σ)) + Iα(wβ .r∅(σ)),
rβ(Iα(σ)) = Iβ(r∅(σ)) + Iβ(w2α+βwα.r∅(σ) + Iβ(w3α+βwα.r∅(σ))

if σ ∈ R(Mα), and

rβ(Iβ(σ)) = σ +w2α+β .σ + Iβ(wα.r∅(σ)) + Iβ(w3α+β .r∅(σ)),
rα(Iβ(σ)) = Iα(r∅(σ)) + Iα(wα+βwα.r∅(σ)) + Iα(wβwα.r∅(σ))

if σ ∈ R(Mβ). Here the action of Weyl group W on the representation σ of Mγ

with γ ∈ {α,β} is defined by w.σ ∶= σ ○Ad(w−1) for w ∈W .
We have the Aubert involution endomorphism of R(G)

DG(π) = IG ○ r∅(π) − Iα ○ rα(π) − Iβ ○ rβ(π) + π.

It follows from [3,36] that ±DG(π) preserves irreducibility and we have [3, Theorem
1.7(3)],

DG ○ Iγ = Iγ ○DMγ
,

rγ ○DG = w̃γ ○DMγ
○ rγ .

Here w̃α = w3α+2β and w̃β = w2α+β .
For

(s1, s2) ∶= 3s1α + s2β ∈X∗(T ) ⊗Z C,

we define the associated unramified character of T (F ) as

(t1, t2) ↦ ∣NE/F (t1)∣s1 ∣t2∣s2 .

For γ ∈ {α,β}, s1, s2 ∈ R, and χ1 ×χ2 a unitary character of E× ×F × ≃ T (F ), set

Iγ(s1, s2, χ1, χ2) = Iγ(∣NE/F (⋅)∣s1χ1 ⊗ ∣ ⋅ ∣s2χ2) = Ind
Mγ

T (∣NE/F (⋅)∣s1χ1 ⊗ ∣ ⋅ ∣s2χ2).

Similarly, we write I(s1, s2, χ1, χ2) = IG(s1, s2, χ1, χ2) = IndGT (∣NE/F (⋅)∣s1χ1 ⊗ ∣ ⋅
∣s2χ2) for the normalized induced representation from B to G, and denote by Iγ(−)
the normalized parabolic induction inducing from Pγ to G for γ ∈ {α,β}. Through-
out the paper, for simplicity, we would like to use the same symbol χ1 to be χ1∣F×
when restricting a character χ1 of E× to F × if there is no confusion.



LANGLANDS DUAL & UNITARY DUAL OF QUASI-SPLIT PGSOE
8 297

Now we recall the Langlands quotient theorem and Casselman’s temperedness
criterion in the PGSOE

8 -setting (cf. [5, XI Proposition 2.6 and Corollary 2.7]) for
later use as follows.

Langlands quotient theorem. Denote by σ an irreducible tempered representa-
tions of GL2.

When χ2 is unitary and s > 0, the induced representation IndGPα
(νsEσ ⊗ χ2ν

−2s
F )

has a unique irreducible quotient, i.e., the Langlands quotient Jα(s, σ ⊗ χ2).
When χ1 is unitary and s > 0, the induced representation IndGPβ

(χ1ν
−2s
3

E ⊗ νsFσ)
has a unique irreducible quotient, i.e., the Langlands quotient Jβ(s, χ1 ⊗ σ).

When χ1, χ2 are unitary and 3
2
s2 < 3s1 < 2s2, the induced representation

I(s1, s2, χ1, χ2) has a unique irreducible quotient, i.e., the Langlands quotient
J(s1, s2, χ1, χ2).

Casselman’s temperedness criterion. Suppose π is an irreducible representa-
tion of G supported on a minimal parabolic subgroup; then π is square-integrable
(resp., tempered) if and only if for any irreducible subquotient (s1, s2, χ1, χ2) of
r∅(π) (si ∈ R, χi unitary), we have

(s1, s2) ∈ +a∗T = {aα + bβ ∶ a > 0, b > 0} (resp., +ā∗T ).

Notice that for (s1, s2) = 3s1α+ s2β, there exists w ∈W such that (s1, s2)w ∈ C̄+
the closure of C+, and we have I(s1, s2, χ1, χ2) = I((s1, s2, χ1, χ2)w) in R(G).
Thus we may only need to analyze those I(s1, s2, χ1, χ2) where (s1, s2) ∈ C̄+, i.e.,
0 ≤ 3

2
s2 ≤ 3s1 ≤ 2s2. To do so, we need to classify two pivotal data as follows.

Singular character. As the composition series of I(s1, s2, χ1, χ2) have been de-
termined completely by Rodier for regular characters (s1, s2, χ1, χ2) and by Keys
for unitary characters, it will be helpful to first sort out the singular characters
χ = (s1, s2, χ1, χ2), i.e.,

Wχ ∶= {w ∈W ∶ χw = χ} ≠ {1}.

We call the cardinality of the setWχ the multiplicity of χ which measures the extent
of singularity. To keep track of the stabilizer group and constraint conditions of χ
(if any), we encode this information into χ as, for simplicity,

(s1, s2, χ1, χ2;Wχ; constraint conditions).

If χ is unitary (resp., χ ∈ a∗T ), we write (χ1, χ2) (resp., (s1, s2)) to be (0, 0, χ1, χ2)
(resp., (s1, s2, 1, 1)) for simplicity.

For the convenience of the reader, we recall the action of W on (t1, t2) ∈ T (F )
in Table 1.

Table 1. Relation 1

wα(t1, t2) = (t−11 ,NE/F (t1)t2) (wβwα)(t1, t2) = (t−11 NE/F (t1)t2,NE/F (t1)−1t−12 )
wα(wβwα)(t1, t2) = (t1NE/F (t1)−1t−12 ,NE/F (t1)t22) (wβwα)2(t1, t2) = (t1t2,NE/F (t1)−1t−22 )

wα(wβwα)2(t1, t2) = (t−11 t−12 , t2) (wβwα)3(t1, t2) = (t−11 , t−12 )

Thus it gives rise to the action of W on unramified characters (s1, s2) of T (F )
in Table 2
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Table 2. Relation 2

(s1, s2)wα = (−s1 + s2, s2) (s1, s2)(wβwα) = (2s1 − s2, 3s1 − s2)
(s1, s2)wα(wβwα) = (−2s1 + s2,−3s1 + 2s2) (s1, s2)(wβwα)

2 = (s1 − s2, 3s1 − 2s2)
(s1, s2)wα(wβwα)

2 = (−s1,−3s1 + s2) (s1, s2)(wβwα)
3 = (−s1,−s2)

Thus we have the following action of the Wey group W on unramified characters:

{(s1, s2)w ∶ w ∈W}
= { ± (s1, s2),±(s1 − s2,−s2),±(2s1 − s2, 3s1 − s2),±(2s1 − s2, 3s1 − 2s2),

± (s1 − s2, 3s1 − 2s2),±(s1, 3s1 − s2)}.

In conjunction with Figure 2, we know that for those s1 and s2 satisfying the
condition that 0 ≤ 3

2
s2 ≤ 3s1 ≤ 2s2, the set S of singular characters consists of those

unitary χ with multiplicity m > 2:

(1, 1;D6), (χ1, 1;S3;χ1≠1, χ1∣F× =1), (χ1, 1; ⟨wα, w3α+2β⟩ ;χ2
1=1, χ1∣F× ≠1),

(1, χ2; ⟨wβ , w2α+β⟩ ;χ2
2 = 1, χ2 ≠ 1), (χ1, χ1; ⟨w3α+β , wα+β⟩ ;χ2

1=1, χ1∣F× ≠1).

Here D6 stands for the Dihedral group of order 12, and S3 is the permutation group
of order 6, and those unitary χ with multiplicity m = 2:

(χ1, χ2; ⟨wαw3α+2β⟩ ;χ2
1 = 1, χ2

2 = 1), (χ1, χ2; ⟨wα⟩ ;χ2
1 = χ2 ○NE/F ),

(χ1, χ2; ⟨wα+β⟩ ;χ1 = χ2 ○NE/F ), (1, χ2; ⟨w2α+β⟩), (χ1, 1; ⟨w3α+2β⟩),
(χ1, χ2; ⟨wβ⟩ ;χ1∣F× = χ2

2), (χ1, χ2; ⟨w3α+β⟩ ;χ1∣F× = χ2),

and those non-unitary χ with multiplicity m = 2:

(s1, 2s1, χ1, χ2; ⟨wα⟩ ; s1>0, χ2
1χ2 ○NE/F ),

(s1,
3

2
s1, χ1, χ2; ⟨wβ⟩ ; s1 > 0, χ1∣F× = χ2

2).

Reducibility point. In what follows, we will describe the rank 1 reducibility
points, i.e., the reducibility points arising from those rank 1 parabolic inductions
Iγ((s1, s2, χ1, χ2)w) with γ ∈ {α,β} and w ∈ W , as we believe that, in most cases,
rank 1 irreducibility should determine the irreducibility of the full induced repre-
sentation. Note that the derived groups of those Levi subgroups Mγ with γ ∈ {α,β}
are isogenous to SL2(E) or SL2(F ), thus those rank 1 reducibility points are de-
termined by χγ∨ ∶= χ ○ γ∨ = ∣ ⋅ ∣ ○NE/F if γ = α up to conjugation by some w ∈ W
or χγ∨ = ∣ ⋅ ∣ if γ = β up to conjugation by some w ∈W . Note that (α,β∨) = −1 and
(β,α∨) = −3. In conjugation with Figure 2, an easy calculation shows that the set
R of rank 1 reducibility points is listed as shown in Tables 3 and 4.
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Table 3. Reducibility point

Rank 1 reducibility (s1, s2, χ1, χ2)
α∨ 2s1 − s2 = 1, χ2

1 = χ2 ○NE/F

β∨ −3s1 + 2s2 = 1, χ1 = χ2
2

(α + β)∨ −s1 + s2 = 1, χ1 = χ2 ○NE/F

(2α + β)∨ s1 = 1, χ1 = 1
(3α + β)∨ 3s1 − s2 = 1, χ1 = χ2

(3α + 2β)∨ s2 = 1, χ2 = 1

Table 4. #R > 1

Reducible coroot (⋅)∨ relation for (⋅)∨ (s1, s2, χ1, χ2)
#R = 4 (α + β), β, (2α + β), (3α + β) wα (1,2,1,1)

#R = 2

(3α + β), (3α + 2β) wβ ( 23 ,1, χ1,1;χ1 ∣F× = 1)
α, (α + β) wβ (2,3,1, χ2;χ2 ○NE/F = 1)

α, β (3,5,1,1)
(α + β), (2α + β) wα (1,2,1, χ2;χ2 ≠ 1 & χ2 ○NE/F = 1)

β, (2α + β) (1,2,1, χ2;χ2 ≠ 1 & χ2
2 = 1)

(α + β), (3α + β) (1,2, χ1, χ2;χ2 ≠ 1 & χ2
1 = 1, χ1 = χ2)

β, (3α + β) wα (1,2, χ1,1;χ1 ≠ 1 & χ1∣F× = 1)

Before moving to the next computation section, we recall Shahidi’s local coeffi-
cient formula in the PGSOE

8 -setting based on its multiplicative property as follows
(please refer to [42] for the notions), up to a monomial in q−s:

Cψ(s, δ(χ1) ⊗ χ2, w3α+2β) =
LF ( 52 − s, χ2

2χ1)LF (1 − 2s, χ2)LF (− 1
2
− s, χ−11 χ−12 )

LF (s − 3
2
, χ−22 χ−11 )LF (2s, χ−12 )LF ( 32 + s, χ1χ2)

×
LE( 32 − s, χ−21 (χ1χ2) ○NE/F )LE( 12 − s, χ−11 ○NE/Fχ

2
1)

LE(s − 1
2
, χ2

1(χ1χ2)−1 ○NE/F )LE(s + 1
2
, χ1○NE/Fχ

−2
1 )

Cψ(s, χ1 ⊗ δ(χ2), w2α+β)

=
LE( 32 −

s
3
, χ2

1χ2○NE/F )LE(1 − 2s
3
, χ−22 χ1○NE/F )LE( 12 −

s
3
, χ2

1(χ1χ2)−1○NE/F )
LE(− 1

2
+ s

3
, χ−21 χ−12 ○NE/F )LE( 2s3 , χ2χ−11 ○NE/F )LE( 12 +

s
3
, χ−21 (χ1χ2)○NE/F )

×
LF ( 32 − s, χ1χ2)LF ( 12 − s, χ−12 )

LF (s − 1
2
, (χ1χ2)−1)LF ( 12 + s, χ2)

.

In view of the above formulas, we have the following lemma which results from
[39, Proposition 3.3.1].

Lemma 1.1. We have the genericity of those representations which will be used in
the next section.

Jα(ν
1
2

Eδ(1)⊗χ2ν
−1
F )∣χ2≠1,χ2○NE/F =1, Jα(ν

3
2

Eδ(1)⊗ν
−3
F ), Jβ(ν

−1
3

E χ1⊗ν
1
2

F δ(1))∣χ1∣F×=1
.
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2. Langlands classification

In this section, we will carry out the computation of the constituents of principal
series in detail following Casselman–Tadić’s Jacquet module machine. Recall that
given a character χ ∶= (s1, s2, χ1, χ2) of T , under the previous realization of Levi
subgroups, we have

Iα(χ) = IndGL2(∣NE/F (⋅)∣s1χ1 ⊗ ∣NE/F (⋅)∣−s1+s2χ−11 χ2 ○NE/F ) ⊗ ∣ ⋅ ∣−s2χ−12 ,

Iβ(χ) = χ−11 ∣NE/F (⋅)∣−s1 ⊗ IndGL2(∣ ⋅ ∣s2χ2 ⊗ ∣ ⋅ ∣3s1−s2χ1χ
−1
2 ).

It is well known that they are reducible if and only if

(2s1 − s2, χ
2
1χ
−1
2 ○NE/F ) = (±1, 1) and (2s2 − 3s1, χ

2
2χ
−1
1 ) = (±1, 1), respectively.

Also, their Jacquet modules r∅ have the form

rMα
∅ (Iα(χ)) = {(s1, s2, χ1, χ2), (−s1 + s2, s2, χ

−1
1 χ2 ○NE/F , χ2)},

r
Mβ

∅ (Iβ(χ)) = {(s1, s2, χ1, χ2), (s1, 3s1 − s2, χ1, χ1χ
−1
2 )},

rG∅ (IG(χ))
Mα= {±(s1, s2, χ1, χ2),±(−s1 + s2, s2, χ

−1
1 χ2 ○NE/F , χ2)}

∪ {±(s1, 3s1−s2, χ1, χ1χ
−1
2 ),±(2s1 − s2, 3s1−s2, χ−11 χ1○NE/Fχ

−1
2 ○NE/F , χ1χ

−1
2 )}

∪ {±(s1 − s2, 3s1 − 2s2, χ1χ
−1
2 ○NE/F , χ1χ

−2
2 ),

± (2s1 − s2, 3s1 − 2s2, χ
−1
1 χ1 ○NE/Fχ

−1
2 ○NE/F , χ1χ

−2
2 )},

rG∅ (IG(χ))
Mβ= {±(s1, s2, χ1, χ2),±(s1, 3s1 − s2, χ1, χ1χ

−1
2 )}

∪ {±(s1 − s2, 3s1 − 2s2, χ1χ
−1
2 ○NE/F , χ1χ

−2
2 ),∓(−s1 + s2, s2, χ

−1
1 χ2 ○NE/F , χ2)}

∪ {±(2s1 − s2, 3s1 − 2s2, χ
−1
1 χ1 ○NE/Fχ

−1
2 ○NE/F , χ1χ

−2
2 ),

± (2s1 − s2, 3s1 − s2, χ
−1
1 χ1 ○NE/Fχ

−1
2 ○NE/F , χ1χ

−1
2 )}.

Now suppose that s1 and s2 satisfy the condition that 2s2 ≥ 3s1 ≥ 3
2
s2 ≥ 0. We

are ready to carry out the calculation case-by-case as follows, as it may show some
hidden structures.

#R = 0, (s1, s2, χ1, χ2) non-unitary.

Claim. I(χ) is irreducible.
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If χ is regular, i.e., StabW (χ) ∶= Wχ = {1}, the diagram chasing looks pretty
easy. We write down the diagram as a template for other cases.

α
�⇒ {(s1, s2, χ1, χ2), (−s1 + s2, s2, χ

−1
1 χ2 ○NE/F , χ2)}

β
�⇒

{(s1, s2, χ1, χ2), (s1, 3s1 − s2, χ1, χ1χ
−1
2 )};

{−(s1 − s2, 3s1 − 2s2, χ1χ
−1
2 ○NE/F , χ1χ

−2
2 ), (−s1 + s2, s2, χ

−1
1 χ2 ○NE/F , χ2)}

α
�⇒

{(s1, 3s1 − s2, χ1, χ1χ
−1
2 ), (2s1 − s2, 3s1 − s2, χ

−1
1 χ1 ○NE/Fχ

−1
2 ○NE/F , χ1χ

−1
2 )};

{−(s1 − s2, 3s1 − 2s2, χ1χ
−1
2 ○NE/F , χ1χ

−2
2 ),−(2s1 − s2, 3s1 − 2s2, χ

−1
1 χ1

○NE/Fχ
−1
2 ○NE/F , χ1χ

−2
2 )}

β
�⇒

{(2s1 − s2, 3s1 − 2s2, χ
−1
1 χ1 ○NE/Fχ

−1
2 ○NE/F , χ1χ

−2
2 ),

(2s1 − s2, 3s1 − s2, χ
−1
1 χ1 ○NE/Fχ

−1
2 ○NE/F , χ1χ

−1
2 )};

{−(2s1 − s2, 3s1 − 2s2, χ
−1
1 χ1 ○NE/Fχ

−1
2 ○NE/F , χ1χ

−2
2 ),

−(2s1 − s2, 3s1 − s2, χ
−1
1 χ1 ○NE/Fχ

−1
2 ○NE/F , χ1χ

−1
2 )}

α
�⇒

{(s1 − s2, 3s1 − 2s2, χ1χ
−1
2 ○NE/F , χ1χ

−2
2 ), (2s1 − s2, 3s1 − 2s2, χ

−1
1 χ1

○NE/Fχ
−1
2 ○NE/F , χ1χ

−2
2 )};

{−(s1, 3s1 − s2, χ1, χ1χ
−1
2 ),−(2s1 − s2, 3s1 − s2, χ

−1
1 χ1 ○NE/Fχ

−1
2 ○NE/F , χ1χ

−1
2 )}

β
�⇒

{(s1 − s2, 3s1 − 2s2, χ1χ
−1
2 ○NE/F , χ1χ

−2
2 ),−(−s1 + s2, s2, χ

−1
1 χ2 ○NE/F , χ2)};

{−(s1, s2, χ1, χ2),−(s1, 3s1 − s2, χ1, χ1χ
−1
2 )}

α
�⇒ {−(s1, s2, χ1, χ2),−(−s1 + s2, s2, χ

−1
1 χ2 ○NE/F , χ2)}.

Whence I(χ) is irreducible. If χ is singular, as the singularity is given by ⟨wα⟩ or
⟨wβ⟩, we may obtain I(χ) is irreducible as well by the same argument.

(1, 2, 1, 1; ⟨wα⟩), (#R = 4, wα).

Claim. I(χ) is of length 2#R/2 + 2 and multiplicity at most 2, and the two subrep-
resentations are square-integrable.

Comparing Tables 3 and 4, we find that χ is singular. The Jacquet modules
r∅ of the constituents are listed as follows. We write (s1, s2) for (s1, s2, 1, 1) for
simplicity.

The subrepresentation π(1):
2(1, 2), (1, 1);

subrepresentation π(1)′:
(1, 1);

subquotient Jα(ν1/2E δ(1) ⊗ ν−1F ) (multiplicity 2):

(0, 1), (0,−1);

quotient Jβ(ν−1E ⊗ ν
3/2
F δ(1)):

(−1,−1);
the Langlands quotient Jα(νEIα(1⊗ 1) ⊗ ν−2F ):

2(−1,−2), (−1,−1).

Proof. In R(G),

I(1, 2) = I(0, 1) = I(1, 1) = Iα(ν1/2E δ(1) ⊗ ν−1F ) + Iα(ν1/2E 1GL2
⊗ ν−1F )

= Iβ(ν−1E ⊗ ν
3/2
F 1GL2

) + Iβ(ν−1E ⊗ ν
3/2
F δ(1)).
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We write the semisimplification of Jacquet modules as follows:

rβ(Iα(ν1/2E δ(1) ⊗ ν−1F )) = 2{(1, 1)} + 2{(1, 2)} + {(0, 1), (0,−1)},

rβ(Iβ(ν−1E ⊗ ν
3/2
F 1GL2

)) = {(1, 1)} + 2{(−1,−2)} + {(−1,−1)} + {(0, 1), (0,−1)}.

It is easy to see

π(1)′ ∶= Iα(ν1/2E δ(1) ⊗ ν−1F ) ∩ Iβ(ν−1E ⊗ ν
3/2
F 1GL2

) ≠ ∅.

Notice that

Jα(ν1/2E δ(1) ⊗ ν−1F ) ↪ Iα(ν−1/2E δ(1) ⊗ νF ) ↪ I(0,−1);

it implies r∅(π(1)′) = (1, 1).
Now consider

I(0,−1) ≃ I(0, 1) = Iα(ν1/2E 1GL2
⊗ ν−1F ) + Iα(ν1/2E δ(1) ⊗ ν−1F ).

We write the semisimplification of Jacquet modules as follows:

rβ(Iα(ν−1/2E δ(1) ⊗ νF )) = 2{(1, 1)} + 2{(1, 2)} + {(0, 1), (0,−1)},

rβ(Iα(ν1/2E 1GL2
⊗ ν−1F )) = 2{(−1,−2)} + 2{(−1,−1)} + {(0, 1), (0,−1)}.

It is easy to see

Iα(ν−1/2E δ(1) ⊗ νF ) ∩ Iα(ν1/2E 1GL2
⊗ ν−1F ) ≠ ∅

with the Jacquet module {(0, 1), (0,−1)}.
Note also that under the Aubert duality,

r∅ ○DG(π(1)′) = (−1,−1).

Observe that

rβ ○ Iβ(ν−1E ⊗ ν
3/2
F δ(1)) = 2{(1, 2)} + {(0, 1), (0,−1)} + {(1, 1)} + {(−1,−1)}

and the possible Langlands quotients associated to I(1, 2) are

Jβ(ν−1E ⊗ ν
3/2
F δ(1)), Jα(ν1/2E δ(1) ⊗ ν−1F ) and Jα(νEIα(1⊗ 1) ⊗ ν−2F ).

We may conclude that DG(π(1)′) is of multiplicity 1 in I(1, 2). �

(1, 2, 1, χ2; ⟨wα⟩ ;χ2 ≠ 1 & χ2 ○NE/F = 1), (#R = 2, wα).

Claim. I(χ) is of length 2#R/2 and multiplicity 1, and the subrepresentation is
square-integrable and maps to the Langlands quotient under the Aubert duality.

Comparing Tables 3 and 4, we find that χ is singular. Based on the fact that

Jα(ν1/2E δ(1) ⊗ χ2ν
−1
F ) is generic (cf. Lemma 1.1) and Rodier’s heredity theorem

[33, Theorem 2], one can readily reach the claim and the Jacquet modules r∅ of
the constituents are listed as follows:
the subrepresentation Iα(ν1/2E δ(1) ⊗ χ2ν

−1
F ):

2(1, 2, 1, χ2), 2(1, 1, 1, χ−12 ), (0, 1, 1, χ2
2), (0,−1, 1, χ2);

the Langlands quotient Jα(νEIα(1⊗ 1) ⊗ χ−12 ν−2F ):

−2(1, 2, 1, χ2),−2(1, 1, 1, χ−12 ), (0, 1, 1, χ2
2), (0,−1, 1, χ2).
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(1, 2, 1, χ2; ⟨wα⟩ ;χ2 ≠ 1 & χ2
2 = 1), (#R = 2,∅).

Claim. I(χ) is of length 2#R and multiplicity 1, and the subrepresentation is square-
integrable and maps to the Langlands quotient under the Aubert duality.

Comparing Tables 3 and 4, we find that χ is regular. The Jacquet modules r∅
of the constituents are listed as follows:
the subrepresentation π(χ2):

(1, 2, 1, χ2), (1, 2, χ2 ○NE/F , χ2), (1, 1, χ2 ○NE/F , 1);

subquotient Jβ(ν−1E ⊗ ν
3/2
F δ(χ2)):

(0,−1, χ2 ○NE/F , χ
2
2), (0, 1, χ2 ○NE/F , χ2), (−1,−1, 1, χ2);

subquotient Jα(ν1/2E δ(χ2 ○NE/F ) ⊗ ν−1F ):

−(0,−1, χ2 ○NE/F , χ
2
2), −(0, 1, χ2 ○NE/F , χ2), −(−1,−1, 1, χ2);

the Langlands quotient Jα(νEIα(1⊗ χ2 ○NE/F ) ⊗ χ−12 ν−2F ):

−(1, 2, 1, χ2), −(1, 2, χ2 ○NE/F , χ2), −(1, 1, χ2 ○NE/F , 1).

(1, 2, χ1, χ2; ⟨wα⟩ ;χ2 ≠ 1 & χ2
1 = 1, χ1 = χ2), (#R = 2,∅).

Claim. I(χ) ≃ I(1, 2, 1, χ2;χ
2
2 = 1).

As I(1, 2, 1, χ2)

= Iα(Iα(νE ⊗ νEχ2 ○NE/F ) ⊗ χ2ν
−2
F ) ≃ Iα(Iα(νEχ2 ○NE/F ⊗ νE) ⊗ χ2ν

−2
F )

= I(1, 2, χ2 ○NE/F , χ2).

(1, 2, χ1, 1;χ1 ≠ 1 & χ1∣F× = 1), (#R = 2, wα).

Claim. I(χ) ≃ I(1, 2, χ−11 , 1) is of length 2#R and multiplicity 1, and the subrepre-
sentation is square-integrable and maps to the Langlands quotient under the Aubert
duality.

Comparing Tables 3 and 4, we find that χ is regular. The Jacquet modules r∅
of the constituents are listed as follows. We write (s1, s2, μ) for (s1, s2, μ, 1) for
simplicity.

The subrepresentation π(χ):

(1, 2, χ1), (1, 2, χ−11 );

subquotient Jβ(ν−1E χ1 ⊗ ν
3/2
F δ(1)):

(1, 1, χ1), (0, 1, χ−11 ), (0,−1, χ−11 ), (−1,−1, χ1);

subquotient Jβ(ν−1E χ−11 ⊗ ν
3/2
F δ(1)):

−(1, 1, χ1), −(0, 1, χ−11 ), −(0,−1, χ−11 ), −(−1,−1, χ1);

the Langlands quotient Jα(νEIα(χ1, χ
−1
1 ) ⊗ ν−2F ):

(−1,−2, χ−11 ), (−1,−2, χ1).
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(2/3, 1, χ1, 1; ⟨wβ⟩ ;χ1∣F× = 1), (#R = 2, wβ).

Claim. I(χ) is of length 2#R/2 and multiplicity 1, and the subrepresentation maps
to the Langlands quotient under the Aubert duality.

The above claim follows readily from the fact that Jβ(ν−1/3E χ1 ⊗ ν
1/2
F δ(1)) is

generic (see Lemma 1.1) and Rodier’s heredity theorem [33, Theorem 2]. The
Jacquet modules r∅ of the constituents are listed as follows. We write (s1, s2) for
(s1, s2, 1, 1) for simplicity.

The subrepresentation Iβ(ν−1/3E χ1 ⊗ ν
1/2
F δ(1)):

2(2/3, 1), 2(1/3, 1), (1/3, 0), (−1/3, 0);

the Langlands quotient Jβ(ν−2/3E χ−11 ⊗ νF I
β(1⊗ 1)):

2(−2/3,−1), 2(−1/3,−1), (1/3, 0), (−1/3, 0).

(2, 3, 1, χ2; ⟨wβ⟩ ;χ2 ○NE/F = 1, χ2 ≠ 1), (#R = 2, wβ).

Claim. I(χ) ≃ I(2, 3, 1, χ−12 ) is of length 2#R and multiplicity 1, and the subrepre-
sentation is square-integrable and maps to the Langlands quotient under the Aubert
duality.

It is easy to see that such a χ is regular. The Jacquet modules r∅ of the con-
stituents are listed as follows:
the subrepresentation π(χ2):

(2, 3, 1, χ2), (2, 3, 1, χ−12 );

subquotient Jα(ν3/2E δ(1) ⊗ χ2ν
−3
F ):

(1, 3, 1, χ2), (1, 0, 1, χ−12 ), (−1, 0, 1, χ−12 ), (−1,−3, 1, χ2);

subquotient Jα(ν3/2E δ(1) ⊗ χ−12 ν−3F ):
−(1, 3, 1, χ2), −(1, 0, 1, χ−12 ), −(−1, 0, 1, χ−12 ), −(−1,−3, 1, χ2);

the Langlands quotient Jβ(ν−2E ⊗ ν3F I
β(χ2 ⊗ χ−12 )):

−(2, 3, 1, χ2), −(2, 3, 1, χ−12 ).

(2, 3, 1, 1; ⟨wβ⟩), (#R = 2, wβ).

Claim. I(χ) is of length 2#R/2 and multiplicity 1, and the subrepresentation maps
to the Langlands quotient under the Aubert duality.

It is easy to see that such a χ is singular. In view of the fact that

Jα(ν3/2E δ(1) ⊗ ν−3F ) is generic (cf. Lemma 1.1) and Rodier’s heredity theorem
[33, Theorem 2], it is easy to see the above claim holds, and the Jacquet mod-
ules r∅ of the constituents are listed as follows. We write (s1, s2) for (s1, s2, 1, 1)
for simplicity.

The subrepresentation Iα(ν3/2E δ(1) ⊗ χ−12 ν−3F ):
2(2, 3), (1, 0), (1, 3), (−1, 0), (−1,−3);

the Langlands quotient Jβ(ν−2E ⊗ ν3F I
β(χ2 ⊗ χ−12 )):

2(−2,−3), (1, 0), (1, 3), (−1, 0), (−1,−3).
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(3, 5, 1, 1), (#R = 2).

Claim. I(χ) is of length 2#R and multiplicity 1, and the subrepresentation is square-
integrable and maps to the Langlands quotient under the Aubert duality.

The Jacquet modules r∅ of the constituents of I(χ) are listed as follows. We
write (s1, s2) for (s1, s2, 1, 1) for simplicity.

The subrepresentation StG:

(3, 5);
subquotient Jβ(ν−3E ⊗ ν

9/2
F δ(1)):

(2, 5), (2, 1), (1,−1), (−1,−4), (−3,−4);

subquotient Jα(ν5/2E δ(1) ⊗ ν−5F ):
(3, 4), (1, 4), (1,−1), (−2,−1), (−2,−5);

the Langlands quotient 1G:

(−3,−5).

#R = 1.

Claim. I(χ) is of length 2 and multiplicity 1, and the subrepresentation maps to
the quotient under the Aubert duality.

Comparing Tables 3 and 4, we find that only

(1, 3/2, 1, χ2; ⟨wβ⟩ ;χ2
2 = 1) and (1/2, 1, χ1, 1; ⟨wα⟩ ;χ2

1 = 1)
are singular characters. The claim that I(χ) is of length 2 can be checked easily by
diagram chasing. As for multiplicity 1, notice that the singularity given by ⟨wα⟩ or
⟨wβ⟩ is not the one giving rise to the rank 1 reducibility, so it is of multiplicity 1.

#R = 0, (χ1, χ2; ⟨?⟩)∣?2=1.

Claim. I(χ) is irreducible except the case ? = wαw3α+2β which is reducible (see the
paragraph below) and its constituents are invariant under the Aubert duality.

For ⟨wαw3α+2β⟩, if I(χ) is reducible, then it is of multiplicity 1, otherwise

dim HomG(I(χ), I(χ)) ≤ 2,

contradiction.
As for other cases, it is easy to verify that I(χ) is irreducible.

Other (χ1, χ2).

Claim. They are irreducible.

Note that the rank 1 groups are GL2(F ) ×E×/ΔF × and GL2(E) ×F ×/ΔE×, so
the associated Plancherel measures of unitary induced representations are the same
as in GL2(F ) and GL2(E), respectively. So by Keys’ theorem [20, Theorem 1], the
R-group can be described as

R = {w ∈Wχ = StabW (χ) ∶ γ > 0 and χγ ∶= χ ○ γ∨ = 1 imply that w.γ > 0}.
Whence they are reducible unless χ1 and χ2 are different characters of order 2
which results from the same reason as in [20, Theorem G2].



306 CAIHUA LUO

Remark 1. From the above computation for the case (#R = 2,m = 2), we know
that I(χ) is of length 2 and multiplicity 1. Heuristically, this may be a general
result for reductive groups based on the following strategy by a case-by-case check:

(i) Possible Jacquet module decomposition of r∅(I(χ)):
{χw ∶ w ∈W1Wχ}, {χw ∶ w ∈W2}, {χw ∶ w ∈W2}, {χw ∶ w ∈W3Wχ},

where Wi, i = 1, 2, 3, are subsets of the Weyl group W .
(ii) Genericity of the quotient π of the subrepresentation of I(χ) associated to

{χw ∶ w ∈W2}. This may be checked using the Langlands–Shahidi theory.
(iii) Rodier’s heredity theorem which implies that the generic subquotient of

I(χ) is of multiplicity 1.

Note that once we know π is generic, the above assertion also follows from the
standard module conjecture proved by Heiermann and Muić (cf. [15]).

Remark 2. The same decomposition pattern of the case (#R = 4,m = 2) also
appears in Zelevinsky’s work on GLn (cf. [54, Example 11.4]). Idealistically, one
should be able to guess and prove a formula for the case m = 2 for connected
reductive groups.

Corollary 2.1. (i) Iα(s, δ(χ1) ⊗ χ2) reduces if and only if

s = ±1/2, χ1 = χ1 ○NE/F , χ2 = 1 or s = ±3/2, χ1 = 1, χ2 ≠ 1, χ2 ○NE/F = 1

or

s = ±5/2, χ1 = 1, χ2 = 1;

(ii) Iβ(s, χ1 ⊗ δ(χ2)) reduces if and only if

s = ±3/2, χ1∣F× =1, χ2=1 or s = ±3/2, χ1 = 1, χ2
2 = 1 or s = ±9/2, χ1 = 1, χ2=1.

Conclusion. In Tables 5, 6, and 7 we summarize our previous computation for
later use.

Table 5. Regular #R = 1

Regular #R = 1
I(s1, s2, χ1, χ2)

subrepresentation Langlands quotient
2s1 − s2 = 1 and χ2

1 = χ2 ○NE/F Iα(s1 − 1/2, δ(χ1) ⊗ χ−12 ) Iα(s1 − 1/2, χ1 ○ det⊗χ−12 )
2s2 − 3s1 = 1 and χ2

2 = χ1 Iβ(s2 − 1/2, χ−11 ⊗ δ(χ2)) Iβ(s2 − 1/2, χ−11 ⊗ χ2 ○ det)
s2 − s1 = 1 and χ1 = χ2 ○NE/F Iα(s1 − 1/2, δ(χ1) ⊗ χ−22 ) Iα(s1 − 1/2, χ1 ○ det⊗χ−22 )

s1 = 1 and χ1 = 1 Iα(s2 − 3/2, δ(χ2 ○NE/F ) ⊗ χ−22 ) Iα(s2 − 3/2, (χ2 ○NE/F ) ○ det⊗χ−22 )
3s1 − s2 = 1 and χ1 = χ2 Iβ(s2 − 1/2, χ1χ

−1
2 ○NE/F ⊗ δ(χ2)) Iβ(s2 − 1/2, χ1χ

−1
2 ○NE/F ⊗ χ2 ○ det)

s2 = 1 and χ2 = 1 Iβ(3s1 − 3/2, χ1χ
−1
1 ○NE/F ⊗ δ(χ1)) Iβ(3s1 − 3/2, χ1χ

−1
1 ○NE/F ⊗ χ1 ○ det)

Table 6. Regular #R = 2

Regular #R = 2
I(s1, s2, χ1, χ2)

subrepresentation quotient
subrepresentation quotient subrepresentation Langlands quotient

(1, 2, χ1, 1;χ1∣F× = 1) π(χ1) ≃ π(χ−11 ) Jβ(3/2, χ1 ⊗ δ(1)) Jβ(3/2, χ−11 ⊗ δ(1)) Jα(1, Iα(χ1, χ
−1
1 ) ⊗ 1)

(1, 2, 1, χ2;χ
2
2 = 1) π(χ2) Jα(1/2, δ(χ2 ○NE/F ) ⊗ 1) Jβ(3/2, 1⊗ δ(χ2)) Jα(1, Iα(1, χ2 ○NE/F ) ⊗ χ2)

(1, 2, χ1, χ2;χ
2
1 = 1, χ1 = χ2) ≃ (1, 2, 1, χ2;χ

2
2 = 1)

(2, 3, 1, χ2;χ2 ○NE/F = 1) π(χ2) ≃ π(χ−12 ) Jα(3/2, δ(1) ⊗ χ−12 ) Jα(3/2, δ(1) ⊗ χ2) Jβ(3, 1⊗ Iβ(χ2 ⊗ χ−12 ))
(3, 5, 1, 1) StG2

Jβ(9/2, 1⊗ δ(1)) Jα(5/2, δ(1) ⊗ 1) 1G2
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Table 7. Singular length 2

Singular 1 ≤#R ≤ 2
I(s1, s2, χ1, χ2)

subrepresentation Langlands quotient
(1, 2, 1, χ2;χ2 ○NE/F = 1) Iα(1/2, δ(1) ⊗ χ2) Jα(1, Iα(1⊗ 1) ⊗ χ−12 )
(2/3, 1, χ1, 1;χ1∣F× = 1) Iβ(1/2, χ1 ⊗ δ(1)) Jβ(1, χ−11 ⊗ Iβ(1⊗ 1))

(2, 3, 1, 1) Iα(3/2, δ(1) ⊗ 1) Jβ(3, , 1⊗ Iβ(1⊗ 1))
(1, 3/2, 1, χ2;χ

2
2 = 1) Iα(0, δ(χ2 ○NE/F ) ⊗ 1) Jβ(3/2, 1⊗ Iβ(χ2 ⊗ χ2))

(1/2, 1, χ1, 1;χ
2
1 = 1) Iβ(0, 1⊗ δ(χ1)) Jα(1/2, Iα(χ1 ⊗ χ1) ⊗ 1)

Remark 3. If E/F is a non-Galois cubic field extension, the previous Langlands
classification almost holds. The only difference is that NE/F (E×) = F × (cf. Norm
Limitation Theorem [30, Theorem 3.16]). That is to say (2, 3, 1, χ2;χ2 ○NE/F = 1)
and (1, 2, 1, χ2;χ2 ○NE/F = 1) will not appear in Tables 6 and 7, respectively.

3. Unitary dual

In this section, we would like to sort out the unitary dual from our previous
Langlands classification for PGSOE

8 . To do so, we first classify the Hermitian dual
which states: denote by ΔG(resp., ΔM ) the set of simple positive roots in G (resp.,
M) and by AM the split component of the center of M .

For ν ∈ (a∗M)+ ∶= {x ∈ X∗(AM) ⊗Z R ∶ (x,α) > 0 ∀α ∈ ΔG/ΔM} and σ tem-
pered, the Langlands quotient JP (σ ⊗ ν) is Hermitian if and only if there exists
w ∈W (G,AM) ∶= NG(AM)/CG(AM) such that σ ≃ w.σ and −ν = w.ν.

Applying the above criterion of Hermitian dual to our group PGSOE
8 , we have:

denote by σ an irreducible tempered representation of GL2.
When χ2 is unitary and s > 0, the Langlands quotient Jα(s, σ⊗χ2) is Hermitian

if and only if w3α+2β .(σ ⊗ χ2) ≃ σ ⊗ χ2, i.e.,

σ = δ(χ1) ⊗ 1∣χ2
1=1

or Iα(χ1, χ
−1
1 χ2 ○NE/F ) ⊗ χ2∣χ2

1=1,χ
2
2=1

or Iα(χ1, χ
−1
1 ) ⊗ 1.

When χ1 is unitary and s > 0, the Langlands quotient Jβ(s, χ1⊗σ) is Hermitian
if and only if w2α+β .(χ1 ⊗ σ) ≃ χ1 ⊗ σ, i.e.,

σ = 1⊗ δ(χ2)∣χ2
2=1

or χ−11 ⊗ Iβ(χ2, χ
−1
2 χ1)∣χ2

1=1,χ
2
2=1

or 1⊗ Iβ(χ2, χ
−1
2 ).

When χ1, χ2 are unitary and 3
2
s2 < 3s1 < 2s2, the Langlands quotient

J(s1, s2, χ1, χ2) is Hermitian if and only if χ2
1 = 1 and χ2

2 = 1.
For those Hermitian representations, we have the following associated reducibil-

ity conditions based on the classification result in Section 2. As the discrete case has
been discussed in Corollary 2.1, here we only consider the tempered non-discrete
case.

Lemma 3.1. Keep the notions as before. For unitary characters χ1, χ2, and s > 0,
we have

(i) For χ2
1 = 1 and χ2

2 = 1, Iα(s, Iα(χ1, χ
−1
1 χ2 ○NE/F )⊗χ2) reduces if and only

if

s = 1/2, χ2 = 1 or s = 1, χ1∣F× = 1 or s = 1, χ1 = χ2.

(ii) Iα(s, Iα(χ1, χ
−1
1 ) ⊗ 1) reduces if and only if

s = 1/2 or s = 1, χ1∣F× = 1.
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(iii) For χ2
1 = 1 and χ2

2 = 1, Iβ(s, χ−11 ⊗ Iβ(χ2, χ1χ
−1
2 )) reduces if and only if

s = 3/2, χ1 = 1 or s = 1, χ1 = χ2 or χ2 = 1 or s = 3, χ1 = χ2 or χ2 = 1.

(iv) Iβ(s, 1⊗ Iβ(χ2, χ
−1
2 )) (χ2 ≠ 1) reduces if and only if

s = 3

2
or s = 3, χ2 ○NE/F = 1.

In order to detect the unitarizability, we need to introduce another key input
developed by Tadić and Speh, and summarized by Muić [31, Lemma 5.1]. For
an F -parabolic subgroup P = MN of G, we denote by the Unr(M) the group of
unramified characters. For any irreducible representation σ of M and χ ∈ Unr(M),
denote I(χ,σ) = IndGP (χ⊗ σ).

Lemma 3.2 ([31, Lemma 5.1]). Under the above assumptions, we have

(i) The set of those χ ∈ Unr(M), such that I(χ,σ) has a unitarizable irreducible
subquotient, is compact.

(ii) Let S ⊂ Unr(M) be a connected set. Suppose that for all χ ∈ S, the rep-
resentation I(χ,σ) is an irreducible unitarizable representation. Then for
χ ∈ S̄ the closure of S, any irreducible subquotient of I(χ,σ) is unitarizable.

(iii) Suppose that σ is Hermitian, and I(1, σ) is irreducible and unitarizable.
Then σ is unitarizable.

Before proceeding to sort out the whole unitary dual, we first verify some special
cases as follows.

Lemma 3.3. Suppose that χ1, χ2 are quadratic unitary characters and s > 0. Then

Iα(s, χ1 ○ det⊗1) is unitarizable (away from points of reducibility) if and only

if s < 1/2,
and

Iβ(s, 1⊗ χ2 ○ det) is unitarizable (away from points of reducibility) if and only

if s < 3/2.

Proof. This follows from the same argument as in [31, Lemma 5.2]. �

Now let us turn to determining the unitary dual of PGSOE
8 . By Corollary 2.1

and Lemmas 3.1 and 3.2, we have the following.

Theorem 3.4 (Unitary dual supported on B. I). Keep the notation as before.

For χ1, χ2 unitary characters of F × and s > 0, we have

(i) For χ2
1 = 1, Jα(s, δ(χ1) ⊗ 1) is unitarizable if and only if s ≤ 1/2.

(ii) For χ2
2 = 1, Jβ(s, 1⊗ δ(χ2)) is unitarizable if and only if s ≤ 3/2.

(iii) Jα(s, Iα(χ1, χ
−1
1 )⊗1) is unitarizable if and only if s ≤ 1/2, or χ1∣F× = 1 and

s = 1.
(iv) For χ2

1 = 1 and χ2
2 = 1 (χ2 ≠ 1), Jα(s, Iα(χ1,−) ⊗ χ2) is unitarizable if and

only if χ1 = 1 and s ≤ 1, or χ1 = χ2 and s ≤ 1.
(v) For χ2

1 = 1 and χ2
2 = 1 (χ1 ≠ 1), Jβ(s, χ1 ⊗ Iβ(χ2,−)) is unitarizable if and

only if χ2 = 1 and s ≤ 1, or χ1 = χ2 and s ≤ 1.
(vi) Jβ(s, 1⊗ Iβ(χ2, χ

−1
2 )) is unitarizable if and only if s ≤ 3

2
, or s = 3 provided

χ2 ○NE/F = 1 and χ2 ≠ 1.
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Proof. Following the standard procedure to construct families of positive definite
Hermitian forms as in [31, Theorem 5.1], we have the following.

Proof of (i)(ii). It suffices to show Jα(5/2, δ(χ1) ⊗ 1) and Jβ(9/2, 1 ⊗ δ(χ2)) are
non-unitarizable which is well known (see [5, Chapter XI Theorem 4.5]).

Proof of (iii)(iv). It suffices to show

Iα(s, Iα(χ1, χ
−1
1 ) ⊗ 1) is non-unitarizable for some s ∈ (1/2, 1)

which follows from the fact that Iα(s, Iα(χ1, χ
−1
1 )⊗ 1) = Iβ(χ1⊗ Iβ(νsF ⊗ ν−sF )) and

Lemma 3.2(iii), and

(⋆) Jα(1, Iα(χ1, χ
−1
1 ) ⊗ 1) is unitarizable.

If χ1 = 1, (⋆) follows from Lemma 3.3 and the fact that

Iα(1/2, 1GL2
⊗ 1) ↠ Jα(1, Iα(1, 1) ⊗ 1).

If χ1 ≠ 1, (⋆) will be proved later on.

Proof of (v). It suffices to show

Iβ(s, χ−11 ⊗ Iβ(1, 1)) and Iβ(s, χ−11 ⊗ Iβ(χ2, 1))∣χ1=χ2
are non-unitarizable for

some s ∈ (1, 3)

which results from the fact that they are isomorphic to Iα(Iα(ν
1
3 s

E χ1⊗ν
− 1

3 s

E )⊗χ−11 )
and Lemma 3.2(iii), and

Jβ(2, 3, χ1, 1) ≃ Iα(3/2, χ1 ○ det⊗1) and Jβ(2, 3, χ1, χ1) ≃ Iα(3/2, χ1 ○ det⊗1)
are non-unitarizable

which is considered in Lemma 3.3.

Proof of (vi). It suffices to show

Iβ(
2

3
s, s, 1, χ2) ≃ Iα(Iα(νs/3E ⊗ν

−s/3
E )⊗χ−12 ) is non-unitarizable for some s ∈ (3/2, 3)

which is known by Lemma 3.2(iii), and

Iβ(
2

3
s, s, 1, 1) ≃ Iα(Iα(ν

1
3 s

E ⊗ ν
− 1

3 s

E ) ⊗ 1) is unitarizable for s ∈ (1, 3/2)

which is also known by Lemma 3.2(iii), and

Jβ(3, 1⊗ Iβ(1⊗ 1)) ≃ Iα(3/2, 1GL2
⊗ 1) is non-unitarizable

which is known by Lemma 3.3, and

Jβ(3, 1⊗ Iβ(χ2, χ
−1
2 )) is unitarizable provided χ2 ○NE/F = 1 and χ2 ≠ 1

which will be proved later on.

�

Before heading to the last case of unitarizable non-tempered Langlands quotients
supported on the minimal parabolic subgroup, we recall the associated reducibility
conditions as usual in the following which results from the classification result in
Section 2.
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Lemma 3.5. For quadratic unitary characters χ1, χ2, and (s1, s2) ∈ C+ the positive
Weyl chamber, i.e., 1

2
s2 < s1 < 2

3
s2. We know that I(s1, s2, χ1, χ2) reduces if and

only if (s1, s2, χ1, χ2) is one of the following:

(s1, 1, χ1, 1; 1/2 < s1 < 2/3),
(s1, 2s1 − 1, χ1, 1; s1 > 2),
(1, s2, 1, χ2; 3/2 < s2 < 2),

(2s2 − 1

3
, s2, 1, χ2; s2 > 2),

(s1, 3s1 − 1, χ1, χ1; 2/3 < s1 < 1),
(s1, s1 + 1, χ1, χ1; 1 < s1 < 2).

Theorem 3.6 (Unitary dual supported on B. II). Suppose that χ1 and χ2

are unitary characters, and s1 and s2 satisfy the condition that 1
2
s2 < s1 < 2

3
s2.

Then J(s1, s2, χ1, χ2) is unitarizable if and only if one of the following conditions
holds:

(i) χ1 = 1, χ2 = 1, and s2 ≤ 1 or 3s1 − s2 ≥ 1, s2 − s1 ≤ 1, or s1 = 3, s2 = 5.
(ii) χ1 = 1, χ2 is of order 2, and s1 ≤ 1.
(iii) χ2 = 1, χ1 is of order 2, and s2 ≤ 1.
(iv) χ1 = χ2, χ1 is of order 2, and 3s1 − s2 ≤ 1.

Proof. By Lemma 3.5, we only have to discuss four cases as follows:

(i) χ1 = 1, χ2 = 1: This results from the analysis in Figure 3 on the bounded
domains partitioned by the reducibility lines case by case.

ρ0

s1

s2

s2 = 1

s1 = 1
3s1 − s2 = 1

s2 − s1 = 1

2s2 − 3s1 = 12s1 − s2 = 1

2s2 = 3s1

2s1 = s2

Figure 3. Spherical unitary dual with real infinitesimal character

(i1) s2 ≤ 1: This is because I(1⊗ 1) is unitarizable.
(i2) s2 > 1, 3s1 − s2 < 1 ∶ As I(s1, 2s1, 1, 1) ≃ Iα(s1, Iα(1 ⊗ 1) ⊗ 1) is non-

unitarizable for s1 ∈ (1/2, 1) by Theorem 3.4(iii).
(i3) 3s1 − s2 ≥ 1, s1 ≤ 1 ∶ It suffices to prove the unitarizability of one of the

representations J(s1, s2, 1, 1) under the condition 3s1 − s2 > 1, s1 < 1
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by Lemma 3.2(ii). The argument is the same as in the proof part (i3)
of [31, Theorem 5.2] by replacing β by α. But for completeness, we
write down the argument as follows.
Consider

Xt,s ∶= Iα(t, Iα(νsE ⊗ ν−sE ) ⊗ 1) = I(t + s, 2t, 1, 1).

The idea is to show the existence of an irreducible unitarizable domain
U of Xt,s such that

(⋆) {(t + s, 2t)w ∶ w ∈W, (t, s) ∈ U} ∩ {(s1, s2) ∈ C+ ∶ 3s1 − s2 > 1, s1 < 1} ≠ ∅.

We first classify the reducibility lines of Xt,s as follows:

s = 1

2
, t ± 3s = 1, t ± s = 1, t = 1

2
.

Then we sort out an irreducible unitarizable domain U of Xt,s

U =∶ {(t, s) ∶ s ∈ (1
3
,
1

2
), t ∈ (0, 1 − s)}.

It is quite easy to check that such a U satisfies the above requirement
(⋆).

(i4) s1 > 1, s2 − s1 < 1: As I(s1, 32s1, 1, 1) ≃ Iβ( 32s1, 1 ⊗ Iβ(1 ⊗ 1)) is non-

unitarizable for 1 < s1 < 2 by Theorem 3.4(vi).
(i5) s2 − s1 ≥ 1, 2s2 − 3s1 < 1, 2s1 − s2 > 1 ∶ On the boundary s2−s1 = 1 with

1 < s1 < 2, we know the non-unitarizability of J(s1, s1 + 1, 1, 1) which
follows from the fact that

J(s1, s1 + 1, 1, 1) ≃ Iα(s1 − 1/2, 1GL2
⊗ 1)

is non-unitarizable for 1 < s1 < 2 by Lemma 3.3.
(i6) 2s2 − 3s1 = 1, 1 < s1 < 3 ∶ As was known,

J(2s2 − 1

3
, s2, 1, 1) ≃ Iβ(s2 − 1/2, 1⊗ 1GL2

)

is non-unitarizable for s2 ∈ (2, 5) by Lemma 3.3.
(i7) 2s1 − s2 = 1, 2 < s1 < 3 ∶ Similarly, this follows from the fact that

J(s1, 2s1 − 1, 1, 1) ≃ Iα(s1 − 1/2, 1GL2
⊗ 1)

is non-unitarizable for s1 ∈ (2, 3) by Lemma 3.3.
(i8) s1 = 3, s2 = 5 ∶ J(3, 5, 1, 1) ≃ 1G is a unitarizable representation.

(ii) χ1 = 1, χ2 order 2: This follows from the fact that there is only one con-
nected bounded domain determined by the reducibility lines.

(iii) χ2 = 1, χ1 order 2: This follows from the fact that

J(s1, 2s1 − 1, χ1, 1) ≃ Iα(s1 − 1/2, χ1 ○ det⊗1)

is non-unitarizable for s1 > 2 by Lemma 3.3.
(iv) χ1 = χ2, χ1 order 2: This follows from the fact that

J(s1, s1 + 1, χ1, χ1) ≃ Iα(s1 − 1/2, χ1 ○ det⊗1)

is non-unitarizable for s1 > 1 by Lemma 3.3. �
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Unitary dual supported on Pγ. Let K be a non-archimedean field of charac-
teristic zero, and denote by WK the associated Weil group of K. Let ρ = π(τ) be
any supercuspidal representation of GL2(K), where

τ ∶WK $→ GL2(C)
is an attached irreducible admissible homomorphism. Then det τ = ωρ (the central
character of ρ) via class field theory (see [41, Section 1] for the details).

Theorem 3.7 (Unitary dual supported on Pγ). Suppose that ρ is a unitary

supercuspidal representation of GL2(K) for K = F or E. We have

(i) The Langlands quotient Jα(s, ρ⊗χ2) provided ωρχ2○NE/F = 1 is unitarizable
if and only if ρ ≃ ρ̃ (the contragredient) and one of the following conditions
holds:

● χ2 = 1 and 0 < s ≤ 1/2.
● 0 < s ≤ 1 and ρ = IndWE

WEc
(χ0) provided χ0∣S = 1 and χ2 ○ NS/F = 1,

where Ec/F is a Galois extension of degree 6 and S ⊂ Ec is the unique
quadratic extension over F .

(ii) The Langlands quotient Jβ(s, χ1 ⊗ ρ) provided ωρχ1 = 1 is unitarizable if
and only if ρ ≃ ρ̃ and one of the following conditions is satisfied:

● χ1 = 1 and 0 < s ≤ 1/2.
● Im(τ) ≃ S3 (the symmetric group) given by the non-Galois extension
E over F , and 0 < s ≤ 1.

If Iα(s0, ρ ⊗ χ2) (resp., Iβ(s0, χ1 ⊗ ρ)), s0 > 0, reduces, then it has a unique ir-
reducible subrepresentation πα(s0, ρ ⊗ χ1) (resp., πβ(s0, χ1 ⊗ ρ)). Those subrep-
resentations are square-integrable and different (s0 is uniquely determined by the
pair (ρ,χi)). If Iα(0, ρ ⊗ χ2) (or Iβ(0, χ1 ⊗ ρ)) reduces, then it is of length 2 and
multiplicity 1.

Proof. This follows from the L-factor computation in [22,40] and the recent result
of Henniart and Lomeĺı [16]. For Mα ≃ GL2(E) × F ×/ΔE×, we have, using the
standard notation as in [42],

L(s, ρ⊗ χ2, r2) = LF (s, χ−12 )
and

L(s, ρ⊗ χ2, r1)

= LF (s,⊗−IndWF

WE
(τ) ⊗

−1

det(τ))(⊗−Ind twisted tensor induction [10, §6.1]).

In view of those and the poles of twisted local triple product L-function which
is proved in the appendix (see also [18, Theorem 2.6]), part (i) holds. As for
Mβ ≃ E× ×GL2(F )/ΔF ×, we have

L(s, χ1 ⊗ ρ, r2) = LE(s, χ−11 ), L(s, χ1 ⊗ ρ, r3) = LF (s, τ),
and

L(s, χ1 ⊗ ρ, r1) = LE(s, χ1 ⋅ ρE),
where ρE is the base change of ρ. In view of those, part (ii) holds. �

Remark 4. For the non-Galois cubic extension E/F case, there is a new family of
unitary representations concerning part (i) of Theorem 3.7 under the conditions that
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0 < s ≤ 1 and τ ∣WEc = IndWEc

WL
(χ0) is irreducible, where L/F is a Galois extension

with Gal(L/F ) =D12 and Ec/F is the Galois closure of E/F , such that

● χ0∣S× ⋅ χ2 ○NS/F = 1, where S ⊂ L is the degree 4 extension over F .
● ωρ ⋅ χ2 ○NE/F = 1.
● ωρ ○NEc/E = χ0∣(Ec)× ⋅ ωL/Ec , where ωL/Ec is the quadratic character asso-
ciated to L/Ec.

Note that J. Bernstein’s unitarity conjecture says that the Aubert duality pre-
serves unitarity. Back to our PGSOE

8 -setting, based on our computation, we have
the following.

Corollary 3.8. Keep the notation as before. The unitary dual is preserved under
the Aubert duality.

Note also that L. Clozel’s finiteness conjecture (see [7] for the details) says that
the set of exponents of discrete series is finite. Put in our setting, we have the
following.

Corollary 3.9. Keep the notions as before. Clozel’s finiteness conjecture of special
exponents holds for PGSOE

8 .

Remark 5. Recently, under the assumption of the finiteness of special exponents
for relative rank 1 cases, we have found a proof of Clozel’s finiteness conjecture for
general cases via Casselman–Tadić’s Jacquet module machine (cf. [28]).

Unitarizability of Jα(1, Iα(χ1, χ
−1
1 ) ⊗ 1) and Jβ(3, 1 ⊗ Iβ(χ2, χ

−1
2 )). In what

follows, we prove that Jα(1, Iα(χ1, χ
−1
1 ) ⊗ 1) (resp., Jβ(3, 1⊗ Iβ(χ2, χ

−1
2 ))), where

χ1∣F× = 1 and χ1 ≠ 1 (resp., χ2 ≠ 1 and χ2 ○NE/F = 1), is a unitary representation.

Then it is an isolated point in the unitary dual of PGSOE
8 by [46, Theorem 2.2].

The main idea is to show that they appear as components of some specific residual
spectrum of G as in [21,31,53]. Let us start with some notation. For a global field

K̇, let AK̇ be the ring of Adeles of K̇. As in the local field case, given Ė a cubic

field extension of a global field Ḟ , we have an associated quasi-split adjoint group

G = PGSOĖ
8 of type D4. For grössencharacters μ1 and μ2 of Ė and Ḟ , respectively,

we define a unitary character χ = (μ1, μ2) of T (AḞ ) by χ(t(a, b)) = μ1(a)μ2(b).
We take the coordinates in a∗

C
= X∗(T ) ⊗ C with respect to the basis α, β; the

ordered pair (s1, s2) ∈ C× corresponds to the character λ = 3s1α + s2β. For λ and

χ as above, let IB(λ,χ) = I
G(AḞ )

T (AḞ )
(λ,χ) be the space for the standard normalized

induction (sometimes written as IB(νs1Ė μ1 ⊗ νs2
Ḟ
μ2)). Finally, let ρB be the half

sum of positive roots, i.e., ρB = 5α + 3β, and let C+ be the positive Weyl chamber
in a∗

C
:

C+ = {s1α + s2β ∶ 3
2
Re(s2) < Re(s1) < 2Re(s2)}.

Following the standard procedure of investigating L2
d(B),

● (Eisenstein series) For f ∈ IB(λ,χ), one forms Eisenstein series

E(g, f, λ) = ∑
γ∈B(Ḟ )/G(Ḟ )

f(γg)

which converges absolutely for Reλ ∈ C++ρB and extends to a meromorphic
function of λ. It is an automorphic form and its singularities coincide with
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those of its constant term along B, i.e.,

(C) E0(g, f, λ) = ∑
w∈W

(M(w,λ,χ)f)(g),

where M(w,λ,χ) = ⊗ν M(w,λ,χν) are the so-called non-normalized inter-
twining operators from IB(λ,χ) to IB(wλ,wχ).

● (Normalization) Let ψ = ⊗ν ψν be a fixed non-trivial additive charac-

ter of Ḟ /AḞ . The standard normalization of the intertwining operators

M(w,λ,χ) for all ν by factors (assume Ė/Ḟ is Galois for simplicity),

r(w,λ,χν) = ∏
{γ>0,w.γ<0}

γ long

L(⟨λ, γ∨⟩ , χν ○ γ∨)
L(⟨λ, γ∨⟩ + 1, χν ○ γ∨)ε(⟨λ, γ∨⟩ , χν ○ γ∨, ψν)

× ∏
{γ>0,w.γ<0}

γ short

L(⟨λ, γ∨⟩ /3, χν ○ γ∨)
L(⟨λ, γ∨⟩ /3 + 1, χν ○ γ∨)ε(⟨λ, γ∨⟩ /3, χν ○ γ∨, ψν)

are as follows:

N(w,λ,χν) = r(w,λ,χν)−1M(w,λ,χν) which are multiplicative.

Let N(w,λ,χ) = ⊗ν N(w,λ,χν). It is well known that

M(w,λ,χν) ∏
{γ>0,w.γ<0}

γ long

L(⟨λ, γ∨⟩ , χν ○ γ∨)−1 ∏
{γ>0,w.γ<0}

γ short

L(⟨λ, γ∨⟩ /3, χν ○ γ∨)−1

is holomorphic for all ν.
● (Singularities) The possible singularities of M(w,λ,χ) are rank 1 reducibil-
ity points as in Table 3, zeros of the denominator of r(w,λ,χ)=∏ν r(w,λ,χν),
and poles of N(w,λ,χ). It is easy to see that only the point 3α + β could
provide a pole of N(w,λ,χ) as in [53].

● (Langlands square-integrable criterion) Resλ0
Res⟨λ,γ∨⟩=1E(g, f, λ) is square-

integrable if and only if

Re(wλ0) ∈ {−uα − vβ ∶ u, v > 0} for all w ∈W0,

where W0 ⊂W consists of those elements that give non-zero residue on the
right-hand side of (C) which is non-canceled by residue of any other term.

Jβ(3, 1⊗ Iβ(χ2, χ
−1
2 )) unitary: This results from the following two lemmas as in

[31, Theorem 6.2].

Lemma 3.10. Let χ be a grössencharacter of Ḟ of order 3. Then the representation

Jβ(3, 1⊗ Iβ(χ,χ−1)) = Jβ(3, 1⊗ Iβ(χ−1, χ)) =⊗
ν

Jβ(3, 1⊗ Iβ(χν , χ
−1
ν ))

occurs in the residual spectrum of G.

Proof. This is to take residue at Λ = 6α + 3β. It is easy to see that the point
Λ = 6α + 3β only gives rise to simple poles arising from r(w,Λ, χ). So W0 ⊂W1,5 ∶=
{w ∈ W ∶ w.α < 0, w.(α + β) < 0} = {w2α+β , wβw2α+β}. By the same argument as
in [53, Case a) Residue at Λ = 2α + β], we know that W0 =W1,5 and the residue of

the constant term (C) produces Jβ(3, 1 ⊗ Iβ(χ,χ−1)) = ⊗ν Jβ(3, 1 ⊗ Iβ(χν , χ
−1
ν )),

whence the lemma holds. �



LANGLANDS DUAL & UNITARY DUAL OF QUASI-SPLIT PGSOE
8 315

Lemma 3.11 ([2, Theorem 5]). Let K̇ be a global field, and let S be a finite set

of places of K̇. For ν ∈ S, let χν be a character of K̇×ν of order dividing n ∈ N.

Then there exists a character μ of K̇/A×
K̇

of order dividing 2n, such that μν = χν

for ν ∈ S.

Jα(1, Iα(χ1, χ
−1
1 ) ⊗ 1) unitary: This results from the same argument as above.

Lemma 3.12. Let χ be a grössencharacter of Ė such that χ∣A×
Ḟ
= 1. Then the

representation

Jα(1, Iα(χ,χ−1) ⊗ 1) =⊗
ν

Jα(1, Iα(χν , χ
−1
ν ) ⊗ 1)

occurs in the residual spectrum of G.

Proof. This is about taking residue at 3α + 2β. It is easy to see that the point
Λ = 3α + 2β only gives rise to simple poles arising from r(w,Λ, χ). So W0 ⊂W2,6 ∶=
{w ∈W ∶ w.β < 0, w.(3α + β) < 0} = {w3α+2β , wαw3α+2β}. By the same argument as
in [53, Case a) Residue at Λ = 2α + β], we know that W0 =W2,6 and the residue of
the constant term (C) produces Jα(1, Iα(χ,χ−1) ⊗ 1) = ⊗ν Jα(1, Iα(χν , χ

−1
ν ) ⊗ 1),

whence the lemma holds. �

Lemma 3.13. Let Ė be a cubic extension of a global field Ḟ , and let S be a finite
set of places of Ḟ . For ν ∈ S, let χν be a character of Ė×ν such that χν ∣Ḟ×ν = 1. Then

there exists a grössencharacter μ of Ė, such that μ∣A×
Ḟ
= 1 and μν = χν for ν ∈ S.

Proof. This follows from the Pontryagin duality and the fact that:

∏
ν∈S

Ė×ν /Ḟ ×ν $→ A
×
Ė
/Ė×A×

Ḟ
is continuous and injective.

�

Appendix: Poles of local triple product l-functions

In this appendix, we will determine the poles of local triple product L-functions,
which turns out to be the same as in the global case (treated by Ikeda in [18]), but
the proof is of course completely different, since the local proof proceeds on the
Galois side based on the recent work of Henniart and Lomeĺı [16].

Let us first consider the case when E = F ×F ×F . Hence, let φ1, φ2, φ3 ∶ WF →
GL2(C) be three irreducible representations (corresponding to supercuspidal rep-
resentations of GL2(F )). We are interested in determining if (φ1⊗φ2⊗φ3)WF ≠ 0
and, equivalently, whether φ1⊗φ2 can contain an irreducible 2-dimensional sum-
mand.

Suppose that φ1⊗φ2 = ρ1⊕ρ2 with dim(ρi) = 2.

Claim. φ1 and φ2 must have the form φi = IndWF

WK
(χi) for some quadratic field

extension K/F (independent of i), i.e., φ1 and φ2 are dihedral w.r.t. K/F .

Before justifying the claim, we first recall the following possibilities for φ ∶= φi:

(a) φ is not dihedral

⇔ φ⊗χ ≠ φ for any quadratic character χ ≠ 1.

⇔ φ∣WK
is irreducible for any quadratic extension K/F.

⇔ Sym2φ = ∧2φ⊗Ad(φ) is irreducible.
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(b) φ is dihedral w.r.t. a unique quadratic extension K/F

⇔ φ⊗ωK/F = φ, but φ⊗χ ≠ φ for any quadratic character χ ≠ ωK/F or 1.

⇔ Ad(φ) contains ωK/F , but not other quadratic characters.

In this case, we may write φ = IndWF

WK
(χ) for some character χ of WK .

(c) φ is dihedral w.r.t. three quadratic extensions Ki of F , i = 1, 2, 3.

⇔ Ad(φ) is the sum of three quadratic characters χ1, χ2, χ3, such that χ1χ2χ3=1.

In this case, we may write φ = IndWF

WKi
(χi) for each i.

Now to justify the claim, we consider ∧2 on both sides of the equation φ1⊗φ2 =
ρ1⊕ρ2. This gives:

(⋆⋆) (∧2φ1⊗Sym2φ2)⊕(Sym2φ1⊗∧2φ2) = ∧2ρ1⊕∧2ρ2⊕ρ1⊗ρ2.

We now argue:

● At least one of φ1, φ2 is dihedral. If not, then the left-hand side of (⋆⋆)
is the sum of two 3-dimensional irreducible summands, whereas the right-
hand side is not.

● If φ1 is dihedral, say φ1 = IndWF

WK
(χ), but φ2 is not dihedral. Then

φ1⊗φ2 = IndWF

WK
(χ ⋅ φ2∣WK

).

Since φ2∣WK
is irreducible, φ1⊗φ2 is either irreducible, or a sum ρ1⊕ρ2 =

ρ⊕ρ⋅ωK/F . Looking at (⋆⋆), one sees that the left-hand side contains either
one or three distinct 1-dimensional characters, whereas the right-hand side
contains ∧2ρ1 = ∧2ρ2 with multiplicity ≥ 2.

● Thus both φ1 and φ2 are dihedral. If they are not dihedral w.r.t. the
same K, then φ1, φ2 are as in case (b) above. Let φi = IndWF

WKi
(χi). Then

φ1⊗φ2 = IndWF

WK1
(χ1 ⋅φ2∣WK1

) is either irreducible or the sum ρ⊕ρ ⋅ωK/F .

Looking at (⋆⋆), we see that the left-hand side contains two distinct 1-
dimensional characters, whereas the right-hand side contains ∧2ρ1 = ∧2ρ2
with multiplicity ≥ 2.

● We have thus shown that there exists a quadratic extension K/F such that

φi = IndWF

WK
(χi). Then

φ1⊗φ2 = IndWF

WK
(χ1χ2)⊕ IndWF

WK
(χ1χ

τ
2),

where Gal(K/F ) = ⟨τ ⟩. Hence if φ̃2 (the contragredient) is a summand of

φ1⊗φ2, then φ̃3 is one of the two summands above, i.e., φ3=IndWF

WK
(χ1χ2)−1

(replacing χ2 by χτ
2 if necessary).

We have shown the following.

Proposition 3.14. Let φ1, φ2, φ3 ∶ WF → GL2(C) be irreducible. Then
(φ1⊗φ2⊗φ3)WF ≠ 0

⇔ there exists quadratic extension K/F s.t. φi = IndWF

WK
(χi), with χτ

i ≠ χi and

χ1χ2χ3 = 1, in which case, the quadratic extension K/F is uniquely determined by
φ1, φ2, φ3 via:

det(φ1) ⋅ det(φ2) ⋅ det(φ3) = ωK/F .
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Proof. We have already shown the (⇔). It remains to prove the last assertion.

With φi = IndWF

WK
(χi), χ1χ2χ3 = 1, one has det(φi) = χi∣F× ⋅ ωK/F . So

det(φ1) ⋅ det(φ2) ⋅ det(φ3) = χ1χ2χ3∣F×ω3
K/F = ωK/F .

�

Remark 6. As a consequence, we see that one cannot have φ1 and φ2 to be both
dihedral w.r.t. the same three quadratic extensionsK1,K2,K3. This will contradict
the uniqueness part of the proposition.

Now we consider the main case of interest where E/F is a cubic field extension.

E/F Galois. We first consider the case that E/F is a Galois extension. Suppose

Gal(E/F ) = ⟨σ⟩ and let σ̃ ∈ WF be an element which projects to σ under WF ↠
Gal(E/F ). Let φ ∶ WE → GL2(C) be an irreducible representation and set

ρ =⊗−IndWF

WE
(φ)

to be the tensor induction of φ from WE to WF (see [16, §2.1] for the notion of
tensor induction), so that dim(ρ) = 8. We are interested in determining when
ρWF ≠ 0.

Now ρWF ≠ 0⇒ ρWE ≠ 0. Since ρ∣WE
= φ⊗φσ⊗φσ2

, our proposition shows that
there exists a unique quadratic extension L/E such that

φ = IndWE

WL
(χ), φσ = IndWE

WL
(χ′), φσ2

= IndWE

WL
(χ′′) with χχ′χ′′ = 1.

Claim. L/F is a Galois extension.

Proof. It suffices to show that σ̃(L) = L. If not, then L, σ̃(L), σ̃2(L) are three
distinct quadratic extensions of E. Moreover,

φσ = IndWE

WL
(χ′) ⇒ φ = IndWE

Wσ̃2(L)
(σ̃2(χ′)),

φσ2

= IndWE

WL
(χ′′) ⇒ φ = IndWE

Wσ̃(L)
(σ̃(χ′′)).

So φ is dihedral w.r.t. L, σ̃(L), and σ̃2(L). A similar argument shows the same for

φσ and φσ2

. This contradicts our earlier proposition, or rather the remark following
it. So we must have σ̃(L) = L. �

As a consequence of the claim, Gal(L/F ) = ⟨c⟩ is a cyclic group of order 6, and
we have:

L =K ⋅E

�����
���

���
�

���
��

��
��

��
�

K

2
���

��
��

��
��

� E

3
����
��
��
��
��

F

with Gal(L/K) = ⟨σ̃∣L⟩ = ⟨c2⟩ and Gal(L/E) = ⟨τ ⟩ = ⟨c3⟩.
Now a short computation shows (see [18, Theorem 2.6]) the following.
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Lemma 3.15.
ρ ∶ = ⊗−IndWF

WE
(IndWE

WL
(χ))

≃ IndWF

WK
(χ∣K×)⊕ IndWF

WL
(χτ ⋅ χσ̃ ⋅ χσ̃2

),
where we have regarded χ as a character of L×.

For ρWF ≠ 0, we need

either χ∣K× = 1 or χτχσ̃χσ̃2

= 1.

Let us show that the latter case is not possible. Indeed, if

1 = χτχσ̃χσ̃2

= χc3χc2χc4 ,

then applying c gives:

1 = χc4χc3χc5 .

Comparing the two equations gives:

χc5 = χc2 , i.e., χc3 = χ, i.e., χτ = χ.

But χτ ≠ χ since φ is irreducible.
Hence we have shown the following.

Theorem 3.16 (E/F Galois). Let φ ∶ WE → GL2(C) be irreducible. Then ρ ∶=
⊗−IndWF

WE
(φ) contains the trivial character

⇔ there exists a quadratic extension K/F and a character χ of L× = (K ⋅E)×

s.t. φ = IndWE

WL
(χ) and χ∣K× = 1,

in which case,

ρ ≃ IndWF

WK
(1)⊕ IndWF

WL
(χτχ−1)

and K is uniquely determined by

ωK/F = ωL/E ∣F× = det(φ)∣F× .

E/F non-Galois. Now we turn to the non-Galois case. Let Ec/F be the Galois

closure of E/F with

Gal(Ec/F ) = S3 ∶= ⟨τ, σ∣τ2 = σ3 = 1, τστ = σ−1⟩.
We have two cases:

(i) φ∣WEc reducible: Similar argument as above shows that this gives rise to

the same condition as in Theorem 3.16 for ρWF ≠ 0.
(ii) φ∣WEc irreducible: Similar argument as in the Galois case, ρWEc ≠ 0 implies

that there exists a unique quadratic extension L/Ec such that

φ∣WEc =IndWEc

WL
(χ), φσ ∣WEc =IndWEc

WL
(χ′), φσ2

∣WEc =IndWEc

WL
(χ′′) with χχ′χ′′=1.

Suppose Gal(L/Ec) = ⟨τ ′⟩. As φ∣WEc is irreducible, so

IndWEc

WL
(χ) ≃ IndWEc

WLτ
(χτ),

which in turn implies that

Lτ = L, and χ = χτ or χτ ′ = χτ .

This is to say L/E is a Galois extension and

Gal(L/E) ≃ Z/2Z ×Z/2Z.
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Further applying Proposition 3.14, we know that Lσ = L, which in turn
implies that L/F is a Galois extension with

Gal(L/F ) ≃D12 ∶= ⟨τ, σ0∣τ2 = σ6
0 = 1, τσ0τ = σ−10 ⟩,

and we have:
L

2

��

3

����
��
��
��

K

4
���

��
��

��
� Ec

6

��

F

with Gal(L/K) = ⟨σ2
0⟩ and Gal(K/F ) = ⟨τ, σ3

0⟩.
Now a short computation shows that

ρ∣WK
= χχσ2

0χσ4
0 + χσ0χσ3

0χσ5
0 + IndWK

WL
(χχσ0χσ2

0) + IndWK

WL
(χχσ0χσ5

0).
So ρWK ≠ 0 implies that, applying the same argument as in Lemma 3.15,

χχσ2
0χσ4

0 ∣WK
= 1, i.e., χ∣K× = 1.

On the other hand, given χ∣K× = 1, an easy calculation shows that ρWF ≠ 0.

Thus we obtain the following.

Theorem 3.17 (E/F non-Galois). Let φ ∶ WE → GL2(C) be irreducible. Denote

by Ec/F the Galois closure of E/F . Then ρ ∶= ⊗−IndWF

WE
(φ) contains the trivial

character if and only if one of the following conditions holds:

(i) There exists a character χ of (Ec)×, such that φ = IndWE

WEc
(χ) and χ∣K× = 1.

Here K/F is the unique intermediate quadratic extension, in which case,

ρ ≃ IndWF

WK
(1)⊕ IndWF

WL
(χτχ−1).

(ii) There exists a quadratic extension L/Ec and a character χ of L×, such that

Gal(L/F ) = D12, φ∣WEc = IndWEc

WL
(χ) is irreducible and χ∣K× = 1. Here

K/F is the unique quartic intermediate extension.

Remark 7. As pointed out by Professor T. Ikeda, part (ii) of Theorem 3.17 is indeed
a dihedral case given as follows.

As Gal(L/E) ≃ Z/2Z ×Z/2Z, we have the following diagram:

L
⟨σ1σ2⟩

		��
��
��
��
⟨σ1⟩

��

⟨σ2⟩



	
		

		
		

	

M2



	
		

		
		

	 Ec

��

M1

		��
��
��
��

E

The point is to show that

one of Ind
WMi

WL
(χ), i = 1, 2, is irreducible.

Otherwise,

(A) Ind
WMi

WL
(χ) is irreducible for i = 1, 2.
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That is to say
χ ≄ χσ2 and χ ≄ χσ1σ2 .

Note that

(B) φ∣WL
= χ + χσ1 with χ ≄ χσ1 (as φ∣WEc = IndWEc

WL
(χ) is irreducible).

Therefore
0 ≠ HomWL

(χ,φ) =HomWE
(IndWE

WL
(χ), φ)

=HomWMi
(IndWMi

WL
(χ), φ).

Thus (A) implies

φ∣WMi
= Ind

WMi

WL
(χ) for i = 1, 2.

This in turn says that

φ∣WL
= χ + χσ2 = χ + χσ1σ2

(B)= χ + χσ1 .

Contradiction.

Acknowledgments

The author is much indebted to Professor Wee Teck Gan for his constant help
and support, and useful discussions on various topics. The author would also like to
thank Professor Tamotsu Ikeda for discussions on the poles of local triple product
L-functions during a conference at IMUS, Seville, Spain. Thanks are also due to
the referee for detailed comments.

References

[1] James Arthur, The endoscopic classification of representations: Orthogonal and symplectic
groups, American Mathematical Society Colloquium Publications, vol. 61, American Mathe-
matical Society, Providence, RI, 2013. MR3135650

[2] E. Artin and J. Tate, Class field theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968.
MR0223335
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[48] M. Tadić, Unitarizability in generalized rank three for classical p-adic groups, arXiv preprint
arXiv:1709.00630, (2017).

[49] David A. Vogan Jr., The unitary dual of GL(n) over an Archimedean field, Invent. Math.
83 (1986), no. 3, 449–505, DOI 10.1007/BF01394418. MR827363

[50] David A. Vogan Jr., The unitary dual of G2, Invent. Math. 116 (1994), no. 1-3, 677–791,

DOI 10.1007/BF01231578. MR1253210
[51] David A. Vogan Jr., A Langlands classification for unitary representations, Analysis on

homogeneous spaces and representation theory of Lie groups, Okayama–Kyoto (1997),
Adv. Stud. Pure Math., vol. 26, Math. Soc. Japan, Tokyo, 2000, pp. 299–324, DOI
10.2969/aspm/02610299. MR1770725

[52] NormanWinarsky, Reducibility of principal series representations of p-adic Chevalley groups,
Amer. J. Math. 100 (1978), no. 5, 941–956, DOI 10.2307/2373955. MR517138

[53] Sinǐsa Žampera, The residual spectrum of the group of type G2 (English, with English and
French summaries), J. Math. Pures Appl. (9) 76 (1997), no. 9, 805–835, DOI 10.1016/S0021-
7824(97)89971-0. MR1485422

[54] A. V. Zelevinsky, Induced representations of reductive p-adic groups. II. On irreducible rep-
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