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fixed compact Kahler manifold M to Riemann surfaces { X, }.c7 in a fixed homotopy
class. If u(2) is holomorphic or anti-holomorphic, then (0.1) is also proved.
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RESUME

Nous étudions les fonctions harmoniques u(z) : X; — N dans la classe homotopie
fixée des surfaces Riemann X, de genre g > 2 variant dans ’espace Teichmiiller T
a une variété riemannienne N de courbure Hermitienne sectionnelle non-positive.
La fonctionnelle E(z) = E(u(z)) peut étre considerée comme une application
sur 7 et nous étudions sa premiére et le seconde variation. Nous montrons que
la fonctionnelle d’énergie reciproque FE(z)~! est plurisubharmonique. De plus,
nous obtenons la (strictement) plurisubharmonicité des log E(z) et E(z). Comme
application, nous obtenons la relation entre la seconde variation de la fontionnelle
d’énergie logarithmique et la métrique Weil-Petersson si la function harmonique
u(z) est holomorphe ou anti-holomorphe et totalement géodésique, i.e.
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V=10d1log E(z) = %. (0.1)

Nous considérons la fontionnelle d’énergie F(z) associée aux applications harmo-
niques de la variété Kiahlérienne compacte fixé aux surfaces Riemann {X }.c7 dans
la classe homotopie fixée. Si u(z) est holomorphe ou anti-holomorphe, (0.1) est
obtenu encore.

© 2020 Elsevier Masson SAS. All rights reserved.
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Introduction

Recently, the Weil-Petersson metric and other Kéhler metrics on Teichmiiller space of a surface have been
studied extensively [14,15,24,32]. The Weil-Petersson metric has several interesting properties; it is Kéhler
[1], incomplete [4,30], geodesically convex [29] and negatively curved [27,31], and the energy function of
harmonic maps between Riemann surfaces is a Kéhler potential of it [8,28].

In this paper we consider the log-plurisubharmonicity and the plurisuperharmonicity of reciprocal energy
function of harmonic maps between Riemann surfaces and a general Riemannian manifold, and we compare
the second variation with the Weil-Petersson metric. Plurisubharmonicity of log E(z) and E(z) gives map-
ping class group invariant Kéahler metrics on Teichmiiller space. We also show that for some cases, these
metrics agree with the Weil-Petersson metric up to scaling. See Theorems 0.6, 0.8. Hence we introduce new
way of constructing Ké&hler metrics on Teichmiiller space. By varying Riemannian manifolds, it would be
interesting to see which kinds of Kéhler metrics would arise.

Let 3 be a Riemann surface of genus g > 2 equipped with hyperbolic metric, and M and N Riemannian
manifolds. There are two kinds of harmonic maps whose variations are of interests, the maps u : M — %
and maps u : X — N. The primary examples of the first kind are closed geodesics in ¥ viewed as harmonic
maps from the circle to X. Now as the hyperbolic metric varies in the Teichmiiller space T we get Riemann
surfaces X, and the geodesic length can be viewed as a function of z € 7T, the variation formulas of
the geodesic length function, i.e., the energy function, have been obtained in Axelsson and Schumacher’s
formulas [2,3]. In a recent paper [11] we find general variational formulas for harmonic maps v : M — X,
and we prove the logarithmic plurisubharmonicity of the energy function, thus generalizing the results in
[2,3]. The another kind of harmonic maps v : ¥ — N appear also naturally in the study of rigidity [25]
and in Hitchin components [13]. If NV is also a negatively curved Riemann surface Tromba [26] showed that
this energy function is strictly plurisubharmonic. For variational formulas and (strict) convexity of energy
functions between surfaces, see [12]. When N has non-positive Hermitian sectional curvature, Toledo [25]
proved that the energy function is also plurisubharmonic. A natural question is whether the logarithm of
energy function is also plurisubharmonic. In this paper, we give an affirmative answer to this question.
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Let (IV, g) be a Riemannian manifold with non-positive Hermitian sectional curvature (see Definition 2.4).
In particular NV has non-positive sectional curvature. Let T be Teichmiiller space of a surface of genus g > 2,
and 7 : X — T Teichmiiller curve over 7T, namely it is the holomorphic family of Riemann surfaces over T,
the fiber X, := 7~ 1(2) being exactly the Riemann surface given by the complex structure z € T, see e.g.
[1, Section 5]. Let ug : (X5, ®,) — (N, g) be a continuous map, where ®, is the hyperbolic metric on the
Riemann surface X,. We assume that for each z € T, there is a unique harmonic map u(z) : (X, ®,) —
(N, g) homotopic to ug. Then we get a smooth map u(z,v) : X — N and the energy

B(:) = B(u(z)) = 5 [ ldu(z)Pdpa. 02)
X=

is a smooth function on Teichmiiller space, see [6,19,26] for proofs of smooth dependence in several contexts.
Our first main theorem is

Theorem 0.1. Let (N, g) be a Riemannian manifold with non-positive Hermitian sectional curvature and fix
a smooth map ug : ¥ — N. If there is a unique harmonic map u(z) : X, — N in the homotopy class [ug]

for each z € T, then the reciprocal energy function E(z)~' is plurisuperharmonic.

Note that the uniqueness assumption is typically satisfied. For instance, if (N, g) has strictly negative
sectional curvature, then the harmonic map is unique unless its image is either a point or a closed geodesic [9].
If N is a locally symmetric space of non-compact type, then w is also unique unless . (71 (X)) is centralized
by a semi-simple element in the group of isometries of the universal cover of N [21].

We also obtain the strictly plurisubharmonicity of log E(z). More precisely,

Theorem 0.2. Under the conditions of Theorem 0.1, the logarithm of energy function log E(2) of u(z) : X, —
N is plurisubharmonic. Moreover, if (N, g) has strictly negative Hermitian sectional curvature and d(u(zp))
is never zero on X, for some zg € T, then log E(2) is strictly plurisubharmonic at z.

As a corollary, we obtain the following result of Toledo.

Corollary 0.3 (/25, Theorem 1, 3]). Under the conditions of Theorem 0.1, the energy function E(z) is
plurisubharmonic. Moreover, if (N, g) has strictly negative Hermitian sectional curvature and d(u(zo)) is
never zero on X,, for some zg € T, then E(z) is strictly plurisubharmonic at zg.

The (strict) plurisubharmonicity of energy function is proved in [25] by using a formula of Micallef-Moore
[16]. More precisely, let D be a small disk in C centered at 0, and let J = J(s,¢) be a family of complex
structures on Y compatible with the orientation and depending holomorphically on the complex parameter
z=s8++/—1t € D. Then E(z) = E(s,t) = E(J(s,t)), and the complex variation can be obtained from the
real variation, i.e.,

2 2
AE(0) = %b:o + %Tf|z:o,
where A = 40,03. The family J = J(s,t) satisfies certain Cauchy-Riemann equations [25] and the variation
can be computed in terms of J. Our method is completely different from Toledo’s. We shall treat the
energy function as the push-forward of a differential form on Teichmiiller curve X', by using the canonical
decomposition of the holomorphic cotangent bundle T*X, and we obtain a precise and somewhat more
concrete formula on the second variation of the function.

We proceed to explain further details of our results and methods. Let u(z) := (X,,®,) — (N, g) be a

family of harmonic maps considered as a smooth map u : X — N. Let (z;v) = (z,---,2™;v) be local
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holomorphic coordinates of X’ with 7(z,v) = z, where (z) denotes the local coordinates of T and (v) denotes
the local coordinate of Riemann surface X,, m = 3g — 3 = dimc 7. Note that du € A*(X,u*TN) can be
decomposed as

du = Ou+ ou € AY(X,u*TN),

where du denotes the (1,0)-component of du and du = du denotes the (0, 1)-component of du. Let (JuAdu)
denote the (1,1)-form on X obtained by combining the wedge product in X with the Riemannian metric
(+,+) on u*T'N. Then the energy function F(z) can be expressed as

E(z) =+v-1 / (Ou A Qu);
XT

see (2.2) below. Here [ X/T denotes the integral along fibers. Then the first and the second variations of the
energy function are given by

OB(z) = V=T / O(Ou A du), OFE(z) = V=1 / 08(0u A du).
xX/T X/T
The holomorphic cotangent bundle T*X has the following decomposition:
T"X =H eV,

where H* and V* are defined in (1.5). By using the above decomposition, the first and second variational
formulas are obtained as follows; see Subsection 1.2 for the definition of the connection V and the notations.

Theorem 0.4. The first variation of the energy is

0E(z)
0z

5 0V u)

§z%

= / V-1{dVu AV

X/T

= —(Aq, du),
where Aq = A%yuldv @ 525 € AN (X, u*TN), A%y = 05(—dasd’®).

Theorem 0.5. The second variation of energy is

O*E(z) ou du Ou du _ v v
X/T X/T

By using Cauchy-Schwarz inequality, for any £ = £ 82& € T.T, one has

« OE(2)

¢ 0z«

2
< E(z)- /(vgﬁ : 0V uNVea s 8u),
5zP8 z%
X/T

see Lemma 2.7. If (V, g) has non-positive Hermitian sectional curvature, then

PE(z)7!
022078

1 < PE(z) 2 0E(2) IE(2)

aeB . _ _— _
& 0220z E 0z 0zP

o2 ) ¢l <o,
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which completes the proof of Theorem 0.1. By using the following two identities
V—=1901log E = —E\/—100E~! + E=2\/—10E A OF
and
V—100F = Ev/—1901og E + E~'\/—10E A OE,

we obtain the plurisubharmonicity of log F(z) and E(z).
As applications we find that the second variation of the logarithmic energy function is related to the
Weil-Petersson metric. More precisely

Theorem 0.6. Let (N, h) be a Hermitian manifold and fix a smooth map ug : ¥4 — N. If there is a unique
harmonic map u(z) : (X, ®,) — (N,g = Re h) in the homotopy class [ug] for each z € T, moreover u(zg)
is holomorphic (resp. anti-holomorphic) and totally geodesic on X,,, then

5 _ wWwp
V—1900log E(2)| =z, = (g —1)

Corollary 0.7 (/8, Theorem 2.6]). If u(zo) = Id : (X, ®,) — (X, Pz, is identity, then
vV 7186E(Z)|z:z0 = QQJWP.

In [11], we considered a general Riemannian manifold M, harmonic maps u : M — X, and showed that
both log E(z) and E(z) are strictly plurisubharmonic on Teichmiiller space. Consequently we constructed
many possible mapping class group invariant Kéhler metrics on 7. For some special cases, these Kéahler
metrics agree with the Weil-Petersson metric up to scaling.

We consider also the harmonic maps v : M — X, from a Riemannian manifold M to Riemann surfaces
(X,,®.) as in [11], but with further assumption that M is a K&hler.

The energy function E(z) is again defined on Teichmiiller space [11,34]. We show that the variation is
again related to the Weil-Petersson metric.

Theorem 0.8. Let (M,wy) be a compact Kahler manifold and fix a smooth map vy : M — X, let E(z) denote
the energy function of harmonic maps from (M, g) to (X, ®,) in the class [ug], where g is the Riemannian
metric associated to wy. If u(zg) is holomorphic or anti-holomorphic for some zy € T, then

V=10010g B(2)]seng = #,

where g(X) is the genus of X.
As a corollary, we obtain
Corollary 0.9. If M is a Riemann surface, and u(zg) is holomorphic or anti-holomorphic, then
V—100E(2)| .=z, = |degu(z0)| - 2w p.
Here degu(zg) is the degree of u(zp).
In particular, if u(zp) is the identity map, then
V—=100E(2)| 1=, = 2wwp,

which was proved by M. Wolf [28, Theorem 5.7].



I. Kim et al. / J. Math. Pures Appl. 141 (2020) 316-341 321

Remark 0.10. In many situations, the harmonic maps are + holomorphic (i.e. holomorphic or anti-
holomorphic) automatically. For example,

(i) (Eells and Wood [5]) Let X and Y be compact Riemann surfaces and f a harmonic map from X to Y
with respect to some Kéhler metrics. If f satisfies the following condition then f is + holomorphic:

e(X)+|degf-e(Y)| >0

where e(X) and e(Y) are the Euler numbers of X and Y respectively and deg(f) is the degree of the
map f: X =Y.
(ii) (Omo [17]) If (M™,w) is a compact Kahler manifold with negative first Chern class and satisfies

nlf*er(N) - ex(M)"HM]| > ey (M)"[M]],

and f is a harmonic from M to a compact hyperbolic Riemann N, then f is + holomorphic.

(iii) (Siu [22]) Let M and N be compact Kahler manifolds and assume that N has strongly negative
curvature in the sense of Siu. Let f be a harmonic map from M to N with respect to the Kéhler
metrics. If there is a point in M where the rank of df is greater than or equal to four, then f is £+
holomorphic.

(iv) (Siu and Yau [23]) Let (M, h) be a compact Ké&hler manifold of dimension n > 2 with positive holo-
morphic bisectional curvature. Then any energy minimizing map f : P! — M must be £ holomorphic.

This article is organized as follows. In Section 1, we fix notations and recall some basic facts on Teichmiiller
curve and harmonic maps. In Section 2, we compute the first and the second variations of the energy function
(0.2) and prove Theorem 0.4, 0.5. In Subsection 2.3 we show the plurisuperharmonicity of reciprocal energy
and prove Theorem 0.1, 0.2 and Corollary 0.3. In the last two sections, we study the relationship between
the energy function and the Weil-Petersson metric, and prove Theorem 0.6, 0.8 and Corollary 0.7, 0.9.

Acknowledgment

Part of this work was done while X. Wan and G. Zhang were visiting KIAS during June 2018 with G.
Zhang as a KIAS Scholar. We thank KIAS for its support and for providing excellent working conditions.

1. Preliminaries

In this section, we shall fix the notations and recall some basic facts on Teichmiiller curve and harmonic
maps. The results in this section are well-known.

1.1. Teichmiiller curve

Let 7 be Teichmiiller space of a fixed surface of genus g > 2. Let 7 : X — T be Teichmiiller curve over
T, namely the holomorphic family of Riemann surfaces over T, the fiber X, := 7~!(2) being exactly the
Riemann surface given by the complex structure z € T; see e.g. [1, Section 5]. Denote by

(z0) = (', -+, 2™ 0)

local holomorphic coordinates of X with 7(z,v) = z, where z = (2!, -2™) denotes local coordinates of T
and v local coordinate of X, m = 3g — 3 = dimc 7. Let Ky /7 denote the relative canonical line bundle

over X', so Kx/r|x, = Kx,. The fibers X, are equipped with hyperbolic metric
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vV —1(bmjd1} A dv

depending smoothly on the parameter z and having negative constant curvature —1, namely,

avaﬁ 10g¢v5 = d)v@a (11)

where ¢, 1= 0,05¢. From (1.1), up to a scaling function on 7" a metric (weight) ¢ on K7 can be chosen
such that

e¢7 = Qup. (12)

For convenience, we denote

d¢ 0¢ 9¢ _ 99

(ba::(??’ ¢/§5=a?, ¢v5:%a d)v-:%:

where 1 < a, 8 < m, as well as a5, ¢, in a similar way. With respect to the (1, 1)-form V—100¢, we have
a canonical horizontal-vertical decomposition of TX, TX = H &V, where

0

) 0 0
= _— v_—_ < < = - .
H Span{éza aza—i-aaav,l_a_m}, Vv Span{av}, (1.3)

where
ag = —Pard"’, (1.4)
and ¢ = (¢y5) L. By duality, T*X = H* & V*, where
H* =Span{dz®,1 <a <m}, V" =Span{dv=dv—aldz"}. (1.5)

Moreover, the differential operators

0 1 = 0 = )
Vv _ H — « 174 _ — H — —a
0" = £ ®dov, 0 S0 ®dz%, 0 EF ®o0v, 0 5o ®dz
are well-defined and satisfy

d=0+0, 9=0"+0", 0=0"+0"

when acting on smooth functions of X. The following two lemmas can be proved by direct computations.

Lemma 1.1 ([7, Lemma 1.1]). The (1,1)-form /—109¢ on X has the following horizontal-vertical decom-
position:

V=100¢ = c(¢) + vV —1psdv A 69,
where c(¢) = V—1c(¢) ,5dz* NdZP, () o5 = og — 9" bavdus-

Lemma 1.2. For any smooth function f on X we have

OOf = (fop + fava + f,50% + fusalal)dz® A dz” + fuz6v A 60

5 (O8N e pso s 5 (O g p s
+52°‘ (81_})(12 A6v+55ﬁ <av)§v/\dz.
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Consider the following tensor

~y 0
8V52—a = (aﬁag)% ® 60 € AY(X,End(V)). (1.6)

We denote its component and its dual with respect to the metric v/—1¢,56v A 60 as
ALy = Opag, = aﬁ(*ﬁﬁviéf)m}), Az = Api ui- (1.7)

Lemma 1.3 (i) below shows that its restriction to each fiber is a harmonic element representing the Kodaira-

Spencer class p( 6‘3& ),

p:T.T - H'(X.,Tx.)
being the Kodaira-Spencer map.

Lemma 1.3. [18, Proposition 2, 3] The following identities hold:

(1) a’uAaTn? = 0;
(i) (O+ D)e(@)as = AZL{)AEU where O = —¢¥0,0;.

Definition 1.4. The Weil-Petersson metric wy p on Teichmiiller space T is defined by
wwp =V —lGaBdZa A diﬂ, Ga,@(z) = /AZ@A—&-)\/ —1¢ypdv A do. (1.8)
X
By Lemma 1.3 (ii) and Stokes’ theorem, the Weil-Petersson metric can also be expressed as
G.5(2) = /c(qﬁ)algv—lqﬁvgdv A do. (1.9)
X=

1.2. Harmonic maps from Riemann surfaces to a Riemannian manifold
Let
D, = ¢pp(dv ® dv + dv @ dv)
denote the Riemannian metric on X, associated to the fundamental (1, 1)-form
V—1¢updv A dv = /=1¢3(dv @ dv — dv @ dv).

Let TX, be the holomorphic tangent bundle of X, and Tc X, = TX, ® T X, the complex tangent bundle.
For any smooth map u : (X;,®.) — (N,g) the differential du is a section of the bundle T¢ X, ® u*TN.
Let {xi}lgigdim ~ denote a local coordinate system of NV and v a local complex coordinate on X,. Then
du € A°(X., T X, @ u*T'N) is locally expressed as

0 out _

ou’
0O a0 G

du =

The energy density and the energy are defined by
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|du|2 = (du,du) = Qgijuiu%¢vﬁ’

1 1
B i= gldulP = 5 [ ldudpo.
X,

= /(gijuiu%¢”ﬁ)\/—_1¢vf,dv A dv (1.10)

X2

:/gijuiu%\/—ldv/\dﬁ,

X

where u! := %—f and dus, = v/ —1¢ysdv A dv is the Riemannian volume form of ®,. The harmonic equation
is

Ogu’, + F;ku{}ulg = 0; (1.11)
see e.g. [33, (1.2.10)]. Here

kl(

1
I‘fj =59 9591 + 9igji — Ngij)

denotes the Christoffel symbols on (N, g).
Let {u(z)}.c7 be a smooth family of harmonic maps u(z) : (X,,®,) = (N,g), z € T. We shall treat it
as a smooth map wu,

u: X =N, (z,v)—u(z,v):=(u(z))(v).

Note that V* defined in (1.5) is a holomorphic line bundle over X with holomorphic frame {év}, which is
equipped with a Hermitian metric (¢, = e~?), thus there is a natural induced connection V on V* @ u*T N
from the Chern connection of V* and the Levi-Civita connection of TN, i.e. for X € T¢ X,

Vx : A°X, V" @u*TN) - AY(X,V* @ u*TN).

By conjugation, we obtain a connection V on V' ®@u*TN. More precisely for any f = fidv® %Jrf};&?@% €
A(x, (V'@ V") @ u*TN) and any vector X € TeX,

VS = (V[0 e g+ (Vxfi)ive oo
where

Vx[fhi=X(f) + T fi X (W) = (96)(X) [}
and

Vi fi = X(f3) + T fi X (W) = (96)(X) f;-

Denote Vi, 1=V 2, V3 := V 2 for notational convenience. In particular for u’dv® -2; € A%(X,V*@u*TN)

2 ozt
we have

P . 9 , -
) = (Vsul)ov ® ——, Viul := dgul, + Il ulul.

V'E (’U,ﬂé’l} ® 83)2 8361 )
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By (1.11), u is a harmonic map if and only if
Veul = 0. (1.12)
2. Variations of energy on Teichmiiller space

In this section we will calculate the first and the second variations of the energy E(u(z)) for harmonic
maps u(z) : X, = N. Fix a smooth map ug : ¥ — N from a surface ¥ of genus g to N. We assume that
u: X — N is a smooth map such that u(z) : X, — N is a harmonic map in the homotopy class [ug]. Then
the following function

is smooth on Teichmiiller space 7.
2.1. The first variation
The differential du of a smooth map

u: X = N, (z,v)— u(z,v),
is

du = 0u+ du € AY(X,u*TN),
with

ou = ou' ® i = (uidz + uidv) ® i € AYY(X, u*TN)
ox? ox®
the (1,0)-component of du, and du = du the (0, 1)-component of du. Let
(Ou A Ou) = gij(u(z,v))ou’ Adu! € AV (X) (2.1)

denote the two-form on X obtained by combining the wedge product in X with the Riemannian metric ()
on u*TN. The corresponding the energy F(z) function (1.10) can be written then as

E(z)=v-1 / (Ou A Qu). (2.2)
X/T
Here we view fX/T as the integral along fibers (see e.g. [18, Section 2.1]),
/ P APTR(X) — AR(T);
X/T

moreover 0, 5—operators commute with f xX/T
The variations of E(z) are

0E(z) = V-1 / A(Ou A Ou), OOE(z) =+/—1 / 0(0u A du). (2.3)

xX/T x/T
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Note that d(QuAdu) € A*(X), which can be decomposed in terms of the frame A3{dz®, dz”, §v, 50} obtained

from the basis vectors. Denote by [0(0u A Ou)] (bvnov)
shall need the following

the component of d(du A du) containing dv A §v. We

Lemma 2.1. The v A §v-component is

[0(0u A Ou)] (bonow) = (@Yun s oVu) Adz®,
where
OVu=uldv® % € A%X,V*®@u*TN) c AY°(X,u*TN)
and

— . a —%
OVu = uldv ® 57 € A’(X,)V @u*TN) c A% (X, u*TN).
xZ
Proof. For any fixed point (z0,v9) € X, we choose a normal coordinate system {x’} around u(zo,vo) such
that

gij(u(z0,v0)) = dij,  (dgiz)(u(z20,v0)) = 0. (2.4)

From (1.11), one has d;u! (z0,v9) = 0. Lemma 1.2 implies that

9,1 U v a 4 g
00U’ = (uyj + Uasaj + u,5ag)dz A dz? + 5, Un Ldz® A 6D+ Wuvév AdZP. (2.5)

Thus at (zg,v9) € X, one has

](611/\511) }(51)/\617)

[0(0u A du dgij N Ou' A oul — gi;0ut A dOu?

[ out A 85ui] (6uns9)
) 5 . (6vN6D)
—ou’ A ((sz—aul—,)dz A 0v

= gijuiv%uﬁév A ST A dz®
=(0"uA V%évw Adz®.
] SUNSD)

Since both [9(du A du) ( and (0VuA Vs,
coordinate system {z'}, and the point (zq,vo) is arbitrary,

OVu) Adz® are globally defined, independent of the normal

(6vN6D)

[0(0u A 5u>] = (OVu A Vs, AV'u) A dz®

on X. O

Theorem 2.2. The first variation of the energy is

/ \/_aVuAv 5 v u ).

X)T

Bza
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Proof. By (2.3) and Lemma 2.1,

DE() = / V=10(0u A du)

X/T

_ / V=T [8(0u A Buy] )

X/T

= /\/—1<3VuAv%a5Vu> dz*®,

X)T

which completes the proof. O

Now we will give another formula on the first variation of the energy function. Denote

, ) _
Ao = Agyuydv @ 5 € AN X, u'TN),  Aly = 05(—dasd™). (2.6)
x
Then
(A, du) = (AY ul dv ® 9 uldv ® 2 + ubdo @ —)
a» av Yu oxi’ Y ozt v oxt
= /gijuiuiflg@\/—ldv A du.
X,
Theorem 2.3. The first variation of the energy function is
0E(z
az(a) = —(4,,du).
Proof. From Theorem 2.2 we find
0E(z) =
See = / V=1{0Vu A V&%GVW
X/T
:/gijuiv%u%\/—ldv/\dz’)
X,
i u’ v g =
= [ Gijuy, Vﬁézfa — AV oul | V/—1dv A do
=— /gijuiuZ}AZ@\/—ldv N
X,
= —(Aq,du),

where the fourth equality follows from Stokes’ theorem and the harmonic equation (1.12), and the third
equality holds by
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; 1) duk
Vs, ul = 5—auv + Fkl i’(S -
.0 (oW - ouk
= A opd? )l + — [ | 2.7
817 ((ZS ¢ )u'u + a’l—) (62“) + k:l 1)6 o ( )

ul
AA”M+V£— 0

v v é’
2.2. The second variation

We first recall the definition of Hermitian sectional curvature on a Riemannian manifold (N, g). Let
VY be the Levi-Civita connection of Riemannian manifold (N, g). Recall that the Riemann curvature
endomorphism R € A?(N,End(TN)) is

R(X,Y)Z =VXVYZ - VYVXZ = VX yZ.
Recall also the notation
R(X7 Y7 Za W) = 7<R(X7 Y)Za W>a

and

o o0 0 0
Rikji == R < >

xi’ dx*’ dxi’ Hal
By direct computations one has the known formula

9%gi; D% g %ga % gr;
Rupg = — (29 gk O gn_ OGki ) o (pmpn pmTR Y
kit 2 (8$ka$l + Ozidxd  Ozkdxi  Ozidx! g ( ikl i kj)

The sectional curvature is defined by

R(X,Y,X,Y)
[XPIY)? — (X, Y)2

K(XAY) =

The Riemann curvature tensor R can be extended on the complexified tangent bundle TN @ C. We recall
the following curvature condition of Siu [22] and Sampson [20].

Definition 2.4 (/22,20,25]). For any X, Y € TN ® C, the Hermitian sectional curvature on the plane X AY
is defined by

R(X,Y,X,7)

ReXAY) = Ixpivie - (x.mp

The Riemannian manifold (N, g) is said to have non-positive (resp. strictly negative) Hermitian sectional
curvature if

Kc(XAY)<0 (resp.<0)

for any X, Y € TN @ C with X AY #0.

](51)/\517)

Recall the notation [09(du A du) , the part of 99(du A du) containing v A 0. Then
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Lemma 2.5. It holds

ou ou Ou du

= = (8vAG6D)
[00(0u A Ou)] = —2R (81} 500 93 558

)51}/\51}/\dz AdzP

+2(V s Vu N v%é‘fw Adz® A\ dZP,
5z B
where
@ﬂl(a)iia Ou _bu' 9 OQu_ ;0 du w9
ov Moy TMorit 0 T sze0x 00 P9z 628 078 Ozt

Proof. From (2.1), one has
0(0u A Ou) = (00gi; A Ou' — 0gi; A OOu') A Ou? + (Dgij A Ou' — g;;00u’) A DO .

By taking a normal coordinates system {2’} around u(zg,vo) for any fixed point (zg,v9) € X as in (2.4),
we get that, at the point (zo,vo),

0{0u A Ou) = ddg;; A Ou' A du? — (A0u*)?.

By (2.5) we have further

[08(0u A du)] ")
= [3592-]- AUt A dud — (aéui)2] (5uA6D)
) i A O ; , (5uA5D)
[wkalgij)auk A Oul N Ou' A Ow! — Qsiauj;dza A 6D + 5%%51) A dzP)?
z V4

Suk sul Su¥ dud
— 8 a » 1,J Z l
<< £00i) (e 5 0 o gz

]

, oy
du’ du! uFul ou” ou uk l)+2(5a v)((;ég v))dz A dZP A v A 6D

T o8 i T gAY

koSl
22( Rzkﬂgu&gﬁ Uy, v—&-ng s uJV )(51}/\61}/\d2 A dz?

ou odu Ou du
__2R<811 620 0v’ 628

2V 5 avu/\V%évw Adz® A dZP,
5z z

)5vA5vAdz A dzP

where the second equality follows from (2.5) and note that [09u’](**?) = 0 at the point (2o, vo), the fourth
equality holds since

at the point (29, vp) and

Ry — L 8*gij Pgu Pga Pgy
ikl 2 \ Ozkozx! = Ozi0xd  OxkOxI  Oziox!

at the point u(zp,vo). Since the point (zg,vg) is arbitrary, we complete the proof. O
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Theorem 2.6. The second variation of the energy is

0?E(2) Ou du Ou du
920058 ~ 2 / R(av PRI M) V-10u A 09 +2 /<V
XIT XT

s 8VuAVi5Vu).
§z8 5z

Proof. By (2.3) and Lemma 2.5 we have

00E(z) = V=1 / 08(0u A du)

xX/T

— V1 / [08(0u A Fup] P

X7
ou du Ou du
:2/ <_R<3v 522 55’ 55)51}/\51}/\052 A dz?
X)T

(Vs

O unV s 0" u >/\dz°‘/\d§5)

528

< <8u ou Ou 6u>\/—5v/\5v

ov’ 522" Ov’ 6P
X/T

+<V%3VU/\V%(§VU>> ~dz® N dZP,
5z z
as claimed. O

2.8. Plurisuperharmonicity

In this subsection, we will prove the strict plurisubharmonicity of logarithmic energy function log F(z)
and plurisuperharmoncity for the reciprocal energy function E(z)~*
Firstly, we will show the reciprocal energy function E(z)~! is plurisuperharmonic.

Lemma 2.7. For any £ = fa— e T.T it holds

2
< E(z)- / <V£73 5, oVu A Vea o 5vu>
5z z
X/

OE(2)

¢ 0z«

Proof. This follows directly from Theorem 2.2 and Cauchy-Schwarz inequality:

2
2

O0E(2)
0z

é'a

= |£“ / \/—1<8vu/\V5%5Vu>
X7

2

/gmu Vga 5 uU\/ 1dv A dv
By

z

/g wlul v/ —=1dv A do - /gmvfa_ul fo sy uh/—1dv A do

X X



I. Kim et al. / J. Math. Pures Appl. 141 (2020) 316-341 331
— _ 14 Vv
= E(2)- /<V§B(52Lﬂa u/\vga&%a w). O
X/T

Theorem 2.8. If (N, g) has non-positive Hermitian sectional curvature, then the function E(z)~1 is plurisu-
perharmonic, i.e.

V=I09E(z)"! < 0.

Proof. For any vector £ = £ afa eT. T,

PE(2)"!
020z

(2.8)

OB oy 12 (a E(z) 2 0E(2) 8E(z)> ~

0240z E 0z 0zZP

The first term above can be treated using Theorem 2.6,

PE(2) cuzs ou 8u 5 —
0220z Bf &= / < ”u’g 5z (% ) —lovAoy
X7

14 aqV
+2 / <Vgﬁ5%ﬂ8 U/\Vgaé%aa u) (2.9)
X7

>2 /(Vga s 8vu/\véa550 5Vu>
528 E
X/T

by the non-positivity of Hermitian sectional curvature. Furthermore Lemma 2.7 implies that

0?E(2)
0z207%b

IE(z)
0z«

* 2 0B() 0E(2)
E 9z¢ 0zZ8

¢ > ¢gP, (2.10)

&

E

Substituting (2.10) into (2.8), one has

0?E(2)7!

G €S0,

Thus

02E(z)~
0z00zP

V—100E(2)™! = V—=1dz*AndZ? <0. O

Next, using Theorem 2.8 we get the following (strict) plurisubharmonicity of logarithmic energy log FE(z).

Theorem 2.9. If (N, g) has non-positive Hermitian sectional curvature, then the logarithmic energy function
log E(z) is plurisubharmonic on Teichmiiller space T, i.e.

V—=10dlog E(z) > 0

Moreover, if (N, g) has strictly negative Hermitian sectional curvature and d(u(z)) is never zero on X,, then
log E(2) is strictly plurisubharmonic, i.e.

V—1001log E(z) > 0.
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Proof. From Theorem 2.8, we get

V—100log E(2) = —E(2)vV/—100E(2)"" + E(2)"2V/—10E(2) ANOE(z) > 0,

which yields the plurisubharmonicity of log E(z). To prove the strict plurisubharmonicity we let & = £~ 9

T.T such that

0?log E(z)

aeB
022078 =0

Then, in view of (2.9-2.11),

o 0u Ou ou ~v
(a S e = >=0, Vea s 0Vu=0.

If (N, g) has strictly negative Hermitian sectional curvature, then

nee g Vea s 0Vu=0.

620‘

Since

i 9 Ut do 0
d(u(z)) =uldv® Ey +uldo® py

(2.11)

0z €

(2.12)

is never zero on X, so u! is also never zero. From the first equation of (2.12), there exists a vector filed

W =wvZ e A%X,,TX,) such that

R
The second equation of (2.12) is
0=V s 0"
= (Vo) 605 aii
o (o) e
= (VaW"u, — " AGsu, ) 00 88

= (OsW"Y — €AV ) ul 00 ® 882.,

where the third equality follows from (2.7) and the last equality follows from harmonic equation Vzu! = 0.

Thus
a pAv = 0 3 0,1
EXAY AU ® 6_ =0W € A® (XZ,TXZ)
v
This implies that

0 _
(fa 3za> = [gaAZﬁdﬁ ® %] =[0W]=0¢€ H'(X,,TX,).

Since p : T,T — HY(X,,TX,) is injective, so £ = 0. This proves the strict plurisubharmonicity. 0O
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The following result was obtained by D. Toledo [25, Theorem 1, 3].

Corollary 2.10 (/25, Theorem 1, 3]). If (N,g) has non-positive Hermitian sectional curvature, then the
energy function E(z) is plurisubharmonic on Teichmiiller space T . Moreover, if (N, g) has strictly negative
Hermitian sectional curvature and d(u(z)) is never zero on X, then E(z) is strictly plurisubharmonic.

Proof. Note that

V—100E(z) = E(2)v/—1901og E(z) + E(2)"'\/—10E(z) A 0E(2)
> E(2)v/—1001log E(2).

The claim follows immediately from Theorem 2.9. 0O

We give another application of our results on the variation of the energy function in the context of
Hitchin representations. Let I' = 71 (X) be the fundamental group of a closed surface ¥ of genus g > 2. Let
G be a real semisimple Lie group and consider the space of all reductive representations p : I' — G of T’
in G modulo the conjugations by elements in G. It can be identified with a subset in G292 modulo the
diagonal action of G. When G is a split real form of a complex semisimple Lie group there is a distinguished
component [10] called Hitchin component. Given any reductive representation p of I' and given a hyperbolic
structure on X, i.e., given a point z in the Teichmiiller space T, there is a p(I')-equivariant harmonic map
u: H? — G/K from the hyperbolic plane H? to the Riemannian symmetric space G/K, the map is unique
up to the action of G. In particular the energy function E,(z) = E(u) = sz |du|? is well-defined. When
G is SL(n,R) it is conjectured by Labourie that for each element p in the Hitchin component there is a
unique minimizing point of E,(z) in the Teichmiiller space 7. Recall [20] that the Riemannian symmetric
space has non-positive Hermitian curvature. We have thus

Corollary 2.11. Let p be a reductive representation of I in G. The energy function E,(z) is plurisubharmonic

onT.

It might be interesting to pursue the study of Labourie’s conjecture using our variational formulas.
3. Energy functions and potentials of Weil-Petersson metric

We assume in this section that N is a complex manifold with a Hermitian metric A. It turns out that
in this case there is a close relation between the second variation of the energy of u(z) : X, — N and
Weil-Petersson metric.

Let {Si}lgigdimc ~ be a local holomorphic coordinates system of N. The Riemannian metric g = Re h is

g= gﬁ(dsi ®ds + d5' @ ds’)
where
a 0
9i5=49 <@» @) .
Then w = —Im h is a two form so that h = g — v/—1w, and

9ik =95 =0, 9k =9kj»  Gix = ik

For any smooth map u : (X,,®,) = (N, g),
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du = u' dv ® % +utdv ® % +uldv® aig] +uldo® 6%1 € AYX,,u*TN).

Hence

|duf? = ¢ g5 (ulud + ubul + ull, + whul) = 2677 g5 (ulud + ubul). (3.1)

So the energy is given by

1 — =
E(u) /E\du\Q\/—lqﬁvgdvAdﬁ = /gg(u;uj + ubul)v—1dv A dv. (3.2)

X, X

Now we assume that v : X — N is a smooth map such that each u(z) : X, — N is a harmonic map, and
u(zp) is a holomorphic map (and is then harmonic by the definition (1.11)). For notational convenience we
write zp = 0. Then E(z) = E(u(z)) is a smooth map on Teichmiiller map 7 and from Theorem 2.3 we have

O0E(z)
= - Aaa d
550 (Aa, du)
vt g 0 v g g 9
= — (AL ;u,dV ® Dei + Al uldo ® @,dw
=— /gijuf}u_%AZm/fldv A do.
X

Evaluating at o € T and using u(0) is holomorphic we get

OFE(z)
0z%

o = 0. (3.3)

The second variation of energy at the point o € T is

0?E(2) i 0 _
975953 lo = —2 /gﬁuvﬁui—,flm—)\/—ldv A dv
Xo
= 72/gﬁuivg§fu%z426\/fldv/\d®
Xo

i dud v . J Av _
= —2/913uvviw - Aﬁiu{’Aa'D Vv —1dv A dv (34)

X,
= 2/gi3uzu_{,Ag{,Ag5\/—ldv A dv
X,

5

+ 2/9,»3%(%)1425 5.7 V—1dv A dv,

XO

where the first equality follows from the holomorphicity of (o), the second equality follows from harmonic
equation (1.12) and the definition of horizontal subbundle (1.3), the third equality holds by (2.7), and the
last equality holds by Stokes’ theorem and Lemma 1.3 (i),

V'UAZCTJ = V’U(AOC’L_H_)Qsﬁv) - aUAal—“—,qu’ =0.
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Here

Voul = 0yul + T4 ubul — ¢ ul.

v

Since u(0) : X, — N is holomorphic,

; 0

d(u(0)) = u! (0)dv ® 57 € A%X,, T*X, @ u(0o)*TN).
x

Let V denote the metric connection on the bundle T*X, ® u(0)*T'N induced from the Chern connection

of (T*X,,e~?) and the pullback of Levi-Civita connection (IV,g). By conjugation we get a connection on

T*X, ® u(0)*TN, denoted also by V. Then

0

Vd(u(0)) = (dvug,(0) + Tiyug (0)uy (0) — du (0)) dv @ dv ® Er

(3.5)

(Vo) )o@ v @

Now we assume further that u(z) : X, — N is totally geodesic (see e.g. [33, Definition 1.2.1] for the
definition), i.e.

Vd(u(o)) = 0. (3.6)
The equation (3.4) becomes
OBz )\ = u u]A” A _\/—1dv A dv (3.7)
azaaﬁz o — g”y'u B{) . M
X,

By the harmonic equation Vzu! = 0 and the assumption V,u! =0 on X,,

0
v (gmuvuvd)m}) = (gijuvuv¢vv) - g’L] (v ul U’{’ + U v uv)d)vv =

This implies that (gijuf)u%qﬁm_’) is a constant on X, and it equals

Joo, (9705wl 6" )V =Tdpdv NdD (o)

it ud v (0) = - . 3.8
i tivteod” (0) Jo. V—Tbpodv A do 2m(29 - 2) (3:8)
Substituting (3.8) into (3.7), one has
82 ( ) v v
8z0‘8z5|z o 27r —1 /A A sV —1¢uzdv A dv
(3.9)

__E() _
= mGa,@(O),

where G, 5 is defined in (1.8). By (3.3), the first variation of the energy at o vanishes, so the second variation
of log F satisfies

1

V—=10010g E(2)|.—0 = 2r(g—1)

V—100E(2)|.=0 = wwp- (3.10)

L
E(o)

Namely we have
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Theorem 3.1. If u(o) is holomorphic (resp. anti-holomorphic) and totally geodesic on X,, then

A _ wwp
V=10910g B(2)|.mp = 5t T

Specifying to the case when N is also a Riemann surface we obtain Fischer and Tromba’s theorem; see
[8] and [28, Corollary 5.8].

Corollary 3.2 (/8, Theorem 2.6]). If u(o) = Id : (X,, ®,) — (X,, D,) is identity, then

vV —185E(Z>|z20 = QWWP.

Proof. In this case, u(o) is holomorphic, u¢ (o) = §? and

;‘k == av 108; d)m’; = ¢v-
So
(Vouy)(0) = (Bouy, + Tygupuy, — dyuy,)(0) =0
and

E(o) = /\/Tl¢vgdv Adv =2m(2g — 2).
Xo

So the identity (3.10) becomes

V=100E(2)| =0 = Eov/—10010g E(2)|.—0 = 2ww p
completing the proof. O

We may also apply our result above, as in Section 3, to the energy function related to a reductive
representation p : I' = m1(X) — G. Recall the definition of the energy function E,(z) for a general element
z in the Teichmiiller space in Section 3. Now let G be a Hermitian semisimple Lie group with G/K a
non-compact Hermitian symmetric space. Let p : PSL(2,R) — G be a fixed representation with the
induced totally geodesic map H? = PSL(2,R)/SO(2) — G/K being holomorphic. Let X, = H?/T, be
fixed Riemann surface with T', a representation of I" in PSL(2,R). The representation p then defines also
a representation of I, also denoted by p, i.e. p: T' = Ty € PSL(2,R) % G. The (lifted) p(I')-equivariant
map u(z) for z = o is then holomorphic and totally geodesic u(o) : H? = PSL(2,R)/SO(2) — G/K. We
can compute the second variation of E,(z) at z = o.

Corollary 3.3. Let p be the reductive representation of mw1(Xy) in G obtained from a representation of
PSL(2,R) in G with the totally geodesic map H? — G/K being holomorphic. Then the second variation of
E,(z) at z=o0is

= __wwp
V—10010g E,(2)|.=0 = om(g— 1)
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4. The second variation of the energy of u(z) : M — X, and Weil-Petersson metric

As we explained in the introduction we may also consider harmonic maps u(z) : (M,wy) — X.; see [11]
and references therein. We assume further that (M, w,) is a compact Kéhler manifold, i.e. wy is a closed
and positive (1,1)-form. Let {s'}1<;<, denote local coordinates of M, n = dim¢ M. Locally, w, can be
expressed as

wg = \/flgijdsi A ds’
for some positive definite hermitian matrix (g;;). The associated Riemannian metric g is given by
g= gi;(dsi ® d5 4 d5’ @ ds?).

For any smooth map u(z) : (M, g) — (X,,®,), du is the section of bundle T*M @ u*T¢ X, for which there is
an induced metric g* ® ¢, from (M™,g) and (X,,®,). Let {v} denote a holomorphic coordinate of Riemann
surface X. In the same way as in (3.1), (3.2), one has

2 Ji VU v _
|dul” = 2¢7" (u; uj +u; ;)fbvv (4.1)

and the energy is given by

Here

denotes Riemannian volume form determined by g. The harmonic equation is
gﬁviug—,’ = gji(aiu}’ + dvujug) =0, (4.2)

see e.g. [11, (1.20)]. We assume that u : M — X is a smooth map such that u(z) : M — X, is a harmonic
map and we put F(z) := E(u(z)) the energy function on Teichmiiller space 7. Similar to (2.6) we define
(with some abuse of notation)

Aa = Aa{)f)uiv(ﬁvﬂdgj ® 3 + Aaﬁgﬁ(ﬁvﬁdsi ® 2 S Al (M, ’LL*TXz),
J Ov i ov

Let A = VV* + V*V be the Hodge-Laplace operator on A*(M,u*TX,) (see e.g. [11, Subsection 1.2]), and
set

1 5 0 __
L=A+ §|du|2, G= Zgjz(bm—,ufuga— ® dv € Hom(u'TX,,uw'TX,).
v

Theorem 4.1 ([11, Theorem 0.5, 0.6]). The first and the second variation of the energy are given by

0E(z)
0z«

— (Aaydu) =2 [ Aussiafil" du, (4.3)
M
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and

82E(2)
0290zP

-1

= %/C(¢)a5|du|2dug +{((Id -V (E _ gﬁflg)

M

V*)Aa, Ag). (4.4)

Now we assume that at o € T the map u(o) is holomorphic. It satisfies the harmonic equation (4.2)
automatically. By (4.3), one has

LOSTRN (15
We recall [11, (1.22)] that
V*A, = ( Vi (Aappule™) — gﬁV;(AaM@W@)) %
= ( 97 Az Viul uj — gﬁu;}av(Aaﬁﬁ)u—; - gﬁAmﬁW> ¢w% (46)
=0,

where the second equality holds since u¥ = 0, the third equality follows from the harmonic equation (4.2)
and Lemma 1.3 (i). Substituting (4.6) into (4.4) we find

O*E(z 1
o= 5 [ clOhuslduPny + (Aa, 43). (47)

M

Lemma 4.2. The following identity holds for any smooth real two form o on X,

uwra /\wn—l _ degwg (U*Kxo) a,
g 2g — 2
M X,

where

deg., (0" K) = [ wer(Ka) nup
M

Proof. Let w, be the area form on X, such that fx wo = c1(Kx,)[X0] = 29 — 2. Then H?(X,,R) = Rwy
and we need only to check the identity for wy. We have

/u*wo AWt = (u*w,][w]" ) [M]

M
= (wer (K, )[w]"™h)[M]

deg,, (v Kx,) /
= UJO. D
29 — 2
Xo

By (4.1) and holomorphicity of u(o), the first term in the RHS of (4.7) is

1 n
5 [ c@uslduld, = [ c@)usle? i) s

M M
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n—1

(ng— !

= /u*(c(qs)ag\/—_wmjdvAd@) A

M

_ 1 deg, (WKx)
T (n—1)!  29-2 B

where the last equality follows from Lemma 4.2 and (1.9), the second equality follows from holomorphicity
of u(o) and the following elementary fact that

no A w;‘_l = (try,a)wy, (4.9)
for any (1,1)-form a = v/—1a,;ds" A ds? with tr,, a = g% oz”, g = V—1g;;ds' N ds7.
Similarly, by (4.9) the second term in the RHS of (4.7) is
v O] lj w;
<AQ,A5> = (A AB'UU’] z ¢vv) '
M
n—l
/ (Ao A sV —1ousdv A do) A (n 1 (4.10)
M
1 deg, (WKx,)
(n—1) 292 ap
Substituting (4.8) and (4.10) into (4.7) we have
O?E(2) 1 deg, (vKx,)
. 3. 4.11
02%0z8 * o= (n — 1) g—1 Cas (4.11)
The energy for u(o) is now
z/g”ul’u;%a—g
n!
M
nfl
— /u V—=1¢ysdv A dv) A =1
M (4.12)
=2 (K
7r/u a(Kx,) (n— ol
M
= ——deg, (u" Kx,
(nf ol ( )-
Therefore the second variation of log E(z) at z = o, in view of (4.5)-(4.11)-(4.12) above, is
92 log E(z)| B 1 0%E(2) 1 0E(z) 90E(z) |
020028 77°  \ E(2) 020028 E(2)2 92> 09zF ) "*7° (4.13)
— 1 G _
S 2n(g—1) 7

Similarly, for anti-holomorphic map u(o), we also can get (4.13). Thus
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Theorem 4.3. If u(0) is a holomorphic or anti-holomorphic map, then

wwp
2m(g— 1)

V—=10010g E(2)|:=0 =
As a corollary, we obtain
Corollary 4.4. If M is a Riemann surface, and u(o) is holomorphic or anti-holomorphic, then
V—100E(2)|.=0 = | degu(0)| - 2ww p,
where degu(o) is the degree of u(o).

Proof. If M is a Riemann surface, from (4.11)

6212(z)| 1 Idegwg(U*l(A;)lc; )
020028 °=°  (n—1)! g—1 B
*e1(K
et
g—1

= |degu(o)| - 2G 5.
Thus

0?E(2)

WLZ:OV —1dz* A diﬁ = |degu(0)| . 2(JJWP. O

VTTOOE(2) .y =
Remark 4.5. In particular, if (o) is the identity map, then
V—100E(2)|2=0 = 2wwp,
which was proved by M. Wolf [28, Theorem 5.7].
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