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ABSTRACT: Ferromagnetic materials are the widely used source of spin-polarized
electrons in spintronic devices, which are controlled by external magnetic fields or
spin-transfer torque methods. However, with increasing demand for smaller and faster
spintronic components utilization of spin−orbit phenomena provides promising
alternatives. New materials with unique spin textures are highly desirable since all-
electric creation and control of spin polarization is expected where the strength, as
well as an arbitrary orientation of the polarization, can be defined without the use of a
magnetic field. In this work, we use a novel spin−orbit crystal BiTeBr for this purpose.
Because of its giant Rashba spin splitting, bulk spin polarization is created at room
temperature by an electric current. Integrating BiTeBr crystal into graphene-based
spin valve devices, we demonstrate for the first time that it acts as a current-controlled spin injector, opening new avenues for future
spintronic applications in integrated circuits.

KEYWORDS: Spintronics, nonlocal spin valve, all-electric spin control, polar semiconductors, Rashba-Edelstein effect, 2D materials,
graphene

■ INTRODUCTION

Spin−orbit interaction (SOI), the coupling between the spin
and the motion of electrons inside an electrostatic potential, is
a central concept in contemporary quantum- and spin-based
nanoelectronic devices.1 Materials with strong SOI are key
building blocks in topological states of matter, such as
quantum spin Hall states,2−4 Majorana bound states 5−8 or
spin textures.9 The SOI also leads to the emergence of strong
spin-valley coupling in transition metal dichalcogenides
(TMDs),10 facilitates control over spin qubits,11,12 or can be
used to switch the magnetization of a ferromagnetic
nanostructure by spin−orbit induced torque (SOT).13,14 The
latter can be realized by the creation of current-induced spin
polarization in high SOI materials and heterostructures due to
the spin Hall effect in bulk materials,15−17 Rashba-Edelstein
effect at interfaces,18−23 and spin-momentum locking phenom-
enon in topological materials.24

The recently discovered class of semiconductor materials,
bismuth tellurohalides (BiTeX, where X is a halogen element)
feature a giant Rashba spin splitting of the bulk bands 25−27 as
experimentally verified by spin- and angle-resolved photo-
emission spectroscopy.28−33 This unique spin texture makes
them highly desirable for various spintronic applications.
Further interesting properties of these highly polar semi-
conductor materials include the bulk rectification effects,33

pressure-induced topological phase,34−38 superconductiv-
ity,39,40 and out-of-plane spin textures caused by coupling to
orbital degree of freedom.41

The crystal structure of BiTeBr consists of three distinct
elemental planes42 (see Figure 1a) with the heavy Bi atoms
being located in a z → −z symmetry breaking built-in electric
field. This results in a giant Rashba spin splitting ER ≈ 40 meV
of the subbands (Figure 1b), which features spin states
perpendicular to momentum with a helical spin structure,
opposite in the two subbands. While in equilibrium there is no
net spin polarization, an in-plane electric field EIP shifts the
occupation of states in k-space and gives rise to a spontaneous
spin polarization near the Fermi level (see Figure 1c). This
shift involves more states on the outer subband than on the
inner one, leading to an unbalanced spin population, with
more spins oriented along the direction given by the blue
arrows compared to the red ones. This current-induced spin
polarization mechanism is called the Rashba-Edelstein Effect
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(REE),43,44 where the magnitude and orientation of spin
polarization can be controlled by the strength and direction of
the electric field. However, electronic generation of spin
polarization in giant Rashba SOI materials and its utilization
for spintronics devices has not been demonstrated so far.
In this work, we report for the first time the all-electrical

control over spin polarization in giant Rashba SOI material
BiTeBr at room temperature. We couple BiTeBr to a graphene
spin-valve device, which allows us to use the very well-
developed toolbox of graphene spintronics,45−52 including
ferromagnetic contacts used in spin-sensitive nonlocal
measurements. Detailed measurements and analysis show
that spin current is generated in graphene by REE in the
bulk BiTeBr and demonstrates its possible utilization as an all-
electric spin injection source at ambient temperature.

■ RESULTS AND DISCUSSION
BiTeBr crystals with a typical thickness of 40−100 nm were
integrated in a graphene spin valve consisting of an exfoliated
graphene flake and Co ferromagnetic (FM) electrodes (see
Figure 2a,b). Graphene serves as an ideal spin transport
channel with a spin relaxation length of several microns due to
its weak SOI and high mobility.53 The magnetization of Co-
based FM contacts points along the electrode axis (y-direction)
due to shape anisotropy. A thin TiO2 tunnel barrier is created
at the graphene/FM interface to enhance spin injection and

detection efficiency46,48,50 (see Device Fabrication and
Experimental Methods in Supporting Information).
Before turning to REE in BiTeBr, we characterize spin

transport behavior and polarization of FM contacts in the
graphene spin valve that we use as our spin detector. Spin
signal is detected by nonlocal (NL) spin injection geometry as
the blue electric circuit shows in Figure 2a. Current is injected
from FM contact C toward the left side of the flake, which
induces spin polarization in the graphene. The spin-polarized
carriers diffuse toward FM contact D which, depending on the
orientation of its magnetization, is sensitive either to spin up or
down chemical potential in graphene. Thus, measuring an NL
voltage, VNL, between contact D and a distant reference
contact, the spin polarization in graphene can be detected. Blue
curves in Figure 2d show such an NL spin valve measurement
as the magnetization orientation of contacts C and D is
switched by an external magnetic field, BY. Because of the
different coercive fields of contacts C and D, their orientation
switches from ↑↑ via ↑↓ to ↓↓ as BY is swept down. Note that
in our device with Co electrodes, the interfacial spin
polarization points opposite to the FM magnetization; the
black arrows show polarization rather than magnetization. The
observed step in VNL has a corresponding NL resistance
change, dRNL = dVNL/I ≈ 190 mΩ (see Figure 2d).
Applying an out-of-plane magnetic field, BZ, the spin

relaxation time in the graphene channel can be determined
by Hanle spin precession measurements .54 Here, diffusing
spins from C to D also undergo in-plane Larmor precession
along with the spin relaxation, resulting in a reduction in VNL
(see blue curve in Figure 2e). In addition to the Hanle curve, a
small background contribution linear in BZ, presumably caused
by stray charge current, is also visible and included in the fits.
Details of the fitting process are described in the Supporting
Information. From fitting (black solid line) the spin relaxation
time τS = 186 ps and spin relaxation length λS = 1.80 μm were
obtained, which are typical values for graphene on SiO2.

50,55,56

The same NL spin valve and Hanle measurements were
performed on the graphene channel with BiTeBr crystal on
top, as shown by the green circuit on Figure 2a and green
curves on Figure 2d,e. Very similar spin relaxation time τS =
138 ps and relaxation length λS = 1.64 μm were determined for
the BiTeBr-containing section as for the reference graphene
channel. The smaller RNL amplitude for the BiTeBr-containing
section is only a consequence of the longer channel length
between contacts D−F than between C−D, that is, 6 μm and
4 μm, respectively. Thus, we could conclude that BiTeBr does
not significantly alter spin transport in graphene. This is
consistent with the similarly insignificant effect of BiTeBr on
the charge transport in graphene (see Figure 2b).
With top contacts fabricated on the BiTeBr crystal (e.g.,

contact V on Figure 2c), vertical transport measurements were
performed (see Supporting Information for details), revealing a
BiTeBr−graphene interface resistance RINT of 10−20 kΩ,
resistance of the BiTeBr crystal of 100 Ohm with a very low
bulk resistivity on the order of 10−5Ωm, and charge carrier
density of approximately 1019 cm−3, similar to results obtained
by refs 32 and 33. The large interface resistance explains the
BiTeBr crystal’s lack of influence on graphene spin and charge
transport. It also makes an ideal configuration for spin injection
into graphene due to avoiding conductance mismatch53,57,58

between graphene and the highly conductive BiTeBr.
Now we will use the graphene channel in an unconventional

NL spin valve configuration, where the BiTeBr crystal serves as

Figure 1. Giant Rashba SOI crystal BiTeBr. (a) Layered crystal
structure of BiTeBr, and top-down view (bottom panel). (b)
Calculated Rashba-split conduction band of BiTeBr with band cut
off at the Fermi energy, estimated from the high charge carrier
density. Green arrows indicate subband helicity, while the color scale
is the y-component of the spin, SY. The inner subband (light green)
has opposite helicity compared to the outer one (dark green). (c)
Rashba-Edelstein effect depicted in a top-down view of the band
structure at Fermi energy, not to scale. An in-plane electric field shifts
the occupied states from equilibrium (depicted as dashed circles) by
kd = −eEIPτ/ℏ, where τ is the momentum scattering time. Because of
the intrinsic spin splitting, more states of spin ↓ are added,
corresponding to the spin orientation of the outer subband in the
direction of the electric field.
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an injector electrode, using the previously characterized FM
contacts as the detector. Bias current passing through the
crystal can facilitate spontaneous spin polarization through
REE in BiTeBr, and the current transports the polarized charge
carriers into graphene where they diffuse toward the detector.
BiTeBr-injected spin polarization is observed by using two
setups as depicted in Figure 3a,b, where in Figure 3a the FM
detector is on the right of the BiTeBr and the current sink is on
the left, and vice versa in Figure 3b. Because the electric field
orientation is different, the spins injected in Figure 3a shown in
blue will have a different orientation from those in Figure 3b,
shown in red. This is fundamentally different from an FM
injector contact, where the spin orientation does not depend
on electric field orientation in this way. Figure 3c depicts the
spin signal observed by setup (Figure 3a). In contrast to
standard spin valve measurements with two FM contacts (see
Figure 2d), here we only observe a single switch, instead of
two, in the NL voltage as BY is swept up (orange) or down
(yellow). The position of this switch (BY ≈ ±33 mT),
corresponds to the switching field of the FM detector,
determined in previous spin valve measurements. At negative
BY, from the increase in VNL after this switch one can conclude
that the spin orientation injected from BiTeBr (blue arrows on
panels a and c) becomes antiparallel with FM detector
polarization.
The lack of a second switching in VNL is consistent with REE

effect in bulk BiTeBr, since spin polarization injected in this
way will not be affected by the applied magnetic field. At
positive BY, VNL shows a lower value, where detector
polarization and direction of injected spins becomes parallel

again. The same NL measurement was carried out by using an
FM detector and current sink on the opposite side of BiTeBr,
setup in Figure 3b. Compared to setup in Figure 3a, the NL
voltage now decreases as BY is reduced (olive curve), which
corresponds to reversed orientation of BiTeBr-injected spins
(red arrow). This is also in agreement with REE, where a
opposite spin polarization is expected if the electric field is
flipped. In addition, the current direction was also reversed for
both NL geometries (panels e,f), which changes the sign of the
VNL jump in both cases, as is expected from REE. In terms of
dRNL, the detected values are 5−10 mΩ.
To further support the origin of the signal in Figure 3 being

spin injection from BiTeBr, Hanle spin precession was also
performed in this measurement configuration by using an out-
of-plane field, BZ. Figure 4a is a schematic of the measurement,
while Figure 4b shows the Hanle curves obtained for a parallel
(brown) and antiparallel (blue) configuration of the FM
detector compared to the injected spin. The Hanle curves
show similar spin transport characteristics as those previously
measured in FM−FM spin valve configuration in graphene
(Figure 2e), indicating that the detected signal is caused by
polarized spins which diffuse in the graphene between the
BiTeBr crystal and FM detector.
The Hanle curves in Figure 4b are slightly asymmetric. The

asymmetry and offset from BZ = 0 of the maximum of the
Hanle curve originates from the finite precession needed to
fully align the incoming spins with the detector polarization
and achieve maximum signal amplitude. This indicates an in-
plane offset angle between the injected spin and FM detector.
Figure 4c shows the general effect of an injector-detector offset

Figure 2. Charge and spin transport in the BiTeBr/graphene device. (a) Schematic of the device, showing the nonlocal measurement setups for
spin transport in graphene. Green is used for the BiTeBr/graphene section, while blue is used as a reference graphene measurement. (b) Four
terminal channel resistance as a function of gate voltage for the BiTeBr/graphene and a reference section of identical length (indicated by the same
colors in panel c). Charge transport in the two sections is similar with a mobility of ∼2300 and 1800 cm−2 (Vs)−1, and charge neutrality point VCNP
of 6 and 12 V for the BiTeBr-containing and reference sections, respectively. (c) An optical image of the device with a 10 μm scale bar. (d)
Nonlocal spin valve measurement of the sections showing typical switching with magnetic field along FM contact easy axis. Orientations of FM
injector-detector pair polarization are shown in the yellow boxes. while horizontal arrows indicate the direction of sweeping magnetic field. (e)
Comparison of Hanle spin precession of the BiTeBr/graphene (green) and reference (blue) sections with extracted spin relaxation times. Data
corresponding to the BiTeBr/graphene sections (green) have been scaled up by a factor of 3 and manually offset by +6 μV in (d) and +2 μV in (e)
for better visibility. Results indicate that the presence of BiTeBr has no significant influence on graphene spin transport properties.
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angle on the Hanle spin precession (see Supporting
Information) with the curve smoothly shifting from a
symmetric (blue) to an antisymmetric (green) one in
increments of 10°. By fitting, a small angle of 6° is obtained
for the data in Figure 4b. We also present a measurement in
another device (Device 2) in Figure 4d, where a more
noticeable offset of approximately 37° is obtained. The device
is shown in the inset, where the BiTeBr crystal features Au top
contacts. Dotted lines represent the extent of graphene in the
device. On the data set, the red curve is the asymmetric fit,
while a reference curve of 0° offset is shown as a dashed black
line to visually emphasize the difference.
In the case of an FM contact, the orientation of injected or

detected spin depends on the magnetization, typically along
the easy axis along the length of the FM contact. On the other
hand, when injecting using the BiTeBr crystal due to REE,
polarization will be perpendicular to the electric field driving
charge transport. The BiTeBr crystals have relatively small
thickness (100 nm) compared to lateral size (few μm), as well

as a low resistance compared to the graphene and interface
resistance. This suggests that the electric field within them will
be predominantly in-plane. This assumption is also supported
by finite element simulation on a simplified geometric model
of our devices (see Supporting Information). However, the
orientation of the electric field within the xy-plane will depend
on the geometry of the irregularly shaped crystal, the position
of the metallic top contact, and that of the BiTeBr−graphene
interface. For Device 2, in the inset in Figure 4d the green
curved arrow depicts the expected current flow and electric
field lines in BiTeBr, determining the angle of injected spins
(shown in red).
To further characterize the spin signal injected from BiTeBr,

Figure 5a shows nonlocal spin valve switching of the signal,
measured at different values of the backgate voltage, ranging
from −40 to 40 V, where the curves are offset in y-axis for
clarity. Since the charge neutrality point of the graphene
section is at approximately 6 V, this demonstrates that the
observed transition does not change sign while transport

Figure 3. Spin injection from BiTeBr to graphene and its dependence on electric field orientation. (a,b) Measurement schematics of spin injection
from BiTeBr crystal and nonlocal detection using FM contact on opposite sides of the device to demonstrate bias orientation dependence. (c,d)
Spin-polarized signal detected nonlocally using the setup in (a,b), respectively, using positive bias current. Horizontal arrows indicate the direction
of magnetic field sweep. The injected spin polarization is opposite on (c) compared to (d). (e,f) The same measurement using negative bias
current. The observed spin polarization injected into graphene is the same as in (c,d). The parallel and antiparallel spin configurations are indicated
in the yellow boxes.
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changes from electron-like carriers to hole-like ones and
cannot be attributed to local Hall effect in FM detector
contact. The signal amplitude is seen to change very little with
backgate voltage with values from additional measurements
represented in panel b. This is not surprising, considering the
BiTeBr has relatively high charge carrier density, preventing
significant gate dependence of resistance, and the resistance of
the BiTeBr−graphene interface is also observed to change by
no more than a factor of 2 over this gate voltage range. Figure
5c depicts a bias current dependence of the amplitude of
signals observed on both contacts D (blue) and F (red). Signal
amplitude is extracted from both NL spin valve measurements
(rectangles) as well as out-of-plane Hanle spin precession
measurements (triangles). For the latter, values equal to
double the Hanle peak amplitudes were plotted to correspond
with the NL spin valve amplitudes. Note the sign change in the
signal with change of bias direction, as also seen in Figure 3.
This can be explained by REE-induced nonequilibrium
between spin-dependent chemical potentials in BiTeBr.
Further discussion can be found in the Supporting
Information.
The lack of SOI enhancement in graphene under the BiTeBr

crystal, the single switching observed in NL measurements
while injecting from BiTeBr, the observation of Hanle spin
precession, and the gate dependence of the NL signal all
support the notion that the spin polarization detected in
graphene originates from the bulk of BiTeBr. We have also
attempted to detect a NL signal in graphene while passing bias
current through the BiTeBr crystal only (using two metallic

top contacts) but we could not detect a similar switching signal
in this case. This is also consistent with the large BiTeBr/
graphene interface preventing diffusion of spins from one
material to the other.
We can treat the BiTeBr−interface−graphene structure

similarly to a FM-tunnel barrier−graphene structure and
calculate an interfacial spin polarization .59 Using bias currents
of between 40−60 μA, the experimentally observed polar-
ization in Device 1 is 0.09% and 0.07% when detecting on
contact D and F, respectively, and 0.08% in Device 2 while
using a bias current of 80 μA. We have constructed a tunneling
model (detailed in Supporting Information) to calculate the
expected current polarization of electrons, having net spin
polarization due to REE, tunneling from BiTeBr into graphene.
The model takes into account the 3D band structure of
BiTeBr, the position of the Fermi level, μBiTeBr ≈ 50 meV,
estimated from transport data, and the shift in occupation of
electron states in BiTeBr due to the internal electric field, EIP.
For the Rashba parameter, αR ≈ 2 eVÅ was used.30 The
momentum relaxation time τ can be approximated from the
Drude model to be 5.3 × 10−14 s, reasonably close to that
obtained in ref 33. EIP can be estimated from BiTeBr resistivity
and shape and the bias current. For Device 1, EIP fields of
approximately 3500 and 3000 V/m are obtained when
detecting on contact D and F respectively. Using these values,
the tunneling model predicts a spin polarization of the injected
current of P = 0.095% and 0.083% for detecting on contact D
and F, respectively, which is in good agreement with the

Figure 4. Hanle spin precession of injected spin polarization from BiTeBr. (a) Schematic of device with spin injection from BiTeBr in out-of-plane
magnetic field BZ resulting in Hanle spin precession in the graphene. (b) Hanle spin precession curves as measured using the setup in (a) with a 60
μA bias current showing both parallel (brown) and antiparallel (blue) configurations of the FM contact and injected spin. There is a slight
asymmetry in the signal, indicating an approximately 6° injector-detector in-plane offset angle. (c) Theoretical Hanle curves for different injector-
detector offset angles. The symmetric curve (blue) corresponds to the fully parallel configuration, while the antisymmetric curve (green)
corresponds to the perpendicular configuration with intermediary curves in increments of 10°. (d) Hanle measurement on a second device, shown
in the inset image. Fitting indicates a greater offset angle of approximately 37°. For comparison, the expected curve for a 0° offset is shown as a
dashed black line.
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experimentally observed values. We see the same agreement
for the results obtained in Device 2 as well.
Aside from REE, a competing phenomenon that could result

in spin injection into graphene is the Spin Hall Effect
(SHE) 15,60 also taking place in bulk BiTeBr, caused by the
strong intrinsic SOI. The SHE has been studied extensively in
TMD/graphene heterostructures.16,17,61,62,64 In the case of
SHE, the same electric field EIP is expected to create spin
currents along the z-direction, resulting in spin accumulation at
the top and bottom of the BiTeBr crystal. The orientation of
spins would also be perpendicular to EIP, as is the case with
REE. We estimate the expected SHE polarization following ref
63 (detailed in Supporting Information). Using the exper-
imentally observed polarization values of ∼ 0.1% and taking
into consideration the measurement uncertainties, we obtain
an estimated range for the BiTeBr spin Hall angle, αSHE, to be
within 1.11−5.71. However, because SHE describes a
conversion from charge current to spin current, αSHE should
be limited to |αSHE| ≤ 1. Since even the lower bound of our
estimate range is over unity, we consider that REE is a more
likely explanation for our experimental results.
The REE and its inverse have been experimentally explored

in interfaces between thin films where z-symmetry is
broken18,65−68 and also more recently in graphene hetero-
structures. In these cases, the REE mechanism originates from
proximity-induced SOI in graphene at the interface with
another material, such as WS2,

22 WSe2,
69 MoS2,

17 MoTe2,
70,71

TaS2,
72 or topological insulators.21,73 In contrast, in our work,

due to a large interface resistance, there is no proximity SOI
enhancement in the graphene, and the observed spin
polarization originates from REE within the BiTeBr bulk.
The lack of a sign change in the gate dependence of the signal

further supports this, as proximity-induced REE in graphene is
expected to give rise to a sign change as the carrier density is
tuned from the electron to the hole region.70,73,74,75 In
addition, we did not observe any sign of weak antilocalization
in our devices at temperatures down to 50 mK.
In our tunneling model, the REE-induced current polar-

ization is inversely proportional to the Fermi level in the
BiTeBr band, which is in agreement with REE theory .44 Thus,
the polarization should strongly depend on the 3D electron
density in BiTeBr, that is, P ∼ n−2/3. The used BiTeBr crystals
feature a very high charge carrier density with a Fermi energy
of around 50 meV. Further development of bulk crystal growth
techniques could result in lower carrier densities, which leads
to an increase in polarization magnitude. Existing works
already show a variation of approximately 1 order of magnitude
in the carrier density of bulk crystals .33,76 An improvement of
1 order of magnitude would already produce polarizations
comparable to our FM contacts, thus allowing FM injectors to
be replaced by BiTeBr. Another promising alternative could be
provided by few-layer BiTeBr, allowing for effective gating.
Recently a method for exfoliating single-layer BiTeI flakes has
been reported .77

■ CONCLUSION
We have demonstrated the electrical creation and control of
spin polarization in the giant Rashba spin−orbit crystal BiTeBr
at room temperature. Application of an electric bias generates
spin polarization in the bulk bands of BiTeBr due to the
Rashba-Edelstein effect where the magnitude and direction are
determined by the electric current strength and direction. This
spin polarization in BiTeBr is demonstrated by injecting into
the graphene channel and detecting in a spin valve device

Figure 5. Gate and bias dependence of injected spin signal from BiTeBr. (a) Nonlocal spin signal switching using an in-plane field BY at various
backgate voltages showing modest change in signal amplitude dRNL. The data traces are manually stacked using 30 mΩ offsets for better visibility.
(b) The dRNL values plotted as a function of backgate voltage. The signal has the same orientation under both electron and hole dominated
transport in graphene. (c) DC bias current dependence of the spin injection signal amplitude using FM detector contacts D (blue) and F (red) of
Device 1. Triangles represent information extracted from Hanle spin precession, and rectangles represent nonlocal spin signal data for the same
respective sections.
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utilizing reliable nonlocal spin transport and Hanle spin
precession measurements. The detailed measurement of the
spin signal with different bias current directions and gate
voltages proves the robustness of the spin polarization, which is
in agreement with current-induced spin polarization from the
bulk Rashba spin-split bands of BiTeBr crystal. These findings
prove that Rashba spin−orbit crystals are an attractive novel
building block for various spintronic applications since they
can serve as an all-electrically controlled spin polarization
source. Further enhancement and tuning of the current-
induced spin polarization is within reach by controlling the
Fermi-level position with doping. These advances in electrical
control and tunability of spin sources will open new avenues to
replace ferromagnetic components in integrated spintronic
memory and logic technologies.
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Morelloń, L.; De Teresa, J. M.; Ibarra, M. R.; Vignale, G.; Chulkov, E.
V.; Krasovskii, E. E.; et al. Origin of inverse Rashba-Edelstein effect
detected at the Cu/Bi interface using lateral spin valves. Phys. Rev. B:
Condens. Matter Mater. Phys. 2016, 93, 014420.
(67) Auvray, F.; Puebla, J.; Xu, M.; Rana, B.; Hashizume, D.; Otani,
Y. Spin accumulation at nonmagnetic interface induced by direct
Rashba−Edelstein effect. J. Mater. Sci.: Mater. Electron. 2018, 29,
15664−15670.
(68) Du, Y.; Karube, S.; Gamou, H.; Ryu, J.; Takahashi, S.; Kohda,
M.; Nitta, J. Anomalous spin orbit torques with large Rashba spin orbit
coupling in epitaxial Pt/Co bilayers. 2018, arXiv:1807.10867. arXiv.org
e-Print archive. https://arxiv.org/abs/1807.10867 (accessed Jun 03,
2020).
(69) Avsar, A.; Unuchek, D.; Liu, J.; Sanchez, O. L.; Watanabe, K.;
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