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Androgens have profound effects on T cell homeostasis, including regulation of thymic

T lymphopoiesis (thymopoiesis) and production of recent thymic emigrants (RTEs), i.

e., immature T cells that derive from the thymus and continue their maturation to

mature naïve T cells in secondary lymphoid organs. Here we investigated the androgen

target cell for effects on thymopoiesis and RTEs in spleen and lymph nodes. Male

mice with a general androgen receptor knockout (G-ARKO), T cell-specific (T-ARKO),

or epithelial cell-specific (E-ARKO) knockout were examined. G-ARKO mice showed

increased thymus weight and increased numbers of thymic T cell progenitors. These

effects were not T cell-intrinsic, since T-ARKO mice displayed unaltered thymus weight

and thymopoiesis. In line with a role for thymic epithelial cells (TECs), E-ARKO mice

showed increased thymus weight and numbers of thymic T cell progenitors. Further,

E-ARKO mice had more CD4+ and CD8+ T cells in spleen and an increased frequency

of RTEs among T cells in spleen and lymph nodes. Depletion of the androgen receptor

in epithelial cells was also associated with a small shift in the relative number of

cortical (reduced) and medullary (increased) TECs and increased CCL25 staining in the

thymic medulla, similar to previous observations in castrated mice. In conclusion, we

demonstrate that the thymic epithelium is a target compartment for androgen-mediated

regulation of thymopoiesis and consequently the generation of RTEs.
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INTRODUCTION

Androgens, such as testosterone, are important modulators of the immune system and immune-
related disorders (1). Androgens also suppress the number of peripheral T cells in both mice
and men (2–5). Testosterone replacement lowers circulating T cells in hypogonadal men to levels
equivalent to those of healthy controls (5) and in patients with Klinefelter syndrome, elevated T cell
levels were normalized after testosterone supplementation (4).
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T cell progenitors are produced in the bone marrow
and then enrolled in thymopoiesis, i.e., further proliferation,
selection, and maturation of T cells in the thymus. It is
well recognized that androgens have a crucial impact on
thymus size and contribute to the involution of the thymus
taking place during puberty in both mice and humans. In
androgen deficient states, both thymus size and thymopoiesis
are prominently increased and the thymus involutes upon
treatment with androgens (2, 3, 6–12). Recent thymic emigrants
(RTEs), i.e., immature T cells that derive from the thymus
and continue their maturation to mature naïve T cells in
secondary lymphoid organs, are also regulated by androgens;
the fraction of RTEs increases in the periphery after castration
and/or androgen deprivation therapy of both mice and humans
(3, 5). Besides being progenitors to mature T cells, RTEs have
distinct properties and may play specific roles in immune
disorders (13).

Despite the important actions of androgens on T cell
homeostasis, understanding about relevant target cells remains
incomplete. In a series of bone marrow transplantation
experiments using the Tfm/Y mouse model, chimeric
mice lacking a functional androgen receptor (AR) in non-
hematopoietic cells showed increased thymus size, while
mice lacking a functional AR in bone marrow-derived cells
did not (6). It is therefore likely that AR in stromal cells
and not in the hematopoietic compartment is important
for the AR-mediated effects of androgens on the thymus.
This notion has been strengthened by findings that a
cell-specific knockout of AR in epithelial cells regulates
thymopoiesis (14). Further supporting thymic epithelial cells
(TECs) as an important androgen target, recent data suggest
that castration of male mice alters the relative numbers
of cortical TECs (cTECs) and medullary TECs (mTECs)
(15). Given the central role of TECs for many thymic
processes (16), we hypothesized that TECs are target cells
for androgen-mediated regulation of both thymopoiesis and
peripheral RTEs.

In this study, we have utilized the AR knockout (ARKO)
mouse model to investigate how the AR mediates the effects of
androgens on thymopoiesis and the peripheral T cell pool, using
male mice with general- (G-ARKO) as well as T cell-specific (T-
ARKO), and epithelial cell-specific (E-ARKO) knockout of the
AR. Specifically, we asked the question whether AR in epithelial
cells regulate RTEs in secondary lymphoid organs.

RESULTS

Increased Thymopoiesis in G-ARKO Mice
We first studied the effect of general AR depletion on
thymopoiesis; mice with a general knockout of the AR (G-
ARKO) had increased thymus weight and cellularity compared
to littermate (Pgk-Cre+) controls (Figures 1A,B). The number
of thymocytes was increased at all stages of T lymphopoiesis,
including the early double negative (CD4−CD8−) stages
(Figures 1C–H) as well as more mature double positive
(CD4+CD8+) and single positive (CD4+ or CD8+) cells
(Figures 1I–K).

As G-ARKO mice are both AR- and testosterone-deficient
(17), we next castrated G-ARKO and control littermate mice
and replaced with a physiological dose of testosterone (17),
to distinguish the effects of testosterone deficiency from AR
deficiency on thymus weight. While testosterone replacement
reduced thymus weight in castrated control mice, it did not affect
the thymus weight of G-ARKO mice (Supplemental Figure 1),
showing that the effect of testosterone on thymus weight is
completely AR-dependent.

Unchanged Thymopoiesis in T-ARKO Mice
Wenext searched for the target cell for the effects of androgens on
thymopoiesis. To assess if androgens/AR affect T cell homeostasis
through a T cell-intrinsic mechanism, we generated T cell-
specific ARKO (T-ARKO) mice using the pLCK-Cre+ construct,
and quantified thymocytes in these mice and littermate (pLCK-
Cre+) controls. Despite a highly efficient knockout of AR
exon 2 gDNA in CD3+ T cells (Supplemental Figure 2A), T-
ARKO mice had unchanged thymus weight and cellularity,
and the number of T cell precursors were unaffected by AR-
deficiency in T cells (Supplemental Figures 2B–G), showing
that the enhanced thymopoiesis in AR deficiency is not
T cell-intrinsic.

Increased Thymopoiesis in E-ARKO Mice
As factors secreted by the thymic stroma are known to influence
the thymic microenvironment to support T lymphopoiesis
(18) and the AR is expressed in thymic epithelial cells
(TECs) (6), we hypothesized that TECs are targets for
AR-dependent actions on T cell homeostasis. Therefore,
we generated epithelial cell-specific ARKO (E-ARKO) mice
using a K5-Cre+ construct (19), where Cre is expressed
under the control of the K5-promotor in epithelial cells
[model described in (20)]. Confirming our hypothesis, E-
ARKO mice displayed increased thymus weight and cellularity
(Figures 2A,B) compared to littermate (K5-Cre+) controls. In
line with the results in G-ARKOmice, the number of thymocytes
was increased in E-ARKO at all stages of T lymphopoiesis
(Figures 2C–F).

Increased Staining of CCL25 in Thymi of
E-ARKO Mice
CCL25 has been shown to be central to the effects of
testosterone deficiency on thymopoiesis (9). Therefore,
we next studied the E-ARKO effect on the expression of
CCL25 using thymic sections. Indeed, compared to control
mice, E-ARKO mice showed an increased CCL25-positive
area in medulla, but not cortex (Figure 3). A similar
pattern was found in castrated (testosterone-deficient)
mice (Figure 3).

TEC Shift in E-ARKO Mice
Recent data suggest that castration of male mice results in
relatively reduced cTEC and increased mTEC number (15).
QuantifyingmTEC (CD45− EpCAM+ UEA1+ Ly51−) and cTEC
(CD45− EpCAM+ UEA1− Ly51+) populations (Figure 4A),
we saw a similar pattern in E-ARKO, i.e., a relative reduction
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FIGURE 1 | Increased thymopoiesis in mice with general depletion of the AR (G-ARKO). (A,B) Thymus weight and cellularity in control (Pgk-Cre+; n = 10) and general

androgen receptor knockout (G-ARKO; ARflPgk-Cre+; n = 10) male mice. (C) Gating strategy for thymic subsets. (D–G) Number of CD4−CD8− double negative

thymocyte subsets (DN1-4, with different expression of CD44 and CD25 markers). (H–K) Total double negative (DN), double positive (DP; CD4+CD8+), and single

positive (SP; CD4+ or CD8+) thymocytes in control (n = 10) and G-ARKO (n = 10) mice. *P <0.05, **P <0.01, ***P < 0.001 (Mann-Whitney U-test); all bars indicate

means; circles represent individual mice, error bars indicate SEM.
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FIGURE 2 | Increased thymopoiesis in mice with depletion of AR in epithelial cells (E-ARKO). (A,B) Thymus weight and cellularity in control (K5-Cre+; n = 11) and

E-ARKO (ARflK5-Cre+; n = 10) male mice. (C–F) Number of double negative (DN; CD4−CD8−), double positive (DP; CD4+CD8+), and single positive (SP; CD4+ or

CD8+) thymocytes in control (n = 11) and E-ARKO (n = 10) mice. **P <0.01, ***P < 0.001 (Mann-Whitney U-test); all bars indicate means; circles represent individual

mice, error bars indicate SEM.

of cTECs and a minor increase in the relative number of
mTECs. By contrast, the overall TEC fraction in thymus was
not different between E-ARKO and controls (Figures 4B–D).
Analyzing the knockout of AR exon 2 gDNA in mTECs
and cTECs, there was a partial (mean 65%) depletion of
AR exon 2 in mTECs, but no significant depletion in
cTECs (Figures 4E,F).

Increased Peripheral T Cells and Recent
Thymic Emigrants (RTEs) in E-ARKO Mice
We next studied the peripheral T cell pool and the
frequency of RTEs in secondary lymphoid organs of E-
ARKO mice. We defined RTEs as Qa2loCD24hi CD4+ or
Qa2loCD24hi CD8+ cells (13) (Figure 5A). E-ARKO showed
an increased number of both CD4+ and CD8+ T cells in

spleen (Figures 5B,C). In E-ARKO mice, RTEs constituted
a significantly greater part of total CD4+ (+10%, P < 0.05),
with a similar trend for CD8+ (+15%, P = 0.13) T cells
in spleen (Figures 5D,E). The total number of both CD4+

and CD8+ RTEs were increased in spleen of E-ARKO mice
(Figures 5F,G).

In pooled inguinal and para-aortic lymph nodes, the
frequency of both CD4+ (+33%, P < 0.01) and CD8+

RTEs (+61%, P < 0.001) were increased in E-ARKO
compared to control mice (Figures 5H,I). In blood, the
frequency of CD8+ RTEs (+94%, P < 0.01), but not
CD4+ RTEs (+37%, P = 0.15) were significantly increased
(Figures 5J,K). Taken together, peripheral RTEs were
increased in E-ARKO mice, with some variation in effect
between compartments.
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FIGURE 3 | Increased staining of CCL25 in thymi of E-ARKO mice. Quantification of CCL25-stained area in thymic medulla and cortex of E-ARKO and control mice

and mice that were sham-operated or castrated (orchiectomized; ORX) at 4 weeks of age; tissues were collected at 34 weeks of age. Thymic sections were stained

for CCL25 (red) and nuclei were stained by 4’,6-Diamidino-2-Phenylindole (DAPI; blue). Scale bar = 200µm. *P < 0.05 vs. control (Mann-Whitney U-test). Bars
indicate means, error bars indicate SEM, and circles represent individual mice.

DISCUSSION

In this study, we have utilized cell-specific AR knockout
mouse models to investigate how androgens/AR affects T cell
homeostasis. We show that epithelial cells are a target for
androgen/AR-mediated actions on thymopoiesis, splenic T cells,
and RTEs in secondary lymphoid organs.

Here we identified the TEC as a target cell for androgen
regulation of thymus size, in accordance with data of increased
thymopoiesis in both G- and E-ARKO models (14). Our data
are also in accordance with data demonstrating a hematopoietic
cell-extrinsic, rather than -intrinsic, AR-dependent inhibition
of thymopoiesis (6). In line with the previous data (14), we
found that all thymic T lymphocyte stages, from double negative
through single positive cells, were increased in both G- and
E-ARKO mice.

Notably, the effect size differed between the two models; G-
ARKO had a doubling of thymus cellularity, whereas thymus
cellularity was increased by ∼40% in E-ARKO. This divergent
effect size might result from an incomplete knockout of the
AR in TECs of E-ARKO mice as shown here. Further, recent
data support that complete androgen blockade affects thymus
cellularity partly by increasing the number of thymus-seeding

precursors from the bone marrow (21). This bone marrow effect
of androgens/ARmay also contribute to the discrepancy between
the two models, as G-ARKOmice are both AR- and testosterone-
deficient due to underdeveloped testes in this model, while E-
ARKO mice have normal testicular development and unaltered
levels of testosterone (17, 20). In an effort to distinguish the effects
of testosterone- vs. AR-deficiency in G-ARKOmice, we castrated
the mice to remove endogenous testosterone production and
supplemented the mice with a physiological dose of testosterone
(17). Our results show that the effect of testosterone on thymus
size is completely AR-dependent.

In the present study, we found that the RTEs in secondary
lymphoid organs (spleen and lymph nodes) were increased
in E-ARKO mice, which has not been reported previously.
Overall, these data suggest that TECs are androgen target
cells for the regulation of both thymus size and export
of RTEs. Indeed, thymus size is an important determinant
of thymic output of RTEs, independently of other factors
such as age (22). Our data are in line with previous
studies suggesting that the fraction of RTEs increases in the
periphery after castration and/or androgen deprivation therapy
of both mice and humans (3, 5). As RTEs are precursors
to mature T cells, the increased frequency of RTEs is a
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FIGURE 4 | TEC shift in E-ARKO mice. (A) Gating strategy for TECs. (B–D) Relative numbers of all thymic epithelial cells (TECs), cortical (cTEC; CD45− EpCAM+

UEA1− Ly51+), and medullary (mTEC; CD45− EpCAM+ UEA1+ Ly51−) TEC in control and E-ARKO male mice; n = 8/group. (E) Assessment of AR knockout by

measurement of exon 2 gDNA in mTECs from 4-week-old control (K5-Cre+; n = 4) and E-ARKO (ARflK5-Cre+; n = 4) male mice. (F) Assessment of AR knockout by

measurement of exon 2 gDNA in cTECs from 8-week-old control (K5-Cre+; n = 4 pools, 2 mice/pool) and E-ARKO (ARflK5-Cre+; n = 6 pools, 2 mice/pool) male

mice. *P < 0.05 (Mann-Whitney U test); all bars indicate means; circles represent individual mice, error bars indicate SEM.
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FIGURE 5 | Increased numbers of peripheral T cells and recent thymic emigrants (RTEs) in E-ARKO mice. (A) Gating strategy for CD4+ and CD8+ T cells and CD4+

and CD8+ RTEs. (B,C) Total numbers of CD4+ and CD8+ T cells in spleen from control (n = 18) and E-ARKO (n = 15) male mice. (D–G) Relative and total number of

CD4+ and CD8+ RTEs (Qa2loCD24hi CD4+ or Qa2loCD24hi CD8+) in spleen from control (n = 18) and E-ARKO (n = 15) mice. (H,I) Relative number of CD4+ and

CD8+ RTEs in lymph nodes (LN; pooled inguinal and para-aortic lymph nodes) from control (n = 11) and E-ARKO (n = 8) mice. (J,K) Relative number of CD4+ and

CD8+ RTEs in blood from control (n = 10) and E-ARKO (n = 8) mice. *P < 0.05, **P < 0.01, ***P < 0.001 (Mann-Whitney U-test); all bars indicate means; circles

represent individual mice, error bars indicate SEM.
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plausible explanation for the increased number of splenic T
cells in E-ARKO mice, which also were found by Lai and
coworkers (14). Further, E-ARKOmice showed enhanced donor-
derived thymocyte and splenocyte numbers after bone marrow
transplantation (14).

Expressed as the percentage out of the total pool of T cells,
we found that the frequency of CD4+ RTEs (among CD4+ T
cells) was increased in spleen of E-ARKO mice, with a similar
trend for CD8+ RTEs (among CD8+ T cells). In the lymph nodes
and blood, there seems to be a slightly larger E-ARKO effect on
CD8+ RTEs as compared to CD4+ RTEs. Further, there may be
a slightly more prominent effect in the lymph nodes as compared
to the spleen for both CD4+ and CD8+ RTEs. Although the latter
trends require confirmation, they raise the question whether
AR depletion in TECs alters the peripheral trafficking of RTEs
by shaping RTE properties. To our knowledge, no studies have
yet addressed possible androgen/AR-mediated regulation of the
homing patterns of RTEs or regulation of their expression of
adhesion molecules, chemokines, and/or chemokine receptors
known to be involved in the migration of RTEs to secondary
lymphoid organs (13).

We used K5-driven Cre recombinase expression to target
the AR in TECs. Few studies have reported the degree of
DNA depletion in TECs using the K5-Cre construct, as the
Foxn1-Cre system has been most widely used for TEC-specific
targeting (16). However, using K5-Cre, Lai et al. detected Cre
reporter signal in both cortex and medulla (14). In the present
study, we found a mean knockout degree of around 65 % in
mTECs of E-ARKO mice, while we could not demonstrate a
deletion of AR in cTECs. In addition to most differentiated
mTECs, common thymic epithelial stem/progenitor cells express
K5 (23), but it is possible that K5 expression in early TECs
is not general and/or sufficient to drive Cre expression that
results in depletion across TEC subsets. Notably, a recent study
reported that castration results in reduced cTEC numbers,
which the authors coupled to increased apoptosis of cTECs
and increased differentiation of cTEC-phenotype progenitors
into mTECs (15). Theoretically, if AR depletion in TECs
affects cTEC survival and/or differentiation, quantification of AR
knockout degree in cTECs may be biased by preferential loss
of AR-depleted cTECs/cTEC-phenotype progenitors through
these processes. As previously reported after castration (15),
we found a shift in the relative number of mTECs and cTECs
in E-ARKO mice; thus, the effect of androgen deficiency on
mTEC/cTEC ratio is partially mimicked by AR depletion in
TECs using K5-driven Cre expression. However, our result
contrasts that of Lai et al. who found proportionally increased
cellularity of mTEC and cTEC fractions in E-ARKO mice,
although they used slightly different markers for defining
cTECs (14).

Our finding of no detectable AR deletion in cTECs of E-
ARKO mice is unexpected given the thymopoiesis phenotype
of these mice, as cTEC functions are known to be important
for T cell expansion and development (16). However, molecular
delineation of individual TEC subpopulations is a work in
progress (16), and new data emphasizes the role of medullary
stromal signals for the function of the cortical stroma (24),

suggesting an important interplay between different TEC
fractions. Notably, we found increased staining of CCL25 in the
medulla, but not cortex, of E-ARKO mice, similar to the pattern
of castrated (testosterone-deficient) mice. CCL25 has been shown
to be an important mediator of the effects of testosterone
deficiency on thymopoiesis through increased uptake of early T-
lineage progenitors and regulation of the maturation of double
negative thymocytes (9). Thus, these mechanisms may possibly
be mimicked in the E-ARKO model. Our findings indicate that
the androgen/AR-mediated regulation of CCL25 mainly occurs
in the medulla, which is in accordance with previous data
showing that the greatest increase in CCL25 production after
castration is by UEA+ mTECs (9).

Patients with androgen deficiency, such as Klinfelter patients,
have both increased number of T cells (4) and increased risk
of autoimmune diseases (25). However, whether androgen-
mediated modulation of thymus/TEC biology plays a role
in T cell-dependent disorders remains largely unclear. Our
group recently showed that E-ARKO mice display increased
atherosclerosis, which was abolished by prepubertal thymectomy
(20). Although the mechanism underlying increased thymus-
dependent atherosclerosis in E-ARKO mice remains to be
established, it may theoretically relate to various TEC functions
such as negative selection, regulatory T cell formation, or
RTE formation (26). To date, it remains unclear whether
the E-ARKO mice are prone to other inflammatory and/or
autoimmune disorders. Deciphering whether the thymic
epithelium is a target compartment for androgen/AR-mediated
regulation of inflammation and autoimmunity, and defining the
mechanisms mediating such effects, will be important tasks for
future studies.

In conclusion, we demonstrate that the thymic epithelium is
a target compartment for androgen/AR-mediated regulation of
thymopoiesis and consequently the generation of RTEs.

METHODS

Animals
G-ARKO and E-ARKO male mice were generated as previously
described (17, 20). T-ARKO and E-ARKO male mice were
generated by breeding AR+/flox female mice with male pLCK-
Cre+ mice (Stock no. 003802, B6.Cg-Tg(LCK-Cre)548Jxm/J,
Jackson laboratory, Bar Harbor, Maine, USA), and K5-Cre+

mice (19), respectively. Because our initial assessments of
androgen status (wet weight of androgen sensitive organs) and
thymus weight and cellularity revealed no differences between
AR+ and ARflox males, Cre+ littermates without the ARflox

construct were used as controls for subsequent experiments.
In all experiments the different ARKO mice were compared
to littermate controls and the mice were on a C57BL/6 ApoE
constitutive knockout background (B6.129P2-Apoetm1UncN11,
Taconic). We assessed AR, Cre, and Zfy (for gender) by PCR
amplification of genomic DNA (gDNA) (27). The mice were
housed in a temperature- and humidity-controlled room with
a 06:00–18:00 h light cycle and consumed a soy-free diet (R70,
Lantmännen) and tap water ad libitum. All animal studies were
conducted in compliance with local guidelines and The Ethics
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Committee on Animal Care and Use in Gothenburg approved
all procedures.

Castration and Testosterone Replacement
In a separate experiment, G-ARKO mice and littermate controls
were bilaterally orchiectomized and implanted subcutaneously
with a small slow-releasing pellet containing placebo or a
physiological dose of testosterone (25 µg/day; Innovative
Research of America, Sarasota, FL, USA) as previously
described (17).

Tissue Collection
At 10–16 weeks of age (unless otherwise stated), the mice
were anesthetized and blood was drawn from the left
ventricle and collected in EDTA tubes (Microvette, Sarstedts).
The mice were perfused with saline under physiological
pressure and tissues (thymus, spleen, inguinal lymph nodes,
and para-aortic lymph nodes) were dissected and kept in
PBS on ice.

Cell Preparation and Flow Cytometry
Analysis of T Lymphocytes
Single cells from thymus, spleen, and lymph nodes were
prepared by passing the tissue through a 40µm cell strainer
(Thermo Fisher) using PBS and a syringe plunger. Erythrocytes
in blood and spleen were lyzed in lysis buffer (0.16M NH4Cl,
0.13M EDTA, and 12mM NaHCO3), the cells were washed
in flow cytometry buffer (2% fetal bovine serum and 2mM
EDTA in PBS) and counted in an automated cell counter
(Sysmex). After FcR-blockage (anti-mouse CD16/CD32, BD
Biosciences), antibodies specific for the following markers were
used: CD4 (GK1.5, Biolegend or RM4-5, BD Biosciences),
CD8a (53-6.7, Biolegend), CD44 (IM7, Biolegend), CD25
(PC61, BD Biosciences), CD24 (M1/69, BD Biosciences),
and Qa-2 (1-1-2, BD Biosciences). Immunostained cells
were analyzed on a FACS Canto II, Accuri C6, or FACS
Aria (BD Biosciences). Data were analyzed using FlowJo
(Tree Star) and fluorochrome-minus-one staining was used
as controls.

Thymus Sections
Cryosections (10µm) of thymus were air dried for 2 hrs
and stored at −20◦C. Sections were fixed for 5min in
2% formaldehyde, permeabilized with 0.1% Triton-X for
4min, blocked in 1% bovine serum albumin and Fc-receptor
blocking antibody (anti-mouse CD16/32, clone 2.4G2; BD
Biosciences; 1:100) for 30min at r.t. and incubated with a
primary polyclonal goat anti CCL25 antibody (InVitrogen; cat
no. PA5-47662; 1:500) in blocking buffer overnight at 4◦C.
Sections were then washed 3 × 5min in PBS, incubated with
secondary antibody F(ab)2 AF594-conjugated donkey anti-goat
IgG (Jackson ImmunoResearch; 1:300) in blocking buffer for
1.5 hrs at r.t, stained in 1µg/mL DAPI in PBS for 3min,
washed as above and mounted with ProlongGold mounting
medium (Life Technologies). The thymic medulla and cortex
areas were manually delineated by a blinded observer and the

CCL25 positive area was quantified using Visiopharm Integrator
System (version 2017.2).

Cell Preparation and Flow Cytometry
Sorting of Thymic Epithelial Cells (TECs)
The thymi were fragmented and excess of thymocytes washed
away bymechanical disruption. TECs were released by enzymatic
digestion. Briefly, the thymic fragments were incubated in
digestion medium (0.5 U/mL Liberase TM (Roche), 0.2 mg/mL
DNase I (Roche) in DMEM/F12) at 37◦C with gentle mixing
for 20min. The released cells were transferred into cold flow
cytometry buffer. New pre-warmed digestion medium was
added to remaining thymic fragments for two more consecutive
incubations, to completely dissolve the tissue. The released
cell fractions were filtered through a 100µm cell strainer
(BD Biosciences), washed and counted. Cells from the two
latter fractions were pooled for analysis. After incubation
with FcR block (CD16/CD32, BD Biosciences), antibodies
against CD45 (30-F11, BD Biosciences) and EpCAM/CD326
(G8.8, BD Biosciences), Ly51 (6C3, BD Biosciences) and the
biotinylated lectin UEA-1 (Vector Laboratories) were added.
The cells were washed, resuspended in flow cytometry buffer,
and filtered through a 100µm cell strainer. mTECs (CD45−

EpCAM+ UEA1+ Ly51−) and cTECs (CD45− EpCAM+

UEA1− Ly51+) were sorted on a SY3200 cell sorter (SONY
Biotechnology Inc.).

AR DNA Quantification
In the ARKO mouse model exon 2 of the AR gene is excised
(27) and the presence of exon 2 versus exon 3 was used to
quantify the efficacy of the AR knockout. CD3+ cells were
isolated from thymus using positive selection with MACS
(magnetic-activated cell sorting) CD3 microbeads (Miltenyi
Biotec). Genomic DNA from CD3+ cells was isolated using
DNeasy blood and tissue kit (Qiagen) according to the
manufacturer’s instructions. Genomic DNA amplification
was detected using SyBR green master mix (Applied
Biosystems) in an ABI Prism 7900HT Sequence Detection
System (Applied Biosystems). The following primer pairs were
used: AR exon 2, forward GGACCATGTTTTACCCATCG
and reverse CCACAAGTGAGAGCTCCGTA; and AR exon
3, forward TCTATGTGCCAGCAGAAACG and reverse
CCCAGAGTCATCCCTGCTT. Ct values for AR exon
2 were normalized to Ct values for AR exon 3 using the
2−11ct method (28).

Statistics
Statistical evaluations were performed with Prism software
(GraphPad Software, Inc.). The non-parametrical Mann-
Whitney U-test was used for all for two-group comparisons and
Kruskal-Wallis followed by Mann-Whitney U for comparisons
between four groups. P-values of < 0.05 were considered
statistically significant. Unless otherwise specified, results are
represented as mean± SEM.
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