
Symbol Message Passing Decoding of Nonbinary Low-Density Parity-Check
Codes

Downloaded from: https://research.chalmers.se, 2024-03-13 09:11 UTC

Citation for the original published paper (version of record):
Lázaro, F., Graell I Amat, A., Liva, G. et al (2019). Symbol Message Passing Decoding of Nonbinary
Low-Density Parity-Check Codes. 2019 IEEE Global Communications Conference, GLOBECOM
2019 - Proceedings. http://dx.doi.org/10.1109/GLOBECOM38437.2019.9013601

N.B. When citing this work, cite the original published paper.

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

This document was downloaded from http://research.chalmers.se, where it is available in accordance with the IEEE PSPB
Operations Manual, amended 19 Nov. 2010, Sec, 8.1.9. (http://www.ieee.org/documents/opsmanual.pdf).

(article starts on next page)



Symbol Message Passing Decoding of Nonbinary

Low-Density Parity-Check Codes

Francisco Lázaro†, Alexandre Graell i Amat‡, Gianluigi Liva†, Balázs Matuz†

†Institute of Communications and Navigation of DLR (German Aerospace Center), Wessling, Germany.
‡Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden.

Abstract—We present a novel decoding algorithm for q-ary
low-density parity-check codes, termed symbol message passing.
The proposed algorithm can be seen as a generalization of
Gallager B and the binary message passing algorithm by Lechner
et al. to q-ary codes. We derive density evolution equations for
the q-ary symmetric channel, compute thresholds for a number
of regular low-density parity-check code ensembles, and verify
those by Monte Carlo simulations of long channel codes. The
proposed algorithm shows performance advantages with respect
to an algorithm of comparable complexity from the literature.

I. INTRODUCTION

There is a large body of literature considering mes-

sage passing algorithms for binary low-density parity-check

(LDPC) codes. In his seminal work [1], Gallager proposed

two different message passing algorithms for LDPC codes,

nowadays known as Gallager A and B, which exchange binary

messages between check nodes (CNs) and variable nodes

(VNs). In [2], algorithm E was proposed, where messages take

values in a ternary alphabet. A powerful algorithm, referred

to as binary message passing (BMP) was introduced in [3].

Although the exchanged messages are binary, the algorithm

is able to exploit soft information from the channel at the

VNs. An extension of BMP to ternary message alphabets was

studied in [4]. A finite alphabet message iterative decoder for

the binary symmetric channel (BSC) was presented in [5].

Various works in the literature study the extension of

binary LDPC codes to larger fields, including the original

work by Gallager [1]. Nonbinary LDPC codes constructed

over finite fields for binary-input Gaussian channels were

investigated in [6]. Different simplified message passing al-

gorithms were studied in [7], [8]. Regarding q-ary symmetric

channels (q-SCs), a majority-logic-like decoding algorithm

was introduced in [9], while verification based decoding

algorithms were studied in [10]–[13]. Both algorithms target

large field orders. In [14] a list message passing decoding

algorithm for q-ary LDPC codes over the q-SC was proposed,

which is practical when the list size is small. For list size 1,

the exchanged messages take values in a (q+1)-ary message

alphabet, composed of the elements of Fq and an additional

erasure message. In [15] a decoding algorithm for q-ary LDPC

codes was presented, for which the CN and VN operations are

implemented by means of look up tables. It makes use of the

information bottleneck method and is practical for small q.

This paper targets q-ary LDPC codes for which we pro-

pose a low-complexity decoding algorithm, termed symbol

message passing (SMP). The proposed algorithm can be seen

as an extension of BMP to q-ary codes and q-ary message

alphabets. Similarly to BMP, it can exploit soft information

from the channel at the VNs. Over the q-SC, SMP becomes

a natural generalization of Gallager B [1]. We develop a

density evolution (DE) analysis for SMP over the q-SC. For

large q, the evaluation of DE becomes infeasible, due to the

increasing complexity. To tackle this, we derive tight upper

and lower bounds on the iterative decoding thresholds, which

can be efficiently evaluated even for very large q. Simulation

results are compared with the decoding thresholds obtained

via DE. Both the analysis and the simulations are provided

for the case of regular LDPC code ensembles for ease of

exposition. However, the extension to irregular ensembles is

straightforward. For the considered ensembles, the derived

thresholds are superior to the ones obtained in [14] with list

size 1.

The proposed algorithm is of interest, among others, for

applications with high decoding throughput and low decoding

complexity requirements, such as optical communications.

Another application area is code-based post-quantum cryptog-

raphy, for which binary regular LDPC codes are considered in

the literature [16]. Nonbinary codes can render cryptanalysis

more difficult, but there is the need for simple decoders.

II. PRELIMINARIES

In this work, we consider regular (dv, dc) LDPC codes

constructed over a finite field of order q, Fq. The code’s

bipartite graph comprises n VNs vj , j = {1, 2, . . . , n} of

degree dv and m CNs ci, i = {1, 2, . . . ,m} of degree dc.

The design rate is R = 1 − m/n = 1 − dv/dc. The edge

label associated to the edge connecting v and c is denoted

by hv,c, with hv,c ∈ Fq \ 0. The neighborhood of a VN, i.e.,

the set of all connected CNs, is denoted as N (v). Similarly,

the neighborhood of a CN is denoted as N (c). At the ℓth

decoding iteration, let the message sent from v to c be m
(ℓ)
v→c,

and the message from c to v be m
(ℓ)
c→v. Furthermore, the

channel observation at v is denoted by mv. The ensemble

of q-ary regular (dv, dc) codes with block-length n is denoted

by C
q
dv,dc

and is defined by a uniform distribution over all

possible edge permutations between VNs and CNs and over

all possible edge labelings from Fq \ 0.

Consider a q-SC with error probability ǫ, input alphabet

X and output alphabet Y , with X = Y = {0, α0, . . . , αq−2},

where α is a primitive element of Fq . Denote by X ∈ X and

Y ∈ Y the random variables (RVs) associated to the channel



input and channel output, respectively, and by x and y their

realizations. Then, the transition probabilities of the q-SC are

PY |X(y|x) =

{

1− ǫ if y = x

ǫ/(q − 1) otherwise.
(1)

The capacity of the q-SC, in symbols per channel use, is

C = 1 + ǫ logq
ǫ

q − 1
+ (1− ǫ) logq(1− ǫ).

For a given channel output y, we introduce the normalized

log-likelihood vector, also referred to as L-vector,

L(y) = [L0(y), L1(y), . . . , Lαq−2(y)]

whose elements are obtained as

Lb(y) = log
(
PY |X(y|b)

)
− log (ǫ/(q − 1)) .

From (1), we have

Lb(y) =

{

D(ǫ) if b = y

0 otherwise
(2)

where

D(ǫ) = log(1− ǫ)− log (ǫ/(q − 1)) .

III. SYMBOL MESSAGE PASSING DECODING

In this section, we describe the proposed SMP algorithm in

detail, assuming transmission over the q-SC. SMP decoding

is an iterative algorithm, where CNs and VNs exchange q-ary

messages. The basic steps of SMP are as follows.

i. Initialization. At the first iteration, each VN v sends to

all c ∈ N (v)

m(1)
v→c

= mv

where mv = y, y being the channel observation associ-

ated to VN v.

ii. CN-to-VN step. Each CN computes

m(ℓ)
c→v

= h−1
v,c

∑

v
′∈N (c)\v

hv′,cm
(ℓ)
v
′→c

. (3)

iii. VN-to-CN step. Let E(ℓ) be an aggregated extrinsic L-

vector, with

E(ℓ) =
[

E
(ℓ)
0 , E

(ℓ)
1 , . . . , E

(ℓ)
αq−2

]

(4)

= L (mv) +
∑

c
′∈N (v)\c

L
(

m
(ℓ−1)
c
′→v

)

. (5)

Then, each VN computes

m(ℓ)
v→c

= argmax
b∈Fq

E
(ℓ)
b .

Whenever multiple maximizing arguments exist, the

arg max function returns one of them at random with

uniform probability. The VN operation can be interpreted

as if the CNs and the channel would vote for the value of

the code symbol associated to the VN. The VN assigns

different weights to the CN and channel votes and selects

the element with the highest score.

TABLE I
SMP OPERATIONS PER ITERATION.

Operation CN VN

Addition, Fq 2dc − 1 -
Addition, real - 2dv
Multiplication, Fq 2dc -
Maximization, real - dv

In (5), the L-vector corresponding to the channel ob-

servation is obtained from (2) using the channel error

probability ǫ. Further, we model the CN-to-VN messages,

as an observation of the symbol X (associated to v), at

the output of an extrinsic q-SC channel [3], [17]. The

extrinsic channel error probability is denoted by ξ(ℓ) and

is used to compute the corresponding L-vectors in (5).

In general, the error probabilities ξ(ℓ) are not known.

Estimates can be obtained from DE analysis, as proposed

in [3], [4].

iv. Final decision. After iterating steps ii. and iii. for ℓmax

iterations, the final decision at each VN is computed as

x̂ = argmax
b∈Fq

LAPP

b

with

LAPP =
[
LAPP

0 , LAPP

1 , . . . , LAPP

αq−2

]

= L (mv) +
∑

c∈N (v)

L
(

m(ℓmax)
c→v

)

.

A. Complexity Analysis

The complexity of SMP is implementation dependent and

can be studied from many perspectives. Here, we focus on

the data flow in the decoder, as well as on the number of

arithmetic operations per iteration.

The internal decoder data flow, defined as the number of

bits that are passed in each iteration between VNs and CNs,

is given by 2 ·n ·B ·dv, where B is the number of bits used to

represent each message. SMP is characterized by a reduced

data flow between CNs and VNs compared to the classical

belief propagation (BP) decoders for nonbinary LDPC codes

[6], [7]. In SMP all decoder messages are symbols in Fq,

rather than (q − 1)-ary probability vectors. It follows that

B = log2 q for SMP, while for conventional nonbinary BP

decoding B equals (q − 1) times the number of bits used to

represent each probability.

The algorithmic complexity of SMP is summarized in

Table I and is derived as follows. Consider the CN update in

(3). Each incoming and outgoing message is multiplied by an

element in Fq \0, yielding in total 2dc multiplications per CN.

One may precompute the sum of all dc incoming messages,

hv′,cm
(ℓ)
v
′→c

, v′ ∈ N (c). Then, the extrinsic message in (3)

for an edge (c, v) is obtained by subtracting the incoming

message on that edge from the sum. This yields in total

dc−1+dc = 2dc−1 additions/subtractions, which are assumed

to have equivalent in cost.

At the VN side, one may compute the sum of all dv + 1
L-vectors in (5) with only dv additions. Note from (2) that



a q-ary L-vector contains only a single non-zero element.

To obtain any of the dv extrinsic messages E, the respective

incoming L-vector is subtracted from the sum. It follows that

at each VN the evaluation of (5) can be implemented with

dv + dv = 2dv additions/subtractions. Finally, for each of

the dv extrinsic messages a maximum has to be found. The

complexity of the proposed algorithm is very similar to the

one of the algorithm in [14], when the latter is operated with

list size 1.

IV. DENSITY EVOLUTION ANALYSIS

In this section we derive a DE analysis for regular un-

structured LDPC code ensembles. Due to the channel sym-

metry, without loss of generality, we assume that the all-zero

codeword is transmitted. We are interested in the probability

that the RV M
(ℓ)
v→c associated to the VN-to-CN message takes

value a at the ℓth iteration, conditioned to the corresponding

codeword symbol being zero,

p(ℓ)a = Pr
{

M (ℓ)
v→c

= a
∣
∣X = 0

}

.

The initial probabilities p
(0)
a are

p
(0)
0 = 1− ǫ

and

p(0)a = ǫ/(q − 1), ∀a ∈ Fq \ 0.

The iterative decoding threshold of a code ensemble C
q
dv,dc

is

defined as the maximum channel parameter ǫ⋆, so that for all

ǫ < ǫ⋆, p
(ℓ)
0 tends to 1 as the block-length n and the number

of iterations ℓ tend to infinity [2].

Remark 1. As for the message passing algorithms proposed

in [3], [4], DE analysis plays a two-fold role. On one hand, it

allows deriving the iterative decoding threshold of the LDPC

code ensemble under analysis. On the other hand, the analysis

provides as a byproduct through (6) estimates of the extrinsic

channel reliabilities ξ(ℓ) to be used in step iii. of the decoding

algorithm. The estimates turn to be accurate when decoding

is applied to long codes (this is in fact the regime in which DE

analysis captures well the evolution of the message probability

distributions).

Let s
(ℓ)
a be the probability that a CN-to-VN message takes

value a at the ℓth iteration. We have

s(ℓ)a =

dc−1∑

j=0

(
dc − 1

j

)(

1− p
(ℓ)
0

)j (

p
(ℓ)
0

)dc−1−j

ψj,a

where ψj,a is the probability that j erroneous messages sum

up to a. Under the all-zero codeword assumption, the extrinsic

channel at the VN input is a q-SC with error probability

ξ(ℓ) = 1− s
(ℓ)
0 . (6)

The probability that j independent RVs defined over Fq, with

zero probability assigned to the 0 symbol and with uniform

probability mass function over Fq \ 0, sum up to zero is [18,

Appendix A]

ψj,0 =
1

q

(

1 +
(−1)j

(q − 1)j−1

)

.

Due to symmetry, for any a 6= 0, we obtain

ψj,a =
1− ψj,0

q − 1
=

1

q

(

1−
(−1)j

(q − 1)j

)

.

Let us consider next the VN-to-CN messages. Define the

random vector F (ℓ),

F (ℓ) =
(

F
(ℓ)
0 , F

(ℓ)
1 , . . . , F

(ℓ)
αq−2

)

and its realization f (ℓ),

f (ℓ) =
(

f
(ℓ)
0 , f

(ℓ)
1 , . . . , f

(ℓ)
αq−2

)

where F
(ℓ)
a denotes the RV associated to the number of CN-

to-VN messages that take value a at the ℓth iteration, and

f
(ℓ)
a is its realization. The elements E

(ℓ)
b of the aggregated

extrinsic L-vector in (4) are related to f
(ℓ)
b and the channel

observation y by

E
(ℓ)
b =

{

D(ξ(ℓ−1))f
(ℓ−1)
b + D(ǫ) if b = y

D(ξ(ℓ−1))f
(ℓ−1)
b otherwise.

Further, F (ℓ) conditioned to X = 0 is multinomially dis-

tributed, with

PF (ℓ)|X

(

f (ℓ)
∣
∣0
)

=

(
dv − 1

f
(ℓ)
0 , f

(ℓ)
1 , . . . , f

(ℓ)
αq−2

)

×
(

1− ξ(ℓ)
)f

(ℓ)
0
(

ξ(ℓ)/(q − 1)
)dv−1−f

(ℓ)
0

.

Let us denote by I(P) the indicator function (I(P) takes value

1 if the proposition P is true and 0 otherwise). Let E(ℓ) be

the set of maximizers of E(ℓ), i.e.,

E(ℓ) =

{

b ∈ Fq

∣
∣E

(ℓ)
b = max

a∈Fq

E(ℓ)
a

}

.

We may write

p
(ℓ)
0 =

∑

y∈Y

p(0)y

∑

f (ℓ−1)

PF (ℓ−1)|X

(

f (ℓ−1)
∣
∣0
)
I
(
0 ∈ E(ℓ)

)

|E(ℓ)|
.

(7)

Due to symmetry, for any a 6= 0 we have

p(ℓ)a =
1− p

(ℓ)
0

q − 1
.

Note that, already for moderate values of q and dv, the

evaluation of (7) might be too complex. In the Appendix,

we provide tight upper and lower bounds on p
(ℓ)
0 , which can

be evaluated efficiently.

V. NUMERICAL RESULTS

In Table II we give iterative decoding thresholds on the

q-SC for the ensemble C
q
3,5 for various q. As a comparison,

iterative decoding thresholds from [14] are reported for the

simplest setup with list size c = 1. Despite the larger message

alphabet size for the algorithm in [14] with list size 1 (which

includes an additional erasure symbol), SMP yields better

thresholds.1 This is owing to the proper choice of the message

1We remark that increasing the list size in [14] yields an improvement in
thresholds at the price of a higher computational burden.



TABLE II
THRESHOLDS FOR C

q

3,5
FOR DIFFERENT q.

q ǫ⋆, SMP ǫ⋆ [14], list size 1 ǫBP ǫSh

2 0.061 0.061 0.113 0.146
4 0.123 0.092 0.196 0.248
8 0.134 0.093 0.254 0.319

16 0.138 0.094 0.296 0.371
32 0.140 – 0.328 0.409
64 0.141 – 0.352 0.437

128 0.142 – 0.371 0.459
256 0.142 – 0.385 0.476
512 0.142 – 0.398 0.489

TABLE III
THRESHOLDS FOR VARIOUS RATE-1/2 ENSEMBLES

AND DIFFERENT q.

q C
q

3,6
C

q

4,8
C

q

5,10
C

q

6,12
ǫSh

2 0.040 0.052 0.042 0.040 0.110
4 0.089 0.081 0.081 0.074 0.189
8 0.104 0.106 0.101 0.101 0.247

16 0.108 0.137 0.116 0.112 0.290
32 0.109 0.164 0.136 0.121 0.322
64 0.110 0.176 0.162 0.135 0.346

128 0.111 0.182 0.177 0.156 0.365
256 0.111 0.185 0.185 0.170 0.381
512 0.111 0.186 0.188 0.178 0.393

weights, as a result of DE analysis from (6). The table

also reports the Shannon limit ǫSh and the BP threshold ǫBP

obtained through Monte Carlo simulations [6]. We remark

that as q grows, the iterative decoding thresholds ǫ⋆, the BP

thresholds ǫBP and ǫSh increase.

Table III shows thresholds for C
q
3,6, C

q
4,8, C

q
5,10, and C

q
6,12

ensembles over the q-SC for different values of q. Note that

the bounding techniques in the Appendix allow computing

thresholds for large q, far beyond the values presented in the

table. The ultra-sparse ensemble C
q
2,4 is not listed here, owing

to a zero decoding threshold on the q-SC. For the binary case,

the thresholds coincide with those achieved by the Gallager

B algorithm. In fact, it is easy to recognize that SMP with

q = 2 reduces, over the BSC, to the Gallager B algorithm.

Interestingly, there seems to be no single regular LDPC code

ensemble with rate-1/2 that outperforms all others in terms

of decoding threshold for all q.

Fig. 1 compares the iterative decoding threshold for the

C 4
3,6 and C 8

4,8 LDPC code ensembles with the symbol error

rate (SER) of a 4-ary (dv = 3, dc = 6) and 8-ary (dv =
4, dc = 8) LDPC code, respectively, with n = 60000. The

SER results were obtained by Monte Carlo simulations and

200 decoding iterations. As expected, the iterative decoding

threshold predicts accurately the waterfall performance of the

codes.

VI. CONCLUSIONS

We presented symbol message passing, a low-complexity

decoding algorithm for q-ary LDPC codes. A DE analysis

is presented for regular ensembles over the q-SC. It yields

iterative decoding thresholds and message weights which

result in performance advantages with respect to a competing

Fig. 1. SER vs. channel error probability ǫ for a 4-ary (3, 6) LDPC code
and a 8-ary (4, 8) LDPC code with n = 60000.

scheme of similar complexity. We also derived tight upper and

lower bounds on the VN message error probabilities, which

allow efficient and accurate computation of the thresholds.

APPENDIX

EFFICIENT EVALUATION OF DENSITY EVOLUTION

We derive tight upper and lower bounds on (7), which can

be efficiently evaluated. For the sake of simplicity, whenever

possible we drop the iteration count in the following. Let

µj(F ) denote the number of elements of F equal to j, i.e.,

µj(F ) =
∣
∣
{
Fa, a ∈ Fq

∣
∣Fa = j

}∣
∣ .

Let us define tb as

tb = fb +
D(ǫ)

D(ξ)

where we consider channels with non-zero capacity, i.e.,

D(·) > 0. Let VN v receive a channel message y = 0, and f0
messages with value 0 from its neighbors. Whenever

max
i∈Fq\0

(Fi) < t0

the outgoing VN-to-CN message will be 0. Further, whenever

max
i∈Fq\0

(Fi) = t0

the outgoing VN-to-CN message will take value 0 with

probability 1/µt0(F ). Similar considerations can be made

when y 6= 0. Thus, for q > 2, we may recast (7). This yields

(8), where

κmax = min

(⌊
dv − 1− f0

t0

⌋

, q − 1

)

κ′max = min

(⌊
dv − 1− f1

f0

⌋

, q − 1

)

κ′′max = min

(⌊
dv − 1

t1

⌋

, q − 1

)

.



p
(ℓ)
0 = p

(0)
0

dv−1∑

f0=0

PF0|X(f0|0)

(

Pr

{

max
i∈Fq\0

(Fi) < t0
∣
∣X = 0, F0 = f0

}

+ Pr

{

max
i∈Fq\0

(Fi) = t0
∣
∣X = 0, F0 = f0

} κmax∑

κ=1

1

κ+ 1
Pr

{

µt0(F ) = κ
∣
∣X = 0, F0 = f0, max

i∈Fq\0
(Fi) = t0

}

︸ ︷︷ ︸

(a)

)

+ (q − 1) p
(0)
1

dv−1∑

f1=0

PF1|X(f1|0)

[
dv−1−f1∑

f0>t1

PF0|X,F1
(f0|0, f1)

(

Pr

{

max
i∈Fq\{0,1}

(Fi) < f0
∣
∣X = 0, F0 = f0, F1 = f1

}

+ Pr

{

max
i∈Fq\{0,1}

(Fi) = f0

∣
∣
∣
∣
X = 0, F0 = f0, F1 = f1

}

×

κ′

max∑

κ=2

1

κ
Pr

{

µf0(F ) = κ

∣
∣
∣
∣
X = 0, F0 = f0, F1 = f1, max

i∈Fq\{0,1}
(Fi) = f0

}

︸ ︷︷ ︸

(b)

)

+ PF0|X,F1
(t1|0, f1)

(

1

2
Pr

{

max
i∈Fq\{0,1}

(Fi) < t1

∣
∣
∣
∣
X = 0, F0 = t1, F1 = f1

}

+ Pr

{

max
i∈Fq\{0,1}

(Fi) = t1

∣
∣
∣
∣
X = 0, F0 = t1, F1 = f1

}

×

κ′′

max∑

κ=2

1

κ+ 1
Pr

{

µt1(F ) = κ

∣
∣
∣
∣
X = 0, F0 = t1, F1 = f1, max

i∈Fq\{0,1}
(Fi) = t1

}

︸ ︷︷ ︸

(c)

)]

(8)

An upper bound on p
(ℓ)
0 is obtained as follows. Whenever

the aggregated L-vector E(ℓ) has κ > 1 maxima, one of them

being at 0, we assume that E(ℓ) has the minimum possible

number of maxima. We thus replace the terms (a), (b), (c)

in (8) by 1/2, 1/2, and 1/3, respectively. Similarly, a lower

bound can be obtained by replacing the terms (a), (b), (c) in

(8) by 1/(κmax+1), 1/κ′max, and 1/(κ′′max+1), respectively.

For the lower bound we thus overestimate the number of

maxima. Both upper and lower bounds can be efficiently

evaluated using a result in [19]. Both bounds are tight for

the ensembles in Tables II and III. In fact, they coincide in

the first 6 decimal digits.
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