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Saddlepoint Approximations for
Short-Packet Wireless Communications

Alejandro Lancho, Member, IEEE, Johan Östman, Student Member, IEEE, Giuseppe Durisi, Senior
Member, IEEE, Tobias Koch, Senior Member, IEEE, and Gonzalo Vazquez-Vilar, Member, IEEE

Abstract—In recent years, the derivation of nonasymptotic
converse and achievability bounds on the maximum coding rate
as a function of the error probability and blocklength has gained
attention in the information theory literature. While these bounds
are accurate for many scenarios of interest, they need to be
evaluated numerically for most wireless channels of practical
interest, and their evaluation is computationally demanding.
This paper presents saddlepoint approximations of state-of-the-
art converse and achievability bounds for noncoherent, single-
antenna, Rayleigh block-fading channels. These approximations
can be calculated efficiently and are shown to be accurate for
SNR values as small as 0 dB and blocklengths of 168 channel
uses or more.

Index Terms—Fading channels, finite-blocklength information
theory, saddlepoint approximations, short packets, ultra-reliable
low-latency communications.

I. INTRODUCTION

ONE of the main goals in the design of communication
systems is to maximize the transmission rate (also re-

ferred to as coding rate) under given constraints on system
parameters, such as power, bandwidth, latency, or reliability.
In the absence of stringent latency constraints, which is
the case for traditional wireless communication systems, the
transmission rate can be improved by increasing the length of
the packets sent to convey information from a transmitter to
a receiver. We shall refer to the packet length as blocklength.
This implies that asymptotic information-theoretical metrics,
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such as capacity or outage capacity, are good benchmarks. In-
deed, capacity is defined as the maximum coding rate at which
data can be transmitted with vanishing error probability when
the blocklength tends to infinity. Similarly, outage capacity is
defined as the maximum coding rate at which data can be
transmitted for a given error probability when the blocklength
tends to infinity. These metrics have been widely used as
performance benchmarks in the design of coding schemes for
traditional wireless communication systems.

Next generation wireless communication systems will sup-
port services and applications requiring ultra-reliable low-
latency communications (URLLC) [1], [2]. In URLLC, the
devices exchange packets at low rates aiming for probabilities
of error less than or equal to 10−5 and satisfying stringent
latency constraints [2]. This is typically achieved by transmit-
ting short packets. Recalling that capacity and outage capacity
are defined under the assumption that the blocklength tends to
infinity, it follows that for latency-constrained communications
a more refined characterization of the maximum coding rate
as a function of the blocklength is needed.

A. State of the Art
For most channel models of interest, obtaining a closed-

form expression of the maximum coding rate is out of reach.
Hence, there are two main directions to characterize the
maximum coding rate as a function of the blocklength:
i) Nonasymptotic bounds: By obtaining upper and lower

bounds on the maximum coding rate, the area in which
this rate lies for a specific error probability and blocklength
can be characterized. Often such bounds are expressed
in terms of tail probabilities of sums of independent and
identically distributed (i.i.d.) random variables and need to
be evaluated numerically through computationally demand-
ing procedures. Nonasymptotic bounds for several channel
models can be found, e.g., in [3], [4]. The nonasymptotic
bounds considered in this paper are the meta-converse
(MC) bound [3, Th. 31] and the random coding union
bound with parameter s (RCUs) [5, Th. 1]. The MC bound
and the RCUs bound yield an upper and a lower bound on
the maximum coding rate for a fixed error probability and
blocklength, respectively.

ii) Refined asymptotic expansions:1 Perform asymptotic ex-
pansions of the maximum coding rate or the error prob-
ability that become accurate as the blocklength grows.

1We refer to these expansion as refined asymptotic expansions to better
differentiate them from capacity or outage capacity, which are first-order
asymptotic expansions of the maximum coding rate.



2

Typically, such expansions are available in closed form
and describe how the maximum coding rate converges
to capacity or how the error probability vanishes as the
blocklength increases for a fixed coding rate.

The refined asymptotic expansions are usually obtained
by expanding the tail probabilities appearing in the afore-
mentioned nonasymptotic bounds. One possibility is to fix a
reliability constraint and study the maximum coding rate as
a function of the blocklength in the limit as the blocklength
tends to infinity. This approach was followed inter alia by
Polyanskiy et al. [3] who showed, for various channels with
positive finite capacity C, that the maximum coding rate
R∗(n, ε) at which data can be transmitted using an error-
correcting code of a fixed blocklength n, with a block-error
probability not larger than ε, can be expanded as

R∗(n, ε) = C −
√
V

n
Q−1(ε) +O

(
log n

n

)
(1)

where V denotes the channel dispersion, Q−1(·) denotes the
inverse of the Gaussian Q-function, and O ((log n)/n) com-
prises terms that decay no slower than (log n)/n. The approx-
imation that follows from (1) by omitting the O((log n)/n)
term is sometimes referred to as normal approximation. The
normal approximation has been established as a benchmark
for short error-correcting codes. For example, [6] compares
the performance of codes of blocklength n = 128 against
the normal approximation of a Gaussian channel. The normal
approximation further serves as a proxy for the maximum
coding rate in the analysis and optimization of communication
systems that exchange short packets. For example, the normal
approximation has appeared in numerous papers on short-
packet wireless communications, including [7]–[15].

The work by Polyanskiy et al. [3] has been generalized to
several wireless communication channels; see, e.g., [16]–[20].
Particularly relevant for this work is the high-SNR normal
approximation for noncoherent single-antenna Rayleigh block-
fading channels derived in [20]. By means of numerical
examples, it was shown in [20] that this normal approximation
is accurate for probabilities of error above 10−3 and SNR
values larger than or equal to 15 dB.

A second option to obtain refined asymptotic expansions is
to fix the coding rate and to study the exponential decay of the
error probability as the blocklength grows to infinity. Error-
exponent results for block-fading channels can be found, e.g.,
in [21]–[25].

In general, normal approximations are accurate for moderate
error probabilities and when the rate is close to capacity. In
contrast, error exponents are accurate for moderate coding
rates and when the probability of error is close to zero. URLLC
services operate at error probabilities of around 10−5 and SNR
values of around 0 dB [2]. For these values, both normal
approximations and error exponents may become inaccurate,
in which case they constitute poor benchmarks for short
error-correcting codes, and using them as a proxy for the
maximum coding rate or the error probability in the analysis
and optimization of short-packet communication systems may
give rise to misleading results. Consequently, there is a need

for refined approximations that characterize the coding rate for
error probabilities below 10−5 and SNR values close to 0 dB.

B. Contributions

To provide approximations that are accurate in regimes
where neither normal approximations nor error exponents are,
this paper makes use of the classical saddlepoint method [26,
Ch. XVI], [27]. The saddlepoint method has been applied in
[28] to obtain approximations of the RCUs bound and the
random coding union (RCU) bound [3, Th. 16] for channels
with finite alphabets. It has been further applied in [29], [30]
to obtain approximations of the RCU bound and MC bound
for symmetric memoryless channels. Similar approximations
based on Laplace integration were used in [31], [32] to
approximate the RCU bound and MC bound for Gaussian
channels.

Saddlepoint expansions of nonasymptotic bounds can be
obtained by applying the saddlepoint method to expand the
tail probabilities of sums of i.i.d. random variables appearing
in these bounds. These random variables typically depend on
system parameters such as the SNR. Since existing saddle-
point methods ignore such dependencies, the error terms in
the saddlepoint expansions also depend on these parameters
and may even be unbounded in them. This is particularly
problematic if the saddlepoint expansions are the starting point
for asymptotic analyses.

To overcome this problem, we derive in Section IV sad-
dlepoint expansions for random variables whose distribution
depends on a system parameter θ, carefully analyze the error
terms, and demonstrate that they are uniform in θ. The
obtained expansions are then applied to the tail probabilities
appearing in the nonasymptotic MC and RCUs bounds, leading
to saddlepoint expansions of these bounds with error terms that
depend only on the blocklength and are uniform in the remain-
ing parameters. By means of numerical analyses, we show that
the saddlepoint approximations that follow by ignoring the
error terms in the saddlepoint expansions are accurate, i.e.,
they are indistinguishable from the corresponding nonasymp-
totic bounds, if the SNR is greater than or equal to 0 dB and
if the probability of error is larger than or equal to 10−8.
Furthermore, they require a much lower computational cost
than the corresponding nonasymptotic bounds. Finally, we
show that the normal approximation and the error exponent
can be recovered from the saddlepoint expansions. They thus
provide a unifying characterization of the two regimes, which
are usually considered separately in the literature.

The rest of this paper is organized as follows. In Section II,
we present the system model. In Section III, we introduce
the most important quantities and the nonasymptotic bounds
used in the paper. In Section IV, we derive saddlepoint
expansions for random variables whose distribution depends
on a parameter θ. In Section V, we apply those saddlepoint
expansions to the nonasymptotic bounds presented in Sec-
tion III. In Section VI, we briefly discuss how the normal
approximation and error exponent can be obtained from the
saddlepoint expansions. In Section VII, we present numerical
examples that help to assess the accuracy of the presented
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Fig. 1. Schema of the communication system with a single-antenna Rayleigh
block-fading channel as channel model.

approximations. In Section VIII, we discuss the computational
complexity and accuracy of the proposed saddlepoint approxi-
mations, and we compare them with the nonasymptotic bounds
as well as the refined asymptotic expansions available in the
literature. Section IX concludes the paper. Some of the proofs
are deferred to the appendices.

II. SYSTEM MODEL

The system and channel model is illustrated in Fig. 1. We
consider a single-antenna Rayleigh block-fading channel with
coherence interval T—a channel model that is commonly used
in the literature; see e.g., [33], [34]. For this channel model,
the input-output relation within the `-th coherence interval is
given by

Y` = H`X` + W` (2)

where X` and Y` are T -dimensional, complex-valued, ran-
dom vectors containing the input and output signals, re-
spectively; W` is the additive noise with i.i.d., zero-mean,
unit-variance, circularly-symmetric, complex Gaussian entries;
and H` is a zero-mean, unit-variance, circularly-symmetric,
complex Gaussian random variable. We assume that H` and
W` are independent and take on independent realizations over
successive coherence intervals. Moreover, the joint law of
(H`,W`) does not depend on the channel inputs. We consider
a noncoherent setting where transmitter and receiver are aware
of the distribution of H` but not of its realization.2

Note that, by considering a noncoherent setting, we do not
preclude the possibility of estimating the fading coefficients,
e.g., by transmitting pilot symbols. Instead, as in [35], we
view the transmission of pilot symbols as a special case
of coding and the estimation of the fading coefficients as
part of the decoder. By studying the maximum coding rate
of the noncoherent Rayleigh block-fading channel, we thus
characterize the largest transmission rate at which data can be
transmitted, irrespective of the employed channel-estimation
method. See also [1].

We next introduce the notion of a channel code. For sim-
plicity, we shall restrict ourselves to codes whose blocklength
n satisfies n = LT , where L denotes the number of coherence
intervals of length T needed to transmit the entire codeword.
An (M,L, T, ε, ρ)-code for the channel (2) consists of:
1) An encoder f : {1, . . . ,M} → CLT that maps a message

A, which is uniformly distributed on {1, . . . ,M}, to a

2The assumption that H` and W` take on independent realizations over
successive coherence intervals is critical for the results obtained in this paper,
namely, Proposition 1 in Section IV and the saddlepoint expansions presented
in Section V that follow from it. In contrast, the assumption that H` is
zero-mean Gaussian is not critical since Proposition 1 applies to any fading
distribution for which (18) and (19) are satisfied.

codeword XL = [X1, . . . ,XL] = f(A). The codewords
satisfy the power constraint3

‖X`‖2 = Tρ, ` = 1, . . . , L. (3)

Since the variance of H` and of the entries of W` are
normalized to one, ρ in (3) can be interpreted as the average
SNR at the receiver.

2) A decoder g: CLT → {1, . . . ,M} satisfying the average
error probability constraint

P
[
g
(
YL
)
6= A

]
≤ ε (4)

where YL = [Y1, . . . ,YL] is the channel output induced
by the transmitted codeword XL = f(A) according to (2).

The maximum coding rate and the minimum error probability
are respectively defined as4

R∗(L, T, ε, ρ) , sup

{
logM

LT
: ∃(M,L, T, ε, ρ)-code

}
(5a)

ε∗(L, T,R, ρ) , inf
{
ε : ∃(eLTR, L, T, ε, ρ)-code

}
. (5b)

In words, R∗(L, T, ε, ρ) denotes the largest transmission rate
at which data can be transmitted with an error probability
not exceeding ε using a channel code of blocklength LT .
Likewise, ε∗(L, T,R, ρ) denotes the smallest error probability
at which data can be transmitted at rate R using a channel
code of blocklength LT . In this paper, we shall present our
results in terms of error probabilities and use that upper (lower)
bounds on ε∗(L, T,R, ρ) can be translated into lower (upper)
bounds on R∗(L, T, ε, ρ) and vice versa.

III. PRELIMINARIES AND NONASYMPTOTIC BOUNDS

A. Preliminaries

According to (2), conditioned on XL = xL, the output
vector YL is blockwise i.i.d. Gaussian. Thus, the conditional
probability density function (pdf) of Y` given X` = x is
independent of ` and satisfies

pY|X(y|x) =
1

πT (1 + ‖x‖2)
exp

{
−‖y‖2 +

|yHx|2
1 + ‖x‖2

}
.

(6)
Here and throughout the paper, we omit the subscript ` when
immaterial.

We shall evaluate the achievability bounds for inputs
of the form XL =

√
TρUL, where the components of

UL = [U1, . . . ,UL] are i.i.d. and uniformly distributed on the
unit sphere in CT . This distribution of XL can be viewed
as a single-antenna particularization of unitary space-time
modulation (USTM) [36] and is capacity achieving for the

3While in the information and communication theory literature, it is more
common to impose a power constraint per codeword XL, practical systems
typically require a per-coherence-interval constraint. Although it may be
preferable to impose (3) with inequality, since it allows more freedom in
optimizing the channel code, it seems plausible that using maximum power
is optimal. For the high-SNR normal approximation presented in [20], this
turns out to be the case.

4Here and throughout this paper, log(·) denotes the natural logarithm. Thus,
rates have the dimension nats per channel use.
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power constraint (3).5 In the following, we shall write P̄X to
denote the distribution of X` =

√
TρU`.

For the USTM input distribution, we define the generalized
information density as

is(x`;x`) , log
pY`|X`

(y`|x`)s∫
pY`|X`

(y`|x̃)sdP̄X(x̃)
, s > 0. (7)

Introducing the generalized information density is convenient
because its cumulant generating function (CGF) is closely re-
lated to Gallager’s E0(ρ, s) function, which plays an important
role in the analysis of error exponents; see [5] for more details.
It can be shown that is(X`;Y`) depends on X` only via
‖X`‖2 = Tρ. Conditioned on ‖X`‖2 = Tρ, we obtain that
is(X`;Y`) can be written as

is(X`;Y`)
L
= (T − 1) log(sTρ)− log Γ(T )− sTρΥ2,`

1 + Tρ

+ (T − 1) log

(
(1 + Tρ)Υ1,` + Υ2,`

1 + Tρ

)
− log γ̃

(
T − 1, s

Tρ((1 + Tρ)Υ1,` + Υ2,`)

1 + Tρ

)
(8)

where we use “L
=” to denote equality in distribution, and

where Γ(·) and γ̃(·) denote the gamma function and the
regularized lower incomplete gamma function, respectively.
In (8), {Υ1,`}L`=1 are i.i.d. Gamma(1, 1)-distributed random
variables, and {Υ2,`}L`=1 are i.i.d. Gamma(T−1, 1)-distributed
random variables. For brevity, we let i`,s(ρ) , is(X`;Y`)
and denote the expectation and variance of i`,s(ρ) by
Is(ρ) , E

[
i`,s(ρ)

]
and Vs(ρ) , Var

[
i`,s(ρ)

]
, respectively.

B. Nonasymptotic Bounds

We next present the nonasymptotic bounds that we shall use
in this paper. As upper bound on ε∗(L, T,R, ρ), we use the
RCUs bound [5, Th. 1], which states that, for every s > 0,
there exists a channel code of blocklength LT and rate R
satisfying

ε∗(L, T,R, ρ)

≤ P

[
L∑
`=1

(Is(ρ)− i`,s(ρ)) ≥ LIs(ρ) + logU − LTR
]

(9)

where U is uniformly distributed on the interval [0, 1].
To present a lower bound on ε∗(L, T,R, ρ), consider the

auxiliary output pdf

qsY`
(y`) ,

1

µ(s)

(∫
pY`|X`

(y`|x`)sdP̄X(x`)

)1/s

, s > 0

(10)

5It is unknown whether USTM is also optimal at finite blocklength.
However, for the blocklengths considered in the numerical examples of
Section VII, the RCUs bound, computed for USTM inputs, is close to the MC
bound, which applies to all input distributions satisfying (3). This suggests
that USTM is at least close to optimal at finite blocklength.

where µ(s) is a normalizing factor. We define the generalized
mismatched information density6 as

js(X`;Y`) , log
pY`|X`

(Y`|X`)

qsY`
(y`)

= logµ(s) +
1

s
is(X`;Y`), s > 0. (11)

For the sake of brevity, we define j`,s(ρ) , js(X`;Y`) and
Js(ρ) , E[j`,s(ρ)]. When s = 1, we have j`,1(ρ) = i`,1(ρ)
and J1(ρ) = I1(ρ), in which case we omit the subscript and
write i`(ρ) , i`,1(ρ), V (ρ) = V1(ρ), and C(ρ) , I1(ρ).7

A lower bound on ε∗(L, T,R, ρ) follows by evaluating
the MC bound [3, Th. 31] for the auxiliary pdf qsY`

and
using [3, Eq. (102)]. This yields that, for every channel code
of blocklength LT and rate R, we have

ε∗(L, T,R, ρ) ≥ −e(log ξ−LTR)

+ P

[
L∑
`=1

(Is(ρ)− i`,s(ρ)) ≥ sLJs(ρ)− s log ξ

]
(12)

for every ξ > 0 and s > 0.

IV. SADDLEPOINT EXPANSION

Let Z1,θ, . . . , Zn,θ be a sequence of i.i.d., real-valued, zero-
mean random variables. The distribution of Z`,θ depends on
θ ∈ Θ, where Θ denotes the set of possible values of θ.

For future reference, the moment generating function
(MGF) of Z`,θ is defined as

mθ(ζ) , E
[
eζZ`,θ

]
(13)

and the CGF is defined as

ψθ(ζ) , logmθ(ζ). (14)

Furthermore, the characteristic function is defined as

ϕθ(ζ) , E
[
eıζZ`,θ

]
(15)

where ı ,
√
−1. We denote by m

(k)
θ and ψ

(k)
θ the k-th

derivative of ζ 7→ mθ(ζ) and ζ 7→ ψθ(ζ), respectively. For
the first three derivatives we also use the notation m′θ, m′′θ ,
m′′′θ , ψ′θ, ψ′′θ , and ψ′′′θ .

A random variable Z`,θ is said to be lattice if it is supported
on the points b, b± h, b± 2h. . . for some b and h. A random
variable that is not lattice is said to be nonlattice. It can be
shown that a random variable is nonlattice if, and only if, [26,
Ch. XV.1, Lemma 4]

|ϕθ(ζ)| < 1, for every ζ 6= 0. (16)

We shall say that a family of random variables Z`,θ
(parametrized by θ) is nonlattice if

sup
θ∈Θ
|ϕθ(ζ)| < 1, for every ζ 6= 0. (17)

6We use the word “mismatched” to indicate that the auxiliary output pdf
qsY` is not necessarily the one induced by the input distribution and the
channel.

7Recall that we choose the input distribution to be USTM, which is capacity
achieving for the power constraint (3).
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Similarly, we shall say that a family of distributions
(parametrized by θ) is nonlattice if the corresponding family
of random variables is nonlattice.

The following proposition presents saddlepoint expansions
for families of random variables that are nonlattice. In Sec-
tion V, these saddlepoint expansions will then be applied
to the nonasymptotic bounds (9) and (12). While similar
expansions could also be derived for families of lattice random
variables, this would require a separate proof. Thus, for the
sake of compactness, and because for many channel models
of interest—including the Rayleigh block-fading channel (2)—
the generalized information densities appearing in (9) and (12)
are nonlattice, we do not consider families of lattice random
variables in this paper.

Proposition 1: Let the family of i.i.d. random variables
{Z`,θ}n`=1 (parametrized by θ) be nonlattice. Suppose that
there exists a ζ0 > 0 such that

sup
θ∈Θ,|ζ|<ζ0

∣∣m(4)
θ (ζ)

∣∣ <∞ (18)

and
inf

θ∈Θ,|ζ|<ζ0
ψ′′θ (ζ) > 0. (19)

Then, we have the following results:
Part 1: If for a given γ ≥ 0 there exists a τ ∈ [0, ζ0) such

that nψ′θ(τ) = γ,8 then

P

[
n∑
`=1

Z`,θ ≥ γ
]

= en[ψθ(τ)−τψ′θ(τ)]

[
Ψθ(τ, τ, n)

+
Kθ(τ, τ, n)√

n
+ o

(
1√
n

)]
(20)

where

Ψθ(u, τ, n) , en
u2

2 ψ
′′
θ (τ)Q

(
u
√
nψ′′θ (τ)

)
(21)

Kθ(u, τ, n) ,
ψ′′′θ (τ)

6ψ′′θ (τ)3/2

(
− 1√

2π
+
u2nψ′′θ (τ)√

2π

− u3ψ′′θ (τ)3/2n3/2Ψθ(u, τ, n)

)
(22)

and o(1/
√
n) comprises terms that vanish faster than 1/

√
n

and are uniform in τ and θ, i.e.,

lim
n→∞

sup
τ∈[0,ζ0),θ∈Θ

o(1/
√
n)

1/
√
n

= 0. (23)

Part 2: Let U be uniformly distributed on [0, 1]. If for a
given γ ≥ 0 there exists a τ ∈ [0, ζ0) such that nψ′θ(τ) = γ,
then

P

[
n∑
`=1

Z`,θ ≥ γ + logU

]

= en[ψθ(τ)−τψ′θ(τ)]

[
Ψθ(τ, τ, n) + Ψθ(1− τ, τ, n)

+
Kθ(τ, τ, n)−Kθ(1− τ, τ, n)√

n
+ o

(
1√
n

)]
(24)

8In general, τ depends on n, θ, and γ. For the sake of compactness, we
do not make this dependence explicit in the notation.

where o(1/
√
n) is uniform in τ and θ.

Proof: Part 1 is proved in Appendix I-A and Part 2 is
proved in Appendix I-B.

Remark 1: A Taylor series expansion of ζ 7→ m
(k)
θ (ζ)

around zero demonstrates that, if m(k)
θ (ζ) is bounded in θ ∈ Θ

and |ζ| < ζ0, then the same is also true for m
(k−1)
θ (ζ).

Consequently, (18) implies that ζ 7→ mθ(ζ) and its first four
derivatives are bounded in θ ∈ Θ and |ζ| < ζ0. This in turn
implies that ζ 7→ mθ(ζ) is analytic on ζ ∈ (−ζ0, ζ0) for every
θ ∈ Θ. Since Z` has zero mean by assumption, we further
have that mθ(ζ) ≥ 1 by Jensen’s inequality. We conclude that
all derivatives of ζ 7→ ψθ(ζ) exist on ζ ∈ (−ζ0, ζ0) for every
θ ∈ Θ, and

sup
θ∈Θ,|ζ|<ζ0

∣∣ψ(k)
θ (ζ)

∣∣ <∞, k = 0, . . . , 4. (25)

Remark 2: The asymptotic behaviors of Ψθ(u, τ, n) and
Kθ(u, τ, n) depend critically on the asymptotic behavior
of u. Indeed, the τ satisfying nψ′θ(τ) = γ, and hence also
u ∈ {τ, 1− τ}, depends in general on n. The term Ψθ(u, τ, n)
converges to a constant when u decays at least like 1/

√
n, and

it is of order na−1/2 when u is of order n−a, 0 ≤ a < 1/2.
Similarly, Kθ(u, τ, n) converges to a constant when u decays
at least like 1/

√
n, and it vanishes as n → ∞ when u is of

order n−a, 0 ≤ a < 1/2.
Since the difference Kθ(τ, τ, n)−Kθ(1−τ, τ, n) is difficult

to evaluate, in the following corollary we present an upper
bound on the saddlepoint expansion (24) that is easier to
evaluate.

Corollary 2: Suppose that there exists a ζ0 > 0 satis-
fying (18) and (19). If for a given γ ≥ 0 there exists a
τ ∈ [0,min{ζ0, 1− δ}) (for some arbitrary δ > 0 independent
of n and θ) such that nψ′θ(τ) = γ, then the saddlepoint
expansion (24) can be upper-bounded as

P

[
n∑
`=1

Z`,θ ≥ γ + logU

]
≤ en[ψθ(τ)−τψ′θ(τ)]

[
Ψθ(τ, τ, n)

+ Ψθ(1− τ, τ, n) +
K̂θ(τ)√

n
+ o

(
1√
n

)]
(26)

where
K̂θ(τ) ,

1√
2π

ψ′′′θ (τ)

6ψ′′θ (τ)3/2
(27)

and o(1/
√
n) is uniform in τ and θ.

Proof: See Appendix I-C.

V. SADDLEPOINT EXPANSIONS
OF RCUS AND MC BOUNDS

We next apply Proposition 1 and Corollary 2 to the RCUs
bound (9) and MC bound (12) to obtain their saddlepoint
expansions. To this end, we first express the MGF and the
CGF in terms of the generalized information density (7) and
discuss their regions of convergence.

The MGF and the CGF of Is(ρ)− i`,s(ρ) are defined as

mρ,s(τ) , E
[
eτ(Is(ρ)−i`,s(ρ))

]
(28)

ψρ,s(τ) , logmρ,s(τ) (29)
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and depend on the parameters θ = {ρ, s}. For some arbitrary
0 < s < s < ∞, 0 < ρ < ρ < ∞, 0 < a < 1, and

0 < b < min
{

T
T−1 ,

1+Tρ
sTρ

}
, let

S , {(τ, ρ, s) ∈ R3 : τ ∈ [a, b], ρ ∈ [ρ, ρ], s ∈ [s, s]}. (30)

It can be shown that [37, Lemma 4.2]

sup
(τ,ρ,s)∈S

m(k)
ρ,s(τ) <∞ (31)

for every nonnegative integer k. So S is in the region of con-
vergence of mρ,s. We are now ready to present the following
saddlepoint expansions.

Theorem 3 (Saddlepoint Expansion RCUs): The coding rate
R and minimum error probability ε∗ can be parametrized by
(τ, ρ, s) ∈ S as

R(τ, s) =
1

T
(Is(ρ)− ψ′ρ,s(τ)) (32a)

ε∗(τ, s) ≤ eL[ψρ,s(τ)−τψ′ρ,s(τ)]
[
Ψρ,s(τ, τ, n)

+ Ψρ,s(1− τ, τ, n) +
K̂ρ,s(τ)√

L
+ o

(
1√
L

)]
(32b)

where o(1/
√
L) is uniform in τ , s, and ρ.9

Proof: The desired result follows by applying Corollary 2
to (9). Indeed, it can be shown that the family of random
variables Is(ρ)− i`,s(ρ) (parametrized by (ρ, s)) is nonlattice
[37, Lemma B.2]. Furthermore, (31) implies that the first
condition (18) required for Proposition 1 and Corollary 2
is satisfied. Regarding the second condition (19), it can be
observed that Vs(ρ) is strictly increasing in ρ (for a fixed s)
and strictly increasing in s (for a fixed ρ). Consequently, it
is bounded away from zero for every ρ ≥ ρ and s ≥ s (for
arbitrary ρ > 0 and s > 0). Since ψ′′ρ,s(0) = Vs(ρ), it follows
from Lemma 7 in Appendix IV that the second condition (19)
required in Proposition 1 and Corollary 2 is satisfied, too.

Remark 3: The set S with s = 1 includes 0 ≤ τ < 1. In
this case, the identity (32a) characterizes all rates R between
the critical rate, defined as [38, Eq. (5.6.30)]

Rcr
s (ρ) ,

1

T

(
Is(ρ)− ψ′ρ,s(1)

)
(33)

and Is(ρ). Solving (32a) for τ , we obtain from Theorem 3 an
upper bound on the minimum error probability ε∗(L, T,R, ρ)
as a function of the rate R ∈ (Rcr

s (ρ) , Is(ρ)], s ∈ (0, 1].
Theorem 4 (Saddlepoint Expansion MC): For every rate R

and (τ, ρ, s) ∈ S
ε∗(L, T,R, ρ)

≥ eL[ψρ,s(τ)−τψ′ρ,s(τ)]
[
Ψρ,s(τ, τ, n) +

Kρ,s(τ, τ, L)√
L

+ o

(
1√
L

)]
− eL

[
Js(ρ)−

ψ′ρ,s(τ)

s −TR
]

(34)

where o(1/
√
L) is uniform in τ , s, and ρ.

9The error terms appearing in the asymptotic expansions depend, in general,
also on T . However, we do not make this dependence explicit in the notation,
since we view T as a fixed parameter.

Proof: The inequality (34) follows by applying Proposi-
tion 1 to (12) with log ξ = LJs(ρ)−Lψ′ρ,s(τ)/s. The rest of
the proof is similar to the proof of Theorem 3.

VI. NORMAL APPROXIMATION AND ERROR EXPONENT

It is possible to recover the normal approximation and the
error exponent of the channel from the saddlepoint expansions.
Detailed derivations can be found in [37, Chs. 6.3–6.4].

Specifically, an asymptotic analysis of (32a) and (34) yields
the normal approximation

R∗(L, T, ε, ρ) =
C(ρ)

T
−
√
V (ρ)

LT 2
Q−1(ε) +O

(
logL

L

)
(35)

where O
(
(logL)/L

)
comprises terms that are of order of

(logL)/L and are uniform in ρ.
Note that there are no closed-form expressions for C(ρ)

and V (ρ), so these quantities must be evaluated numerically
by computing the mean and variance of i`(ρ). A closed-form
high-SNR normal approximation was presented in [20, Th. 2].
This expansion can be recovered from (35) by using that [20,
Eqs. (38) and (39)]

C(ρ) = (T − 1) log(Tρ)− log Γ(T )

− (T − 1)

[
log(1 + Tρ) +

Tρ

1 + Tρ
− ψ(T − 1)

]
+ 2F1

(
1, T − 1;T ;

Tρ

1 + Tρ

)
+ oρ(1) (36)

V (ρ) = (T − 1)2π
2

6
+ (T − 1) + oρ(1) (37)

where oρ(1) comprises terms that are uniform in L and vanish
as ρ → ∞. In (36), ψ(·) denotes the digamma function and
2F1(·, ·; ·; ·) denotes the Gaussian hypergeometric function.

The saddlepoint expansions (32b) and (34) can be also
written as an exponential term times a subexponential factor.
The exponential terms of both expansions coincide for rates
Rcr

1/2(ρ) < R < C(ρ), where Rcr
1/2(ρ) is the critical rate (33)

evaluated at s = 1/2. So they characterize the reliability
function, defined as

Er(T,R, ρ) , lim
L→∞

− 1

L
log ε∗(L, T,R, ρ). (38)

Let now ρ ≤ ρ ≤ ρ and τ < τ < τ for some arbitrary
0 < ρ < ρ <∞ and 0 < τ < τ < 1, and set sτ , 1/(1 + τ).
The coding rate R and the minimum error probability ε∗ can
be parametrized by τ ∈ (τ , τ) as

R(τ) =
1

T

(
Isτ (ρ)− ψ′ρ,sτ (τ)

)
(39a)

Aρ(τ) ≤ ε∗(L, T,R, ρ)e−L[ψρ,sτ (τ)−τψ′ρ,sτ (τ)] ≤ Aρ(τ) (39b)

where

Aρ(τ) ,
1√

2πLτ2ψ′′ρ,sτ (τ)
+

1√
2πL(1− τ)2ψ′′ρ,sτ (τ)

+
|K̂ρ,sτ (τ)|√

L
+ o

(
1√
L

)
(40)

Aρ(τ) ,
s

1
sτ
τ

τ
(
2πLψ′′ρ,sτ (τ)

) 1
2sτ

+ o

(
1

L
1

2sτ

)
. (41)
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The little-o term in (40) is uniform in ρ and τ . The little-o
term in (41) is uniform in ρ (for every given τ ).

The products of Aρ(τ) and Aρ(τ) with
eL[ψρ,sτ (τ)−τψ′ρ,sτ (τ)] yield approximations of the RCUs
and MC bounds, respectively. Note that the first term of
Aρ(τ) is positive and of order L−

1+τ
2 . This order coincides

with that of the subexponential factor of the random-coding
upper bound on the error probability for some memoryless
channels and rates above the critical rate [39], [40].

It follows from (39a), (39b), and the behaviors of Aρ(τ)
and Aρ(τ) that the reliability function Er(T,R, ρ) can be
parametrized by τ ∈ (0, 1) as

Er(τ) = τψ′ρ, 1
1+τ

(τ)− ψρ, 1
1+τ

(τ) (42a)

R(τ) =
1

T

(
I 1

1+τ
(ρ)− ψ′ρ, 1

1+τ
(τ)
)
. (42b)

VII. NUMERICAL EXAMPLES

To show the accuracy of the saddlepoint approximations, we
evaluate them for different channel parameters and compare
them with the nonasymptotic bounds as well as the refined
asymptotic expansions available in the literature.

In all figures, we plot approximations of the RCUs bound in
red and approximations of the MC bound in blue, which are
obtained by disregarding the o(1/

√
L) terms in the saddlepoint

expansions and by optimizing numerically over the parameters
s and τ . Solid lines (“saddlepoint”) depict the saddlepoint
approximations (32b) and (34), and dashed lines (“pref×EE”)
depict (39b). We further plot the nonasymptotic bounds (9)
and (12), evaluated using Monte-Carlo simulations, with dots
and highlight in grey the area where the true maximum coding
rate lies. Finally, we plot the normal approximation (35)
(“NA”) and the error-exponent approximations (“EE” and
“L−

1+τ
2 ×EE”) that follow by solving

ε∗(L, T,R, ρ) = e−LEr(T,R,ρ) (43a)

ε∗(L, T,R, ρ) =
1

L
1+τ

2

e−LEr(T,R,ρ) (43b)

for R, where τ in (43b) is the parameter for which (42b) is
equal to R.

In Figs. 2a and 2b, we study R∗(L, T, ε, ρ) as a function
of L for n = LT = 168 (hence T is inversely proportional to
L), ε = 10−5, and SNR values 0 dB and 6 dB, respectively.
Observe that the approximations (32b), (34), and (39b) are
almost indistinguishable from the nonasymptotic bounds. Fur-
ther observe that, compared to the saddlepoint expansions, the
normal approximation and the error-exponent approximations
are loose, although their accuracy increases for larger SNR
values (and larger values of L, for the normal approximation).
Finally, the error-exponent approximation “L−

1+τ
2 ×EE” is

accurate for the entire range of parameters.
In Figs. 3a and 3b, we study R∗(L, T, ε, ρ) as a function of

ε for n = 168 (T = 12 and L = 14) and SNR values 0 dB and
6 dB, respectively. In addition to the aforementioned bounds
and approximations, we plot Rcr

1/2(0) to indicate the minimum
rate that can be characterized by (32a). Observe that the
approximations (32b), (34), and (39b) are almost indistinguish-
able from the nonasymptotic bounds. Further observe how
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(a) n = 168, ε = 10−5, and ρ = 0 dB.
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(b) n = 168, ε = 10−5, and ρ = 6 dB.

Fig. 2. R∗(L, T, ε, ρ) as a function of L for a fixed n = LT .

the normal approximation becomes accurate for large error
probabilities, whereas the error-exponent approximation “EE”
becomes accurate for small error probabilities. In contrast, the
error-exponent approximation “L−

1+τ
2 ×EE” is accurate for

the entire range of parameters.
In Figs. 4a and 4b, we study ε∗(L, T,R, ρ) for a fixed

rate R as a function of the SNR ρ. Specifically, in Fig. 4a
we show ε∗(L, T,R, ρ) for n = 168 (T = 24 and L = 7)
and R = 0.48, and in Fig. 4b we show ε∗(L, T,R, ρ) for
n = 500 (T = 20 and L = 25) and R = 4. In both
figures, we also show the high-SNR normal approximation
(“high-SNR-NA”) presented in [20, Th. 2]. In addition to the
aforementioned bounds and approximations, in Fig. 4a we
show the simulated performance of a transmission scheme
for which 4 channel uses per coherence interval are allocated
to coded pilot symbols belonging to a quaternary phase shift
keying (QPSK) constellation, and the remaining channel uses
are allocated to QPSK symbols encoded by a binary quasi-
cyclic code. Decoding is performed via ordered statistics
decoding (OSD), which uses scaled nearest-neighbor decoding
(SNN) as the metric to solve the likelihood ratios. This coding
scheme is denoted as “OSD-SNN” and is depicted in orange.
We also show the simulated performance of a transmission
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(b) L = 14, T = 12, and ρ = 6 dB.

Fig. 3. R∗(L, T, ε, ρ) as a function of ε.

scheme based on OSD-SNN that additionally performs a re-
estimation of the fading coefficients based on the initial OSD
decision. This coding scheme is denoted as “OSD-REE” and
is depicted in green. The derivation and design of these
codes can be found in [25]. Observe that, for this scenario,
the error-exponent approximation “L−

1+τ
2 ×EE” is not as

accurate as the saddlepoint approximations. In Fig. 4b, we
additionally show the performance of an accumulate-repeat-
jagged-accumulate (ARJA) low-density parity-check (LDPC)
code combined with 64-APSK modulation, the transmission of
2 pilot symbols per coherence block, and maximum-likelihood
channel estimation followed by mismatched nearest-neighbor
decoding at the receiver (“ARJA LDPC code 64-APSK”); for
details see [6, Sec. 4]. Observe that the gap between the
performance of the presented transmission schemes and the
rest of the curves is substantial in both figures. This suggests
that more sophisticated (possibly joint) channel-estimation and
decoding procedures together with shaping techniques need to
be adopted to close the gap.

VIII. DISCUSSION

In the following, we discuss the complexity of the numerical
evaluation of the proposed saddlepoint approximations and
compare it with that of the nonasymptotic bounds as well as
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(b) L = 25, T = 20, and R = 4.

Fig. 4. ε∗(L, T,R, ρ) as a function of ρ.

of the refined asymptotic expansions available in the literature.
We then provide additional remarks on when one should use
which approximation.

A. Complexity Analysis

We denote by N the cost of numerically evaluating a one-
dimensional integral and by K the cost of performing an
optimization over an auxiliary parameter. In the following, we
provide a coarse estimate of the complexity of the presented
bounds and approximations in terms of N and K. The
nonasymptotic bounds (9) and (12) require the evaluation of
the distribution function of

∑L
`=1 i`,s(ρ). By (8), the gener-

alized information density i`,s(ρ) can be expressed in terms
of the two random variables Υ1,` and Υ2,`. It follows that
the evaluation of the RCUs bound requires the computation of
a (2L + 1)-dimensional integral (over {Υ1,`}L`=1, {Υ2,`}L`=1,
and U ) and an optimization over s. Similarly, the MC bound
requires the computation of a (2L)-dimensional integral and
an optimization over s and ξ. The numerical evaluation of
an L-dimensional integral has a complexity of roughly NL.
Hence, the overall complexity of the RCUs bound is KN2L+1,
and the complexity of the MC bound is K2N2L. The saddle-
point approximations (32b) and (34), and the prefactor-and-
error-exponent approximations (39b), depend on Is(ρ), ψρ,s,
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TABLE I
COMPLEXITY AND COMPUTATIONAL TIME OF THE PRESENTED BOUNDS AND APPROXIMATIONS FOR L = 30, T = 10, ε = 10−6 , ρ = 6 dB.

Bounds / Approximations Comp. Complexity Comp. Time

RCUs: KN2L+1 (optimization over s) RCUs: 3720 s
nonasymptotic bounds

MC: K2N2L (optimization over s, ξ) MC: 3280 s

RCUs: 162 s
saddlepoint approximations 5K2N2 (optimization over τ , s)

MC: 194 s

RCUs: 170 s
prefactor-and-error-exponent approximations 5KN2 (optimization over τ )

MC: 207 s

error-exponent approximations 3KN2 (optimization over τ ) 140 s

normal approximation 2N2 (no optimization) 0.7 s

high-SNR normal approximation available in closed form 5 s

ψ′ρ,s, ψ
′′
ρ,s, and ψ′′′ρ,s, so they can be obtained by solving

5 two-dimensional integrals and by optimizing over (τ, s)
(saddlepoint approximations) or over τ (prefactor-and-error-
exponent approximations). The error-exponent approximations
that follow by solving (43a) and (43b) for R can be obtained
by evaluating Isτ (ρ), ψρ,sτ , and ψ′ρ,sτ , which corresponds
to the evaluation of 3 two-dimensional integrals, and by
optimizing over τ . The normal approximation (35) can be
obtained by evaluating C(ρ) and V (ρ), which corresponds to
the evaluation of 2 two-dimensional integrals. The high-SNR
normal approximation [20, Th. 2] is available in closed form.

In Table I, we summarize the computational complexities
of the presented bounds and approximations. We further show
the computational time (in seconds) required to numerically
compute bounds and approximations on R∗(L, T, ε, ρ) for the
parameters L = 30, T = 10, ε = 10−6, and ρ = 6 dB on
a PC-cluster node with 96 GB of RAM, powered by an Intel
Xeon Gold 6130 processor. Observe that the computational
complexity of the nonasymptotic bounds grows exponentially
in L, whereas the approximations proposed in this paper have
a computational complexity that is independent of L. This
is a significant reduction in computation cost, especially if
L is large. As a consequence, the saddlepoint approxima-
tions have a computational time that is about a factor of
20 (RCUs bound) or 17 (MC bound) smaller than that of
the nonasymptotic bounds. The prefactor-and-error-exponent
approximations have a similar complexity and computational
time as the saddlepoint approximations, while the complexity
and computational time of the error-exponent approximation
is slightly smaller. The normal approximation has, by far,
the lowest computational time, since no optimization over
auxiliary parameters is required. Perhaps surprisingly, the
high-SNR normal approximation requires more computational
time than the normal approximation, despite the fact that
the former is available in closed form and the latter must
be evaluated numerically. The reason is that the high-SNR
approximation (36) of capacity depends on a Gaussian hyper-
geometric function, whose evaluation is costly. Last but not
least, it is worth pointing out that setting s = 1/(1 + τ)
in the saddlepoint approximations and optimizing over τ ,
which reduces the computational complexity to 5KN2, yields
accurate results.

B. Saddlepoint Approximations vs.
Normal and Error-Exponent Approximations

Intuitively, the error-exponent approximation (43a) is ac-
curate for small values of ρ and ε, whereas the normal
approximation (35) is accurate for large values of ρ and ε.
For example, we observe from Fig. 3a that, for ρ = 0 dB,
the normal approximation is accurate for ε > 10−2. In
contrast, for ρ = 0 dB, the error-exponent approximation
“EE” is accurate for error probabilities below 10−4. Similarly,
we observe from Fig. 3b that, for ρ = 6 dB, the normal
approximation is accurate for error probabilities above 10−3,
while the error-exponent approximation is accurate for ε <
10−7. As noted in [20], the high-SNR normal approximation
is accurate for ρ ≥ 15 dB, L ≥ 10, and large values
of ε. In contrast, the saddlepoint approximations (32b) and
(34), and the approximations (39b), are accurate over the
entire range of system parameters. Finally, the error-exponent
approximation “L−

1+τ
2 ×EE” is accurate over the entire range

of system parameters, albeit not as accurate as the saddlepoint
approximations. That said, the normal approximations require
a computational time that is two orders of magnitude lower
than that of the remaining approximations. Furthermore, the
high-SNR normal approximation is available in closed form,
which makes it suitable for analytical studies.

In summary, the normal approximation is the go-to choice
when the SNR and error probabilities are sufficiently large.
For example, for an SNR of 6 dB, this is the case for error
probabilities above 10−3. Indeed, in this regime the normal
approximation is reasonably accurate, and it can either be
computed efficiently or it can be approximated by the high-
SNR normal approximation, which is available in closed form.
In contrast, the saddlepoint approximations arise as easy-to-
compute alternatives to the nonasymptotic bounds when one
wishes to characterize the maximum coding rate for a large
range of system parameters or for small SNR values and error
probabilities, where the normal approximations are inaccurate.

IX. SUMMARY AND CONCLUSIONS

In this paper, we applied the saddlepoint method to derive
approximations of the MC and the RCUs bounds for single-
antenna Rayleigh block-fading channels. While these approxi-
mations must still be evaluated numerically, they only require



10

the evaluation of two-dimensional integrals. This is in contrast
to the nonasymptotic MC and RCUs bounds, which require the
evaluation of (2L)-dimensional integrals. Numerical evidence
shows that the saddlepoint approximations are accurate for the
entire range of system parameters for which the nonasymptotic
bounds are computable. They thus arise as easy-to-compute
alternatives to the nonasymptotic bounds.

APPENDIX I
PROOFS OF PROPOSITION 1 AND COROLLARY 2

A. Proof of Proposition 1, Part 1

The proof follows closely the steps by Feller [26, Ch. XVI].
Since we consider a random variable Z`,θ that depends on a
parameter θ, we provide here a self-contained proof proving
uniformity in the extra parameter. Let Fθ denote the distribu-
tion of Y`,θ , Z`,θ− γ̃, where γ̃ , γ/n. Then, the CGF of Yk
is given by ψ̃θ(ζ) , ψθ(ζ) − ζγ̃. Consider the tilted random
variable V`,θ with distribution

ϑθ,τ (x) = e−ψ̃θ(τ)

∫ x

−∞
eτtdFθ(t)

= e−ψθ(τ)+τγ̃

∫ x

−∞
eτtdFθ(t) (44)

where the parameter τ lies in (−ζ0, ζ0). Note that the exponen-
tial term e−ψθ(τ)+τγ̃ on the right-hand side (RHS) of (44) is
a normalizing factor that guarantees that ϑθ,τ is a distribution.

Let vθ,τ (ζ) denote the MGF of the tilted random variable
V`,θ, which is given by

vθ,τ (ζ) =

∫ ∞
−∞

eζxdϑθ,τ (x)

=
mθ(ζ + τ)

mθ(τ)
e−ζγ̃ (45)

where mθ(τ) is given in (13). Together with E[V`,θ] = v′θ,τ (0),
this yields

E[V`,θ] = ψ′θ(τ)− γ̃. (46)

Let now F ?nθ denote the distribution of
∑n
`=1(Z`,θ − γ̃),

and let ϑ?nθ,τ denote the distribution of
∑n
`=1 V`,θ. By (44)

and (45), the distributions F ?nθ and ϑ?nθ,τ again stand in the
relationship (44) except that the term e−ψθ(τ) is replaced by
e−nψθ(τ) and γ̃ is replaced by nγ̃. By inverting (44), we obtain
that

P

[
n∑
`=1

Z`,θ ≥ γ
]

= enψθ(τ)−τγ
∫ ∞

0

e−τydϑ?nθ,τ (y). (47)

Furthermore, by choosing τ such that nψ′θ(τ) = γ, it follows
from (46) that the distribution ϑ?nθ,τ has zero mean. We next
substitute in (47) the distribution ϑ?nθ,τ by the zero-mean normal
distribution with variance nψ′′θ (τ), denoted by Nnψ′′θ (τ), and
analyze the error incurred by this substitution. To this end, we
define

Aτ , enψθ(τ)−τγ
∫ ∞

0

e−τydNnψ′′θ (τ)(y) (48)

which for nψ′θ(τ) = γ can be evaluated as

Aτ =
en[ψθ(τ)−τψ′θ(τ)]√

2πnψ′′θ (τ)

∫ ∞
0

e−τye
− y2

2nψ′′
θ

(τ) dy

= e
n
[
ψθ(τ)−τψ′θ(τ)+ τ2

2 ψ
′′
θ (τ)

]
Q

(
τ
√
nψ′′θ (τ)

)
. (49)

We continue by showing that the error incurred by substi-
tuting Nnψ′′θ (τ) for ϑ?nθ,τ in (47) is small. To do so, we note
that integration by parts [26, Ch. V.6, Eq. (6.1)] yields

P

[
n∑
`=1

Z`,θ ≥ nψ′θ(τ)

]
−Aτ

= en[ψθ(τ)−τψ′θ(τ)]

[
−
(
ϑ?nθ,τ (0)−Nnψ′′θ (τ)(0)

)
+ τ

∫ ∞
0

(
ϑ?nθ,τ (y)−Nnψ′′θ (τ)(y)

)
e−τydy

]
. (50)

We next use [26, Sec. XVI.4, Th. 1] (stated as Lemma 5 below)
to assess the error committed in (50). To state Lemma 5, we
first introduce the following notation. Let Z̃1,θ, . . . , Z̃n,θ be
a sequence of i.i.d., real-valued, zero-mean, random variables
with distribution F̃θ that depends on an extra parameter θ ∈ Θ.
We denote the k-th moment for any possible value of θ ∈ Θ
by µk,θ and we denote the second moment as µ2,θ = σ2

θ .
For the distribution of the normalized n-fold convolution

of a sequence of i.i.d., zero-mean, unit-variance random vari-
ables, we write

F̃n,θ(x) = F̃ ?nθ (xσθ
√
n). (51)

Note that F̃n,θ has zero mean and unit variance. We denote by
N the zero-mean, unit-variance, normal distribution, and we
denote by n the zero-mean, unit-variance, normal pdf.

Lemma 5: Assume that the family of distributions F̃n,θ
(parametrized by θ) is nonlattice. Further assume that

sup
θ∈Θ

µ4,θ <∞ (52)

inf
θ∈Θ

σθ > 0. (53)

Then, for every θ ∈ Θ and x ∈ R,

F̃n,θ(x)−N(x) =
µ3,θ

6σ3
θ

√
n

(1− x2)n(x) + o

(
1√
n

)
(54)

where o(1/
√
n) is uniform in x and θ.

Proof: See Appendix II.
We next use Lemma 5 to expand (50). Note that the family

of distributions F ?nθ (parametrized by θ) is nonlattice by
assumption. Furthermore, as shown in Appendix III, if a family
of distributions is nonlattice, then so is the corresponding
family of tilted distributions. Consequently, the family of
distributions ϑ?nθ,τ (parametrized by θ) is nonlattice, too. The
variable y in (50) corresponds to xσθ

√
n in (51). Hence,
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applying (54) to (50) with ϑ?nθ,τ (y) = F̃n,θ(y/
√
nψ′′θ (τ)) and

Nnψ′′θ (τ)(y) = N(y/
√
nψ′′θ (τ)), we obtain

P

[
n∑
`=1

Z`,θ ≥ nψ′θ(τ)

]
−Aτ

= en[ψθ(τ)−τψ′θ(τ)]

[
ψ′′′θ (τ)

6ψ′′θ (τ)3/2
√
n

(
− 1√

2π
+
τ2nψ′′θ (τ)√

2π

− τ3ψ′′θ (τ)3/2n3/2Ψθ(τ, τ, n)

)
+ o

(
1√
n

)]
(55)

where we used that

Var[V`,θ] = ψ′′θ (τ) (56)

E
[
(V`,θ − E[V`,θ])

3
]

= ψ′′′θ (τ). (57)

Substituting Aτ in (49) into (55), and using that nψ′θ(τ) = γ,
we establish Part 1 of Proposition 1.

B. Proof of Proposition 1, Part 2

The proof of Part 2 follows along similar lines as the proof
of Part 1. Hence, we will focus on describing what is different.
Specifically, the left-hand-side (LHS) of (24) differs from the
LHS of (20) by the additional term logU . To account for this
difference, we follow the same steps as Scarlett et al. [28,
App. E]. Since in our setting the distribution of Z`,θ depends
on the parameter θ, we repeat these steps in the following:

P

[
n∑
`=1

Z`,θ ≥ γ + logU

]

= enψθ(τ)−τγ
∫ 1

0

∫ ∞
log u

e−τydϑ?nθ,τ (y)du

= enψθ(τ)−τγ
(∫ ∞

0

e−τydϑ?nθ,τ (y) +

∫ 0

−∞
e(1−τ)ydϑ?nθ,τ (y)

)
(58)

where the second step follows by changing the order of
integration. We next proceed as in the proof of the previous
part. The first term in (58) coincides with (47). For the second
term, we substitute the distribution ϑ?nθ,τ by the zero-mean
normal distribution with variance nψ′′θ (τ) and analyze the error
incurred by this substitution. To this end, we define

Ãτ , enψθ(τ)−τγ
∫ 0

−∞
e(1−τ)ydNnψ′′θ (τ)(y) (59)

which for nψ′θ(τ) = γ can be computed as

Ãτ = e
n

[
ψθ(τ)−τψ′θ(τ)+

(1−τ)2

2 ψ′′θ (τ)

]
Q

(
(1− τ)

√
nψ′′θ (τ)

)
.

(60)
As we did in (50), we next evaluate the error incurred by

substituting ϑ?nθ,τ by Nnψ′′θ (τ). Indeed,

enψθ(τ)−τγ
∫ 0

−∞
e(1−τ)ydϑ?nθ,τ (y)− Ãτ

= en[ψθ(τ)−τψ′θ(τ)]

[
ψ′′′θ (τ)

6ψ′′θ (τ)3/2
√
n

(
1√
2π
− (1− τ)2nψ′′θ (τ)√

2π

+ (1− τ)3(nψ′′θ (τ))
3/2

Ψθ(1− τ, τ, n)

)
+ o

(
1√
n

)]
(61)

which follows by integration by parts [26, Ch. V.6, Eq. (6.1)]
and by Lemma 5.

Combining (58) with (20), (47), (60), and (61), we obtain
the desired result (24).

C. Proof of Corollary 2

Using (58) with (48) and (59), and using a change of
variable, we obtain

P

[
n∑
`=1

Z`,θ ≥ γ + logU

]
−Aτ − Ãτ

= en[ψθ(τ)−τψ′θ(τ)]

[
o

(
1√
n

)
+

1√
2π

ψ′′′θ (τ)

6ψ′′θ (τ)3/2
√
n

×
(∫ ∞

0

(1− τ)
√
nψ′′θ (τ)

(
z2 − 1

)
e−(1−τ)

√
nψ′′θ (τ)z− z22 dz

+

∫ ∞
0

τ
√
nψ′′θ (τ)

(
1− z2

)
e−τ
√
nψ′′θ (τ)z− z22 dz

)]
. (62)

Keeping only the positive part of each integral, it follows that
the RHS of (62) can be upper-bounded by

en[ψθ(τ)−τψ′θ(τ)]

[
o

(
1√
n

)
+

1√
2π

ψ′′′θ (τ)

6ψ′′θ (τ)3/2
√
n

×
(∫ ∞

1

(1− τ)
√
nψ′′θ (τ)

(
z2 − 1

)
e−(1−τ)

√
nψ′′θ (τ)z− z22 dz

+

∫ 1

0

τ
√
nψ′′θ (τ)

(
1− z2

)
e−τ
√
nψ′′θ (τ)z− z22 dz

)]
. (63)

The first integral in (63) is upper-bounded by 1. The second
integral is upper-bounded by

e−(1−τ)
√
nψ′′θ (τ)

(
1 +

2 + 2(1− τ)
√
nψ′′θ (τ)

(1− τ)
2
nψ′′θ (τ)

)
. (64)

If τ ∈ [0,min{ζ0, 1−δ}) for some arbitrary δ > 0 independent
of n and θ, then (64) vanishes faster than 1/

√
n uniformly in θ.

We thus obtain the upper bound

P

[
n∑
`=1

Z` ≥ nψ′θ(τ) + logU

]
−Aτ − Ãτ

≤ en[ψθ(τ)−τψ′θ(τ)]

[
1√
2π

ψ′′′θ (τ)

6ψ′′θ (τ)3/2
√
n

+ o

(
1√
n

)]
(65)

thereby proving Corollary 2.

APPENDIX II
PROOF OF LEMMA 5

The proof follows along similar lines as the proof of [26,
Ch. XVI.4, Th. 1]. Notice that our result holds uniformly in the
parameter θ of the distribution F̃θ, which makes the conditions
of our lemma slightly more restrictive. Specifically, we require
the fourth moment of F̃θ to exist, whereas in the original
theorem only the third moment is required to exist.

Let us denote the characteristic function of Z̃`,θ ∼ F̃θ by

ϕ̃θ(ζ) , E
[
eıζZ̃`,θ

]
, ζ ∈ R (66)

and define

Gθ(x) , N(x)− µ3,θ

6σ3
θ

√
n

(x2 − 1)n(x), x ∈ R. (67)
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Note that (52) implies that supθ∈Θ|µ3,θ| < ∞ since, by
Jensen’s inequality, |µ3,θ| ≤ µ

3/4
4,θ . Using this together

with (53), one can show that the first derivative of Gθ is
bounded in θ ∈ Θ. Furthermore, the characteristic function
of Gθ is

γθ(ζ) = e−
1
2 ζ

2

[
1 +

µ3,θ

6σ3
θ

√
n

(ıζ)3

]
. (68)

It follows that Gθ satisfies the conditions of [26, Ch. XVI.3,
Lemma 2], namely, that supθ∈Θ,x∈R

∣∣G′θ(x)
∣∣ ≤ m for

some positive constant m and that Gθ has a continuously-
differentiable characteristic function satisfying γθ(0) = 1 and
γ′θ(0) = 0. Then, the following inequality holds for all x ∈ R
and ∆ > 0 [26, Ch. XVI.3, Eq. (3.13)]:

|F̃n,θ(x)−G(x)|

≤ 1

π

∫ ∆

−∆

∣∣∣∣∣ ϕ̃
n
θ

(
ζ

σθ
√
n

)
− γθ(ζ)

ζ

∣∣∣∣∣dζ +
24m

π∆
. (69)

Using (69) with ∆ = a
√
n, where the constant a is chosen

sufficiently large such that 24m
π < εa for some arbitrary ε > 0

independent of x and θ, we can write

|F̃n,θ(x)−G(x)|

≤ 1

π

∫ a
√
n

−a√n

∣∣∣∣∣ ϕ̃
n
θ

(
ζ

σθ
√
n

)
− γθ(ζ)

ζ

∣∣∣∣∣dζ +
ε√
n
. (70)

It remains to show that the RHS of (70) decays faster than
1/
√
n uniformly in θ. To this end, we first note that, by

assumption, the family of distributions F̃θ (parametrized by
θ) is nonlattice, so supθ∈Θ |ϕ̃θ(ζ)| is strictly smaller than 1
for every ζ 6= 0. Furthermore, as we shall argue below, (52)
implies that the function ζ 7→ supθ∈Θ ϕ̃θ(ζ) is continuous.
Consequently, there exists a number qδ,ζ̄ < 1 (independent
of θ) such that

sup
θ∈Θ
|ϕ̃θ(ζ)| ≤ qδ,ζ̄ , δ ≤ |ζ| ≤ ζ̄ (71)

for some arbitrary δ > 0 and ζ̄ ≥ a/(infθ∈Θ σθ).
To prove that ζ 7→ supθ∈Θ ϕ̃θ(ζ) is continuous, note that,

by [26, Ch. XV.4, Lemma 2],

sup
θ∈Θ
|ϕ̃′θ(ζ)| ≤ sup

θ∈Θ
E
[
|Z̃`,θ|

]
, ζ ∈ R. (72)

Moreover, for every ζ1, ζ2 ∈ R,∣∣∣∣sup
θ∈Θ

ϕ̃θ(ζ1)− sup
θ∈Θ

ϕ̃θ(ζ2)

∣∣∣∣ ≤ sup
θ∈Θ
|ϕ̃θ(ζ1)− ϕ̃θ(ζ2)|

≤ sup
θ∈Θ

E
[
|Z̃`,θ|

]
|ζ1 − ζ2| (73)

where the second inequality follows from the mean value
theorem [41, Th. 5.10] and (72). Since the RHS of (72) is
finite by (52), it follows that for every ε > 0 there exists a
δ > 0 such that |ζ1 − ζ2| ≤ δ implies that the LHS of (73) is
bounded by ε. Thus, ζ 7→ supθ∈Θ ϕ̃θ(ζ) is continuous.

We next bound the integral in (70) by dividing the inte-
gration interval |ζ| ∈ (0, a

√
n) into |ζ| ∈ (δσθ

√
n, a
√
n) and

|ζ| ∈ (0, δσθ
√
n] for some arbitrary δ > 0 that is independent

of x and θ. The integral over the first interval can be bounded
as

1

π

∫
δσθ
√
n<|ζ|<a√n

∣∣∣∣∣ ϕ̃
n
θ

(
ζ

σθ
√
n

)
− γθ(ζ)

ζ

∣∣∣∣∣dζ
≤ 2

π
log

(
a

δσθ

)
qnδ,ζ̄ +

1

π

∫
δσθ
√
n<|ζ|<a√n

∣∣∣∣γθ(ζ)

ζ

∣∣∣∣dζ
≤ 2

π
log

(
a

δ infθ∈Θ σθ

)
qnδ,ζ̄

+
1

π

∫
|ζ|>δ√n infθ∈Θ σθ

e−
1
2 ζ

2

|ζ|

1 +

sup
θ∈Θ

µ3,θ

6 inf
θ∈Θ

σ3
θ

√
n
|ζ|3
 dζ

(74)

where the first inequality follows by upper-bounding the
integrand using the triangle inequality and (71); the second
inequality follows by upper-bounding γθ, defined in (68),
using the triangle inequality and by optimizing over θ ∈ Θ.
The RHS of (74) tends to zero faster than any power of 1/n
uniformly in θ.

For the second interval, we express the integral as

1

π

∫ δσθ
√
n

−δσθ
√
n

e−
1
2 ζ

2

|ζ|

∣∣∣∣∣enκθ
(

ζ
σθ
√
n

)
− 1− nµ3,θ

6

(
ıζ

σθ
√
n

)3
∣∣∣∣∣ dζ
(75)

where
κθ(ζ) , log ϕ̃θ(ζ) +

1

2
σ2
θζ

2. (76)

To bound (75), we will use that [26, Ch. XVI.2, Eq. (2.8)]∣∣eα − 1− β
∣∣ ≤ (|α− β|+ 1

2
β2

)
eγ , γ ≥ max(|α|, |β|) .

(77)
Recall that, by assumption (52), the fourth moment of F̃θ is
bounded. This implies that

sup
θ∈Θ

∫ ∞
−∞
|x|kdF̃θ(x) <∞, k = 1, . . . , 4 (78)

since, by Jensen’s inequality, E[|Z̃`,θ|k] ≤ µ
k/4
4,θ , k = 1, 2, 3.

Then, given an ε > 0 independent of θ and ζ, it is possible to
choose a δ (independent of θ and ζ) such that, for |ζ| ≤ δ,∣∣∣κθ(ζ)− 1

6
µ3,θ(ıζ)3

∣∣∣ < ε|ζ|3 (79)

and

|κθ(ζ)| < 1

4
σ2
θζ

2,
∣∣∣1
6
µ3,θ(ıζ)3

∣∣∣ ≤ 1

4
σ2
θζ

2. (80)

Indeed, after a Taylor series expansion of ζ 7→ κθ(ζ) around
ζ = 0, and noting that κθ(0) = κ′θ(0) = κ′′θ (0) = 0, the LHS
of (79) becomes∣∣∣κθ(ζ)− 1

6
µ3,θ(ıζ)3

∣∣∣ =
∣∣∣1
6
κ′′′θ (ζ̃)ζ3 − 1

6
µ3,θ(ıζ)3

∣∣∣ (81)

for some ζ̃ ∈ (0, ζ). Equation (78) implies that ϕ̃′′′θ (0) exists
and [26, Ch. XV.4, Lemma 2]

ϕ̃′′′θ (0) = κ′′′θ (0) = ı3µ3,θ. (82)
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Furthermore, following the steps (72)–(73), it can be shown
that, for every ξ > 0 and k = 0, . . . , 3,

sup
θ∈Θ,|ζ|≤ξ

∣∣∣ϕ̃(k)
θ (ζ)− ϕ̃(k)

θ (0)
∣∣∣ ≤ sup

θ∈Θ
E
[
|Z̃`,θ|k+1

]
ξ. (83)

By the definition of κθ in (76), the k-th derivative κ
(k)
θ is

given by the ratio between a combination of derivatives of ϕ̃θ
up to order k in the numerator, and ϕ̃kθ in the denominator.
Since ϕ̃θ(0) = 1, and since, by (52), E[|Z̃`,θ|k] is bounded in
θ, it follows from (83) that, for every ε, there exists a δ > 0
satisfying

sup
θ∈Θ,|ζ|≤δ

|κ′′′θ (ζ)− κ′′′θ (0)| ≤ 6ε. (84)

Combining this with (82), we conclude that (81) can be
bounded as∣∣∣1

6
κ′′′θ (ζ̃)ζ3 − 1

6
µ3,θ(ıζ)3

∣∣∣ =
1

6
|ζ|3
∣∣∣κ′′′θ (ζ̃)− ı3µ3,θ

∣∣∣
≤ ε|ζ|3, |ζ| ≤ δ. (85)

This proves (79). The inequalities in (80) follow along similar
lines.

Using (77) together with (79) and (80), and replacing ζ
by ζ

nσθ
, we obtain that, for |ζ| ≤ δσθ

√
n, the integrand in

(75) is upper-bounded by

e−
1
4 ζ

2

|ζ|

(
ε

σ3
θ

√
n
|ζ|3 +

µ2
3,θ

72n
ζ6

)

≤ e− 1
4 ζ

2

 ε

inf
θ∈Θ

σ3
θ

√
n
ζ2 +

sup
θ∈Θ

µ2
3,θ

72n
|ζ|5
 . (86)

Integrating (86) over ζ ∈ [−δσθ
√
n, δσθ

√
n], we conclude that

(75) decays faster than 1/
√
n uniformly in x and θ. Since the

same is true for (74), and since ε is arbitrary, we obtain that
the RHS of (70) is o(1/

√
n) uniformly in θ. Lemma 5 thus

follows.

APPENDIX III
NONLATTICE DISTRIBUTIONS AND EXPONENTIAL TILTING

Lemma 6: Let ϕθ denote the characteristic function of some
distribution Fθ, and let ϕ̃θ denote the characteristic function
of the tilted distribution ϑθ,τ (cf. (44)). Then, for every ζ 6= 0,

sup
θ∈Θ
|ϕθ(ζ)| < 1 =⇒ sup

θ∈Θ
|ϕ̃θ(ζ)| < 1. (87)

Thus, if a family of distributions is nonlattice, then so is the
family of tilted distributions.

Proof: The characteristic function of the tilted random
variable Vθ ∼ ϑθ,τ can be written as

ϕ̃θ(ζ) ,
∫ ∞
−∞

eıζxdϑθ,τ (x)

= E
[
e(ıζ+τ)Zθ

]
e−ıζγ̃

1

mθ(τ)
(88)

where mθ(τ) denotes the MGF of Zθ ∼ Fθ. It follows that

|ϕ̃θ(ζ)| =
∣∣∣E[e(ıζ+τ)Zθ

]∣∣∣ 1

mθ(τ)
. (89)

We next note that there exists an α = eıφ such that

|ϕθ(ζ)| = αE
[
eıζZθ

]
= E[cos(ζZθ + φ)] . (90)

Likewise, there exists an α̃ = eıφ̃ such that

|ϕ̃θ(ζ)| = α̃
E
[
e(ıζ+τ)Zθ

]
mθ(τ)

=
E
[
eτZθ cos

(
ζZθ + φ̃

)]
mθ(τ)

. (91)

Furthermore, we have

eıφ̃E
[
eıζZθ

]
= E[cos(ζZθ + φ̃)] + ıE[sin(ζZθ + φ̃)] (92)

so

E
[
cos
(
ζZθ + φ̃

)]2
≤
∣∣∣eıφ̃E[eıζZθ]∣∣∣2

= E[cos(ζZθ + φ)]
2 (93)

where the last step is due to (90). Since E[cos(ζZθ + φ)] is
equal to |ϕθ(ζ)| and hence nonnegative, it follows that

E
[
cos
(
ζZθ + φ̃

)]
≤ E[cos(ζZθ + φ)] . (94)

Let

f(Zθ) , 1− cos(ζZθ + φ) (95)

f̃(Zθ) , 1− cos
(
ζZθ + φ̃

)
. (96)

The LHS of (87) is equivalent to infθ∈Θ E[f(Zθ)] > 0. Simi-
larly, the RHS of (87) is implied by infθ∈Θ E[eτZθ f̃(Zθ)] > 0
because

1− sup
θ∈Θ

E
[
eτZθ cos

(
ζZθ + φ̃

)]
mθ(τ)

≥
infθ∈Θ E

[
eτZθ f̃(Zθ)

]
supθ∈Θmθ(τ)

(97)
and mθ is bounded by assumption (18).

We next show that

inf
θ∈Θ

E
[
eτZθ f̃(Zθ)

]
= 0 =⇒ inf

θ∈Θ
E
[
f̃(Zθ)

]
= 0. (98)

We then note that, by (94), E[f̃(Zθ)] ≥ E[f(Zθ)]. Since
f(·) is nonnegative, infθ∈Θ E[f̃(Zθ)] = 0 thus implies that
infθ∈Θ E[f(Zθ)] = 0. Hence, by reverse logic,

inf
θ∈Θ

E[f(Zθ)] > 0 =⇒ inf
θ∈Θ

E
[
eτZθ f̃(Zθ)

]
> 0 (99)

which concludes the proof of Lemma 6.
To prove (98), we first note that, for every arbitrary δ > 0,

E
[
eτZθ f̃(Zθ)

]
≥ E

[
eτZθ f̃(Zθ)I{|Zθ| ≤ δ}

]
≥ E

[
f̃(Zθ)I{|Zθ| ≤ δ}

]
e−τδ (100)

where I{·} denotes the indicator function. Furthermore,

E
[
f̃(Zθ)

]
= E

[
f̃(Zθ)I{|Zθ| ≤ δ}

]
+ E

[
f̃(Zθ)I{|Zθ| > δ}

]
≤ E

[
f̃(Zθ)I{|Zθ| ≤ δ}

]
+ 2

supθ∈Θ E
[
Z2
θ

]
δ2

(101)
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where the inequality follows because f̃(Zθ) is upper-bounded
by 2 and from Chebyshev’s inequality. Combining (100)
with (101), and using that f̃(·) is nonnegative, we thus obtain
that

0 ≤ inf
θ∈Θ

E
[
f̃(Zθ)

]
≤ eτδ inf

θ∈Θ
E
[
eτZθ f̃(Zθ)

]
+ 2

supθ∈Θ E
[
Z2
θ

]
δ2

. (102)

By assumption (18), we have that supθ∈Θ E
[
Z2
θ

]
< ∞.

Consequently, if infθ∈Θ E[eτZθ f̃(Zθ)] = 0 then we obtain that
infθ∈Θ E[f̃(Zθ)] = 0 upon letting δ → ∞. This yields (98).

APPENDIX IV
THE SECOND DERIVATIVE OF THE CGF

IS BOUNDED AWAY FROM ZERO

Lemma 7: Assume that Zθ is zero mean and its MGF and
CGF satisfy (18) and

inf
θ∈Θ

ψ′′θ (0) > 0. (103)

Then, for every ζ0 > 0,

inf
θ∈Θ,|ζ|<ζ0

ψ′′θ (ζ) > 0. (104)

Proof: The second derivative of the CGF is given by

ψ′′θ (ζ) =
E
[
Z2
θe
ζZθ
]
E
[
eζZθ

]
− E

[
Zθe

ζZθ
]2

mθ(ζ)2
. (105)

By (18), the denominator on the RHS of (105) is bounded.
Thus, to obtain (104), it suffices to show that the numerator
on the RHS of (105) is bounded away from zero. To shorten
notation, we next define

A , Zθe
ζ
2Zθ (106)

B , e
ζ
2Zθ (107)

σ2
A , E

[
A2
]

(108)

σ2
B , E

[
B2
]

(109)

λA,B ,
A

σA
+

B

σB
(110)

λA,B ,
A

σA
− B

σB
. (111)

Then, the numerator on the RHS of (105) becomes

σ2
Aσ

2
B − E[AB]

2
. (112)

By following the proof of the Cauchy-Schwarz inequality [42,
Th. 3.3.1], it can be shown that

|E[AB]| ≤ σAσBK (113)

where

K , max

{(
1− 1

2
inf

θ∈Θ,|ζ|<ζ0
E
[
λ2
A,B

])+

,

(
1− 1

2
inf

θ∈Θ,|ζ|<ζ0
E
[
λ

2

A,B

])+
}

(114)

and (x)+ , max{0, x}. Using (113), we can lower-bound
(112) as

σ2
Aσ

2
B − E[AB]

2 ≥ (1− K2) inf
θ∈Θ,|ζ|<ζ0

σ2
A inf
θ∈Θ,|ζ|<ζ0

σ2
B

≥ (1− K2) inf
θ∈Θ,|ζ|<ζ0

σ2
A (115)

where the second inequality follows because Zθ is
zero mean by assumption, so Jensen’s inequality gives
σ2
B = E

[
eζZθ

]
≥ 1. Thus, in order to show that the numerator

on the RHS of (105) is bounded away from zero, it remains
to show that

inf
θ∈Θ,|ζ|<ζ0

σ2
A > 0 (116)

inf
θ∈Θ,|ζ|<ζ0

E
[
λ2
A,B

]
> 0 (117)

inf
θ∈Θ,|ζ|<ζ0

E
[
λ

2

A,B

]
> 0. (118)

To prove (116), recall that σ2
A = E[Z2

θe
ζZθ ]. We next show

that

inf
θ∈Θ,|ζ|<ζ0

E
[
Z2
θe
ζZθ
]

= 0 =⇒ inf
θ∈Θ

E
[
Z2
θ

]
= 0. (119)

Since E
[
Z2
θ

]
= ψ′′θ (0), it follows by assumption (103) that

the RHS of (119) cannot be true. Hence, by reverse logic,
infθ∈Θ,|ζ|<ζ0 E[Z2

θe
ζZθ ] > 0, which is (116).

To prove (119), we follow along the lines of (100)–(102).
Indeed, for every arbitrary δ > 0,

E
[
Z2
θe
ζZθ
]
≥ E

[
Z2
θ I{|Zθ| ≤ δ}

]
e−ζδ. (120)

Furthermore,

E
[
Z2
θ

]
≤ E

[
Z2
θ I{|Zθ| ≤ δ}

]
+

√
supθ∈Θ E[Z4

θ ] supθ∈Θ E[Z2
θ ]

δ
(121)

by the Cauchy-Schwarz inequality and Chebyshev’s inequality.
Combining (120) with (121), and using that Z2

θ is nonnegative,
it follows that

0 ≤ inf
θ∈Θ

E
[
Z2
θ

]
≤ eζ0δ inf

θ∈Θ,|ζ|<ζ0
E
[
Z2
θe
ζZθ
]

+

√
supθ∈Θ E[Z4

θ ] supθ∈Θ E[Z2
θ ]

δ
. (122)

By assumption (18), we have that supθ∈Θ E
[
Zkθ
]
< ∞ for

k = 2, 4. Consequently, if infθ∈Θ,|ζ|<ζ0 E
[
Z2
θe
ζZθ
]

= 0 then
we obtain that infθ∈Θ E

[
Z2
θ

]
= 0 upon letting δ → ∞. This

yields (119).
We next prove (117). To do so, we write E[λ2

A,B ] as
E[(A − Bηθ,ζ)2]/σ2

A, where ηθ,ζ , σA/σB . It can be shown
that σ2

A = m′′θ (ζ). Consequently, σA is bounded by assump-
tion (18). To prove (117), it thus remains to show that

inf
θ∈Θ,|ζ|<ζ0

E
[
(A−Bηθ,ζ)2

]
= inf
θ∈Θ,|ζ|<ζ0

E
[
eζZθ (Zθ − ηθ,ζ)2

]
> 0. (123)
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To this end, we first note that the steps (120)–(122) with Z2
θ

replaced by (Zθ − ηθ,ζ)2 yield

inf
θ∈Θ,|ζ|<ζ0

E
[
eζZθ (Zθ − ηθ,ζ)2

]
= 0

=⇒ inf
θ∈Θ,|ζ|<ζ0

E
[
(Zθ − ηθ,ζ)2

]
= 0. (124)

Since Zθ is zero mean, we further have that

E[(Zθ − ηθ,ζ)2
] ≥ E

[
Z2
θ

]
(125)

so if E[(Zθ − ηθ,ζ)
2] is zero, then so is E

[
Z2
θ

]
. Since, by

assumption (103), we have infθ∈Θ E
[
Z2
θ

]
> 0, the inequality

in (123) follows from (124) by reverse logic.
Finally, (118) follows from the same steps as the ones used

to show (117), but with ηθ,ζ replaced by −ηθ,ζ .
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finite blocklength regime,” IEEE Trans. Inf. Theory, vol. 56, no. 5, pp.
2307–2359, May 2010.
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